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Abstract

The random k-SAT model is the most important and well-studied distribution over

k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for

satisfiablity algorithms, and lastly average-case hardness over this distribution has also

been linked to hardness of approximation via Feige’s hypothesis. In this paper, we prove

that any Cutting Planes refutation for random k-SAT requires exponential size, for k that

is logarithmic in the number of variables, and in the interesting regime where the number

of clauses guarantees that the formula is unsatisfiable with high probability.

1 Introduction

The Satisfiability (SAT) problem is perhaps the most famous problem in theoretical com-

puter science, and significant effort has been devoted to understanding randomly generated

SAT instances. The most well-studied random SAT distribution is the random d-SAT model,

F(m,n, d), where a random d-CNF over n variables is chosen by uniformly and indepen-

dently selecting m clauses from the set of all possible clauses on d distinct variables. The

random d-SAT model is widely studied for several reasons. First, it is an intrinsically natural

model analogous to the random graph model, and closely related to phase transitions and struc-

tural phenomena occurring in statistical physics. Second, the random d-SAT model gives us

a testbench of empirically hard examples which are useful for comparing and analyzing SAT

algorithms; in fact, some of the better practical ideas in use today originated from insights

gained by studying the performance of algorithms on this distribution and the properties of

typical random instances.

Third, and most relevant to the current work, the difficulty of solving random d-SAT in-

stances above the threshold (in the regime where the formula is almost certainly unsatisfiable)

has recently been connected to worst-case inapproximability [12]. Feige’s hypothesis states

that there is no efficient algorithm to certify unsatisfiability of random 3-SAT instances for

certain parameter regimes of (m,n, d), and he shows that this hard-on-average assumption for

3-SAT implies worst-case inapproximability results for many NP-hard optimization problems.

The hypothesis was generalized to d-SAT as well as to any CSP, thus exposing more links to

central questions in approximation algorithms and the power of natural SDP algorithms [4].

The importance of understanding the difficulty of solving random d-SAT instances in turn
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makes random d-SAT an important family of formulas for propositional proof complexity,

since superpolynomial lower bounds for random d-SAT formulas in a particular proof system

show that any complete and efficient algorithm based on the proof system will perform badly

on random d-SAT instances. Furthermore, since the proof complexity lower bounds hold in

the unsatisfiable regime, they are directly connected to Feige’s hypothesis.

Remarkably, determining whether or not a random SAT instance from the distribution

F(m,n, d) is satisfiable is controlled quite precisely by the ratio ∆ = m/n, which is called

the clause density. A simple counting argument shows that F(m,n, d) is unsatisfiable with

high probability for ∆ > 2d ln 2. The famous satisfiability threshold conjecture asserts that

there is a constant cd such that random d-SAT formulas of clause density∆ are almost certainly

satisfiable for ∆ < cd and almost certainly unsatisfiable if ∆ > cd, where cd is roughly 2d ln 2.

In a major recent breakthrough, the conjecture was resolved for large values of d [11].

From the perspective of proof complexity, the density parameter ∆ also plays an important

role in the difficulty of refuting unsatisfiable CNF formulas. For instance, in Resolution, which

is arguably the simplest proof system, the complexity of refuting random d-SAT formulas is

now very well understood in terms of ∆. In a seminal paper, Chvatal and Szemeredi [10]

showed that for any fixed ∆ above the threshold there is a constant κ∆ such that random d-

SAT requires size exp(κ∆n) Resolution refutations with high probability. In their proof, the

drop-off in κ∆ is doubly exponential in ∆, making the lower bound trivial when the number

of clauses is larger than n log1/4 n (and thus does not hold when d is large.) Improved lower

bounds [5, 7] proved that the drop-off in κ∆ is at most polynomial in ∆. More precisely, they

prove that a random d-SAT formula with at most n(d+2)/4 clauses requires exponential size

Resolution refutations. Thus for all values of d, even when the number of clauses is way above

the threshold, Resolution refutations are exponentially long. They also give asymptotically

matching upper bounds, showing that there are DLL refutations of size exp(n/∆1/(d−2)).
Superpolynomial lower bounds for random d-SAT formulas are also known for other weak

proof systems such as the polynomial calculus and Res(k) [1, 6], and random d-SAT is also

conjectured to be hard for stronger semi-algebraic proof systems. In particular, it is a relatively

long-standing open problem to prove superpolynomial size lower bounds for Cutting Planes

refutations of random d-SAT. As alluded to earlier, this potential hardness (and even more so

for the semi-algebraic SOS proof system) has been linked to hardness of approximation.

In this paper, we focus on the Chvatal-Gomory Cutting Planes proof system and some of

its generalizations. A proof in this system begins with a set of unsatisfiable linear integral

inequalities, and new integral inequalities are derived by (i) taking nonnegative linear com-

binations of previous lines, or (ii) dividing a previous inequality through by 2 (as long as all

coefficients on the left-hand side are even) and then rounding up the constant term on the

right-hand side. The goal is to derive the “false” inequality 0 ≥ 1 with as few derivation

steps as possible. This system can be generalized in several natural ways. In Semantic Cutting

Planes, there are no explicit rules – a new linear inequality can be derived from two previous

ones as long as it follows soundly. A further generalization of both CP and Semantic CP is

the CC-proof system, where now every line is only required to have low (deterministic or real)

communication complexity; like Semantic CP, a new line can be derived from two previous

ones as long as the derivation is sound.
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The main result of this paper is a new proof method for obtaining Cutting Planes lower

bounds, and we apply it to prove the first nontrivial lower bounds for the size of Cutting

Planes refutations of random d-SAT instances. Specifically we prove that for d = Θ(log n)
and m in the unsatisfiable regime, with high probability random d-SAT requires exponential-

size Cutting Planes refutations. Our main result holds for the other generalizations mentioned

above (Semantic CP and CC-proofs).

We obtain the lower bound by establishing an equivalence between proving such lower

bounds and proving a corresponding monotone circuit lower bound. Said a different way, we

generalize the interpolation method so that it applies to any unsatisfiable family of formulas.

Namely, we show that proving superpolynomial size lower bounds for any formula for Cutting

Planes amounts to proving a monotone circuit lower bound for certain yes/no instances of the

monotone CSP problem. Applying this equivalence to random d-SAT instances, we reduce

the problem to that of proving a monotone circuit lower bound for a specific family of yes/no

instances of the monotone CSP problem. We then apply the symmetric method of approxi-

mations in order to prove exponential monotone circuit lower bounds for our monotone CSP

problem.

In recent private communication with Pavel Hrubes and Pavel Pudlák we have learned that

they have independently proven a similar theorem.

1.1 Related Work

Exponential lower bounds on lengths of refutations are known for CP, Semantic CP, and low-

weight CC-proofs) [9, 13, 19] These lower bounds were obtained using the method of inter-

polation [18]. A lower bound proof via interpolation begins with a special type of formula

– an interpolant. Given two disjoint NP sets U and V an interpolant formula has the form

A(x, y) ∧ B(x, z) where the A-part asserts that x ∈ U , as verified by the NP-witness y, and

the B-part asserts that x ∈ V , as verified by the NP-witness z. The prominent example in

the literature is the clique/coclique formula where U is the set of all graphs with the clique

number at least k, and V is the set of all (k− 1)-colorable graphs. Feasible interpolation for a

proof system amounts to showing that if an interpolant formula has a short proof then we can

extract from the proof a small monotone circuit for separating U from V . Thus lower bounds

follow from the celebrated monotone circuit lower bounds for clique [2, 20].

Despite the success of interpolation, it has been quite limited since it only applies to “split”

formulas. In particular, the only family of formulas for which are known to be hard for (unre-

stricted) Cutting Planes are the clique-coclique formulas. In contrast, for Resolution we have

a clean combinatorial characterization for when a formula does or doesn’t admit a short Res-

olution refutation [3, 7]; we would similarly like to understand the strength of Cutting Planes

with respect to arbitrary formulas and most notably for random d-SAT formulas and Tseitin

formulas.

Our main equivalence is an adaptation of the earlier work combined with a key reduction

between search problems and monotone functions established in [14]. With this reduction

in hand, our main proof is very similar to both [9] and [21]. [9] proved this equivalence for

the special case of the clique-coclique formulas. Namely they showed that low-weight CC-
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proofs for this particular formula are equivalent to monotone circuits for the corresponding

sets U, V . Our argument is essentially the same as theirs, only we realize that it holds much

more generally for any unsatisfiable CNF and partition of the variables, and the corresponding

set of Yes/No instances of CSP.

On the other hand, Razborov [21] proved the equivalence between PLS communication

games (for KW games) and monotone circuits. The construction in our proof is essentially

equivalent to his but bypasses PLS and proves a direct equivalence between monotone cir-

cuits and CC-proofs. We could have alternatively proven our equivalence via: (1) Razborov’s

equivalence between monotone circuits (for a monotone function) and PLS communication

games (for the associated KW game), and then (2) an equivalence between PLS communica-

tion games (for a monotone KW game) and CC-proofs (for the search problem associated with

the KW game). Inspired by [22], we give a direct argument which is (somewhat) simpler.

2 Definitions and Preliminaries

If x, y ∈ {0, 1}n then we write x ≤ y if xi ≤ yi for all i. A function f : {0, 1}n → {0, 1}
is monotone if f(x) ≤ f(y) whenever x ≤ y. If f is monotone then an input x ∈ {0, 1}n is

a maxterm of f if f(x) = 0 but f(x′) = 1 for any x′ obtained from x by flipping a single bit

from 0 to 1; dually, x is a minterm if f(x) = 1 but f(x′) = 0 for any x′ obtained by flipping

a single bit of x from 1 to 0. More generally, if f(x) = 1 we call x an accepting instance or

a yes instance, while if f(x) = 0 then we call x a rejecting instance or a no instance. If x is

any yes instance of f and y is any no instance of f then there exists an index i ∈ [n] such that

xi = 1, yi = 0, as otherwise we would have x ≤ y, contradicting the fact that f is monotone.

If f, g, h : {0, 1}n → {0, 1} are boolean functions on the same domain then f, g � h if for all

x ∈ {0, 1}n we have f(x) ∧ g(x) =⇒ h(x).
A monotone circuit is a circuit in which the only gates are ∧ or ∨ gates. A real monotone

circuit is a circuit in which each internal gate has two inputs and computes any function

φ(x, y) : R2 → R which is monotone nondecreasing in its arguments.

Definition 2.1. A linear integral inequality in variables x = (x1, . . . , xn) with coefficients

a = (a1, . . . , an) ∈ Z
n and constant term b ∈ Z is an expression

aTx ≥ b.

Definition 2.2. Given a system of linear integral inequalities Ax ≥ b, where A ∈ Z
m×n and

b ∈ Z
m, a cutting planes proof of an inequality aTx ≥ c is a sequence of inequalities

a1
Tx ≥ c1, a2

Tx ≥ c2, . . . , aℓ
Tx ≥ cℓ,

such that aℓ = a, cℓ = c and every inequality i ∈ [ℓ] satisfies either

• ai
Tx ≥ ci appears in Ax ≥ b,

• ai
Tx ≥ ci is a Boolean axiom, i.e., xj ≥ 0 or −xj ≥ −1 for some j,
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• there exists j, k < i such that ai
Tx ≥ ci is the sum of the linear inequalities aj

Tx ≥ cj
and ak

Tx ≥ ck,

• there exists j < i and a positive integer d dividing every coefficient in aj such that

ai = aj/d and ci = ⌈cj/d⌉.

The length of the proof is ℓ, the number of lines. If all coefficients and constant terms appear-

ing in the cutting planes proof are bounded by O(poly(n)), then the proof is said to be of low

weight.

Let F = C1∧ . . .∧Cm be an unsatisfiable CNF formula over variables z1, . . . , zn. For any

clause C let C− denote the set of variables appearing negated in the clause and let C+ denote

variables occurring positively in the clause. Each clause C in F can be encoded as a linear

integral inequality as ∑

zi∈C+

zi +
∑

zi∈C−

(1− zi) ≥ 1.

Thus each unsatisfiable CNF can be translated into a system of linear integral inqualities Az ≥
b with no 0/1 solutions. A cutting planes (CP) refutation of this system is a cutting planes

proof of the inequality 0 ≥ 1 from Ax ≥ b.

Definition 2.3. Let F = C1 ∧ . . .∧Cm be an unsatisfiable k-CNF on n variables. A semantic

refutation of F is a sequence

L1, L2, . . . , Lℓ

of boolean functions Li : {0, 1}
n → {0, 1} such that

1. Li = Ci for all i = 1, 2, . . . , m.

2. Lℓ = 0, the constant 0 function.

3. For all i > m there exists j, k < i such that Lj , Lk � Li.

The length of the refutation is ℓ.

We will be particularly interested in semantic refutations where the boolean functions can

be computed by short communication protocols.

Definition 2.4. Let F = C1∧ . . .∧Cm be an unsatisfiable CNF on n = n1+n2 variables, and

let X = {x1, x2, . . . , xn1}, Y = {y1, . . . , yn2} be a partition of the variables. A CCk-refutation

of F with respect to the partition (X, Y ) is a semantic refutation

L1, . . . , Lℓ

of F such that each function Li in the proof can be computed by a k-bit communication

protocol with respect to the partition (X, Y ).
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Since any linear integral inequality ax+by ≥ c with polynomially bounded weights can be

evaluated by a trivial O(logn)-bit communication protocol (just by having Alice evaluating

ax and sending the result to Bob), it follows that low-weight cutting planes proofs are also

CCO(logn)-proofs. We can similarly define a proof system which can simulate any cutting

planes proof by strengthening the type of communication protocol.

Definition 2.5. A k-round real communication protocol is communication protocol between

two players, Alice and Bob, where Alice receives an input x ∈ X and Bob receives y ∈ Y . In

each round, Alice and Bob each send real numbers α, β to a “referee”, who responds with a

single bit b which is 1 if α ≥ β and 0 otherwise. After k rounds of communication, the players

output a bit b. The protocol computes a function F : X ×Y → {0, 1} if for all (x, y) ∈ X ×Y
the protocol outputs F (x, y).

Definition 2.6. Let F = C1 ∧ . . . ∧ Cm be an unsatisfiable CNF on n = n1 + n2 variables

X = {x1, . . . , xn1} and Y = {y1, . . . yn2}. An RCCk-refutation of F is a semantic refutation

L1, L2, . . . , Lℓ

in which each function Li can be computed by a k-round real communication protocol with

respect to the variable partition X, Y .

It is clear that any linear integral inequality ax + by ≥ c can be evaluated by a 1-round

real communication protocol, and so it follows that a cutting planes refutation of F is also an

RCC1-refutation of F . We record each of these observations in the next proposition.

Proposition 2.7. Let F be an unsatisfiable CNF on variables z1, z2, . . . , zn, and let X, Y be

any partition of the variables into two sets. Any length-ℓ low-weight cutting planes refutation

of F is a length-ℓ CCO(logn)-refutation of F . Similarly, any length-ℓ cutting planes refutation

of F is a length-ℓ RCC1-refutation of F .

2.1 Total Search Problems and Monotone CSP-SAT

In this section we review the equivalence between the search problem associated with an

unsatisfiable CNF formula, and the Karchmer-Wigderson (KW) search problem for a related

(partial) monotone function.

Definition 2.8. Let n1, n2, m be positive integers, and let X ,Y be finite sets. A total search

problem is a relation R ⊆ X n1 × Yn2 × [m] where for each (x, y) ∈ X n1 × Yn2 , there is an

i ∈ [m] such that R(x, y, i) = 1. We refer to x ∈ X n1 as Alice’s input and y ∈ Yn2 as Bob’s

input. The search problem is d-local if for each i ∈ [m] we have that R(∗, ∗, i) depends on a

fixed set of at most d coordinates of x (it may depend on any number of y coordinates).

A standard example of a d-local search problem is the search problem associated with

unsatisfiable d-CNFs.
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Definition 2.9. Let F be an unsatisfiable d-CNF formula with m clauses and n variables

z1, . . . , zn. Consider any partition of z1, z2, . . . , zn into two sets x1, x2, . . . , xn1 and y1, y2, . . . , yn2.

The search problem Search(F) with respect to this partition takes as input an assignment

x ∈ {0, 1}n1 and y ∈ {0, 1}n2 and outputs the index i ∈ [m] of a violated clause under this

assignment.

This problem is clearly d-local since each clause can contain at most d variables from

x1, x2, . . . , xn1 . Associated with this search problem is the following monotone variant of the

constraint satisfaction problem.

Definition 2.10. Let H = (L ∪ R,E) be a bipartite graph such that each vertex v ∈ L has

degree at most d, and let m = |L| and n = |R|. Let Σ be a finite alphabet. A constraint

satisfaction problem (CSP) H with topology H and alphabet Σ is defined as follows. The

vertices in L are thought of as the set of constraints, and the vertices in R are thought of as a

set of variables; thus for each vertex i ∈ L we let vars(i) denote the neighbourhood of i. For

each vertex i ∈ L the CSP has an associated boolean function TTu : Σvars(i) → {0, 1} called

the truth table of i that encodes the set of “satisfying” assignments to the constraint associated

with i. An assignment α ∈ Σn, thought of as a Σ-valued assignment to the variables R,

satisfies the CSP H if for each i ∈ L we have TTi(α ↾ vars(i)) = 1, otherwise the assignment

falsifies the CSP.

For each i ∈ [m] and α ∈ Σvars(i) we abuse notation and let TTi(α) represent the boolean

variable corresponding to this entry of the truth table for the constraint i.

Definition 2.11. Let H = (L ∪ R,E) be a bipartite graph such that each vertex i ∈ L has

degree at most d, and let m = |L| and n = |R|. We think of H as encoding the topology

of a constraint satisfaction problem, where each vertex i ∈ L represents a constraint of the

CSP and each i ∈ R represents a variable of the CSP. Let Σ be a finite alphabet, and let

N =
∑m

i=1 |Σ|
vars(i) ≤ m|Σ|d. The monotone function CSP-SATH,Σ : {0, 1}N → {0, 1} is

defined as follows. An input x ∈ {0, 1}N encodes a CSP H(x) by specifying for each vertex

u ∈ L its truth table

TTx
u : Σvars(u) → {0, 1} .

Given an assignment x ∈ {0, 1}N the function CSP-SATH,Σ(x) = 1 if and only if the CSP

H(x) is satisfiable. This function is clearly monotone since for any x, y ∈ {0, 1}N with x ≤ y,

any satisfying assignment for the CSP H(x) is also a satisfying assignment for the CSP H(y).

Next we show how to relate d-local total search problems and the CSP-SAT problem. Let

R ⊆ X n1 × Yn2 × [m] be a d-local total search problem. Associated with R is a bipartite

constraint graph HR encoding for each i ∈ [m] the coordinates in X n1 on which R(∗, ∗, i)
depends. Formally, the constraint graph is the bipartite graph HR = (L∪R,E) with L = [m],
|R| = [n1], and for each pair (i, j) ∈ L × R we add the edge if R(∗, ∗, i) depends on the

variable xj . Note that each vertex u ∈ L has degree at most d, since the original search

problem is d-local.

Given R and its corresponding constraint graph we can give a natural way to construct

accepting and rejecting instances of CSP-SATHR,X from X n1 and Yn2 . To reduce clutter,
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given a d-local total search problem R we abuse notation and write

CSP-SATR := CSP-SATHR,X .

Accepting Instances U . For any x ∈ X n1 we construct an accepting inputU(x) of CSP-SATR

as follows. For each vertex i ∈ L we define the corresponding truth table TTi by setting

TTi(α) = 1 if x ↾ vars(i) = α and TTi(α) = 0 otherwise.

Rejecting Instances V . For any y ∈ Yn2 we construct a rejecting input V(y) of CSP-SATR

as follows. For each vertex i ∈ L and each α ∈ Σvars(i) we set

TTi(α) = 0 ⇐⇒ R(α, y, i) holds.

Given x ∈ X n1 it is easy to see that U(x) is a satisfying assignment for CSP-SATR since

x is a satisfying assignment for the corresponding CSP. The rejecting instances require a bit

more thought. Let y ∈ Yn2 and consider the rejecting instance V(y) as defined above. Suppose

by way of contradiction that the corresponding CSP HR(V(y)) is satisfiable, and let x ∈ X n1

be the satisfying assignment for the CSP. It follows by definition of the rejecting instances that

R(x, y, u) does not hold for any u, implying that R is not total.

3 Relating Proofs and Circuits

In this section we relate CCd-proofs and monotone circuits, as well as RCC1-proofs and real

monotone circuits.

Theorem 3.1. Let F be an unsatisfiable CNF formula on n variables and letX = {x1, . . . , xn1},

Y = {y1, . . . , yn2} be any partition of the variables. Let k be a positive integer. If there

is a CCk refutation of F with respect to the partition (X, Y ) of length ℓ, then there is a

monotone circuit separating the accepting and rejecting instances U({0, 1}n1),V({0, 1}n2)
of CSP-SATSearch(F) of size O(2kℓ).

Proof. Let F = C1∧. . .∧Cm over variables x1, . . . , xn1 , y1, . . . , yn2 . Let P be a CCk-proof for

F with ℓ lines. Order the lines in P as L1, L2, . . . , Lℓ, where the final line Lℓ is the identically

false formula, and each earlier line is either a clause, or follows semantically from two earlier

lines.

We build the circuit for CSP-SATSearch(F) that separates U ,V by induction on ℓ. For each

line L in the proof, there are 2k possible histories h, each with an associated monochromatic

rectangle RL(h). A rectangle h is good for L if it is 0-monochromatic. For every line L and

each good history h for L, we will build a circuit CL
h that correctly “separates” x and y for each

(x, y) ∈ RL(h). By this, we mean that the circuit CL
h outputs 1 on U(x) (the 1-input associated

with x) and outputs 0 on V(y) (the 0-input associated with y).

For each leaf in the proof, the associated line L is a clause Ci of F . The communication

protocol for Ci is a two-bit protocol where Alice/Bob each send 0 iff their inputs are α, β such

that Ci(α, β) = 0. Thus there is only one good (0-monochromatic) rectangle with history

8



h = 00. This pair α, β corresponds to the variable TTi(α), and we define the circuit CL
h

corresponding to line L = Ci and good history h = 00 to be the variable TTi(α).
Now suppose that L is derived from L1 and L2, and inductively we have circuits CL1

h′ , CL2

h′′

for each history h′ good for L1 and h′′ good for L2. Given a good history h for L, we will

show how to build the circuit CL
h . It will use all of the the circuits that were built for L1 and

L2 ({CL1

h′ , C
L2

h′′ } for all good h′) and an additional 2k gates. To build CL
h we will construct a

stacked protocol tree for L, corresponding to first running the communication protocol for L1

and then running the communication protocol for L2. This will give us a height 2k (full) binary

tree, T , where the top part is the communication protocol tree for L1, with protocol trees for

L2 hanging off of each of the leaves. We label each of the leaves of this stacked tree with a

circuit from {CL1

h′ , C
L2

h′′ } as follows. Consider a path labelled h1h2 in T , where h1 is the history

from running L1 and h2 is the history from running L2. By soundness, either the rectangle

RL(h)∩RL1(h1) is 0-monochromatic, or the rectangle RL(h)∩RL2(h2) is 0-monochromatic.

In the first case, we will label this leaf with CL1
h1

and otherwise we will label this leaf with CL2
h2

.

Now we will label the internal vertices of the stacked tree with a gate: if a node corresponds to

Alice speaking, then we label the node with an ∨ gate, and otherwise if the node corresponds

to Bob speaking, then we label the node with an ∧ gate. The resulting circuit has size 2k plus

the sizes of the subcircuits, and thus the total circuit size is 2kℓ. The theorem is therefore

immediately implied by the following claim.

Claim. The circuit resulting from the above construction satisfies: for each line L in P , and

for each good history h for L, CL
h will be correct for all (x, y) ∈ RL(h).

Proof of Claim. If L is an axiom, then L is a clause, Ci. The communication protocol for Ci

is a two-bit protocol where Alice and Bob each send 0 iff their part of Ci evalutes to 0. There

is only one good (0-monochromatic) history, h = 00. If (x, y) ∈ RL(h) then Ci(x, y) = 0
by definition. Let α = x ↾ vars(Ci). In our construction the circuit corresponding to CL

h is

labelled by the variable TTi(α), and it is easy to check that x̃ sets TTi(α) to true, and ỹ sets

TTi(α) to false.

If L is not an axiom, then we will prove the lemma by proving the following stronger

statement by induction: For each line L (derived from previous lines L1 and L2), and for each

node v in the stacked protocol tree for L, with corresponding (sub)history h′ = h1h2, the

subcircuit CL
h′ associated with vertex v is correct on all (x, y) ∈ RL(h) ∩RL1(h1) ∩RL2(h2).

Fix a line L that is not an axiom. For the base case, suppose that v is a leaf of the stacked

protocol tree for L with history h′ = h1h2. Then by soundness either (i) RL(h)∩RL1(h1) = 0
or (ii) RL(h) ∩ RL1(h2) = 0. In case (i) we labelled v by CL1

h1
. Since RL(h) ∩ RL1(h1) = 0,

RL1(h1) = 0 and therefore CL1
h1

is defined and is correct on all (x, y) ∈ RL1(h1), so it is correct

on all (x, y) ∈ RL(h) ∩RL1(h1) ∩RL2(h2). A similar argument holds in case (ii).

For the inductive step, let v be a nonleaf node in the protocol tree with history h′ and

assume that Alice owns v. The rectangle RL(h)∩RL1(h1)∩RL2(h2) = A×B is partitioned

into A0 ×B and A1 ×B, where

1. A = A0 ∪A1,
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2. A0 ×B is the rectangle with history h′0,

3. A1 ×B is the rectangle with history h′1.

Given (x, y) ∈ RL(h) ∩ RL1(h1) ∩ RL2(h2), since CL
h′0 is correct on all (x, y) ∈ A0 × B

and CL
h′1 is correct on all (x, y) ∈ A1 × B, it follows that CL

h = CL
h′0 ∨ CL

h′1 is correct on all

(x, y) ∈ A× B. To see this, observe that if x ∈ A0, then CL
h′0(U(x)) = 1 and therefore

CL
h (U(x)) = CL

h′0(U(x)) ∨ CL
h′1(U(x)) = 1.

Similarly, if x ∈ A1, then CL
h′1(U(x)) = 1 and therefore

CL
h (U(x)) = CL

h′0(U(x)) ∨ CL
h′1(U(x)) = 1.

Finally if y ∈ B then both CL
h′0(V(y)) = CL

h′1(V(y)) = 0 and therefore

CL
h (V(y)) = CL

h′0(V(y)) ∨ CL
h′1(V(y)) = 0.

A similar argument holds if v is an internal node in the protocol tree that Bob owns (and is

therefore labelled by an AND gate.

The converse direction is much easier.

Theorem 3.2. If there is a monotone circuit separating these inputs of CSP-SATSearch(F) of

size ℓ, then there is a CC2-refutation of F of length ℓ with respect to this partition of the

variables.

Proof. In the other direction, we show that from a small monotone circuit C for CSP-SATSearch(C)

that separates U({0, 1}n1) and V({0, 1}n2), we can construct a small CC2-proof for F , where

Alice gets x ∈ {0, 1}n1 and Bob gets y ∈ {0, 1}n2 . The lines/vertices of the refutation will be

in 1-1 correspondence with the gates of C. The protocol is constructed inductively from the

leaves of C to the root. For a gate g of C, let Ug be those inputs u ∈ U({0, 1}n1) such that

g(u) = 1, and let Vg be those inputs v ∈ V({0, 1}n2) such that g(v) = 0. At each gate g we will

prove that for every pair (u, v) ∈ Ug × Vg and for every (x, y) such that u = U(x), v = V(y),
the protocol Rg on input (x, y) will output 0. Since the output gate of C is correct for all pairs,

this will achieve our desired protocol.

At a leaf ℓ labelled by some variable TTj(α), the pairs associated with this leaf must

have TTj(α) = 1 in u and 0 in v, and thus we can define Rℓ(x, y) to be 0 if and only if x
is consistent with α and the clause Cj evaluates to false on (x, y). This is a 2-bit protocol,

and by definition of the accepting and rejecting instances we have for all (x, y) satisfying

u = U(x), v = V(y) that x ↾ vars(j) = α and R(α, y, j) holds.

Now suppose that g is a OR gate of C, with inputs g1, g2. The protocol Rg on (x, y) is

as follows. Alice privately simulates Cg1(U(x)) and Cg2(U(x)), and Bob simulates Cg1(V(y))
and Cg2(V(y)). If (i) either Cg1(U(x)) = 1 or Cg2(U(x)) = 1 and (ii) both Cg1(V(y)) = 0 and

Cg2(V(y)) = 0, then they output 0, and otherwise they output 1. This is a 2-bit protocol, with

Alice sending one bit to report whether or not condition (i) is satisfied, and Bob sending one

bit to report if (ii) is satisfied.

10



Now, we want to show that for all (x, y) such that Cg(U(x)) = 1 and Cg(V(y)) = 0 we

have that Rg(x, y) = 0. This is easy — since g = g1 ∨ g2 we have that Cg(U(x)) = 1 and

Cg(V(y) = 0 implies that either Cg1(U(x)) = 1 or Cg2(U(x)) = 1 and Cg1(V(y)) = 0 and

Cg2(V(y)) = 0, implying that the protocol will output 0 on (x, y) by definition.

Similarly, if g is an AND gate, then again Alice privately simulates Cg1(U(x)) and Cg2(U(x))
and Bob privately simulates Cg2(V(y)) and Cg2(V(y)). If (i) Cg1(U(x)) = 1 and Cg2(U(x)) = 1
and (ii) either Cg2(V(y)) = 0 or Cg2(V(y)) = 0, then they ouput 0, and otherwise they output

1. By an analogous argument to the OR case, it’s easy to see that the protocol will output 0
whenever Cg(U(x)) = 1 and Cg(V(y)) = 0.

The following theorem was recently proven [16], showing that RCC1-proofs imply mono-

tone real circuits for the associated search problem.

Theorem 3.3. [16] Let F be an unsatisfiable CNF formula on n variables and let X =
{x1, . . . , xn1}, Y = {y1, . . . , yn2} be any partition of the variables. If there is a RCC1 refu-

tation of F with respect to the partition (X, Y ) of length ℓ, then there is a monotone real circuit

separating the accepting and rejecting instancesU({0, 1}n1),V({0, 1}n2) ofCSP-SATSearch(F)

of size polynomial in ℓ.

In particular, the above theorem implies that for any family of formulas F and for any

partition of the underlying variables into X, Y , a Cutting Planes refutation of F of size S
implies a similar size monotone real circuit for separating the accepting and rejecting instances

U({0, 1}n1),V({0, 1}n2) of CSP-SATSearch(F).

4 Lower Bounds for Random CNFs

In this section using Theorem 3.3 we prove lower bounds for RCC1-refutations (and therefore

cutting planes refutations) of uniformly random d-CNFs with sufficient clause density.

Definition 4.1. Let F(m,n, d) denote the distribution of random d-CNFs on n variables ob-

tained by sampling m clauses (out of the
(
n
d

)
2d possible clauses) uniformly at random with

replacement.

The proof is delayed to Section 4.2; to get a feeling for the proof, we first prove an easier

lower bound for a simpler distribution of balanced random CNFs.

4.1 Balanced Random CNFs

Definition 4.2. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two disjoint sets of variables,

and the distribution F(m,n, d)⊗2 denotes the following distribution over 2d-CNFs: First sam-

ple

F1 = C1
1 ∧ C1

2 ∧ · · · ∧ C1
m

from F(m,n, d) on the X variables, and then

F2 = C2
1 ∧ C2

2 ∧ · · · ∧ C2
m

11



from F(m,n, d) on the Y variables independently. Then output

F = (C1
1 ∨ C2

1) ∧ (C1
2 ∨ C2

2) ∧ · · · ∧ (C1
m ∨ C2

m).

This distribution shares the well-known property with F(m,n, d) that dense enough for-

mulas are unsatisfiable with high probability.

Lemma 4.3. Let c > 2/ log e and let n be any positive integer. If d ∈ [n] and m ≥ cn22d then

F ∼ F(m,n, d)⊗2 is unsatisfiable with high probability.

Proof. Fix any assignment (x, y) to the variables of F . The probability that the ith clause

is satisfied by the joint assignment is 1 − 1/22d, and so the probability that all clauses are

satisfied by the joint assignment is (1 − 1/22d)m ≤ e−m/22d , since the clauses are sampled

independently. By the union bound, the probability that some joint assignment satisfies the

formula is at most 22ne−m/22d = 22n−(log e)m/22d ≤ 22n−(log e)cn ≤ 2−Ω(n). Thus, the probability

that the formula is unsatisfiable is at least 1− 2−Ω(n).

The main theorem of this section is that F ∼ F(m,n, d)⊗2 require large CC- and RCC-

proofs, which is obtained by using Theorem 3.3 and applying the well-known method of

symmetric approximations [8, 15] to obtain lower bounds on monotone circuits computing

the function CSP-SATSearch(F). We use the following formalization of the method which is

exposited in Jukna’s excellent book [17]. First we introduce some notation: if U ⊆ {0, 1}N ,

then for r ∈ [N ] and b ∈ {0, 1} let

Ab(r, U) = max
I⊆[n]:|I|=r

| {u ∈ U | ∀i ∈ I : ui = b} |.

Theorem 4.4 (Theorem 9.21 in Jukna). Let f : {0, 1}N → {0, 1} be a monotone boolean

function and let 1 ≤ r, s ≤ N be any positive integers. Let U ⊆ f−1(1) and V ⊆ f−1(0) be

arbitrary subsets of accepting and rejecting inputs of f . Then every real monotone circuit that

outputs 1 on all inputs in U and 0 on all inputs in V has size at least

min

{
|U | − (2s)A1(1, U)

(2s)r+1A1(r, U)
,

|V |

(2r)s+1A0(s, V )

}
.

Next we state the main theorem of this section.

Theorem 4.5. Let d = 4 logn and m = cn22d where c > 2/ log e is some constant. Let

F ∼ F(m,n, d)⊗2 with variable partition (X, Y ), and let

U = U({0, 1}X), V = V({0, 1}Y ).

Then with high probability any real monotone circuit separating U and V has at least 2Ω̃(n)

gates.

Corollary 4.6. Let n be a sufficiently large positive integer, and let d = 4 logn,m = n6. If

F ∼ F(m,n, d)⊗2 then with high probability every RCC1-refutation (and therefore, Cutting

Planes refutation) of F has at least 2Ω̃(n) lines.

12



Proof. Immediate consequence of Theorems 3.3 and 4.5.

The proof of Theorem 4.5 is rather straightforward, and comes down to the essential prop-

erty that random d-CNFs are good expanders. The next lemma records the expansion proper-

ties we require of random CNFs; the proof is adapted from the notes of Salil Vadhan [23].

Lemma 4.7. Let 0 < ε < 1 be arbitrary, and let n be any sufficiently large positive integer.

Let d = 4 logn, m = n22d, and sample F ∼ F(m,n, d). For any subset S ⊆ F of clauses

let vars(S) denote the subset of variables appearing in any clause of S. Any set S ⊆ F of size

s ≤ n/ed2 satisfies

|vars(S)| ≥ (1− ε)ds

with high probability.

Proof. Fix any set S ⊆ F of size s, and for each clause C ∈ S sample the variables in C one

at a time without replacement. Let v1, v2, . . . , vds denote the concatenation of all sequences of

sampled variables over all C ∈ S. We say that variable vi is a repeat if it has already occurred

among v1, . . . , vi−1. In order for |vars(S)| < (1 − ε)ds the concatenated sequence must have

at least εds repeats, and the probability that variable vi is a repeat is at most (i−1)/n ≤ ds/n.

This implies that

Pr[|vars(S)| < (1− ε)ds] ≤

(
ds

εds

)(
ds

n

)εds

≤

(
eds

εds

)εds (
ds

n

)εds

≤

(
1

εd

)εds

using standard bounds on binomial coefficients and the fact that s ≤ n/ed2. Thus

Pr[∃S : |S| = s, |vars(S)| < (1− ε)ds] ≤ ms

(
1

εd

)εds

,

and since m = n22d and d = 4 logn we get that

s logm ≪ εds log εd

for sufficiently large n, implying the previous probability is o(1).

Using the expansion lemma we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. We shall apply Theorem 4.4 to U = U({0, 1}n) and V = V({0, 1}n)
(cf. Section 2.1) with r = s = n/ed2. Recall that U and V are the functions mapping x inputs

to 1-inputs of CSP-SATSearch(F) and mapping y inputs to 0-inputs of CSP-SATSearch(F), re-

spectively. To finish the argument we need to compute |U |, A1(1, U), A1(r, U), |V |, A0(s, V ).
It is easy to see that every variable participates in some clause in F with high probabil-

ity. This implies that U is one-to-one with high probability, and thus |U | = 2n with high

probability.

Recall that the 0-inputs of CSP-SATSearch(F) correspond to substituting y-assignment into

F and writing out truth tables of the all the clauses. The truth tables corresponding to the
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clauses that were satisfied by the y-assignment are identically 1, and the truth tables corre-

sponding to the clauses that were not satisfied by the given y-assignment contain exactly one

0-entry. Given a y assignment we call the set of clauses that were not satisfied the assignment

the profile of y. The next lemma implies that the profiles of all y-assignments are distinct with

high probability.

Lemma 4.8. Let F ∼ F(m,n, d), and define the following 2n ×m matrix M , with the rows

labelled by assignments α ∈ {0, 1}n and the columns are labelled by clauses of F . Namely,

for any pair (α, i) set

M [α, i] =

{
1 if the ith clause is not satisfied by α,

0 otherwise.

For any c > 2/ log e, if m ≥ c2dn2/d then the rows of M are distinct with high probability.

Proof. We think of M as generated column by column with the columns sampled indepen-

dently. Fix two assignments α and α̂ such that α 6= α̂. Let S be the set of indices on which

the two assignments differ, i.e., S = {i | αi 6= α̂i}. Set s = |S|. Let Ci denote the ith clause,

and we say that Ci overlaps S if Ci contains a variable in S. Then

Pr[Ci unsat by α̂ and satisfied by α] =
1

2d

(
1−

(
n−s
d

)
(
n
d

)
)

≥
1

2d

(
n
d

)
−

(
n−1
d

)
(
n
d

) =
1

2d

(
n−1
d−1

)
(
n
d

) =
d

2dn
.

Thus the probability that rows α and α̂ agree on column i is at most 1 − d
2dn

. Since columns

are sampled independently, the probability that α and α̂ agree on all columns is at most(
1− d

2dn

)m
≤ e−dm/(2dn). By a union bound over ordered pairs of assignments, the prob-

ability that there exists a pair of rows that agree on all columns is at most 22ne−dm/(2dn) =
22n−(log e)dm/(2dn) ≤ 22n−(log e)cn = 2−Ω(n). Thus, the probability that all columns are distinct

is at least 1− 2−Ω(n).

Since each profile is distinct with high probability, this implies that V is 1-1 with high

probability, and therefore |V | = 2n. It remains to bound the terms A1(1, U), A1(r, U), and

A0(s, V ).

Bounding A1(1, U). Fixing a single bit of a 1-input in U to CSP-SATSearch(F) to 1 is the same

as selecting a vertex C in the bipartite constraint graph of Search(F) and an assignment α to

the variables which participate in C, and then setting TTC(α) = 1. By the definition of U ,

any input x ∈ {0, 1}n fixing this bit to 1 determines d out of n variables of x exactly. Thus the

number of x ∈ {0, 1}n that are consistent with this partial assignment is 2n−d, and since U is

one-to-one, we have A1(1, U) = 2n−d.
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Bounding A1(r, U). Similar to the previous bound, but now we fix r of the truth table bits

to 1. By definition of U , these bits must be chosen from r distinct truth tables in the 1-input

in order to be consistent with any x ∈ {0, 1}n. With respect to the underlying CNF F , this

corresponds to fixing an assignment to the set of variables appearing in an arbitrary set S
of r clauses in F . By Lemma 4.7, with high probability we have |vars(S)| ≥ ds/2. Thus

fixing these r bits in the definition of A1(r, U) corresponds to setting at least rd/2 of the input

variables participate in the constraints with determined truth tables. The number of x inputs

that are consistent with these indices fixed is therefore ≤ 2n−rd/2, and so A1(r, U) ≤ 2n−rd/2.

Bounding A0(s, V ). This case is similar to A1(r, U). We get A0(s, V ) ≤ 2n−sd/2.

Observe that (s−1)A1(1, U) = (s−1)2n−d = (s−1)2n/n2 ≤ 2n−1. Putting this altogether

we get the following lower bound on monotone circuit size is at least

2n−1

(s− 1)s2n−sd/2
= 2sd/2−s log(s−1) ≥ 2s(d/2−log s) ≥ 2Ω̃(n),

where the last inequality follows from s = n/ed2 and d/4 ≥ logn.

4.2 Uniformly Random CNFs

In this section we show how to modify the argument from the previous section to apply to the

“usual” distribution of random CNFs F(m,n, d). Our approach is simple: using the proba-

bilistic method we find a partition of the variables of a random formula F ∼ F(m,n, d) such

that many of the clauses in F are balanced with respect to the partition. Ideally, every clause

would be so balanced, but it turns out that this is too strong — instead, we show that we can

balance many of the clauses, and the imbalanced clauses that remain are always satisfied by a

large collection of assignments. First we introduce our notion of “imbalanced” clauses.

Definition 4.9. Fix ǫ > 0. Given a partition of n variables into x-variables and y-variables,

clause C is called X-heavy if it contains more than (1 − ǫ)d x-variables. Clause C is called

Y -heavy if it contains more than (1 − ǫ)d y-variables. Clause C is called balanced if it is

neither X-heavy nor Y -heavy.

We recall some basic facts from probability theory which will be used in our main lemma.

Lemma 4.10 (Lovász Local Lemma). Let E = {E1, . . . , En} be a finite set of events in the

probability space Ω. For E ∈ E let Γ(E) denote the set of events Ei on which E depends. If

there is q ∈ [0, 1) such that ∀E ∈ E we have Pr(E) ≤ q(1 − q)|Γ(E)|, then the probability of

avoiding all sets Ei is at least Pr(E1 ∧ E2 ∧ · · · ∧ En) ≥ (1− q)n.

Fact 4.11 (Entropy bound on binomial tail). Given ǫ > 0 we have

⌊ǫn⌋∑

j=0

(
n

j

)
≤ enH(ǫ),

where H(ǫ) = −ǫ log ǫ− (1− ǫ) log(1− ǫ) is the binary entropy function.
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Fact 4.12 (Multiplicative Chernoff Bound). Suppose Z1, . . . , Zn are independent random

variables taking values in {0, 1}. Let Z denote their sum and let µ = E(Z) denote the sum’s

expected value. Then for any δ ∈ (0, 1) we have

Pr(X ≥ (1 + δ)µ) ≤ e−δ2µ/3.

We now prove the main lemma of this section, which shows that for F ∼ F(m,n, d) a

good partition of the variables exists with high probability.

Lemma 4.13. Let F ∼ F(m,n, d) where d = c log n and m = poly(n). There exists a

partition of the variables of F into two sets (X, Y ) such that the following holds:

1. The number of X-heavy clauses and Y -heavy clauses are each upper bounded by m′ =
m2−(1−(log e)H(ǫ))d+1.

2. There exists a set U ′ of 2n/2±o(n) truth assignments to the X variables satisfy all X-

heavy clauses, and similarly a set V ′ of 2n/2±o(n) truth assignments to the Y -variables

satisfying all of the Y -heavy clauses.

Proof. We prove the existence of such a partition by the probabilistic method. For each vari-

able, flip a fair coin and place it in X if the coin is heads and in Y otherwise. Let Zi be the

random variable indicating whether clause i is X-heavy. Then

Pr(Zi = 1) =

ǫd∑

j=0

(
d

j

)
2−d ≤ 2−de−dH(ǫ) ≤ 2−(1−(log e)H(ǫ))d,

where the inequality follows from Fact 4.11. Let Z =
∑m

i=1 Zi; thenE(Z) ≤ m2−(1−(log e)H(ǫ))d =
m′. By the multiplicative Chernoff bound (see Fact 4.12) we have

Pr(Z > (3/2)m2−(1−(log e)H(ǫ))d) ≤ e−
m2−(1−(log e)H(ǫ))d

12 ,

and we thus have Z ≤ m′ with high probability. An identical calculation applies for the

Y -heavy clauses.

Next, let Wi be the random variable indicating whether a given fixed variable occurs in

clause i and clause i isX-heavy and let W =
∑

iWi. Then Pr(Wi = 1) ≤ 2−(1−(log e)H(ǫ))dd/n.

By the multiplicative Chernoff bound (see Fact 4.12) we have

Pr(W > (3/2)m2−(1−(log e)H(ǫ))dd/n) ≤ e−
m2−(1−(log e)H(ǫ))dd/n

12 .

We conclude that W ≤ m′d/n whp, and an identical calculation again holds for the Y -heavy

clauses.

Noting that the number of x-variables is n/2 ± o(n) with high probability, by the proba-

bilistic method we choose a partition (X, Y ) which satisfies each of the above properties (the

bound on Z and W , and achieving near balance in the X and Y variables), and note that such

a partition exists with high probability over F(m,n, d). With this partition fixed, consider
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selecting a random assignment to the X-variables. Let Ei be the event that X-heavy clause

i is falsified by the random assignment, and observe that Pr(Ei) ≤ 2−(1−ǫ)d since the clause

is X-heavy. Then the number of events Ei is at most m′, and for any event Ei the number of

events that share an x-variable with Ei is at most m′d2/n. Set q = n/(100m′d). Then for each

Ei we have

q(1− q)|Γ(Ei)| ≥ qe−2qm′d2/n ≥
n

100dm′
e−d/50 ≥ 2−(1−ǫ)d,

provided d ≥ c logn for a big enough constant c. Applying Lovász Local Lemma (see

Lemma 4.10) we get that probability that an assignment satisfies all X-heavy clauses is at

least

(1− q)m
′

≥ (1− n/(100dm′))m
′

≥ e−n/(50d).

Thus the number of assignments to the X-variables satisfying all heavy clauses is at least

2n/2±o(n), and an identical calculation applies to the Y variables.

Now we will do the whole argument with respect to U(U ′) and V(V ′) chosen from the

previous lemma. The reason that this works is that since every α ∈ U ′ satisfies all X-heavy

clauses, if we look at a subset S of the variables of the monotone CSP that are set to false

and count the number of maxterms that are consistent with it, the count is nonzero only when

none of these variables come from a X-heavy clause. Similarly if we look at a subset S of the

variables of the monotone CSP that are set to true and count the number of maxterms that are

consistent with it, this count is nonzero only when none of these variables come from an X-

heavy clause. Therefore, when we calculate A1(s,U(U
′)) and A0(s,V(V

′)), the calculation

is with respect to the X-balanced clauses, and Y -balanced clauses, respectively. Thus we can

use the same expansion calculation that we already did.

There is also a minor modification required in order to argue that V is one-to-one when

restricted to V ′. As before, it suffices to show that for any two assignments α, β in V ′, that the

probability that they agree on all of the balanced clauses is very small, and then take a union

bound over all of the balanced clauses. This calculation is nearly identical to the one that we

already did, but now the union bound is over the number of balanced clauses, which is at least

half of all clauses, so the calculation is essentially the same.

With the above modifications, the arguments from the previous section imply the next

theorem.

Theorem 4.14. Let n be a sufficiently large positive integer. Let F ∼ F(m,n, d) for m =
poly(n) and d = c logn for a large universal constant c. With high probability, there exists a

partition (X, Y ) of the variables of F and an ε > 0 such that the search problem Search(F)
defined with respect to this partition satisfies the following: any real monotone circuit com-

puting CSP-SATSearch(F) requires at least 2Ω(nε) gates.

Corollary 4.15. Let F be distributed as above. There exists ε > 0 such that with high proba-

bility any RCC1-refutation requires 2Ω(nε) lines.

17



References

[1] Michael Alekhnovich. Lower bounds for k-dnf resolution on random 3-cnfs. In Pro-

ceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,

USA, May 22-24, 2005, pages 251–256, 2005.

[2] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.

Combinatorica, 7(1):1–22, 1987.

[3] Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution

width. J. Comput. Syst. Sci., 74(3):323–334, 2008.

[4] Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite relax-

ations for average-case and generalized constraint satisfaction. In Innovations in The-

oretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages

197–214, 2013.

[5] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. On the complexity

of unsatisfiability proofs for random k-cnf formulas. In Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26,

1998, pages 561–571, 1998.

[6] Eli Ben-Sasson and Russell Impagliazzo. Random cnf’s are hard for the polynomial

calculus. Computational Complexity, 19(4):501–519, 2010.

[7] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple.

J. ACM, 48(2):149–169, 2001.

[8] Christer Berg and Staffan Ulfberg. Symmetric approximation arguments for monotone

lower bounds without sunflowers. Computational Complexity, 8(1):1–20, 1999.

[9] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting planes

proofs with small coefficients. J. Symb. Log., 62(3):708–728, 1997.
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