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Abstract

The random k-SAT model is the most important and well-studied distribution over
k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for
satisfiablity algorithms, and lastly average-case hardness over this distribution has also
been linked to hardness of approximation via Feige’s hypothesis. In this paper, we prove
that any Cutting Planes refutation for random k-SAT requires exponential size, for k that
is logarithmic in the number of variables, and in the interesting regime where the number
of clauses guarantees that the formula is unsatisfiable with high probability.

1 Introduction

The Satisfiability (SAT) problem is perhaps the most famous problem in theoretical com-
puter science, and significant effort has been devoted to understanding randomly generated
SAT instances. The most well-studied random SAT distribution is the random d-SAT model,
F(m,n,d), where a random d-CNF over n variables is chosen by uniformly and indepen-
dently selecting m clauses from the set of all possible clauses on d distinct variables. The
random d-SAT model is widely studied for several reasons. First, it is an intrinsically natural
model analogous to the random graph model, and closely related to phase transitions and struc-
tural phenomena occurring in statistical physics. Second, the random d-SAT model gives us
a testbench of empirically hard examples which are useful for comparing and analyzing SAT
algorithms; in fact, some of the better practical ideas in use today originated from insights
gained by studying the performance of algorithms on this distribution and the properties of
typical random instances.

Third, and most relevant to the current work, the difficulty of solving random d-SAT in-
stances above the threshold (in the regime where the formula is almost certainly unsatisfiable)
has recently been connected to worst-case inapproximability [12]. Feige’s hypothesis states
that there is no efficient algorithm to certify unsatisfiability of random 3-SAT instances for
certain parameter regimes of (m, n, d), and he shows that this hard-on-average assumption for
3-SAT implies worst-case inapproximability results for many NP-hard optimization problems.
The hypothesis was generalized to d-SAT as well as to any CSP, thus exposing more links to
central questions in approximation algorithms and the power of natural SDP algorithms [4].
The importance of understanding the difficulty of solving random d-SAT instances in turn
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makes random d-SAT an important family of formulas for propositional proof complexity,
since superpolynomial lower bounds for random d-SAT formulas in a particular proof system
show that any complete and efficient algorithm based on the proof system will perform badly
on random d-SAT instances. Furthermore, since the proof complexity lower bounds hold in
the unsatisfiable regime, they are directly connected to Feige’s hypothesis.

Remarkably, determining whether or not a random SAT instance from the distribution
F(m,n,d) is satisfiable is controlled quite precisely by the ratio A = m/n, which is called
the clause density. A simple counting argument shows that F(m, n, d) is unsatisfiable with
high probability for A > 2¢1n 2. The famous satisfiability threshold conjecture asserts that
there is a constant ¢, such that random d-SAT formulas of clause density A are almost certainly
satisfiable for A < ¢, and almost certainly unsatisfiable if A > ¢, where ¢, is roughly 27¢1n 2.
In a major recent breakthrough, the conjecture was resolved for large values of d [11].

From the perspective of proof complexity, the density parameter A also plays an important
role in the difficulty of refuting unsatisfiable CNF formulas. For instance, in Resolution, which
is arguably the simplest proof system, the complexity of refuting random d-SAT formulas is
now very well understood in terms of A. In a seminal paper, Chvatal and Szemeredi [10]
showed that for any fixed A above the threshold there is a constant x5 such that random d-
SAT requires size exp(kan) Resolution refutations with high probability. In their proof, the
drop-off in k, is doubly exponential in A, making the lower bound trivial when the number
of clauses is larger than n logl/ *n (and thus does not hold when d is large.) Improved lower
bounds [5, 7] proved that the drop-off in k, is at most polynomial in A. More precisely, they
prove that a random d-SAT formula with at most n(?*2/4 clauses requires exponential size
Resolution refutations. Thus for all values of d, even when the number of clauses is way above
the threshold, Resolution refutations are exponentially long. They also give asymptotically
matching upper bounds, showing that there are DLL refutations of size exp(n/A!Y(4=2)),

Superpolynomial lower bounds for random d-SAT formulas are also known for other weak
proof systems such as the polynomial calculus and Res(k) [1, 6], and random d-SAT is also
conjectured to be hard for stronger semi-algebraic proof systems. In particular, it is a relatively
long-standing open problem to prove superpolynomial size lower bounds for Cutting Planes
refutations of random d-SAT. As alluded to earlier, this potential hardness (and even more so
for the semi-algebraic SOS proof system) has been linked to hardness of approximation.

In this paper, we focus on the Chvatal-Gomory Cutting Planes proof system and some of
its generalizations. A proof in this system begins with a set of unsatisfiable linear integral
inequalities, and new integral inequalities are derived by (i) taking nonnegative linear com-
binations of previous lines, or (ii) dividing a previous inequality through by 2 (as long as all
coefficients on the left-hand side are even) and then rounding up the constant term on the
right-hand side. The goal is to derive the “false” inequality 0 > 1 with as few derivation
steps as possible. This system can be generalized in several natural ways. In Semantic Cutting
Planes, there are no explicit rules — a new linear inequality can be derived from two previous
ones as long as it follows soundly. A further generalization of both CP and Semantic CP is
the CC-proof system, where now every line is only required to have low (deterministic or real)
communication complexity; like Semantic CP, a new line can be derived from two previous
ones as long as the derivation is sound.



The main result of this paper is a new proof method for obtaining Cutting Planes lower
bounds, and we apply it to prove the first nontrivial lower bounds for the size of Cutting
Planes refutations of random d-SAT instances. Specifically we prove that for d = ©(logn)
and m in the unsatisfiable regime, with high probability random d-SAT requires exponential-
size Cutting Planes refutations. Our main result holds for the other generalizations mentioned
above (Semantic CP and CC-proofs).

We obtain the lower bound by establishing an equivalence between proving such lower
bounds and proving a corresponding monotone circuit lower bound. Said a different way, we
generalize the interpolation method so that it applies to any unsatisfiable family of formulas.
Namely, we show that proving superpolynomial size lower bounds for any formula for Cutting
Planes amounts to proving a monotone circuit lower bound for certain yes/no instances of the
monotone CSP problem. Applying this equivalence to random d-SAT instances, we reduce
the problem to that of proving a monotone circuit lower bound for a specific family of yes/no
instances of the monotone CSP problem. We then apply the symmetric method of approxi-
mations in order to prove exponential monotone circuit lower bounds for our monotone CSP
problem.

In recent private communication with Pavel Hrubes and Pavel Pudldk we have learned that
they have independently proven a similar theorem.

1.1 Related Work

Exponential lower bounds on lengths of refutations are known for CP, Semantic CP, and low-
weight CC-proofs) [9, 13, 19] These lower bounds were obtained using the method of inter-
polation [18]. A lower bound proof via interpolation begins with a special type of formula
— an interpolant. Given two disjoint NP sets U and V an interpolant formula has the form
A(z,y) N B(x, z) where the A-part asserts that z € U, as verified by the NP-witness y, and
the B-part asserts that x € V, as verified by the NP-witness z. The prominent example in
the literature is the clique/coclique formula where U is the set of all graphs with the clique
number at least &, and V' is the set of all (k — 1)-colorable graphs. Feasible interpolation for a
proof system amounts to showing that if an interpolant formula has a short proof then we can
extract from the proof a small monotone circuit for separating U from V. Thus lower bounds
follow from the celebrated monotone circuit lower bounds for clique [2,20].

Despite the success of interpolation, it has been quite limited since it only applies to “split”
formulas. In particular, the only family of formulas for which are known to be hard for (unre-
stricted) Cutting Planes are the clique-coclique formulas. In contrast, for Resolution we have
a clean combinatorial characterization for when a formula does or doesn’t admit a short Res-
olution refutation [3,7]; we would similarly like to understand the strength of Cutting Planes
with respect to arbitrary formulas and most notably for random d-SAT formulas and Tseitin
formulas.

Our main equivalence is an adaptation of the earlier work combined with a key reduction
between search problems and monotone functions established in [14]. With this reduction
in hand, our main proof is very similar to both [9] and [21]. [9] proved this equivalence for
the special case of the clique-coclique formulas. Namely they showed that low-weight CC-



proofs for this particular formula are equivalent to monotone circuits for the corresponding
sets U, V. Our argument is essentially the same as theirs, only we realize that it holds much
more generally for any unsatisfiable CNF and partition of the variables, and the corresponding
set of Yes/No instances of CSP.

On the other hand, Razborov [21] proved the equivalence between PLS communication
games (for KW games) and monotone circuits. The construction in our proof is essentially
equivalent to his but bypasses PLS and proves a direct equivalence between monotone cir-
cuits and CC-proofs. We could have alternatively proven our equivalence via: (1) Razborov’s
equivalence between monotone circuits (for a monotone function) and PLS communication
games (for the associated KW game), and then (2) an equivalence between PLS communica-
tion games (for a monotone KW game) and CC-proofs (for the search problem associated with
the KW game). Inspired by [22], we give a direct argument which is (somewhat) simpler.

2 Definitions and Preliminaries

If 2,y € {0,1}" then we write x < y if z; < g, for all 4. A function f : {0,1}" — {0,1}
is monotone if f(x) < f(y) whenever < y. If f is monotone then an input x € {0,1}" is
a maxterm of f if f(x) = 0 but f(2’) = 1 for any 2’ obtained from z by flipping a single bit
from 0 to 1; dually, = is a minterm if f(x) = 1 but f(z') = 0 for any 2’ obtained by flipping
a single bit of x from 1 to 0. More generally, if f(z) = 1 we call = an accepting instance or
a yes instance, while if f(x) = 0 then we call = a rejecting instance or a no instance. If x is
any yes instance of f and y is any no instance of f then there exists an index ¢ € [n| such that
x; = 1,y; = 0, as otherwise we would have = < y, contradicting the fact that f is monotone.
If f,g,h:{0,1}" — {0, 1} are boolean functions on the same domain then f, g F h if for all
x € {0,1}" we have f(z) A g(x) = h(x).

A monotone circuit is a circuit in which the only gates are A or V gates. A real monotone
circuit is a circuit in which each internal gate has two inputs and computes any function
é(x,y) : R? — R which is monotone nondecreasing in its arguments.

Definition 2.1. A linear integral inequality in variables = = (z1,...,x,) with coefficients
a=(ay,...,a,) € Z" and constant term b € 7Z is an expression
alz > b.

Definition 2.2. Given a system of linear integral inequalities Az > b, where A € Z™*" and
b € Z™, a cutting planes proof of an inequality a’x > c is a sequence of inequalities

a'z >caw >0, a T > 0
such that a; = a, ¢, = ¢ and every inequality ¢ € [{] satisfies either
e a;"x > c; appears in Az > b,

e a;x > ¢; is a Boolean axiom, i.e., x; > 0or —x; > —1 for some j,



e there exists j, k < i such that a;”x > ¢; is the sum of the linear inequalities ;"= > ¢;
and a;,Tx > ¢4,

e there exists j < ¢ and a positive integer d dividing every coefficient in a; such that
a; = aj/dandci = [C]/d—l

The length of the proof is ¢, the number of lines. If all coefficients and constant terms appear-
ing in the cutting planes proof are bounded by O(poly(n)), then the proof is said to be of low
weight.

Let F = Ci A...AC), be an unsatisfiable CNF formula over variables z1, . . ., z,. For any
clause C'let C'~ denote the set of variables appearing negated in the clause and let C'* denote
variables occurring positively in the clause. Each clause C' in F can be encoded as a linear

integral inequality as
Z 2z + Z (1—2)>1.
2,€Ct zi€C—

Thus each unsatisfiable CNF can be translated into a system of linear integral inqualities Az >
b with no 0/1 solutions. A cutting planes (CP) refutation of this system is a cutting planes
proof of the inequality 0 > 1 from Ax > b.

Definition 2.3. Let / = C; A ... A (), be an unsatisfiable £-CNF on n variables. A semantic

refutation of F is a sequence
Ly, Ly, ... Ly

of boolean functions L; : {0,1}" — {0, 1} such that

1. L;y=C;foralli=1,2,...,m.

2. L, = 0, the constant 0 function.

3. For all ¢ > m there exists j, k < i such that L;, L, F L;.
The length of the refutation is /.

We will be particularly interested in semantic refutations where the boolean functions can
be computed by short communication protocols.

Definition 2.4. Let 7 = C; A...AC,, be an unsatisfiable CNF on n = n; 4+ n, variables, and
let X ={z1,29,...,20, }, Y = {1, ..., yn,} be a partition of the variables. A CCy-refutation
of F with respect to the partition (X, Y") is a semantic refutation

Li,.... L

of F such that each function L; in the proof can be computed by a k-bit communication
protocol with respect to the partition (X, Y).



Since any linear integral inequality axz+by > ¢ with polynomially bounded weights can be
evaluated by a trivial O(logn)-bit communication protocol (just by having Alice evaluating
ax and sending the result to Bob), it follows that low-weight cutting planes proofs are also
CCo(iogn)-proofs. We can similarly define a proof system which can simulate any cutting
planes proof by strengthening the type of communication protocol.

Definition 2.5. A k-round real communication protocol is communication protocol between
two players, Alice and Bob, where Alice receives an input x € X and Bob receives y € ). In
each round, Alice and Bob each send real numbers «, 5 to a “referee”, who responds with a
single bit b which is 1 if @« > f and 0 otherwise. After k£ rounds of communication, the players
output a bit b. The protocol computes a function F' : X' x Y — {0, 1} ifforall (z,y) € X x )
the protocol outputs F'(z,y).

Definition 2.6. Let 7 = C; A ... A C,, be an unsatisfiable CNF on n = n; + ny variables
X =A{zy,...,zy,}and Y = {y1,...yn,}. An RCC-refutation of F is a semantic refutation

L17L27"'7LZ

in which each function L; can be computed by a k-round real communication protocol with
respect to the variable partition X, Y.

It is clear that any linear integral inequality ax + by > c can be evaluated by a 1-round
real communication protocol, and so it follows that a cutting planes refutation of F is also an
RCC, -refutation of F. We record each of these observations in the next proposition.

Proposition 2.7. Let F be an unsatisfiable CNF on variables 21, 2o, . . . , 2,, and let X,Y be
any partition of the variables into two sets. Any length-{ low-weight cutting planes refutation

of F is a length-{ CCoogn)-refutation of F. Similarly, any length-{ cutting planes refutation
of F is a length-¢ RCCy-refutation of F.

2.1 Total Search Problems and Monotone CSP-SAT

In this section we review the equivalence between the search problem associated with an
unsatisfiable CNF formula, and the Karchmer-Wigderson (KW) search problem for a related
(partial) monotone function.

Definition 2.8. Let ny, ny, m be positive integers, and let X', ) be finite sets. A total search
problem is a relation R C X™ x Y™ x [m] where for each (x,y) € X™ x V"2, there is an
i € [m] such that R(z,y,7) = 1. We refer to x € XA as Alice’s input and y € Y"* as Bob’s
input. The search problem is d-local if for each ¢ € [m] we have that R(x, *,i) depends on a
fixed set of at most d coordinates of x (it may depend on any number of y coordinates).

A standard example of a d-local search problem is the search problem associated with
unsatisfiable d-CNFs.



Definition 2.9. Let F be an unsatisfiable d-CNF formula with m clauses and n variables
21, ..., 2. Consider any partition of 21, 29, . . ., 2, INtO tWO S€tS 1, Ta, . .., Ty, ANA Y1, Yo, . . ., Y-
The search problem Search(JF) with respect to this partition takes as input an assignment

x € {0,1}" and y € {0,1}" and outputs the index i € [m] of a violated clause under this
assignment.

This problem is clearly d-local since each clause can contain at most d variables from
Z1,%a,...,Tn,. Associated with this search problem is the following monotone variant of the
constraint satisfaction problem.

Definition 2.10. Let H/ = (L U R, F) be a bipartite graph such that each vertex v € L has
degree at most d, and let m = |L| and n = |R|. Let ¥ be a finite alphabet. A constraint
satisfaction problem (CSP) ‘H with topology H and alphabet X is defined as follows. The
vertices in L are thought of as the set of constraints, and the vertices in R are thought of as a
set of variables; thus for each vertex i € L we let vars(i) denote the neighbourhood of . For
each vertex i € L the CSP has an associated boolean function TT, : ¥ — {0, 1} called
the truth table of 1 that encodes the set of “satisfying” assignments to the constraint associated
with 7. An assignment o € X", thought of as a >-valued assignment to the variables R,
satisfies the CSP H if for each i € L we have T'T;(« [ vars(i)) = 1, otherwise the assignment
falsifies the CSP.

For each i € [m] and o € ¥¥2*() we abuse notation and let TT;(a) represent the boolean
variable corresponding to this entry of the truth table for the constraint .

Definition 2.11. Let H = (L U R, F) be a bipartite graph such that each vertex i € L has
degree at most d, and let m = |L| and n = |R|. We think of H as encoding the topology
of a constraint satisfaction problem, where each vertex ¢ € L represents a constraint of the
CSP and each ¢« € R represents a variable of the CSP. Let X be a finite alphabet, and let
N =" |5 < m|¥|%. The monotone function CSP-SATy 5, : {0,1}" — {0,1} is
defined as follows. An input x € {0, 1}N encodes a CSP H(x) by specifying for each vertex
u € L its truth table
TT? : wvars) 5 {0,1}.

Given an assignment z € {0,1}" the function CSP-SAT; x,(z) = 1 if and only if the CSP
H(z) is satisfiable. This function is clearly monotone since for any z,y € {0, 1}" withz < y,
any satisfying assignment for the CSP # () is also a satisfying assignment for the CSP H (y).

Next we show how to relate d-local total search problems and the CSP-SAT problem. Let
R C A™ x Y™ x [m] be a d-local total search problem. Associated with R is a bipartite
constraint graph Hg encoding for each ¢ € [m] the coordinates in X on which R(x, *, )
depends. Formally, the constraint graph is the bipartite graph Hr = (LU R, E) with L = [m],
|R| = [n41], and for each pair (i,j) € L x R we add the edge if R(x,*,7) depends on the
variable z;. Note that each vertex v € L has degree at most d, since the original search
problem is d-local.

Given R and its corresponding constraint graph we can give a natural way to construct
accepting and rejecting instances of CSP-SATy,, » from A" and Y"2. To reduce clutter,



given a d-local total search problem R we abuse notation and write
CSP—SATR = CSP—SATHR7)(.

Accepting Instances /. Forany x € X™ we construct an accepting input I/ (x) of CSP-SAT¢
as follows. For each vertex 7 € L we define the corresponding truth table T'T; by setting
TT;(a) = 1ifz [ vars(i) = a and TT;(a) = 0 otherwise.

Rejecting Instances ). For any y € )" we construct a rejecting input V(y) of CSP-SATx
as follows. For each vertex i € L and each o € X¥*(") we set

TT;(a) = 0 <= R(«, y, 1) holds.

Given z € X'™ it is easy to see that U(z) is a satisfying assignment for CSP-SAT% since
x 1s a satisfying assignment for the corresponding CSP. The rejecting instances require a bit
more thought. Let y € ™2 and consider the rejecting instance V(y) as defined above. Suppose
by way of contradiction that the corresponding CSP Hz (V(y)) is satisfiable, and let x € X™
be the satisfying assignment for the CSP. It follows by definition of the rejecting instances that
R(x,y,u) does not hold for any u, implying that R is not total.

3 Relating Proofs and Circuits

In this section we relate CCy-proofs and monotone circuits, as well as RCC;-proofs and real
monotone circuits.

Theorem 3.1. Let F be an unsatisfiable CNF formula on n variables and let X = {xy, ..., 2, },
Y = {v1,...,Yn,} be any partition of the variables. Let k be a positive integer. If there
is a CCy, refutation of F with respect to the partition (X,Y) of length (, then there is a
monotone circuit separating the accepting and rejecting instances U({0,1}"), V({0,1}")
of CSP-SAT search(r) of size O(2%0).

Proof. Let F = CyA...AC,, over variables x1, ..., Tpn,, Y1, - - . , Yn,. Let P be a CCy-proof for
F with £ lines. Order the lines in P as Ly, Lo, ..., L,, where the final line L, is the identically
false formula, and each earlier line is either a clause, or follows semantically from two earlier
lines.

We build the circuit for CSP-SATsearch(7) that separates ¢/, V by induction on £. For each
line L in the proof, there are 2* possible histories &, each with an associated monochromatic
rectangle Ry (h). A rectangle h is good for L if it is O-monochromatic. For every line L and
each good history & for L, we will build a circuit C* that correctly “separates” x and y for each
(z,y) € Rr(h). By this, we mean that the circuit C}* outputs 1 on () (the 1-input associated
with x) and outputs 0 on V(y) (the O-input associated with y).

For each leaf in the proof, the associated line L is a clause C; of F. The communication
protocol for C; is a two-bit protocol where Alice/Bob each send 0 iff their inputs are «, 3 such
that C;(a, ) = 0. Thus there is only one good (0-monochromatic) rectangle with history
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h = 00. This pair a, 3 corresponds to the variable TT;(«), and we define the circuit Cf
corresponding to line L = C; and good history & = 00 to be the variable TT;(«).

Now suppose that L is derived from L, and L, and inductively we have circuits C,f,l, C,f,?
for each history A’ good for L; and h” good for Ls. Given a good history A for L, we will
show how to build the circuit C}. It will use all of the the circuits that were built for L; and
Ly ({CL},CL2} for all good A') and an additional 2 gates. To build C/ we will construct a
stacked protocol tree for L, corresponding to first running the communication protocol for L,
and then running the communication protocol for L,. This will give us a height 2k (full) binary
tree, T', where the top part is the communication protocol tree for L, with protocol trees for
L, hanging off of each of the leaves. We label each of the leaves of this stacked tree with a
circuit from {C ,f,l ) C}fﬁ} as follows. Consider a path labelled h,hs in T', where h; is the history
from running L, and hs is the history from running L,. By soundness, either the rectangle
R (h)N Ry, (hy) is 0-monochromatic, or the rectangle Ry (h) N Ry, (hsy) is O-monochromatic.
In the first case, we will label this leaf with C}fll and otherwise we will label this leaf with C ,fj
Now we will label the internal vertices of the stacked tree with a gate: if a node corresponds to
Alice speaking, then we label the node with an V gate, and otherwise if the node corresponds
to Bob speaking, then we label the node with an A gate. The resulting circuit has size 2* plus
the sizes of the subcircuits, and thus the total circuit size is 2¥¢. The theorem is therefore
immediately implied by the following claim.

Claim. The circuit resulting from the above construction satisfies: for each line L in P, and
for each good history h for L, C} will be correct for all (z,y) € Rp(h).

Proof of Claim. 1f L is an axiom, then L is a clause, ;. The communication protocol for C;
is a two-bit protocol where Alice and Bob each send 0 iff their part of C; evalutes to 0. There
is only one good (0-monochromatic) history, h = 00. If (x,y) € Rp(h) then C;(z,y) = 0
by definition. Let « = x | vars(C;). In our construction the circuit corresponding to CE is
labelled by the variable T'T;(«), and it is easy to check that Z sets T'T;(«) to true, and 7 sets
TT;(«) to false.

If L is not an axiom, then we will prove the lemma by proving the following stronger
statement by induction: For each line L (derived from previous lines L; and L5), and for each
node v in the stacked protocol tree for L, with corresponding (sub)history h' = hihs, the
subcircuit C, associated with vertex v is correct on all (z,y) € Rr(h) N Rr, (h1) N Ry, (hs).

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked
protocol tree for L with history A’ = hyhy. Then by soundness either (i) Rz (h) N Ry, (h1) =0
or (i) Rp(h) N R, (hy) = 0. In case (i) we labelled v by C,fll. Since Rr(h) N Ry, (hy) =0,
Ry, (h1) = 0 and therefore C,fll is defined and is correct on all (x, y) € Ry, (h), soitis correct
onall (x,y) € Rp(h) N Rr,(hy) N Ry, (hs). A similar argument holds in case (ii).

For the inductive step, let v be a nonleaf node in the protocol tree with history A’ and
assume that Alice owns v. The rectangle Ry (h) N Ry, (h1) N Rr,(he) = A X B is partitioned
into Ag x Band A; x B, where

1. A:A()UAl,



2. Ay X B is the rectangle with history /0,

3. A; x Bis the rectangle with history A'1.

Given (z,y) € Rp(h) N Ry, (h1) N R, (hs), since CL, is correct on all (z,y) € Ay x B
and Cr,, is correct on all (z,y) € A; x B, it follows that CF = CL, v CL, is correct on all
(z,y) € A x B. To see this, observe that if z € Ay, then C,(U(x)) = 1 and therefore

Cy U(x)) = Cio(U()) V Cyin (U(x)) = 1.

Similarly, if € A;, then CL,(U(x)) = 1 and therefore

Cr (U(x)) = CioU(2)) V Ciy U(2)) = 1.
Finally if y € B then both C},,(V(y)) = CL,(V(y)) = 0 and therefore

(
Cr (V(y) = Chis(V(»)) V Cian (V(y)) = 0.

A similar argument holds if v is an internal node in the protocol tree that Bob owns (and is
therefore labelled by an AND gate. 0]

The converse direction is much easier.

Theorem 3.2. If there is a monotone circuit separating these inputs of CSP-SATsearcn(r) of
size L, then there is a CCq-refutation of F of length { with respect to this partition of the
variables.

Proof. In the other direction, we show that from a small monotone circuit C for CSP-SATscarch(c)
that separates U/({0,1}"") and V({0, 1}"*), we can construct a small CCy-proof for F, where
Alice gets z € {0,1}"" and Bob gets y € {0, 1}". The lines/vertices of the refutation will be
in 1-1 correspondence with the gates of C. The protocol is constructed inductively from the
leaves of C to the root. For a gate g of C, let U, be those inputs u € U({0,1}"") such that
g(u) = 1, and let V, be those inputs v € V({0, 1}"*) such that g(v) = 0. At each gate g we will
prove that for every pair (u,v) € U, x V, and for every (z, y) such that u = U(x),v = V(y),
the protocol R, on input (z,y) will output 0. Since the output gate of C is correct for all pairs,
this will achieve our desired protocol.

At a leaf ¢ labelled by some variable TT;(«), the pairs associated with this leaf must
have TT;(ar) = 1 in w and 0 in v, and thus we can define R,(z,y) to be 0 if and only if
is consistent with a and the clause C; evaluates to false on (z,y). This is a 2-bit protocol,
and by definition of the accepting and rejecting instances we have for all (z,y) satisfying
u=U(x),v =V(y) that z | vars(j) = a and R(«, y, 7) holds.

Now suppose that g is a OR gate of C, with inputs gy, go. The protocol R, on (x,y) is
as follows. Alice privately simulates C,, ({(x)) and Cy, (U (z)), and Bob simulates C,, (V(y))
and Cy, (V(y)). If (i) either C,, (U(z)) = 1 or Cy, (U(x)) = 1 and (ii) both Cy, (V(y)) = 0 and
Cy,(V(y)) = 0, then they output 0, and otherwise they output 1. This is a 2-bit protocol, with
Alice sending one bit to report whether or not condition (i) is satisfied, and Bob sending one
bit to report if (ii) is satisfied.
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Now, we want to show that for all (z,y) such that C,(U(z)) = 1 and C,(V(y)) = 0 we
have that R,(z,y) = 0. This is easy — since g = g1 V g» we have that C,(U(z)) = 1 and
C,(V(y) = 0 implies that either C,, (U(z)) = 1 or Cy,(U(x)) = 1 and C,,(V(y)) = 0 and
Cy,(V(y)) = 0, implying that the protocol will output 0 on (z, y) by definition.

Similarly, if g is an AND gate, then again Alice privately simulates C,, (U(z)) and C,, (U(x))
and Bob privately simulates Cy, (V(y)) and C,,(V(y)). If (1) Cy, (U(z)) = 1 and Cy, (U(x)) =1
and (ii) either Cy, (V(y)) = 0 or C,,(V(y)) = 0, then they ouput 0, and otherwise they output
1. By an analogous argument to the OR case, it’s easy to see that the protocol will output 0
whenever C,(U(z)) = 1 and C,(V(y)) = 0. O

The following theorem was recently proven [16], showing that RCC;-proofs imply mono-
tone real circuits for the associated search problem.

Theorem 3.3. [16] Let F be an unsatisfiable CNF formula on n variables and let X =
{z1,...;20, }, Y = {y1,...,Yyn,} be any partition of the variables. If there is a RCC; refu-
tation of F with respect to the partition (X, Y') of length (, then there is a monotone real circuit
separating the accepting and rejecting instances U ({0, 1}""), V({0, 1}"*) of CSP-SAT search(r)
of size polynomial in (.

In particular, the above theorem implies that for any family of formulas F and for any
partition of the underlying variables into X, Y, a Cutting Planes refutation of F of size S
implies a similar size monotone real circuit for separating the accepting and rejecting instances
UH{0,1}"),V({0,1}"*) of CSP-SATsearch(F)-

4 Lower Bounds for Random CNF's

In this section using Theorem 3.3 we prove lower bounds for RCC;-refutations (and therefore
cutting planes refutations) of uniformly random d-CNFs with sufficient clause density.

Definition 4.1. Let F(m,n, d) denote the distribution of random d-CNFs on n variables ob-
tained by sampling m clauses (out of the (:l‘) 2¢ possible clauses) uniformly at random with
replacement.

The proof is delayed to Section 4.2; to get a feeling for the proof, we first prove an easier
lower bound for a simpler distribution of balanced random CNFs.

4.1 Balanced Random CNFs

Definition 4.2. Let X = {z1,...,z,} and Y = {y1, ..., y,} be two disjoint sets of variables,
and the distribution F(m, n, d)®? denotes the following distribution over 2d-CNFs: First sam-
ple

Fl=CiANCyN---NC}

from F(m,n, d) on the X variables, and then

FP=CiNC3N---NCE

11



from F(m,n,d) on the Y variables independently. Then output
F=(CiVCHN(C3VCIHN---A(CLVCA).

This distribution shares the well-known property with F(m, n, d) that dense enough for-
mulas are unsatisfiable with high probability.

Lemma 4.3. Let ¢ > 2/ log e and let n be any positive integer. If d € [n] and m > cn2*? then
F ~ F(m,n,d)®? is unsatisfiable with high probability.

Proof. Fix any assignment (z,y) to the variables of F. The probability that the ith clause
is satisfied by the joint assignment is 1 — 1/22¢, and so the probability that all clauses are
satisfied by the joint assignment is (1 — 1/224)™ < ¢=™/2*" since the clauses are sampled
independently. By the union bound, the probability that some joint assignment satisfies the
formula is at most 22ne~m/2*" = 92n—(loge)m/2*! < gn—(loge)en < 9=Q(n) Thyg, the probability
that the formula is unsatisfiable is at least 1 — 27X("), U

The main theorem of this section is that 7 ~ JF(m,n,d)®? require large CC- and RCC-
proofs, which is obtained by using Theorem 3.3 and applying the well-known method of
symmetric approximations [8, 15] to obtain lower bounds on monotone circuits computing
the function CSP-SATsearch(7). We use the following formalization of the method which is
exposited in Jukna’s excellent book [17]. First we introduce some notation: if U C {0, 1}N,
then for r € [N] and b € {0, 1} let

Ap(r,U) = max welU|Viel:u =0b}|.

(V) = | max [{ue U] }

Theorem 4.4 (Theorem 9.21 in Jukna). Let f : {0,1}" — {0,1} be a monotone boolean
function and let 1 < r,s < N be any positive integers. Let U C f~1(1) and V C f~1(0) be
arbitrary subsets of accepting and rejecting inputs of f. Then every real monotone circuit that
outputs 1 on all inputs in U and 0 on all inputs in V' has size at least

un (U= GOA0LD) V1)
(28) 1AL (r,U) 7 (2r)sH1 Ag(s, V) |~

Next we state the main theorem of this section.

Theorem 4.5. Let d = 4logn and m = cn?2% where ¢ > 2/loge is some constant. Let
F ~ F(m,n,d)®? with variable partition (X,Y'), and let

U=u{0,1}"), vV =Vv({0,1}").

Then with high probability any real monotone circuit separating U and V' has at least 2%(n)
gates.

Corollary 4.6. Let n be a sufficiently large positive integer, and let d = 4logn,m = n®. If
F ~ F(m,n,d)®? then with high probability every RCCy-refutation (and therefore, Cutting
Planes refutation) of F has at least 2™ lines.
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Proof. Immediate consequence of Theorems 3.3 and 4.5. U

The proof of Theorem 4.5 is rather straightforward, and comes down to the essential prop-
erty that random d-CNFs are good expanders. The next lemma records the expansion proper-
ties we require of random CNFs; the proof is adapted from the notes of Salil Vadhan [23].

Lemma 4.7. Let 0 < ¢ < 1 be arbitrary, and let n be any sufficiently large positive integer.
Let d = 4logn, m = n?2% and sample F ~ F(m,n,d). For any subset S C F of clauses
let vars(S) denote the subset of variables appearing in any clause of S. Any set S C F of size
s < n/ed? satisfies

lvars(S)| > (1 —e)ds

with high probability.

Proof. Fix any set S C F of size s, and for each clause C' € S sample the variables in C' one
at a time without replacement. Let vy, v, . . . , v4s denote the concatenation of all sequences of
sampled variables over all C' € S. We say that variable v; is a repeat if it has already occurred
among vy, . .., v;—1. In order for |vars(S)| < (1 — €)ds the concatenated sequence must have
at least eds repeats, and the probability that variable v; is a repeat is at most (i — 1) /n < ds/n.
This implies that

s <0< () (7)< () ()= ()

using standard bounds on binomial coefficients and the fact that s < n/ ed?. Thus

1 eds
Pr[3S : |S| = s, |vars(S)| < (1 —e)ds] <m*® (5_d) :
and since m = n?2? and d = 4log n we get that
slogm < edsloged
for sufficiently large n, implying the previous probability is o(1). O

Using the expansion lemma we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. We shall apply Theorem 4.4 to U = U({0,1}") and V' = V({0,1}")
(cf. Section 2.1) with r = s = n/ed?. Recall that I/ and V are the functions mapping z inputs
to 1-inputs of CSP-SATscarcn(7) and mapping y inputs to 0-inputs of CSP-SATsearcn(r), re-
spectively. To finish the argument we need to compute |U|, A;(1,U), Ay (r, U), |V, Ao(s, V).

It is easy to see that every variable participates in some clause in F with high probabil-
ity. This implies that I/ is one-to-one with high probability, and thus |U| = 2" with high
probability.

Recall that the O-inputs of CSP-SATsesrcn () correspond to substituting y-assignment into
F and writing out truth tables of the all the clauses. The truth tables corresponding to the
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clauses that were satisfied by the y-assignment are identically 1, and the truth tables corre-
sponding to the clauses that were not satisfied by the given y-assignment contain exactly one
0-entry. Given a y assignment we call the set of clauses that were not satisfied the assignment
the profile of yy. The next lemma implies that the profiles of all y-assignments are distinct with
high probability.

Lemma 4.8. Let F ~ F(m,n,d), and define the following 2" x m matrix M, with the rows
labelled by assignments o € {0,1}" and the columns are labelled by clauses of F. Namely,
for any pair («, 1) set

, 1 if the ith clause is not satisfied by «,
Mo, 1] =

0 otherwise.

For any ¢ > 2/ loge, if m > ¢2%n?/d then the rows of M are distinct with high probability.

Proof. We think of M as generated column by column with the columns sampled indepen-
dently. Fix two assignments v and & such that o # @. Let S be the set of indices on which
the two assignments differ, i.e., S = {i | ; # @;}. Set s = |S|. Let C; denote the ith clause,
and we say that C; overlaps S if C; contains a variable in .S. Then

Pr[C; unsat by @ and satisfied by ] = % (1 _ ((Z)) )
d
1@ 16 d
G 21 (%) 2in

Thus the probability that rows « and & agree on column 7 is at most 1 — %. Since columns
are sampled independently, the probability that o and @ agree on all columns is at most
(1 — %)m < emdm/(2'n) By a union bound over ordered pairs of assignments, the prob-
ability that there exists a pair of rows that agree on all columns is at most 22"e~4"/ (2'n) —
92n—(loge)dm/(2'n) < 92n—(loge)en — 9-2n) Thys, the probability that all columns are distinct
is at least 1 — 279", 0J

Since each profile is distinct with high probability, this implies that V is 1-1 with high
probability, and therefore |V'| = 2". It remains to bound the terms A;(1,U), A;(r,U), and
A0(87 V)

Bounding A, (1, U). Fixing a single bit of a 1-input in U to CSP-SATscarcn(r) to 1 is the same
as selecting a vertex C' in the bipartite constraint graph of Search(F) and an assignment « to
the variables which participate in C, and then setting TT¢(«) = 1. By the definition of U,
any input z € {0, 1}" fixing this bit to 1 determines d out of n variables of x exactly. Thus the
number of z € {0, 1}" that are consistent with this partial assignment is 2", and since U is
one-to-one, we have A;(1,U) = 2"4.
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Bounding A;(r,U). Similar to the previous bound, but now we fix r of the truth table bits
to 1. By definition of U/, these bits must be chosen from 7 distinct truth tables in the 1-input
in order to be consistent with any 2z € {0,1}". With respect to the underlying CNF F, this
corresponds to fixing an assignment to the set of variables appearing in an arbitrary set S
of r clauses in F. By Lemma 4.7, with high probability we have |vars(S)| > ds/2. Thus
fixing these 7 bits in the definition of A;(r, U) corresponds to setting at least 7d/2 of the input
variables participate in the constraints with determined truth tables. The number of « inputs
that are consistent with these indices fixed is therefore < 27742 and so Ay(r,U) < on—rd/2

Bounding A,(s, V). This case is similar to A, (r, U). We get Ag(s, V) < 27542
Observe that (s—1)A;(1,U) = (s—1)2"% = (s—1)2"/n? < 2"~L. Putting this altogether
we get the following lower bound on monotone circuit size is at least

n—1 -
( 12) 5 73 _ 2sd/2—slog(s—1) > 23(d/2—logs) > 2Q(n)’
5 — 1)s9n—s

where the last inequality follows from s = n/ed® and d/4 > logn. O

4.2 Uniformly Random CNF's

In this section we show how to modify the argument from the previous section to apply to the
“usual” distribution of random CNFs F(m,n, d). Our approach is simple: using the proba-
bilistic method we find a partition of the variables of a random formula 7 ~ F(m,n, d) such
that many of the clauses in J are balanced with respect to the partition. Ideally, every clause
would be so balanced, but it turns out that this is too strong — instead, we show that we can
balance many of the clauses, and the imbalanced clauses that remain are always satisfied by a
large collection of assignments. First we introduce our notion of “imbalanced” clauses.

Definition 4.9. Fix ¢ > 0. Given a partition of n variables into z-variables and y-variables,
clause C' is called X-heavy if it contains more than (1 — €)d x-variables. Clause C'is called
Y -heavy if it contains more than (1 — €)d y-variables. Clause C' is called balanced if it is
neither X-heavy nor Y -heavy.

We recall some basic facts from probability theory which will be used in our main lemma.

Lemma 4.10 (Lovédsz Local Lemma). Let £ = {E\, ..., E,} be a finite set of events in the
probability space ). For E € £ let I'(F) denote the set of events E; on which E depends. If
there is q € [0,1) such that VE € € we have Pr(E) < q(1 — q)"®)l, then the probability of
avoiding all sets E; is at least Pr(Ey N Ey A -+~ A E,) > (1 — )™

Fact 4.11 (Entropy bound on binomial tail). Given € > 0 we have

len]
> (n) < enle),
j

Jj=0

where H(e) = —eloge — (1 — €) log(1 — €) is the binary entropy function.
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Fact 4.12 (Multiplicative Chernoff Bound). Suppose Zi, ..., Z, are independent random
variables taking values in {0, 1}. Let Z denote their sum and let 1 = E(Z) denote the sum’s
expected value. Then for any § € (0,1) we have

Pr(X > (1+6)pu) < e 13,

We now prove the main lemma of this section, which shows that for 7 ~ F(m,n,d) a
good partition of the variables exists with high probability.

Lemma 4.13. Let F ~ F(m,n,d) where d = clogn and m = poly(n). There exists a
partition of the variables of F into two sets (X, Y') such that the following holds:

1. The number of X -heavy clauses and Y -heavy clauses are each upper bounded by m' =
m2—(1—(log e)H(e))d-i—l.

2. There exists a set U' of 2"/**°") truth assignments to the X variables satisfy all X -
heavy clauses, and similarly a set V' of 2"/ truth assignments to the Y -variables
satisfying all of the Y -heavy clauses.

Proof. We prove the existence of such a partition by the probabilistic method. For each vari-
able, flip a fair coin and place it in X if the coin is heads and in Y otherwise. Let Z; be the
random variable indicating whether clause 7 is X -heavy. Then

ed
Pr(Zi=1)=)_ (d) 9~ < 9-d—dH(©) < 9~(1~(oge)H(O)d
- J
7=0

where the inequality follows from Fact4.11. Let Z = Y7 | Z;; then E(Z) < m2~(-(ege)H(0)d —
m/. By the multiplicative Chernoff bound (see Fact 4.12) we have

2 (1=(og ) H(e))d

Pr(Z > (3/2)m2-(1-(ee)H(O)d) < o=

and we thus have Z < m/ with high probability. An identical calculation applies for the
Y -heavy clauses.

Next, let IW; be the random variable indicating whether a given fixed variable occurs in
clause i and clause i is X -heavy and let W = Y, W;. Then Pr(W; = 1) < 2-(1=(eee)H(©))dg /p
By the multiplicative Chernoff bound (see Fact 4.12) we have

_ mo—(1—(log e)H(e))dd/n

Pr(W > (3/2)ym2-(1-(eeelHeDdg /p)y < ¢ &

We conclude that W < m/d/n whp, and an identical calculation again holds for the Y'-heavy
clauses.

Noting that the number of z-variables is n/2 4+ o(n) with high probability, by the proba-
bilistic method we choose a partition (X, Y) which satisfies each of the above properties (the
bound on Z and W, and achieving near balance in the X and Y variables), and note that such
a partition exists with high probability over F(m,n,d). With this partition fixed, consider
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selecting a random assignment to the X -variables. Let £; be the event that X-heavy clause
i is falsified by the random assignment, and observe that Pr(£;) < 2~0~9 since the clause
is X-heavy. Then the number of events £; is at most m/, and for any event F; the number of
events that share an z-variable with E; is at most m'd?/n. Set ¢ = n/(100m’d). Then for each
FE; we have

1 — )FEN > jo—2am'd?/n n ~d/50 ~ 9—(1-e)d
q(1—q) > qe > Toodr > ,

provided d > clogn for a big enough constant c. Applying Lovadsz Local Lemma (see
Lemma 4.10) we get that probability that an assignment satisfies all X-heavy clauses is at

least
(1—¢)™ > (1 —n/(100dm’))™ > e/,

Thus the number of assignments to the X-variables satisfying all heavy clauses is at least
2n/2%0(m) "and an identical calculation applies to the Y variables. U

Now we will do the whole argument with respect to U (U’) and V(V’) chosen from the
previous lemma. The reason that this works is that since every a € U’ satisfies all X -heavy
clauses, if we look at a subset S of the variables of the monotone CSP that are set to false
and count the number of maxterms that are consistent with it, the count is nonzero only when
none of these variables come from a X -heavy clause. Similarly if we look at a subset S of the
variables of the monotone CSP that are set to true and count the number of maxterms that are
consistent with it, this count is nonzero only when none of these variables come from an X-
heavy clause. Therefore, when we calculate A;(s,U(U’)) and Ay(s,V(V')), the calculation
is with respect to the X -balanced clauses, and Y -balanced clauses, respectively. Thus we can
use the same expansion calculation that we already did.

There is also a minor modification required in order to argue that V is one-to-one when
restricted to V. As before, it suffices to show that for any two assignments «, 5 in VV”, that the
probability that they agree on all of the balanced clauses is very small, and then take a union
bound over all of the balanced clauses. This calculation is nearly identical to the one that we
already did, but now the union bound is over the number of balanced clauses, which is at least
half of all clauses, so the calculation is essentially the same.

With the above modifications, the arguments from the previous section imply the next
theorem.

Theorem 4.14. Let n be a sufficiently large positive integer. Let F ~ F(m,n,d) for m =
poly(n) and d = clogn for a large universal constant c. With high probability, there exists a
partition (X,Y') of the variables of F and an € > 0 such that the search problem Search(F)
defined with respect to this partition satisfies the following: any real monotone circuit com-
puting CSP-SATsearch(r) requires at least 2m%) aqtes.

Corollary 4.15. Let F be distributed as above. There exists € > 0 such that with high proba-
bility any RCC,-refutation requires 2" lines.
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