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Abstract

The TENSOR ISOMORPHISM problem (TT) has recently emerged as having connections to multiple areas
of research within complexity and beyond, but the current best upper bound is essentially the brute force
algorithm. Being an algebraic problem, T1 (or rather, proving that two tensors are non-isomorphic) lends
itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC)
and Sum of Squares (SoS). For its combinatorial cousin GRAPH ISOMORPHISM, essentially optimal lower
bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA ’17). Our main
results are an Q(n) lower bound on PC degree or SoS degree for TENSOR ISOMORPHISM, and a nontrivial
upper bound for testing isomorphism of tensors of bounded rank.

We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the
rank of two matrices, or deriving BA = [ from AB = I. As linear algebra is a key tool for understanding
tensors, we introduce a strictly stronger proof system, PC+Inv, which allows as derivation rules all
substitution instances of the implication AB = I — BA = I. We conjecture that even PC+Inv cannot
solve TT in polynomial time either, but leave open getting lower bounds on PC+Inv for any system of
equations, let alone those for TI. We also highlight many other open questions about proof complexity
approaches to TI.

1 Introduction

Tensors have rapidly emerged as a fundamental data structure and key mathematical object of the 21st
century. They play key roles in many different areas of science, engineering, and mathematics, from quantum
mechanics and general relativity to neural networks [NPOV15] and mechanical engineering. They arise in
theoretical computer science in many ways, including from (post-quantum) cryptography [Pat96, JQSY19],
derandomization, MATRIX MULTIPLICATION, GRAPH ISOMORPHISM [GQ21b], and several different parts of
Geometric Complexity Theory.

The fundamental notion of equivalence between tensors is that of isomorphism: two tensors are isomorphic
if one can be transformed into the other by an invertible linear change of basis in each of the corresponding
vector spaces. For example, two 2-tensors (=matrices) M, M’ are equivalent under this notion if there
are invertible matrices X,Y such that X MY = M’; similarly, two 3-tensors, represented by 3-way arrays
Tijk, Tl’J . are isomorphic if there are three invertible matrices X, Y, Z such that

> XY Ziw Tigre = Tirjope (1)
ijk

for all ¢/, j/, k’. The problem of (3-)TENSOR IsoMORPHIsM (TI) is: given two such 3-way arrays, to decide
if they are isomorphic.
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Over finite fields, two different versions of TI sandwich the complexity of its more famous cousin, GRAPH
IsoMmORPHISM. Namely, as presented above, GI reduces to TI. In the other direction, over a finite field
F = Fpe, one can take an n x n x n tensor and list it out “verbosely”, as a set of p®" many n X n matrices
over F; the isomorphism problem for such verbosely given tensors is equivalent to GROUP ISOMORPHISM for
a certain class of p-groups, widely believed to be the hardest cases of GROUP ISOMORPHISM in general. As
such, this verbose version of TT reduces to GI. Furthermore, with Babai’s quasi-polynomial-time algorithm
[Bab16], the running times are quite close: NO0sN) for VERBOSETI and NOUe*N) for GI (the exponent
of the exponent was worked out by Helfgott [Hel19]). Thus TT stands as a key obstacle to putting GI into
P.

In this paper, we initiate the study of (algebraic) proof complexity approaches to proving that two
tensors are non-isomorphic. Lower bounds on the Polynomial Calculus proof system imply lower bounds on
Grobner basis techniques, and the latter are some of the leading methods for solving Tl-complete problems
in cryptanalysis, e.g., [TDJ"22, FP06]. In the context of GI, proof complexity plays an important role,
through its connection with the Weisfeiler-Leman (WL) algorithm. Although this algorithm does not, on its
own, solve GI in polynomial time [CFI92], it is a key subroutine in many of the best algorithms for GI, both
in theory [Bab16] and in practice (see [McK81, MP14]). And the picture that has emerged is that some proof
systems for GI are known to be equivalent in power to WL [AM13, BG15], and some lower bounds on proof
systems are closely related to lower bounds for WL [SSC14, OWWZ14, BG15]. Versions of WL for groups,
and in particular finite p-groups—and hence, by the connection above, tensors over finite fields—have only
recently begun to be explored [BGLT19, BS20, BS22, CL22].

1.1 Main results

We focus on the Polynomial Calculus (PC, or Grobner) proof system [CEI96], though our results will also hold
for semi-algebraic proof systems such as Sum-of-Squares [Las01] as well. PC is used to show that a system of
polynomial equations over a field F is unsatisfiable over the algebraic closure F, by deriving from the system
of equations, in a line-by-line fashion, the contradiction 1 = 0. The degree of a PC proof is the maximum
degree of any line appearing in the proof, and it is a fundamental result that PC proofs of constant degree can
be found in polynomial time [CEI96]. Much as WL informally “captures all combinatorial approaches” to
GI, PC informally “captures all approaches based on Groébner bases” to showing that a system of polynomial
equations is unsatisfiable.

The systems of equations we study are, for two non-isomorphic tensors T,T”, the equations (1) along
with new matrices X', Y”’, Z’, and equations saying that these are the inverses of X,Y, Z, resp., viz.: XX’ =
X’'X = 1d, and similarly for the others. The reason for introducing these new matrices, despite their not
appearing in (1), is that these invertibility equations are only degree 2. In contrast, if we instead used the
determinant to indicate that X was invertible, then our starting equations would have degree n + 1, rather
than constant degree < 3. Since the main complexity measure we study on PC is degree, having starting
equations of degree n would make it difficult to make meaningful lower bound statements.

Our first main result is (two proofs of) a lower bound on such techniques.

Theorem 1.1. Owver any field, there are instances of n x n x n TENSOR ISOMORPHISM that require PC
degree Q(n) to refute. Over R, they also require Sum-of-Squares degree Q(n) to refute.

The preceding goes by reduction from known lower bounds on PC for GRAPH ISOMORPHISM [BG15,
BG17], but has the disadvantage (from the tensor point of view) that the resulting tensors are quite sparse:
in one direction, one of the slices is supported on an 2(n) x n matrix and all the others slices have support
size 1. In a second proof (Section 6), we get a polynomially worse lower bound Q(+/n), but with a reduction
from RANDOM 3XOR that is more direct. Indeed, we show that 3XOR itself can be viewed as a particular
instance of a tensor problem without gadgets; gadgets are only then needed to reduce from that tensor
problem to TENSOR ISOMORPHISM itself. In contrast, the lower bounds on PC for GI (ibid.) already use the
Cai-Fiirer-Immerman gadgets [CFI92] to reduce from XOR-SAT, and then even further gadgets are needed
to reduce from GI to TI.

Our technical contributions in the above theorem are thus three-fold:

1. We show that the known reductions from GI to TT can be carried out in low-degree PC;



2. We realize 3XOR very naturally as a tensor problem; and

3. We give new reductions from 3XOR, through a series of tensor-related problems, to TI, that work as
many-one reductions of the decision problems that can be carried out in low-degree PC.

Complementing our lower bound, we also show that tensors of low rank are comparatively easy to test
for (non)-isomorphism. Here, one of our upper bounds is in the weaker Nullstellensatz proof system (giving
a stronger upper bound than only a PC upper bound). In the Nullstellensatz proof system, a proof that
a system of equations f; = --- = f,, = 0 is unsatisfiable consists of polynomials g; such that > g;f; = 1,
and the Nullstellensatz degree is the maximum degree of any g;f;. The PC degree is always at most the
Nullstellensatz degree, and the gap between the two can be nearly maximal for Boolean equations: O(1)
versus Q(n/logn) [BCIP02]. (For Boolean equations, there is always an O(n) upper bound, though this
does not apply to TI, see Remark 1.3 below).

Theorem 1.2. Over any field, the Nullstellensatz degree of refuting isomorphism of two n x n x n tensors
of tensor rank < r is at most 20(%) If working over a finite field F, and including the equations x? — x, the
PC degree is at most O(qr?).

In particular, isomorphism of constant-rank tensors can be decided in polynomial time.

Remark 1.3. In many settings in proof complexity, Boolean axioms such as z? = z; or 2 = 1 are included
among the system of equations, and all such unsatisfiable systems of equations can be refuted in degree O(n)
(n =4 variables). If this were the case here, the above would only be interesting for very small values of
r. In contrast, the equations for TI do not include any such Boolean axioms, and as such the naive degree
upper bound is exponential in the number of variables. For n x n X n tensors, this gives an upper bound
of 20(n*) [Som99], and thus, Theorem 1.2 gives nontrivial upper bounds all the way up to » < n. (We note
that n X n x n tensors can have rank up to ©(n?) [Lic85].) The proof of Theorem 1.2 shows that for rank-r
tensors, TI can essentially be reduced to a system of equations in only O(7?) variables.

Remark 1.4. For fixed r, testing if an n X n X n tensor has rank < r can be done in polynomial time, as
follows. This will show that the algorithm of Theorem 1.2 genuinely solves the decision problem, and not
just a promise problem. Given an n x n x n tensor T, consider its three n x n? flattenings. Use Gaussian
elimination to put each such flattening, separately, into reduced row echelon form. If any of these flattenings
has rank > r, reject. Otherwise, we get from this a list of 3r vectors uq, ..., Uy, v1,...,Vp, W1,...,w,, such
that T lives in the r X r x r-dimensional space Span{uy, ..., u, } ® Span{vy,...,v,} ® Span{wy, ..., w, }. Now
in this space we can write down the Brent equations [Bre70] for T to have rank < r, which will be r® cubic
equations in 3r? variables (Brent’s equations [Bre70, (5.06)] were specifically for the matrix multiplication
tensor, but analogous equations are easily constructed for arbitrary tensors using the same idea). Since r
is constant, these equations may be solved in polynomial time (here we assume that we are either working
over a finite field, a finite-degree extension of the rationals—see, for example, Grigoriev [Gril3]—or in the
BSS model over an arbitrary field).

Lastly, one may wonder why we focus on 3-TENSOR ISOMORPHISM, and not some of its many related vari-
ants. Indeed, just as there are other equivalence notions for matrices—such as conjugacy X M X ~* and con-
gruence X M XT—there are many different kinds of multilinear objects that can be represented by multi-way
arrays, including tensors, homogeneous polynomials (commutative or noncommutative), alternating matrix
spaces, multilinear maps, and so on, each with their own corresponding notion of isomorphism. While these
problems are indeed distinct, they are all equivalent under polynomial-time isomorphisms [FGS19, GQ21b];
such problems are called Tl-complete. Even isomorphism of k-way tensors (for any fixed & > 3) is equiv-
alent to isomorphism of 3-tensors [GQ21b]. This partially justifies our focus on 3-TENSOR ISOMORPHISM.
In the course of proving our reductions for the results stated above, we use many of the gadgets from
[FGS19, GQ21b], and show that such uses also often yield proof complexity reductions as well. Because of
the variety of gadgets used in our reductions, we believe that many, if not all, of the gadgets from those
results would also yield proof complexity reductions, so the proof complexity of all the known Tl-complete
problems should be polynomially related.



1.2 Comparison with linear algebra, a new proof system, and a conjecture

As linear algebra is part of the core toolkit for understanding tensors, it is natural to wonder how linear
algebra can help in algebraic proof complexity approaches to TI. We believe that even if it had the “full
power” of linear algebra at its disposal “for free,” PC could still not solve TT efficiently. We begin to make
this precise in this section.

Some basic derivations in linear algebra are to relate the ranks of two matrices and to derive BA = I from
AB = I (the Inversion Principle, one of the so-called “hard matrix identities” [SC04], only recently shown
to have short NC2-Frege proofs [HT15]). Soltys [Sol01] and Soltys & Cook [SC04] discuss the relationship
between these and other standard implications in linear algebra. We show that PC is not strong enough to
prove these in low-degree:

Theorem 1.5. The unsatisfiable system of equations XY = Id,, where X isn x r and Y is r X n with
1 <r < n, requires degree > /2 + 1 to refute in PC, over any field.

We refer to this system of equations as the Rank Principle, as refuting them amounts to showing that
rkId, > r.

Theorem 1.6. Any PC derivation of BA = I from AB = I, where A, B are n X n matrices with {0, 1}
entries, requires degree > n/2+ 1, over any field.

We also observe that the Rank Principle can be derived in low degree from the Inversion Principle.
Although it remains open whether the Inversion Principle is “complete” for linear-algebraic reasoning
(see [Sol01, SC04]), we introduce the proof system PC+Inv in an attempt to capture some linear-algebraic
reasoning that seems potentially useful for TI. PC+Inv has all the same derivation rules as PC, but in
addition, for any square matrices A, B (whose entries may themselves be polynomials—that is, we allow
substitution instances), we have the rule
AB=1
BA=1T
where the antecedent represents the set of n? equations corresponding to AB = I, and similarly the conse-
quent denotes the set of n? equations BA = I (see 2.3 for more details). Degree is still measured in the usual
way, but this rule lets us “cut out” the high-degree proof that would usually be required to derive BA = I
from AB = I. We now formalize our intuition that linear algebra should not suffice to solve TT efficiently in
the following:

Conjecture 1.7. TENSOR ISOMORPHISM for n X n X n tensors requires degree Q(n) in PC+Inv, over any
field.

Despite the conjecture, we do not yet know how to prove lower bounds on PC+Inv for any unsatisfiable
system of equations, let alone those coming from TI. Mod p counting principles (for p different from the
characteristic of the field) strike us as potentially interesting instances to examine for PC+Inv lower bounds,
before tackling a harder problem like T1I. In the final section, we highlight many other open questions around
the proof complexity of TT.

1.3 Organization

In Section 2 we cover preliminaries. In Section 3 we prove the lower bounds on linear algebraic principles just
discussed. In Section 4 we prove the upper bound for isomorphism of bounded rank tensors (Theorem 1.2).
In Section 5 we prove Theorem 1.1 by reduction from GI. In Section 6 we prove the polynomially related
lower bound by direct reduction from RANDOM 3XOR.

2 Preliminaries

2.1 Proof systems

All our rings are commutative and unital. Polynomial calculus (PC) is a proof system to prove that a given
system of (multivariate) polynomial equations P over a field F of the form p = 0, has no solution over the



algebraic closure F (i.e. the system is unsolvable). We usually shorten the polynomial equation p = 0 to just
p. The derivation rules of the system are the following one:

a (multiplication), P 4

Tp ap + bq

(linear combination)

where z is any formal variable, a,b € F and p, ¢ are polynomials over F.

When refuting Boolean systems of equations it is common to include the Boolean axioms x? —z;. Because
we do not always include these (esp. for TI) we are explicit about our use of these, but do not assume they
are built into the proof system—that is, if we are assuming them as axioms, we say so.

A PC derivation (or proof) of a polynomial ¢ from a set of polynomials P is a sequence of polynomial
equations p1, ..., pn, ending with the polynomial ¢ (so py, is ¢) and where each p;, ¢ € [m], is either an aziom
p for p € P, or is obtained from previous equations in the refutation by multiplication or linear combination.
We denote this by writing P  g. Observe that if p is derivable in PC and ¢ is a polynomial then, by
repeated applications of multiplication and linear combination rules, we can derive pg. We often use this
generalization of the multiplication in our proofs without mention.

A PC refutation is just a PC proof of the polynomial 1. The degree of a PC derivation is the maximal
degree of a polynomial used in the proof. The size of a polynomial p is the number of terms in p. The size
a PC derivation p1, ..., pn is the sum of the sizes of the polynomials p1, ..., pm.

For our upper bound in Theorem 1.2, we also consider another algebraic proof system, known as Null-
stellensatz (NS), to certify unsolvability of sets of polynomial equations. Nullstellensatz is defined in a static
form as follows: a refutation of a list P = (p1,...,pm) of polynomial equations over variables z7 ..., z, is
given by the list of polynomials Q = (q1, ... ¢m) such that

Z pigi = 1

i€[m]

The degree of a NS refutation is the maximal degree of a polynomial in P U Q. The size of NS proof is
the sum of the number of monomials appearing in the polynomials g1, ..., ¢n.

Sum-of-Squares (SOS) is a static proof system for certifying the unsolvability of systems of polynomial
equations and polynomial inequalities, where polynomials are usually over the ring Rlzy ..., x,].

A polynomial p is a sum-of-squares polynomial if it is in the form p =", r? and the r;’s are polynomials
as well. Given a system made by a set of polynomial equations P = {p; = 0,...p,, = 0} and a set
Q ={q >0,...q0 > 0} of polynomial inequalities, a sum-of-squares proof of the polynomial inequality
p >0 from P U Q is given by the formal identity

P =50+ ZSiQH— Z tip;
i€[k] je[m]

where sg, s1, ..., Sk are sum-of-squares polynomials, while ¢1,...,t,, are arbitrary polynomials. When the
system PUQ is unsatisfiable, a refutation of PUQ is a proof of the inequality —1 > 0, that is for p the constant
polynomial —1. The degree of the proof is the max{deg(p), deg(so), deg(s;) + deg(g:), deg(t;) + deg(p;)|i €

[K],5 € [m]}.

Definition 2.1 (PC reduction between systems of polynomials, cf. [BGIP01, Sec. 3]). Let P(z1,...,zy)
and Q(y1,...,Ym) be two sets of polynomials over a field F. P is (dy, dz2)-reducible to Q if:

1. For each i € [m] there is a polynomial 7;(x) of degree at most d; (which we think of as defining y; in
terms of the x variables);

2. There exists a degree do PC derivation of Q(r1(x),...,r,(x)) from polynomials P(x).

Lemma 2.2 ([BGIP01, Lem. 1]). If P(x) is (d1, dz2)-reducible to Q(y) and there is a degree d PC refutation
of Q(y), then there is a degree max(dz,d1d) refutation of P(x).



In their paper, they typically only applied this to systems of equations which were known to be unsat-
isfiable (such as PHP and Tseitin tautologies), whereas in our paper we have several situations we want to
combine the above notion together with the usual notion of many-one reduction. We encapsulate this in the
following definition. We say a decision problem II is a polynomial solvability problem over a field F if all valid
instances of the problem are systems of polynomial equations over F, and the problem is to decide whether
such a system of equations has solutions over the algebraic closure F. Thus, the difference between multiple
polynomial solvability problems is just which systems of equations are valid inputs.

Definition 2.3 (PC many-one reduction). Let II;,II; be two polynomial solvability problems over a field
F. We say that II; (dy,ds)-many-one reduces to Il if there is a polynomial-time many-one reduction p from
IT; to IIo, such that for all unsatisfiable instances F of Iy, F (di,d2)-reduces to p(F). When this occurs
with dy,dy = O(1), we write

I, <PCIL,.

2.2 Linear algebra and tensors

Given three vector spaces U, V, W over a field F, a 3-tensor is an element of the vector space U®V ®@ W, whose
dimension is (dim U)(dim V')(dim W). If e; is the i-th standard basis vector, then a basis for U @ V @ W is
given by the vectors {e; ® e; ® ex }. One may also interpret the symbol ® more concretely as the Kronecker
product, in which e; ® e; ® ey, represents a 3-way array whose only nonzero entry is in the (4, j, k) position.
The vector space of such 3-way arrays (with coordinate-wise addition) is isomorphic to U @ V @ W.

The rank of a tensor T' € U ® V ® W is the minimum r such that T = 2221 u; @ v; @ w; for some vectors
Uiy Viy Wy

Two n X m X p 3-tensors T, 7' € U ® V ® W are isomorphic if there exist matrices X € GL(U),Y €
GL(V),Z € GL(W) such that (X,Y,Z)-T = T', where the latter is shorthand for (1). If we treat T,T"
as given non-isomorphic tensors, then we may treat (1) as a system of equations in the n? + m? + p?
variables Xji/, Y}, Ziy. To enforce that these variable matrices are invertible, we furthermore introduce
three additional sets of variables X’,Y’, Z/ meant to be the inverse matrices, and include also the equations

XX =X'X =1, YY' =YY =1, 27'=7'7Z =1,

where I, denotes the n x n identity matrix, which is Idy in any basis. (We could have instead introduced
new variables such as ¢ and the equation det(X)d = 1, however, the latter equation is degree n, whereas
the above equations all have degree O(1), which is more desirable from the point of view of algebraic proof
complexity.)

2.3 Polynomial encodings and the inversion principle

Some principles of linear algebra can be formulated as tautologies in propositional logic and therefore also
as a set of polynomial equations. In this paper we preliminarily consider two such principles.

Rank Principle. As a first example we consider a set of unsatisfiable polynomials encoding the principle
that the product of a n x r matrix X by a r X n matrix Y cannot be the identity matrix whenever » < n. We
consider variables x; k, y; i for i,j € [n] and k € [r], where r < n to encode X and Y. Then the polynomial
encoding is:

I(r,n) := Z TikYjk — Oij i,j € [n]
ke(r]

where d; ; = 1 if i = j and 0 otherwise. This set of polynomials is clearly unsatisfiable as long as r < n.

Inversion Principle. The second principle encodes the invertibility of a square n X n matrix A, expressing
the tautology that AB =1 — BA = I where A, B are n X n matrices and [ is the identity matrix. Stephen
A. Cook suggested this principle as a tautology that may be hard to prove in several proof systems.

Let a; j,b; ; be formal variables encoding respectively the (i, j)-th entries of A and B. We represent the
fact that AB = I as the set of degree 2 polynomials



Z ai kb —0ij 4,7 €[n],

ke(n]
where §;; = 1 if ¢ = j and 0 otherwise. We denote this set of polynomials by AB = I. In Section 3, we
study the degree complexity of AB = I F BA = I, that is of PC derivations of the polynomials BA = I
from the polynomials AB = I.

In view of the results we obtain in Section 3, in Section 1.2 we considered a polynomial rule schema of

the form
AB =1

BA=1
which we call the Inversion Rule (INV) meant to be added to PC as an extra rule. We make this slightly
more precise here.
A polynomial instantiation 7 of the polynomials AB = I is a substitution of polynomials p; ;,q; ; to
variables a; ; and b; ;. In PC+INV a polynomial p is derivable from a set of polynomials P if

1. pis an axiom, or p € P;
2. p is obtained by multiplication or linear combination from previous polynomials in the proof;

3. pis a polynomial among a polynomial instantiation 7 of BA = I, given that among the polynomials
previously derived in the proof there are all the polynomials forming the instantiation 7 of AB = I.

Pigeonhole Principle. An important role in proving the results in Section 3 is played by the well-known
Pigeonhole principle stating that any function f from [n] to [r] with » < n has a collision, that is there are
i # i €[n]and a j € [r] such that f(i) = f(i') = j. PHP" is the set of polynomials:

Z pik — 1, for i € [n], DikPjk, for i # j € [n]k € [r] pfj — pij, for i € [n],j € [r]
ke(r]

Razborov [Raz98] additionally included the “functional equations” (encoding that each pigeon cannot be
matched to more than one hole):

pikDik, fori € [n],k #k € [r].

3 Linear algebra warm-up: PC for matrices

Two matrices M, M’ € U ® V are isomorphic as tensors if they are equivalent as matrices, meaning under
left- and right-multiplication by invertible matrices X € GL(U),Y € GL(V), that is,

XMY = M'.

Since we want X,Y to be invertible, we also introduce variable matrices X', Y’ as before, together with
the equations
XX'=X'X =1dy YY' =Y'Y =1dy .

Then by left multiplying our initial matrix equation by Y’, we may replace it with the new matrix equation
XM=MY'.

The latter has the advantage of being linear in X and Y”, but the quadratic equations X X’ = Idy, Y'Y’ = Idy
still make even this case not totally obvious.



3.1 A trick for PC degree

If our focus is on PC degree, we note that the degree of the equations is unchanged if we first left- or
right-multiply M, M’ by invertible scalar matrices. For example, if we replace M by M = AMB with
A, B € GL(U), then we may replace X by X := XA™!, Y by Y := B~'Y. Then we have M = M,
so M = M’ iff M = M’'. Furthermore, since the transformation X — XA~1, Y — B~1Y is linear and
invertible, any PC proof that M 2 M’ can be transformed by the inverse linear transformation into a PC
proof that M 2 M’ of the same degree.

Now, for matrices under this equivalence relation, we have a normal form, namely every matrix M
is equivalent to a diagonal matrix with rk(M) 1s on the diagonal and all the remaining entries 0, that is,
251;(11\4) e;®e; = I &0, where the latter 0 denotes a 0 matrix of appropriate size (n—7) X (m—r). So by using
the preceding trick, we may put both M and M’ in this form. The two are isomorphic iff rk(M) = rk(M"),
so for PC degree we have now reduced to the case of showing that I, & 0 and I,» ® 0 are not isomorphic
when r # 1’

Note that, aside from the equations saying X and Y are invertible, this is almost identical to the Rank
Principle (see Section 2.3). In the rest of this section we will prove PC lower bounds on both the Rank
Principle and the Inversion Principle. Here, we show that the addition of these invertibility axioms in fact
makes 2TT much easier in PC than the Rank Principle or 3TI.

Proposition 3.1. Let M, M’ be two n x m matrices of ranks r,r’ respectively, with v’ > r. Then, over any
field whose characteristic does not divide ' — r, the following equations have a degree 3 PC' refutation and a
degree 4 NS refutation:

XMYyT =M’ XX'=X'X=1d, YY' =YY =1d,,.
For those familiar with the low-degree PC proof of the functional onto-PHP, the following proof is similar.

Proof idea. By the observations in Section 3.1, we may assume without loss of generality (from the point of
view of PC degree) that M = Id, &0, —rxm—r and M’ = 1d,s &0y, xm—r-

. X11 X12 Yll Yl2
Write X =
|:X21 X22 YV21 3/22
where Y71 has size ' x 7. In this notation, the matrix equation X MY 7T = M’ becomes the equations

yuy? - X Xz |ldy Vi Y3
O(nfr)x(mfr)

] where the top-left block X711 has size ' x r, and similarly write Y = [

Xo1 Xoz Yih Y3
_ [Xun 0] [V YE
T Xe O 0 0
=M = {Idw }
O(n—r’)x(m—r’)

which becomes the four matrix equations
XY =1d, XY i=0 XuYi=0 XY =0. (2)

Note that so far our PC proof hasn’t actually done anything—it is all just notation, and all in the same
degree we started with (degree 2).

Then, using the equations X X’ = 1d,, and Y'Y’ = Id,,, we will derive that Y% X1; = Id,.. Then we derive
1 as

1
P (Tr(XquTl —Td,) — Tr(YE X1, — Idr)) )
The point here is that trace is additive and cyclically invariant, so Tr(X11Y7}) = Tr(Y{} X11), identically as
polynomials, so there is no further derivation needed. O

Proof. The proof starts using the first part of the proof idea above, so we continue from Equation (2) with
the notation introduced above. In the remainder of the proof, we will derive Y1T1X11 = Id,. Then the last
paragraph of the proof idea will complete the proof.



To derive Y{{ X1; = Id,, we will use the invertibility equations (those involving X’ and Y’). Write
X1, X

X/ — [ 11 A2

X1 X
similarly for Y.

From considering the upper-left r x r block of the matrix equation X’'X = Id,,, we get

}, where X7; has size r x r’ (NB: the size is the “transpose” of the size of X1;) and

X, X1y + X|pXo1 = 1d,..

Right multiplying by Y/}, we get
X1 XYy + X1pXon Yih = YT
But now we can subtract from this X{; times the equation X11Y;] = Id,, and also X}, times the equation
X1 Y4 =0 to get
X {1 = YE (3)
Similarly, considering the upper-left r x r block of the matrix equation Y'Y = Id,,, we get Y{;Y11 +

Y/5Y2 = Id,. For consistency with the notation above, we take the transpose of this entire equation (in
PC, this is essentially a null-op—we are just re-arranging how we are viewing a set of (r')? equations on the
page), to get:

Yﬂ(Yﬁ)T + YQCQ(Y1I2)T =1d,.

Left multiplying by X11, we get
Xllyliq(Yfl)T + X].l}/;l;(}/{z)T = X11.

Now, right-multiplying the equation X;1Y{} = Id by (Y{;)T, and right-multiplying the equation X1;Y;; =0
by (Y{,)? and subtracting both of these from the above, we get

Y{)" = Xu. (4)

Next, we derive M — X'M'(Y')T = 0, as follows: left-multiplying X MY 7T — M’ by X', and subtract from
it (X'X —1I) times MY, to get —X'M’'+ MY?. Now right-multiply the latter by (Y’)? and subtract from
it M times (YT(Y")T —I), yielding —X'M’(Y")T + M. Now multiply by —1.

Now, from X'M'(Y")T = M, as at the beginning of the proof, we derive that X1,(Y{;)? = Id,. But
above we have derived that X{; = Y% and (Y{;)7 = Xi1, so from the preceding three equations we get
Y{i X11 = Id,, as claimed. This completes the PC proof.

Let us unroll the PC proof to derive a Nullstellensatz proof (here we underline the use of original
equations):

r—r =Te(XnY —1dy) — Te(Y{L X1y —1d,)

Now we focus on the NS derivation of YlTlX 11 — Id,. Since the trace is linear, and we are focusing on degree,
this is without loss of generality. We have:

Y1T1X11 —Id, = (Xil(Yl/l)T - Idr) - (X1, - YlTl)(Yl/l)T - Y1T1 ((Ylll)T - Xll)
- (—X'(XMYT ~MOYT 4 (X'X — DMYT(Y)T + MYT(y")T - I)) y

+ ((Xth + X1 X1 — Id)YYh — X7, (XY} —1dy) — X{Q(X21Y12£)) yi)"

¥ (X (OO + YA (V)T Td,) — (X Vi — (V)T — (X Y3 (Via)T)

This is visibly degree 4. O



3.2 Inversion Principle implies the Rank Principle

Lemma 3.2. If the r X r Inversion Principle has a degree d PC derivation, then there is a degree max{d, 3}
PC refutation of the Rank Principle stating that a rank r matriz is not equivalent (isomorphic) to a rank n
matriz, for any n > r.

If the Inversion Principle has a degree d NS derivation, then the Rank Principle has a degree d +2 NS
refutation.

Proof. Suppose the r x r Inversion Principle has a degree-d derivation. Consider the Rank Principle XY = I,
where X isn x r and Y is 7 X n, with n > r. Write

X= [;3] and Y = [Yy Y],

where Xg,Yy are r x r. Then, examining the upper-left r x r corner of the original equations, we find
XoYy = I.. As these are square matrices, by assumption in degree d we may then derive that Yy Xq = I, as
well.

Now, multiply both sides of XY = I,, on the left by the matrix {

{YOXO] Yo w= [S(/)O Ino—r] '

}(/)0 I 0 } . The result is then the set

of degree-3 equations

Considering the upper-right r x (n — r) block of these equations, we find the equations Yy XoY; = 0.

But now, from the equation Yy Xy = I, we may right-multiply by Y7 to get Yo XoY7 = Y;. Combining
with the equation at the end of the last paragraph, we then conclude Y; = 0.

Finally, consider the lower-right (n — r) x (n — r) part of the original equation XY = I,, namely,
X117 = I,,_,. We had already derived Y7 = 0, which we can then left-multiply by X; to get X;Y; = 0.
Considering any diagonal entry of these two equations, we then derive the contradiction 1 = 0.

To see the NS certificate, we unwrap the above proof. First write Yy Xy — I, as a linear combination of
the equations XYy — I, with polynomial coefficients, in total degree d. Among our starting equations in the
Rank Principle, we have X¢Y; and X1Y; — I,,—,.. Then the following linear combination has degree 2 more
than Yy Xo — I, and derives 1 in any of its diagonal entries:

X1 Yo XoY: + Xa(YoXo— I)Y1 + (XaYh — L—,).

Observation 3.3. The n x n Inversion Principle has a proof of degree 2n + 2.

Proof. The idea is to use Laplace expansion. We spell out the details.

We start with XY = I,,, where X and Y are n X n matrices of variables. Left-multiply by Y to get
Y XY =Y, and then right multiply by Adj(Y") (whose entries are the (n—1)x (n—1) cofactors of Y, hence have
degree n — 1) to get YXY Adj(Y) = YAdj(Y). Now, by Laplace expansion, we have Y Adj(Y') = det(Y)I,,
so we get Y X det(Y) = det(Y)I,.

Next, starting from XY = I,, and expanding out the determinant term-by-term, we derive det(XY) = 1.
(Note that here, we are not simply applying the determinant to the matrix XY — I, as that would give us
the value of the characteristic polynomial evaluated at 1. Instead, we repeatedly use that from a —b = 0
and ¢ —d = 0 we can derive ac — bd = 0 as (a — b)c+ b(c — d). Similarly, we can derive (a +¢) — (b+d) =0
as (a —b) + (¢ — d).) Now, since det(XY) = det(X)det(Y) identically as polynomials, we have derived
det(X)det(Y) =1 in degree n.

Now, from Y X det(Y)—det(Y') I, in the first paragraph, we multiply by det(X) to get (Y X —1I,)(det(X) det(Y)).
From det(X) det(Y) — 1 in the second paragraph, we multiply by —(Y X — I,,) and add to the preceding to
get YX — I, all in degree at most 2n + 2. O
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3.3 Lower bound on the Rank Principle (and Inversion Principle) via reduction
from PHP

Here we show that the Rank Principle (see Section 2.3) requires large PC degree, via a reduction to the
Pigeonhole Principle. For the Pigeonhole principle, a tight PC degree lower bound is known:

Theorem 3.4 (Razborov [Raz98]). Any PC refutation of the Functional PH P! requires degree r/2+1 over
any field.

We use this to show:

Theorem 3.5. Letn € N, n > 2 and 1 < r < n. I(r,n) (with or without the Boolean azioms) requires
degree /2 + 1 in PC over any field.

Proof. We prove that PH P is (1, 2)-reducible to I(r, n). First we consider the following degree 1 polynomials
defining = and y variables of I(r,n) in terms of the p variables of PH P". variables

Tik = Yik = Dik for i € [n],k € [n — 1].

Second we show a degree 2 PC proof of I(r, n) from the polynomials defining the PH P". From PH P axioms
DikPk,; for 4,7 € [n],1 # j, and summing over all k € [r], we get

Z Di,kDk,j5

ke(r]

which are exactly the axioms of I(r,n) for i # j,4,j € [n], after the substitution of variables.
For a i € [n], take the boolean axioms written in the form p; xp; r — pi x and sum them over k € [r]:

Z DikPik — Z Dik
ke(r]

ke(r]

Summing this last polynomial with the PH P axiom Zke[r} pik — 1 we get the polynomial

Z DikPik — 1,

ke(r]

which is the axiom of I(r,n) for i = j after the substitution of the variables. The proof has degree 2. The
result follows immediately from Lemma 2.2 and Theorem 3.4.
O

Corollary 3.6. Any PC proof of AB =1+ BA =1, where A, B are square n x n {0,1} matrices requires
degree n/2 + 1.

Proof. Follows immediately from Theorem 3.5 and Lemma 3.2. O

4 Upper bound for non-isomorphism of bounded-rank tensors

Theorem 4.1. Over any algebraically closed field, there is a function f(r) < 2O(T2), depending only on r,
such that, given two non-isomorphic tensors M, M’ of tensor rank < r, the Nullstellensatz degree of refuting
isomorphism is at most f(r).

If working over a finite field GF(q) and including the equations x4 — x = 0 for all variables x, then the
PC degree is at most 12qr2.

Proof. The proof is based mainly on the so-called inheritance property of tensor rank.

Let M =" u; ®v; ®w; and let M’ =7 ul ® v} ® w] be our two tensors of format ny X ny X n.
Let dy = dim Span{uy,ug, ..., up, uy,ub, ..., ul}, d2 similarly for the v’s and ds for the w’s. Choose a basis
€1,€2,...,en, for F™ such that Span{ey,...,eq, } = Span{uy,...,ur,u},...,ul}. Let f1,..., fn, be a similar
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basis for "2 (with the first dy vectors a basis for Span{vy,...,v,,v],...,v.}), and similarly gi,..., gn,-
Changing everything in sight into the e, ® fo ® go basis, we find that M, M’ are both supported in the
upper-left d; x ds X d3 sub-tensors, with all zeros outside of this. Call the corresponding d; x ds X d3 tensors
M, I . Because all the entries outside this box are zero, it is not difficult to show that M = M’ iff M =2 s
(the so-called “Inheritance Theorem,”, see, e.g., [Lan12, §3.7.1]); note that isomorphism of M with M s
via the much smaller group GLg, x GLg4, X GL4,, rather than GL,, x GL,, x GL,, (the latter of which is used
to determine isomorphism of M with M’).

In this basis, isomorphism of M, M s solely determined by the upper-left d; x d; sub-matrix of X, X',
the upper-left dy X do submatrix of Y,Y”, and the upper-left d3 x d3 sub-matrix of Z, Z’. So we now only
need to deal with equations in d? + d3 + d3 variables. Since each d; < 2r, this is at most 1272 variables.

Since we have < 1272 variables, d1dads cubic equations, and 6n? quadratic equations (X X' =1 = X'X =
YY’ = -..), over an algebraically closed field Sombra’s Effective Nullstellensatz [Som99] implies that the
Nullstellensatz degree of refuting our equations is then at most 4 - 360,

Over a finite field with the extra equations x? = x, we may reduce degrees so that the degree of each
variable is never more than g, the size of the field. In this case, the PC degree is at most ¢ times the number
of variables, i.e., at most 12¢r2. O

5 Lower bound on PC degree for Tensor Isomorphism from Graph
Isomorphism

Definition 5.1. Given two graphs G, H with adjacency matrices A, B (resp.), the equations for GRAPH
ISOMORPHISM (the same as those used by Berkholz & Grohe [BG15, BG17]) are as follows. Let Z be an
n X n matrix of variables z;; (where the intended interpretation is that z;; = 1 iff an isomorphism maps
vertex i € V(G) to vertex j € V(H)). We say that a partial map, which sends (i,¢") — (j,7') is a local
isomorphism if (1) ¢ = ¢/ iff j = j' (it’s a well-defined map) and (2) (i,i') € E(G) < (4,5') € E(H). (One
may also do COLORED GRAPH ISOMORPHISM and require that the colors match, ¢(i) = ¢(j), c(i') = ¢(j7).)
Then the equations are:

23 — 2y Vi,j  All variables {0, 1}-valued
1—->,2zj; VYj eachjeV(H)ismapped to from exactly one vertex
1—3 ;25 Vi  eachi€ V(G) maps to exactly one vertex
Zij 2t jr Whenever (i,4") — (j,7') is not a local isomorphism.

In this section, we prove a lower bound on PC (and SoS) for TI, by reducing from GI and using the
known lower bounds on GI [BG15, BG17]. Specifically, we show

Theorem 5.2. Over any field, there are instances of TENSOR ISOMORPHISM of size O(n) x O(n) x O(n)
that require PC degree Q(n) to refute. The same holds over the reals for SoS degree.

Proof. Berkholz and Grohe [BG15, BG17] show the same statement for n-vertex graphs of bounded vertex
degrees, with the same PC/SoS degree bound. In Proposition 5.4 we show that GI reduces to MONOMIAL
CoDE EQUIVALENCE by a (2,4)-many-one reduction that turns n-vertex, m-edge graphs into m x (3m + n)
matrices. in Proposition 5.5 we show that MONOMIAL CODE EQUIVALENCE reduces to TI by a (2,4)-many-
one reduction that turns & x N matrices into (k+2N) x N x (1+2N) tensors. By Lemma 2.2, this completes
the proof. O

To reduce from GI to TI we use the following intermediate problem. A matrix is monomial if it has
exactly one nonzero entry in each row and column; equivalently, a monomial matrix is the product of a
permutation matrix and an invertible diagonal matrix.

Definition 5.3. MoNoMIAL CODE EQUIVALENCE is the problem: given two k X n matrices C,C’, do
there exist matrices X,Y such that XCYT = C’ where X is invertible and Y is invertible and monomial?
Given two such matrices C, C’, the equations for MONOMIAL CODE EQUIVALENCE are as follows. There are
2(k? +n?) variables arranged into matrices X, X’ (of size k x k) and Y, Y” (of size n x n). The equations are

xovyT =¢' XX'=X'X=1d YY' =Y'Y =1d
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and

Yijyiy (VY5 #3')  yige (Vi # 1, V5)
yz/’jyz/'j’ (ViVj # 5') ygjy;’j(Vi #14',Vj)

(Note: there are no equations forcing the variables to take on values in {0,1}.)

Proposition 5.4. The reduction of Petrank & Roth [PR97] from GRAPH ISOMORPHISM to LINEAR CODE
EQUIVALENCE over Fy in fact gives a (2,4)-many-one reduction from GRAPH ISOMORPHISM to MONOMIAL
CODE EQUIVALENCE (sic!) over any field.

Proof. The reduction of Petrank & Roth is as follows: given a simple undirected graph G with n vertices
and m edges, let D(G) be its m x n incidence matrix: D., = 1 iff v € e and is 0 otherwise, and let M (G)
be the m x (3m + n) matrix

M@G)=[In | Im | Im | D(G) |.

Many-one reduction. It was previously shown (over Fy in [PR97] and over arbitrary fields in [Grol2,
Lem. I1.4]) that this gives a many-one reduction to PERMUTATIONAL CODE EQUIVALENCE. Here we observe
that the same reduction also gives a reduction to MONOMIAL CODE EQUIVALENCE. Thus, all that remains
to show is that if M(G) and M (H) are monomially equivalent, then G must be isomorphic to H.

In fact, what was shown in [PR97] (over arbitrary fields in [Gro12]) is that, up to permutation and scaling
of the rows, M(G) is the unique generator matrix of its code satisfying the following properties: (1) M(G)
is m x (3m + n), (2) each row has Hamming weight < 5, (3) any linear combination that includes two or
more rows with nonzero coefficients has Hamming weight > 6.

Now, suppose (X,Y) is a monomial equivalence of the codes M(G), M(H). Then the rowspans of
M(G)YT and M(H) are the same. Since Y is monomial, if we consider just the supports of the rows of
M(G)YT, up to re-ordering the rows, by the preceding paragraph, those supports must be the same as the
supports of the rows of M(H). Thus X must also be monomial. Say X = DP and Y = EQ where D, E are
diagonal and P, ) are permutation matrices. Then PM (G)QT has the same support as X M (G)Y”T = M (H),
and since P and @ are permutation matrices and M (G) and M (H) have all entries in {0, 1}, we must have
PM(G)QT = M(H). Thus M(G) and M (H) are in fact equivalent by a permutation matrix (in place of the
monomial matrix Y). Thus, by the fact that (G, H) — (M(G), M(H)) was a reduction to PERMUTATIONAL
CoDE EQUIVALENCE, we conclude that G = H.

Low-degree PC reduction. Let X, X', Y, Y’ be the variable matrices in the equations for MONOMIAL
CoDE EQUIVALENCE of M(G), M(H), and let Z be the variable matrix in the equations for GRAPH ISso-
MORPHISM of G, H. Let n = |V(G)|,m = |E(G)|; so, X, X’ are of size m, Y, Y’ are of size 3m +n, and 7 is
of size n.

Let Z) denote the (§) x (%) matrix whose ({i,i'}, {j,j'}) entry is z;;zy ;s + z;jz7;. The idea is that if
Z is a map on the vertices, then Z( is the corresponding map on the edges; the two terms come from the
fact that the edge {i,i'} can be mapped to the edge {4, '} either by (i,i") — (j,5’) or by (i,i') — (4',5).
Note that, since Z is a permutation matrix, at most one of these terms is nonzero, and thus Z® is also
a {0,1}-matrix (in fact, a permutation matrix). Let Zg) denote the |E| x |E| submatrix of Z(®) all of
whose row indices are {i,7'} € E(G) and all of whose column indices are {j,j'} € E(H). Note also that
(Zg))T = (ZT)EEQ), so we use these notations interchangeably for convenience.

Now consider the following substitution:

2 2 2 2
X (ZD) Yo (20D 02D e (2" e (27)
X2y YwzRezdezdez

After making these substitutions in the equations for MoNOMIAL CODE EQUIVALENCE of M (G), M (H), we
get the equations

(ZNT2Y =202V =14, (29 D(G)Z=D(H) 27727 =7"Z=1d, (5)

along with equations saying that Z and Zg) are monomial.
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We now show how to derive these equations in low-degree PC from the GI equations.
The monomial equations for Z are part of the GI equations, so there is nothing to do for those.
The monomial equations for Zg) are of the form (z;;2yj: + 2ijs 2ij) (2pezi o0 + Zker 2i70) Where either (1)

{3,4'} = {k,k'} and {4, j'} # {¢, '} or (2) vice versa. We expand out to get
ZijRitjt RRe Bk 0t Zij Rt Bkt ke & Zigr Rit jRR0RR 0 Zigl Zit § 2R 2R €

We show how to get this equation in case (1); case (2) follows similarly, mutatis mutandis. In case (1),
without loss of generality suppose that ¢ = k, i’ = &/, and j ¢ {¢,¢'}. The first two terms are divisible by the
GI equations z;;z; (since i = k and j # ¢), the third term is divisible by z; jzyer (since i/ = k' and j # '),
and the last term is divisible by z;;2;¢ similarly.

Next, the equations ZZ7 = 1d,, are, expanded out,

> zijzig — 1(Vi) > zijani (Vi # k).

The first is gotten by linear combination from 1 — ). z;; and the Boolean axioms zf] — z;5. The second is

a linear combination of the monomial axioms z;;z; (part of the local non-isomorphism axioms). Similarly
for ZTZ =1d, using 1 — ", z;; instead.
Next, we expand out the equations Zg)(ZT)(Em =1Id,,, to get!

o (Eyzeg + zgzeg) @z + 2w2k) = Oy ooy (V83 LR, K'Y € B(G))
{.d' YEB(H)

Thus, for {i,7'} # {k,k'}, we need to derive

E (Zijzi/j’zkak’j/ —+ Zij1 23§ 2k Zk! 51 —+ ZijZil 1 2K § Rk + zij/zi/jzk/jzkj/) .
{4,3’}eE(H)

Without loss of generality, suppose that ¢ ¢ {k, k’}. Then the first two terms of each summand are divisible

by the GI equation z;;21;, the third term is divisible by z;;2x/;, and the last term is divisible by z;;/z;,. On
the other hand, when {i,i'} = {k, k'}, we need to derive

E 2 .2 2 .2
_1 + (Zl_]zll]/ + 221]’21’321321’3’ + ZZ]’ZZ’]) .
{53’y E(H)

The middle terms of each summand are divisible by the GI equations z;;:2;;. For the first and third terms,
we can use the Boolean axioms to remove the squares, and thus we are left to derive

-1+ Z (zijzirjr + 2ijr Zirj) (6)
{4, }Y€E(H)

We derive this from the GI equations as follows. Consider (3_;zi; — 1)(30; zirjr — 1) + (32, 215 — 1) +

(2= zirj» — 1) and break up the resulting sum according to whether j = j', {j, '} € E(H) or {j, '} ¢ E(H).

Then we get
Z Zij2i 5+ Z Zij 250 + Z zijzirgr — 1
J 3,3'{4,5' YeE(H) J#3'{4,3' }¢ E(H)
Every summand in the first sum is a monomial axiom since i # ¢'. Every summand in the third sum is a
local non-isomorphism axiom, since {i,4'} € E(G) but {j,j'} ¢ E(H). Note that every edge {7, '} of E(H)
is represented twice in the middle sum: once as (7, ;') and once as (j’, j). Thus, the above simplifies to

Y. (myEey +zpzeg) - 1,
{4,4’}€E(H)

I'We use the notation Z{j j'yeE(m) o denote a sum in the index of summation takes on the value e € E(H) for each edge
of H exactly once. Because our edges are undirected, we only use such sums when the summand expression is itself invariant
under swapping the roles of j,j’. If so desired, one could equivalently say Zj<j, (' YEE(H):
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which is what we sought to derive. The derivation of (Zg))TZg) = Id is similar.

Finally, we show how to derive the equation (ZSEZ))TD(G)Z = D(H) from the equations ZA(G) = A(H)Z,
where A(G) denotes the adjacency matrix of G, with A(G);» = 1iff {i,7'} € E(G). Writing out the equations
in indices, we need to derive

> (@), D@inasne = DU (¥ € V)W S} € BUD)
{i,i" }€E(G),keV(G) A3 {5.d

Using the fact that D(G) ;3,6 = ik + 0irk and the definition of Z@) | this is the same as

Z (zijziry + 2ijrzirg) (Gie + Oir)zke = 850 + 0,0(VE € V(H), V{4, j'} € E(H))
{i,i’ }eE(G),keV(G)

Thus we need to derive:

1 te{j,j'}
0 otherwise.

Yo (mgzeg + i) (zie + z) = {

{i,i' YEE(G)
Expanding out the summand, we find the four terms
ZijZitjr Zie + ZijZigr Zirg © Zigr Zirj2ie + Zig Zitj Zine-

When £ ¢ {j,j'}, each of these terms is divisible by one of the monomial (local non-isomorphism) axioms,
respectively: z;jzie, zirj Zire, Zijr Zie, and zy 2.

Finally, when ¢ € {j, 7'}, without loss of generality suppose that £ = j. Then the only terms that are not
divisible by the monomial axioms as above are zszi/ g+ ziji 2 ;- Using the Boolean axioms we can easily
convert each such summand to z;;zijs + 2;5-zij. The derivation of the sum of these over all {i,:'} € E(G)
is analogous, mutatis mutandis, to the derivation of (6) above. This completes the proof. O

Proposition 5.5. The many-one reduction from MONOMIAL CODE EQUIVALENCE to TENSOR ISOMOR-
PHISM from Grochow & Qiao [GQ21a] is in fact a (2, 4)-many-one reduction.

Proof. We recall the reduction, then prove that it is a low-degree PC reduction. Let M be a k X n matrix.

We build a 3-tensor of size (k + 2n) x n x (1 + 2n) as follows. The first frontal slice is { M The

02n><n:| '
remaining 2n slices all have just a single nonzero entry, which serve to place a 2 x 2 identity matrix “behind

and perpendicular” to M, one 2 x 2 matrix in each column. Let us index these slices by [n] x 2. Then the
(1,b) slice has a 1 in entry (2(¢ — 1) + b,4), for all ¢ € [n],b € [2]. Let us call this tensor r(M). Then the
reduction maps M, M’ to r(M),r(M').

Let X, X' Y,Y’, Z, Z' be the variable matrices for the TT equations for r(M),r(M’), and let A, B, A’, B
be the variable matrices for MONOMIAL CODE EQUIVALENCE of M, M’ (that is, AM BT = M’ Ais invertible,
B is monomial and invertible). Consider the substitution:

X—A®(BoL) Y—oB Z—16(BoB)ol,

X—AaoB oL Y =B Z—1®(BoB)®l.

As before, B o B denotes the Hadamard or entry-wise product. Let us see what the TI equations become
under this substitution. We get

AMBT =M’  AA =A'A=1d BB =B'B=Id (B oB)(BoB)=(BoB)(B oB)=1d

Indeed, notice that the effect of the B ® I in X and the B in Y is that the row and column locations of
the 2 x 2 matrix gadgets get permuted in the same way, and the gadget get multiplied by the square of the
nonzero entries of B. These are then multiplied by the B’ o B’ in Z.

15



Now, we derive these equations from the equations for MONOMIAL CODE EQUIVALENCE. The first three
are already present in the equations for MONOMIAL CODE EQUIVALENCE. The last one we expand out, to

see that we need to derive:
> b5 (05)° = Gu(Vi. k)
J
Now, for i # k, we may take the equation Zj bijb;k and square it, to derive

D bl + b+ Y 003
i j

Each term in the first sum is divisible by one of the monomial axioms b;;b;;» since j # j', and the second
sum is what we wanted to derive.
Finally, for i = k, we square the equation ), b;;b}; — 1 and add to it 2 (ZJ bijbl; — 1). We then proceed

to cancel terms with the monomial axioms as above, and end up with > y bfj (b;i)2 — 1, as desired. (]

6 Lower bound on PC degree for Tensor Isomorphism from Ran-
dom 3XOR

We get a lower bound on PC refutations for TENSOR ISOMORPHISM through the following series of low-degree
PC many-one reductions (Definition 2.3):

RANDOM 3-XOR <PC{+1}-MoNOMIAL EQUIVALENCE OF (7)
{£1}-MULTILINEAR NONCOMMUTATIVE CUBIC FORMS (8)

<PCMonomIAL EQUIVALENCE OF {£1} NoNcOMMUTATIVE CUBIC FORMS ~ (9)
<PCEQuIvALENCE OF {£1} NONCOMMUTATIVE CUBIC FORMS (10)

<PCTENSOR ISOMORPHISM (11)

We then appeal to the following PC lower bound on RANDOM 3-XOR:

Theorem 6.1 (Ben-Sasson & Impagliazzo [BI99, Thm. 3.3 & Lem. 4.7]). Let F be any field of characteristic
# 2. A random 3-XOR instance with clause density A = m/n requires PC degree (n/A?) to refute, with
probability 1 — o(1).

This allows us to prove:

Theorem 6.2. Over any field of characteristic # 2, there is a random distribution of instances of n xn xn
TENSOR ISOMORPHISM —which assigns nonzero probability to at least 28:(v/n) logn different instances—whose
associated equations require PC degree Q(/n) to refute, with probability 1 — o(1).

Note that such instances have N = 6n? variables, so this is really only an Q(3/N) lower bound relative
to the number of variables.

In the following subsections we recall the definitions of the above problems and their associated systems
of polynomial equations, and we give the reductions in the order listed above.

The first two reductions are gadget constructions of linear size; the proof of correctness for the first
uses the fact that random hypergraphs have no automorphisms, while the second is fairly straightforward.
Reduction (10) uses a gadget from Grochow & Qiao [GQ21b], albeit for a new application, and shows that the
reduction using this gadget also yields a low-degree PC reduction. Reduction (11) is based on two lemmas,
which show that the many-one reduction for this problem in fact also gives a low-degree PC reduction.

Remark 6.3. Both of the latter two reductions have a quadratic size increase, so while we get a nearly-
linear lower bound on PC degree for refutations of MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC
ForwMs, we only get a Q(y/n) degree lower bound EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS and
a Q(/n) degree lower bound on TENSOR ISOMORPHISM. If the gadget sizes of these latter two reductions
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could be improved to linear, we would get a similarly near-linear lower bound (linear in the side length, still
VN relative to the number of variables) on PC refutations for TENSOR [SOMORPHISM as well. As many of
the reductions in [FGS19, GQ21b] are of a similar flavor to the ones we consider here, we believe that they
can all be proven in low-degree PC, so we expect the main obstacle to such an improvement is the size of
the constructions themselves.

6.1 From Random 3-XOR to {£1}-multilinear noncommutative cubic forms

Definition 6.4. A random 3-XOR instance with n variables and m clauses is obtained by sampling m

clauses independently and uniformly from the set of all 2(3) parity constraints on 3 variables. Each parity

constraint is encoded by an equation of the form x;x;x; = £1, and the Boolean constraints are encoded by
2

z; = 1.

By a {£1}-monomial matrix, we mean a monomial matrix in which all nonzero entries are one of £1.
{£1}-MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS is the problem of deciding, given two
noncommutative cubic forms f, f’ in n variables z1, . .., z,, with all nonzero coefficients -1, whether there is a
permutation 7 € S, and signs e; € {£1} such that f(e1z1),...,22x(2),- -, enTrn)) = f'(Z). Equivalently,
if we represent a noncommutative cubic form f by the 3-way array T}, such that f(§) = ZZ k€] T5ikYiY Yk,
the problem here asks whether there is a {£1}-monomial matrix A such that (A4, A, A) - T = T’, that is,
whether T5 . = 37,51 @i agyrapr Ty, for all @', 5, k" € [n].

Definition 6.5. We define the systems of equations associated to several variations of EQUIVALENCE OF
NONCOMMUTATIVE CUBIC FORMS.

1. Given two n X n x n 3-way arrays T, T, the system of equations for EQUIVALENCE OF NONCOMMUTA-
TIVE CUBIC FORMS is the following system of equations in 2n? variables. Let A, A’ be n x n matrices
of independent variables a;;, agj, respectively.

(A, AA)-T=T (A is an equivalence)
AA =AA=1d (A is invertible with A=! = A’)

2. The system of equations for MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS includes
the preceding equations, as well as:

a;ja;y =0 ViVj # 5’ (at most one nonzero per row)
aijaiy; =0 VjVi#4i  (at most one nonzero per column)

3. The system of equations for {+1}-MONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
includes all the preceding equations, as well as

aij(a;; +1)(ai; —1) =0 Vi,j € [n] (all entries in {0,+1})

4. A noncommutative cubic form Zijk Tijrxixjxy is multilinear if all nonzero terms T, have 1,5,k
distinct (that is, |{4,4,k}| = 3). The system of equations for {+1}-MONOMIAL EQUIVALENCE OF
ADJECTIVE NONCOMMUTATIVE CUBIC FORMS is the same as the above, with the restriction that T
and T’ both satisfy ADJECTIVE (e. g., multilinear, nonzero entries in {£1}, etc.).

Theorem 6.6. There is a linear-size (1,3)-reduction from RANDOM 3-XOR instances on n variables with
m clauses, where 10*n < m < (3)/10'2, to {+1}-MONOMIAL EQUIVALENCE OF {£1} MULTILINEAR NON-
COMMUTATIVE CUBIC FORMS, over any ring R of characteristic # 2.

The reduction is always a (1,3)-reduction, but we only show the resulting system of equations for {+1}-
MoONOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS is unsatisfiable with probability 1 — o(1)
when the 3-XOR instance is chosen randomly with the parameters specified in the theorem. (It is possible
that it is always unsatisfiable when the input 3-XOR instance is, but our proof does not answer this question.)
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Proof idea. We build multilinear noncommutative cubic forms from the 3-XOR instance such that they are
equivalent by a {£1} diagonal matrix iff the 3-XOR instance is satisfiable: an equation z;z;xy; = £1 corre-
sponds to setting Tj;, = 1, Ti’jk = +1 in this construction. The noncommutative cubic forms are multilinear
because the construction of the random 3XOR instance ensures that each XOR clause contains 3 distinct
variables. In fact, the equations for {+1}-diagonal equivalence of the correspondence noncommutative cubic
forms will turn out to be identically the same as the equations for the 3-XOR instance.

Next, for random instances chosen with the stated parameters, the 3-way arrays T, T’ are the adjacency
hyper-matrices of a 3-uniform hypergraph that has no nontrivial automorphisms by [OWWZ14, Lemma 6.9];
this is why we needed to restrict the parameter range for m as we did. Because the hypergraphs have no
nontrivial automorphisms, any monomial equivalence of the corresponding cubic forms must in fact be
diagonal, thus letting us further reduce to {#1}-monomial equivalence. O

Proof. We are given a system of 3-XOR equations, which we’ll denote z;,2;,x1, = s¢ for £ = 1,...,m, where
ir < jo < k¢ € [n] are indices of variables and s, € {£1} for all £. It also includes the equations z? = 1 for
alli=1,...,n.

Step 1: Reduce from random 3-XOR to {+1}-diagonal equivalence of noncommutative cubic
forms. From the above system of equations, we now construct two n x n X n 3-way arrays T,T'. For the
original equations x;,x;,xx, = s¢ (¢ =1,...,m), and for any a, € {£1} of our choice (we may set all a; =1
if we wish, but this additional flexibility may be useful in other settings) we set

_ /
Tieyjeyke = a¢ and Ti

e.jeke = SLQL-

All other entries of T and T” are set to zero.

We start with a warmup lemma, to see that this part of the construction already has a desirable property.
By a “{£1} diagonal isomorphism” of two non-commutative cubic forms, we mean a diagonal matrix X whose
diagonal entries are all one of £1 such that X gives an equivalence between T, T".

Lemma 6.7. Notation as in the paragraph above. There is a bijection between the solutions to the 3-XOR
instance and the {x1} diagonal isomorphisms of the noncommutative cubic forms defined by T,T".

Proof. Suppose x is a solution to the 3-XOR instance. Let X = diag(x1,...,x,) be the diagonal matrix with
x on the diagonal. We claim that X is an equivalence between the noncommutative cubic forms represented
by T,T’, or the same, that (X, X, X) is an isomorphism of the tensors T,T’. Note that for any diagonal
matrices X,Y, Z, we have ((X,Y,Z) - T)i;x = xiy;jzTijk. In particular, the action of diagonal matrices
does not change which entries of T' are zero or nonzero, it merely scales the nonzero entries. Since T,T’
have the same support by construction, it is necessary and sufficient to handle the nonzero entries. By the
construction above, there are precisely m such nonzero entries, one for each cubic equation in the 3-XOR
instance. For each £ =1,...,m, we have

((Xv X, X) : T)iejzke = T4, 5 Ty Ligjiok,
= 8tTiyjok,
Gedeke-
In the other direction, if X = diag(x) is a diagonal matrix whose diagonal entries are in {£1} giving an
isomorphism of the noncommutative cubic forms, then we have

LigLj, Ly = iejekeTiI@jlk@ =S¢
for £ = 1,...,m. (Here we have pulled T}, ;, x, across the equals sign because every term in the above
equation is £1.) This concludes the proof of the lemma. O
We thus consider the equations corresponding to {+1}-diagonal equivalence of T, T": there are n variables
x; (1=1,...,n). Let X denote the diagonal matrix with x on the diagonal. Then the equations are
X?=1d (X, X,X)-T=T. (12)

By Lemma 6.7, we have that the original 3XOR instance is satisfiable iff (12) is satisfiable. We claim
furthermore that there is (1,3)-reduction from the 3XOR equations to this system of equations. In fact, as
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the proof of the preceding lemma shows, they are actually the same set of equations! So there is nothing
more to show.

Step 2: Reduce from {+1}-diagonal equivalence to {+1}-monomial equivalence. We claim
that there is a (1, 3)-reduction from (12) to the the equations for {£1}-monomial equivalence, see (6.5). The
variable substitution is given by

aij = aj; — {O 7

Under this substitution:

e The equivalence condition (A, A, A) - T = T’ becomes exactly the original equivalence condition
(X, X, X)- T=T".

e The invertibility equations AA’ = A’A = Id become XX = Id

e The row and column equations both become 0 = 0, since at least one of the two a;; variables occurring
will not be on the diagonal, hence will become 0 after substitution.

e The equation a;;(a;; + 1)(a;; — 1) = 0 becomes (2% — 1) for the appropriate variable z € x. This is
derivable from the original equation 2 — 1 by multiplication by z.

Lastly, we show that the system of equations in Definition 6.5(3) for {£1}-monomial equivalence is
satisfiable iff the original 3-XOR instance was. Since we showed above that that {£1}-diagonal equivalence
equations are satisfiable iff the original 3-XOR instance was, we show the equisolvability of (12) and the
equations of Definition 6.5(3).

Since diagonal matrices are monomial, any solution to (12) is a solution to the equations of Defini-
tion 6.5(3).

Conversely, suppose the equations of Definition 6.5(3) are solvable. Then there is a {£1}-monomial
matrix X given an equivalence between T' and T’; we may write X = DP where D is diagonal and P is a
permutation matrix. Now, as the original 3-XOR instance was chosen uniformly at random, the support of
T (the positions of its nonzero entries) is precisely a uniformly random 3-uniform hypergraph G. As T, T’
have the same support by construction, we find that P must be an automorphism of G. But by [OWWZ14,
Lemma 6.9], uniformly random such hypergraphs have no nontrivial automorphisms with probability 1—o(1).
Thus P = I and X must in fact be diagonal, hence a solution to (12). O

Remark 6.8. We may avoid the heavy hammer of [OWWZ14, Lemma 6.9] by “rigidifying” (in the sense of
removing automorphisms) the system of 3-XOR equations before constructing the 3-way arrays as follows.
The construction corresponds to a standard graph-theoretic gadget for removing automorphisms. Add new
variables z and y;; for ¢ = 1,...,n and j = 1,...,n 4+ 14, as well as the equations x;y;;z = 1 for all ¢, 7, as
well as y?j =1 and 22 = 1. The downside of this construction is that it quadratically increases the number
of variables, which would result in a further quadratic loss in our lower bounds on TENSOR ISOMORPHISM.

6.2 From {+£1}-monomial equivalence to (unrestricted) monomial equivalence

Theorem 6.9. There is a linear-size (2, 6)-many-one reduction from

{£1}-MONOMIAL EQUIVALENCE OF {+1} MULTILINEAR NONCOMMUTATIVE CUBIC FORMS
to
MoNOMIAL EQUIVALENCE OF {+1} NONCOMMUTATIVE CUBIC FORMS,

over any ring R of characteristic # 2 such that {1} are the only square roots of 1.

Furthermore, the reduction v has the property that, given any two {+1} multilinear noncommutative cubic
forms f, f', any monomial equivalence between r(f) and r(f") must have all its nonzero entries sixth roots
of unity, and this can be derived by a degree-6 PC proof.
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Remark 6.10. We note the difference between a reduction to ¥/1-MONOMIAL EQUIVALENCE and a reduction
to MONOMIAL EQUIVALENCE with the property stated in the theorem. In the former case, the problem being
reduced to only accepts v/1-monomial matrices as solutions (and then the goal of the reduction is to introduce
gadgets to get this down to {£1}). In the latter case, the problem being reduced to allows arbitrary monomial
matrices as solutions, but the gadgets enforce that, on the reduced instances, any such monomial matrix
must in fact have its nonzero entries being sixth roots of unity.

Proof. Let T be an n x n X n 3-way array representing a multilinear noncommutative cubic form with all
nonzero entries in £1. We extend T to r(T') of size 2n x 2n X 2n, by setting

r(T)ijr = Tij i,j, k € [n]
r(1)ijinti =1 i € [n]
(T)ngintingi = 1 i € [n]

and all other entries of r(T) set to zero.

Many-one reduction. We first show that the map (7,7") — (r(T),r(T’)) is a many-one reduction.
Suppose T, T" are {£1}-monomially equivalent by a matrix X, where X = DP with D = diag(x1,...,Z)
a diagonal matrix with z; € {£1} for all ¢, and P is a permutation matrix. Let 7 denote the permutation
X 0
0 P
a monomial equivalence of r(T) with r(7”). Since X @ P is block-diagonal, the upper-left X certainly sends
the upper-left n x n x n sub-array of 7(T") (which is just T') to that of »(T") (which is just 7”). So the only
thing to check is what happens to the positions at indices greater than n.

Let X’ = X & P. We have

(X" XX - r(T))isinri = (T wiymiy mtw () (X)) Xotimtm (i)
2
= 7(T)r(i),m i) metm () (Xiym()) " Pim(i)
=1=7(T")iin+i-

corresponding to P; that is, P; »;y = 1 for alli € [n]. Then we claim the 2n x 2n matrix X ¢ P =

Similarly, we have:

(X', X" X)) - (T nsintimti = T(Dntn(iymtn(i)ymtn) Pony = 1= 7T ntintinti

Because X’ is monomial, it is easy to see that the zeros of r(T') are sent to zeros of 7(T”). Thus X’ is a
monomial equivalence of r(T) with »(T").

Conversely, suppose r(T') and r(T") are equivalent by a monomial matrix Y = DP, with D diagonal and
P a permutation matrix corresponding to permutation m € So,. We will show that this implies that T" and
T’ are equivalent by a {1} monomial matrix. Since T is multilinear, we have T} ;; = r(T);,; = 0. Since
T(T)n+jn+jn+j = 1 for all j € [n], the permutation 7 cannot send any element > n to any element < n.

Thus P is block-diagonal, say P = {Pl On

0, P
Py (resp., P).
Next, we claim P, = P». By considering the positions at indices (¢,7,n + i), we have:

(P, P, P)-7(T))iin+i = (T )ry (i) 71 (i), nt-ma (i)

But the latter is equal to the corresponding position in 7(7"), which is 1 iff 71 (¢) = m2(¢). Since this holds
for all i, we have my = w9, and thus P, = P».

Finally, we do not claim that the diagonal entries y; themselves must be in +1. Rather, we will show that
they are all sixth roots of unity. Then cubing them will yield a new n x n matrix D’ all of whose diagonal
entries are 1 such that D' P, is a +1-monomial equivalence of T with T”.

From the positions (n + i,n 4 i¢,n + ¢), we have

} Let 7 (resp., m2) be the permutation of [n] corresponding to

1=r(T )n+‘rr1(1 Y,n4me (i),n4m1(4)
= ((Y Y, Y) (T))n-H,n-H,n-H

= yn+i'
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But then, considering the positions (i,4,n +1), we similarly get that y?y,.; = 1. Cubing the latter equation,
we get ySy3 +; = 1. But as we already have y3 +; = 1, this gives us y9 = 1 by a degree-6 PC proof, as claimed
in the “furthermore.”

Now we use the fact that 7,7’ have all entries in {0,£1}. Thus, each nonzero entry of r(T) in the
front-upper-left block (corresponding to T') gives us an equation of the form y,;y,yxTijx = T;l(i)ﬂﬁl(j)_’m(k).
Since the nonzero entries of T,T" are +1, this is thus an equation of the form y;y,yx = £1. If we cube
both sides of this equation, we get yf’yfy,:’; = +1. But since we established above that y¢ = 1 for all i, we
have that y3 € {£1} for all i. Thus, defining z; := y3 for i = 1,...,n, we have z; € {£1} and letting
D' = diag(z1,. .., %), we have D'P; is a {£1}-monomial equivalence from T to T".

Low-degree PC reduction. We claim that the system of equations for {£1} monomial equivalence of
T and T is (2,6)-reducible to the system of equations for monomial equivalence of (T') and »(T”). Let X, X’
be the n x n variable matrices for the equations for for {£1}-monomial equivalence of the original tensors
T and T’, and let Y, Y’ be the 2n x 2n matrices for the equations for monomial equivalence of r(T"),r(T").
The PC reduction is defined by the following substitution:

Yij — Tij i,j € [n]
Yntintj x?j i,j € [n]
YintjsYntij 0 i,j € [n],

and similarly for the 3’ variables being substituted by the x’ variables. That is, we have

0, XoX

X 0,
YH[ } 0n X'oX'

Y — [X/ On } ,
where X o X denotes the entrywise (aka Hadamard) product with itself, that is (X o X);; = #7;. The reason
to use X o X here is that if X is {£1}-valued and monomial, then X o X is the permutation matrix with
the same support as X; that is, this substitution is essentially the same as the one used in the proof above
for the many-one reduction.

Now, taking advantage of the block structure in the substitution above and the block structure in
r(T),r(T'), let us see what our equations become after substitution, and how to derive them from the
equations for T, 7. This will complete the proof.

1. The set of equations (Y,Y,Y) - #(T) = r(T") becomes the set of equations (X, X, X)-T = T’ (by
examining the front-upper-left corner), as well as the equations

Z YiirYij Yk (T )ige =

i,5,k€[2n]

1 i/=j=kK-nori=j5=k>n
0 otherwise.

We deal with the three cases (i’ = j' = k' — n, i’ = j' = k' > n, or neither of these) separately.
(a) Suppose i’ = j' = k' —n. In this case, y;; is only nonzero for ¢ € [n], and similarly for y;;, while
Ykk is only nonzero for k > n. Thus the substituted equation becomes
> Yokt Dignie = Y Tirjioal or(Tijnir = 1

i,5,k€[n] i,5,k€[n]

Now, the only positions in r(7T") of the form (¢, j, n+ k) with ¢, j, k € [n] that are nonzero are those
of the form (7,4,n + i), so the preceding equation simplifies further to

§ : 2
Tijt Tig! Tyyr = 1

i1€[n]

Z zh, = 1. (13)

i1€[n]

i.e.
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We will now show how to derive (13) from the equations for {£1}-monomial equivalence of for
T,T’ (Definition 6.5). From the {0,+1} equation in Definition 6.5(3), if we multiply by x;;/, we
get

why (23, — 1), (14)
i.e., the usual Boolean equation but for 2, rather than z;; itself. Next, from @ x;»; with i # ",
we may square this to get

T (15)

and we similarly get (z/,,)?(z},,)? when i # i".
Lastly, from the equation X X’ = Id and multiplying by >_

.. / ]
ic[n) Tie' Ty + 1, we obtain

/ / _ 2 2 / / _ 2 2
( g X Ty + 1)( g T Ty, — 1) = E T x5 + E Tiir T Tjir Ty — 1 = g xipxi; — 1,
i€[n] i€[n]

i1€[n] ©,JE[n]iF£] i1€[n]
(16)
where we observed that from the axioms that z;2;; = 0 for ¢ # j we may derive in degree 4 that
the mlddle term Zl,je[n]l;ﬁ] T4 Iji' x;/lx;'_] = 0

Now, equations (14)—(16) are a degree-2 substitution instance of the equations in Lemma 6.11
with ¢ = 2,d = 1. Thus, by Lemma 6.11, we can derive (13) from these in degree 6.

Suppose ' = j* = k' > n. In this case, the substitution makes all of y;;,y;;, yrr equal to zero
unless i, 7, k > n. Thus we may write the equation, after substitution, as

2 2 2
E yn—i-i,i’yn+j7iyn+k,iT(T)n+i,n+j,n+k = E "Ei,i’fnxj,i’7nxk,i’fnr(T)ﬂ+i7n+jyn+k
1,5,k€[n] i,3,k€[n]
= T(T/>i',i',i' = 1

However, because the only entries 7(T")n44,n+j,n+k that are nonzero are those in which ¢ = j =k,
this simplifies further to:
6
Z "E’L'.,Z-’fn = 1.
i€[n]

This is a degree-2 substitution instance of Lemma 6.11 with ¢ = 3,d = 1, so it can be derived in
degree 6 from the equations derived in part (a).

Suppose neither of the previous two cases hold. The derivation will depend on which of 7, 7/, k/
lie in [n] versus {n +1,...,2n}.

i. When all are in [n], we are in the front-upper-left corner of the tensor, and we exactly get
the equations (X, X, X) - T =1T".

ii. When all three of i/, j/, k" are > n, the only nonzero entries of r(7T") are of the form 7(T) 44 n+in+i,

so the equation becomes

E 2 2 2 _
:Ci)i,_nxm»,_nxi)k/_n =0.
i€[n]

Since we have assumed |{7’, 7', k'}| > 1, there are at least two distinct indices among them,
and thus each term in this sum is a multiple of one of our z;;z;; axioms with j # j’.

iii. Next, suppose instead that i’, j/ € [n], k' > n. In this case, the only nonzero entries of Y after
substitution are those with 4, j € [n], k > n. Thus the equation becomes

2
Y i aq o gtk =0
i,5,k€[n]

However, the only nonzero entries of 7(T") in which the first two coordinates are < n and the
third is n 4+ k are those of the form ¢ = j = k, so the preceding becomes

E Iii’xij’x?klin =0.
i€ [n]
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Since we do not have i/ = j/ = k' — n (as that was covered in a previous case), at least two
of the column indices differ, and thus each term of this sum is divisible by one of the axioms
of the form x;;z;; with j # j'.
iv. In all other cases, the corresponding entries of r(T') are all zero, so the equation reduces to
0=0.
2. The equations YY’' = Y'Y = Id become X X' = X'X =Id and (X o X)(X' 0 X') = (X' 0 X')(X 0 X) =
Id. The first of these is one of our original equations, so it remains to derive the second. We show how
to derive (X o X)(X’ o X’) =1d; the other is similar. For clarity, let us write it out using indices:

S oal(@ly)? - dk=0  Vikeln (17)
J

Starting from the equation > x;;2) — 0 = 0, we multiply by >, zi;27,, to get

ZIZ] ch +wa LipLij'Lj'k — zszﬂz; Tjk-

J#5’

Note that every term in the middle summation here is divisible by some x;;x;;» with j # j/, which is
one of our equations, so we may cancel off those terms using those equations in degree 4. If ¢ # k, then
we are done. If ¢ = &, then we add in our equation Zj :vij:v;-k — 1 to get (17).

3. The equations y;;y;;» = 0 for j # j’ become 0 after substitution unless i, j, j* are either all in [n] or all

in{n+1,...,2n}. In the former case, the substituted equation is ZCU x;5 = 0, which is already one of
the orlglnal equatlons In the latter case, the equation becomes xfj i = = 0; but this is easily derivable

from z;;2;5 by multiplying it by itself (degree 4). The equations saying there is at most one entry per
column of Y are derived from those for X similarly.

This covers all the equations for monomial equivalence of r(T),r(T"), and thus we are done. O

Lemma 6.11. For any integers d > 1,¢ > 1, from the equations
wief —V)(Vi)  wma(Viti) Y w1
i=1

there is a degree-max{d + 2, cd} PC derivation (over any ring R) of

> -
i€ [n]

Although in the proof above we only used the d = 1 and ¢ = 2,3, we will later have occasion to use this
lemma with larger values of d and ¢, which is why we phrase it in this level of generality.

Proof. First we show it for ¢ = 1, then derive the general case from that.
Let S = Z xl , D= Zle x;1y;. Our first goal is to derive S — 1. For eachi = 1,...,n, we can derive

2;y;(S — 1) in degree d+ 2 as follows:
ziyi(S — 1) = a{y + y; ZIM? - TiYi
J#i
=y; ( d+1 _ +yZZxZ _xi(:zrzd— 1)yi+inIi$J‘x?_17
J#i J#i
where we have underlined the use of the axioms.

Summing up the preceding for all ¢, we derive DS — D in degree d + 2. Finally, we multiply the starting
equation D — 1 by S to get SD — S, also in degree d + 2. Then we have

(DS —D)— (8D —8)+ (D —1) —1—Zx
as desired.
For ¢ > 1, we then sum the preceding with 3, (:Egcfl)dfl + xgciz)dil + o2 @ — ) =
2 ien] x4 — ¢, which has degree cd. O
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6.3 From monomial equivalence to general equivalence of noncommutative cu-
bic forms

Theorem 6.12. There is a quadratic-size many-one reduction from

MoNOMIAL EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
to
EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS,

over any field.

If furthermore the input cubic forms f, f' have the property that any monomial equivalence between them
must have its nonzero scalars being d-th roots of unity, and the latter can be derived by PC in degree d + 1,
then the reduction above is a (d,2d)-many-one reduction.

Proof. Let f be a noncommutative cubic form in variables wui,...,u,. Then r(f) will be a new non-
commutative cubic form, in n + 2n(n + 1) variables w1, ..., Un, V11,012, - -, Unnt1s Wil W12y -« - Wi nt1s
which is r(f) = f + Zie[n})je[nﬂ} u;Vjwij.  In terms of the underlying three-way arrays, if we have
[ =224 ) ke Tijruiujug, then we use r(T') to denote the array underlying r(f), which can be described as
follows. The 3-way array r(T') will have size N x N x N where N = n + 2n(n + 1). Let T; denote the i-th
frontal slice of Tj, that is, T; is the matrix such that (T;),x = Ti;x. Fori =1,...,n, the frontal slices of 7(T)
will be defined as:

0n+1 0n+1

OnJrl : On+1

where the I, ;1 occurs in the i-th (n + 1) X (n + 1) block of its region. That is, the lower-right 2n(n + 1) x
2n(n + 1) sub-matrix is the Kronecker product F; ,1; ® I+1, where E; ,4; is the 2n x 2n matrix with a 1
in position (¢, + 4) and zeros everywhere else. For the slices i =n + 1,..., N we will have r(T); = 0.
Our main claim is that the map (T, 7") — (r(T"),r(T)") is the reduction claimed in the theorem.
Many-one reduction. Suppose X - f = f’ with X monomial. Write X = PD with D diagonal and P
a permutation matrix corresponding to the permutation = € S;,. Then we claim that

Y=X&(PD")®I41)® (P® 1)

is an equivalence between r(f) and r(f’), where here we assume our variables are ordered as above. For we
have
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Yeor(f)= Y Tup(Wu)(YVu))(Yu) + > (Vug)(Yoig) (Ywij)

ijk€[n) i€[n],j€[n+1]

= D Tp(Xu)(Xu)(Xup)+ > (Xu)(PD ™ vy) (Pwyg)
ijke[n) i€[n],j€[n+1]

=X f+ Z Distin(iy (D 0r(i) 1 W (i) 5
i€[n],j€[n+1]

=+ ) e Un()Wni)
icln],jeln+1]

= ().

The final inequality here follows from the fact that 7 is a permutation, so the final sum includes all terms of
the form w;v;5w;;, just listed in a different order than originally.

Conversely, suppose Y - r(f) = r(f’) for an arbitrary invertible N x N matrix Y. To find an equivalence
between f and f’, here we find it more useful to take the viewpoint of the 3-way arrays r(T) and r(T”)
corresponding to r(f) and r(f'), respectively.

The way Y acts on the 3-way array r(T) is to first take linear combinations of the frontal slices, say by
replacing the i-th slice with } ¢y Yi;7(T); (corresponding to the action of ¥ on the third variable in each
monomial), and then to take each slice S and replace it by Y'SY* (the left multiplication corresponds to the
action on the first variable in each monomial, and the right multiplication corresponds to the action on the
second variable in each monomial). As this latter transformation preserves the rank of each slice, we will
use the ranks of linear combinations of the slices to reason about properties of Y.

Claim 1: Y is a block-diagonal sum of an n x n matrix X and a 2n(n + 1) x 2n(n + 1) matrix.

Proof of claim 1. First we show that Y is block-triangular. To see this, note that since the last 2n(n + 1)
slices are zero, the action of Y by taking linear combinations of slices cannot send any of the first n slices to

the last 2n(n+1) slices. That is, Y has the form Y = [)O( 5/] where X is nxn and W is 2n(n+1) x2n(n+1).

It remains to show that Z must be zero.

Since Y is block-diagonal and invertible, we have that X and W are each invertible.

Let R be the tensor gotten from r(7T") by having Y act by taking linear combinations of the slices. That
is, the i-th frontal slices of R is R; = Zje[N] Yi;r(T);. Since each slice 7(T); has its support in the upper-left
n X n sub-matrix and the middle-right n(n + 1) x n(n + 1) sub-matrix, so does each slice R;. Write

RAY 0 0
Ri=| o0 0o RP?|,
0 On(nJrl) 0
where Rgl"l) is n x n and REQ’Q) isn(n+1) x n(n+1).
Now consider the action of Y that sends R; to YR, Y! = r(T");. We now break up Y further into blocks
commensurate with how we wrote R; above; write

A B
¢ p| z=[A B W_Lg ﬂ
E F
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where A, B are n x n(n+ 1), and C, D, E, F are each n(n+ 1) X n(n + 1). Then we have:

X A B] [ o o [[xt o o
YRY'=|0 C D 0 0 R®2 | AT Ct E
|0 E F 0 Opnr) 0 Bt D' F?
xR 0 ARPP| rxt 0 0]
_ 0 0 OR§2,2) At Ct Et

0 0o ER®||[B" D' ]

[ XR"Yxt+ ARPP Bt ARPYpt AR
= CRr*? Bt % * ,
ER*? B x x

where we have put *’s in positions we won’t need in the argument.
Next, since each of the first n slices of 7(T”) must be of this form, and those slices have zeros in each
block except the (1,1) and (2,3) blocks, by considering the blocks (1,2),(1,3),(2,1), (3,1) we must have

ARP¥Dt=0  ARPPF'=0 CRP?B'=0 ER®VB'=0.

For reasons that will become clear below, we combine these into the two equations

(2,2) Tyt t] _ Cl p22) pt _
ARV [DY F'] =0 [E]Ri B' =0.
Note that the n(n+ 1) x 2n(n+ 1) matrices [D* F'] and [C* E*] must both be full rank, since otherwise
C D . .
W = E F} would not be invertible.
The sum of the (2,3) blocks (of size n(n+1) x n(n+1)) of the first n slices of 7(T') is precisely the identity

matrix I, (,41)- Thus, the linear span of these blocks contains an invertible matrix in it. Since Y is invertible,
that linear span is the same as the linear span of the blocks {REQ’Q) : 4 € [n]}. Thus the latter contains a
full-rank matrix, say >, ozl-RgQ"Q). But since we have AREQ’Q) [D! F'] =0 for all i, we may left multiply
by A and right-multiply by [D* F*] to get A (Z?zl aiR§2’2) [Dt F] =Y, a;AR®? [Dt F!] =0

But now we have that > aiREQ’m is invertible, and [D' F'] has full rank n(n + 1), so their product also

has full rank n(n+1). But then we have that A times a full rank matrix is equal to 0, hence A must be zero.
The same argument, mutatis mutandis, using the equation [g] R§2’2)Bt =0, gives us that B = 0. Hence Y

is block-diagonal as claimed. O

Next, we use properties of the ranks of the slices coming from the I,,11 gadgets to show that X must in

fact be monomial.

. P, G . .
Claim 2: Y = 0 W} where X is monomial.

Proof. In both r(T") and r(7"), any linear combination consisting of k of the first n slices (with nonzero
coefficients) has rank in the range [k(n+1),k(n+1)+n], for any k = 0,...,n. The lower bound can be seen
by noting that any such linear combination is block-diagonal with k£ copies of I,,+1 on the block diagonal
of the (2,3) block. The upper bound comes from the fact that these are the only nonzero blocks in the
lower-right 2n(n + 1) x 2n(n + 1) sub-matrix, and the only other nonzero entries are in the n x n upper-left
sub-matrix, which has rank at most n because of its size.

Using notation from the proof of the preceding claim, since Y R;Y* = r(T");, and the latter has rank in
the range [n+ 1, 2n + 1], R; must also have rank in the same range. But this is only possible if R; is a linear
combination of precisely one of the first n slices of #(T"). Thus, X is monomial. O
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From claim 2, we thus have that there is a permutation 7w € S;, and nonzero scalars dy, ..., d, such that
R;, = dir(T),,(i) foralli=1,...,n, where X = DP with D the diagonal matrix with diagonal entries d; and
P the permutation matrix corresponding to 7. Finally, in the proof of claim 1, we saw that the upper-left
block of Y R; Yt was XRgl’l)Xt + AREQ’th7 and then learned that A = B = 0. Putting these together, and
recalling that the upper-left block of r(T); is T;, we thus get

(DP)d;Ty(;)(DP)" =T

for all 4. In other words, X is a monomial equivalence from T to T" (hence, from f to f’). This completes
the proof that the construction gives a many-one reduction.

Low-degree PC reduction. To prove the “furthermore”, suppose that the pair of cubic forms f, f' has
the property that any monomial equivalence between them must have its nonzero entries being d-th roots of
unity, for some d > 1, and that this can be derived—more specifically, the equations yfjﬂ —yi; and similarly
for yi,—in degree d + 1.

Let Y,Y’ be the variable matrices for (general) equivalence of r(f),r(f’); let X, X’ be the variable
matrices for monomial equivalence of f, f’. Consider the substitution

X 0 X’ 0
Yis |0 XU VeI, Yie |0 (X)W DT, . (18)
0 0 X4 ® I 0 0 (X% @ @41

where X°(4=1 denotes the (d — 1)-fold Hadamard product X o X o---o0 X, namely, (X°@=1));; = 2/ We
will show that the equations for equivalence of r(f),r(f’), after this substitution, can be derived from the
equations for monomial equivalence of f, f’ in low-degree PC.

(Note that the substitutions above correspond precisely to the forward direction of the many-one reduc-
tion, in which X & (DflP ® In41) @ (P ® I,41) served as an equivalence. For, once we have ZCZ-H — i, we
have X°(@~1) = p4=1p = D='P, and X°¢ = D/P = P.)

Recall that these equations are Y - r(f) = r(f’) and YY’ = Y'Y = Id. The latter equations are easier to
handle so we begin with those. They become X°¢(X’)°¢ = (X')°¢X°¢ =1d for ¢ € {1,d — 1,d}. For ¢ =1,
these are some of our starting equations. For ¢ > 1, this is similar to the argument in Theorem 6.9 (see the
argument around Equation (17)), iterated, resulting in a proof of degree 2¢ for any c—in this case, 2d.

Now to the equation(s) Y - r(f) = r(f’). After substitution, these become

Z Tijre (X)) (Xuj) (Xug) + Z (Xui)(Xo(dfl) XOdw” Z ]kuzujuk + Z UV Wi -
i,5,k€[n] i€[n],j€[n+1] ijk j
(19)
Focusing on the first summations on both sides of the equation, we see these are precisely the equations
X - f = f'. After subtracting these off, we now deal with the remaining terms.

We have
d—1 d
Y uvgwi; =Y (X i) (XU D) (X %wy)
tj i€[n],j€[n+1]
d—1 d
= E : E : T, iUk E :Ié,i Ve,j E Tp i Wh,j
i€[n],j€[n+1] \kE€[n L€([n] he[n]
d—1_d d—1_d
= E URVL, Wy, 5 E Tk,iTy; Toq | + E UV, W E Lh,iTy; Thi
k,l€(n],j€[n+1] i€(n] k,l,he€[n],j€[n+1] i€(n]
1+£h

This becomes the system of equations

Oke = Zie[n] xk,il‘zzlxzi (Vk, £ € [n])
0 Zie[n] xk,ixgglxii (Vk, £, h € [n],€ # h).
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(Note that technically we should quantify over all j € [n+ 1], but j plays no role in these equations—it just
serves to repeat the same equation n + 1 times. This corresponds to the fact that the lower-right part of our
matrices have the form * ® I,,41.)

When k # £, every term in the first equation is a degree-2d multiple of the monomial axiom zj ;¢ ;.
Similarly, every term in the second set of equations is a degree-2d multiple of the monomial axiom xz; ;xp, ;.
Thus all that remains is the first equation when k& = ¢, namely, 1 = Zie[n] x;“:vgzlle This is derived in
Lemma 6.11, with ¢ = 2 in degree 2d (since d > 1, we have max{2d,d + 2} = 2d). This completes the proof
that we have a (d, 2d)-reduction. O

uivf

Remark 6.13. There is a slightly simpler and smaller many-one reduction, namely f — f+)". €n] T

JE[n+1]
However, in using that reduction, the witness for the forward direction becomes X @ (D~Y2P®I,,,). This
square root introduces a square into the equations that made it difficult to show that it was also a PC

reduction. The reduction above fixes this issue.

6.4 From cubic forms to tensors

Our reductions here are those from Futorny—Grochow—Sergeichuk [FGS19, Cor. 3.4 and Thm. 2.1]. The
many-one property follows from the results there. We prove that each of these reductions is in fact also a
low-degree PC reduction between the corresponding polynomial solvability problems. They reduce first to
a problem we call BLOCK TENSOR ISOMORPHISM, and then from there to TENSOR ISOMORPHISM, so we
begin by introducing the former problem and its associated equations.

Definition 6.14 (see Futorny—Grochow—Sergeichuk [FGS19]). A block n x m x p 3-way array is a 3-way
array together with a partition of its index sets {1,...,n} ={1,...,ni}U{n1 + 1,n1 +2,...,n1 + na} U
el {Zfi}l n; +1,...,n}, and similarly for the other two directions. Two block 3-way arrays are said
to be conformally partitioned if they have the same size and the same partitions of their index sets. Two
conformally partitioned 3-way arrays T,T’ with block sizes as above are block-isomorphic (called “block-
equivalent” in [FGS19]) if there exist invertible matrices Sii,...,S1,~5,521,...,520m,531,...,S3p, where
S1,1 is of size ny x ny, Sz 5 is of size my x my, and Sy i is of size px X px, such that the block-diagonal
matrices give an isomorphism of tensors:

(S11 D S12® - @ S1N, S0 @B Saps, S31 D@ Szp) - T=T".

Given two block 3-way arrays T,T’ as above, the equations for BLOCK TENSOR ISOMORPHISM are as
folllows. There are 2(3 ;¢ nyni + 2 e ™I + 2 ge(p) PK) Variables arranged into 2(N + M + P) square
matrices X7, X} (of size ny x nr), Y;,Y) (of size my x my), and Zg, Z}; (of size px X pr). Then the
equations are:

(Xl@"'@XN,Yl@"'@YM,Zl@"'@ZP)'T:T/

X1 X; = X;X; =1d(VI € [N]) Y;Y; =YY, =1d(VJ € [M]) ZxZy = Z Z = 1d(VK € [P))
Lemma 6.15. The many-one reduction from

EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS
to
BrLock TENSOR ISOMORPHISM

in [FGS19, Cor. 3.4] is in fact a linear-size (1,3)-many-one reduction.

Proof. Given a noncommutative cubic form f in n variables, f = ZZ k€] Tijruiujuy, we recall the block
tensor r(T) from [FGS19, Cor. 3.4]. It is partitioned into 2 x 3 x 3 many blocks, with the rows being
partitioned into n, 1, the columns into n,n, 1, and the depths also into n,n, 1; thus its total size is (n + 1) x
(2n+1) x (2n+1). Let E;ji denote the tensor of this size whose only nonzero entry is a 1 in position (¢, j, k).
Then we define

r(I) =T+ Z (Bintiznt1 + Eigniinti + Ent1inti + Bottntii) + Bntt 201,201
i€[n]
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If you wanted to think of this as part of the tensor corresponding to a cubic form, that cubic form would
have n + 1 new variables vy, ..., v,, z, and the form would be:

r(f)=f+ Z (wiviz + uizv; + 2uv; + zviug) + 2°.

i€[n]

(This doesn’t quite line up with the above description of a tensor, as the tensor corresponding to r(f) would
necessarily have all 3 side lengths the same, 2n + 1. However, there are n of the 2n + 1 rows in that tensor
that are entirely zero, namely, the rows corresponding to those monomials that begin with a v;.)

The equations for block isomorphism of r(T') and 7(7”) have the following variable matrices X, X’ are
nxn,x,x are 1 x1,Y7,Y/, Y2, Y] are n x n, y,y are 1 x 1, Z1, 21, Z2, Z are n x n, and z,z" are 1 x 1. Let
U,U’ be the n x n variable matrices for the equations for equivalence of the noncommutative cubic forms
f, . We consider the following substitution:

X,Yl,Zl,i/QI,ZéHU X/7Y1/7217Y'2722’_>UI xuxluyayluzvlel'
Under this substitution, the equations for block isomorphism of r(7T'),r(T") become

(U,U,U0)-T + Z (U, U, 1) Ei piont1 + (U, 1,U") - E; ong1,n+i

i€[n]
+(1L,UU") - Epgrimri + (LU U) - Engingi + (L,1,1) - Eng1ong1,2041)

!
=T" 4+ E (Eintiont1 + Fiontinti + Enttinti + Bntintii) + Ent1,2n41,2n41
i1€[n]

Now, because each summand inside the big sum corresponds to an identity matrix in a block (e.g. > icln] By ntion+1
is an identity matrix in rows {1,...,n}, columns {n + 1,...,2n}, and depth 2n + 1), the above equations
give us many instances of UU’ = Id and U’'U = Id, which is one of our starting equations. We also get
the equation 1 = 1, and lastly, (U,U,U) - T = T’, which is another one of our starting equations. Thus the
equations we get here are in fact precisely the same as the equations we started with. As these are cubic
equations and the substitutions were linear, it is a (1,3)-PC reduction. O

Lemma 6.16. When the number of blocks is O(1), the many-one reduction from

BLocK TENSOR ISOMORPHISM
to
TENSOR ISOMORPHISM

in [FGS19, Thm. 2.1] is in fact a quadratic-size (1,3)-many-one reduction.

Note that the output of the reduction of Lemma 6.15 has 2 x 3 x 3 many blocks, so the restriction to
O(1) many blocks in Lemma 6.16 presents no obstacle to our goal.

Proof. The key is to show how to effectively remove the partition in one of the three directions; then that
reduction can be applied three times in the three separate directions. Let T,7T’ be block tensors of size
n X m X p, with N x M x P many blocks. The construction of [FGS19, Lem. 2.2] shows how to construct
from this a block tensor of quadratic size with N x M x 1 many blocks. We recall the construction here and
show that it is a (1,3)-PC reduction.

Let py,...,pp denote the sizes of the parts of the partition in the third direction. Let » = min{n, m} +
2K71

1—this will govern the rank of the identity matrix gadgets we add. Let s = 22:1 rand t =

Z§:1 2E=1rpg. Then the output tensor will have size (n + s) x (m +t) x p. (Note that, since P = O(1),
we have that s is linearly bounded in n,m and ¢ is quadratic as a function of n,m,p.) Let Ti,...,T, be
the frontal slices of T. The i-th slice of r(T") will be as follows. Suppose i is in the K-th block, and write
Ai Bl
C; D
representing the first part of the partition of T" into rows and columns, and D; represents all the other parts.

1= 19 + Zszl pr with 1 < 49 < pgy1. Write the slices T; as T; = [ }, where A; is nqy X m1—
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Then we construct:

———————————————————————————————————————————————————————————————————————————————

_______________________________________________________________________________

_______________________________________________________________________________

where the I,x-1, is in the ip-th position within the K-th block-row and block-column as indicated by the
dashed lines. Here the dashed lines do not represent additional parts of the partition, they are just for visual
clarity. The solid lines indicate the first part of the new partition into rows and columns. The rows of C}
and D; are partitioned into blocks the same as they were originally in T;, and the columns of B; and D;
are partitioned into parts in the same way as they were originally in 7;. That is, the entire big gadget in
the upper-left gets prepended to the first parts of the row and column partitions. This is the many-one
reduction.

Let X1,...,Xn, Y1,..., Y, and Z be variable matrices (with associated primes matrices X7, etc.), with
sizes as follows:

e X, hassize (s +n1) X (s+n1)
e X; for I > 2 has size n;y X ny
e Y] has size (t +mq) X (t+ mq)
e Y; for J > 2 has size my X my
e 7 has size p X p.

We start from the equations for BLoCK ISOMORPHISM (but now where there is only one block in the
third direction), namely

X, X, =X)X;=1d Y,Y,=Y)Y,=1d ZZ =27'7Z=1d

and
(X1@ XN V1@ - BYN, Z) r(T) =r(T").

We make the following substitution (with the same substitutions, mutatis mutandis, for the primed variables):
o X1 —I,® Xl, where Xl is a matrix of variables of size ni X ni.
e For I > 2, X1 maps to itself.
e Y1~ 1P }71, where 371 is a matrix of variables of size m1 X my.
e For J > 2, Y; maps to itself.

e 7 maps to a block matrix Z; & --- @® Zp, where for each K € [P], we have Z is a px X px matrix of
variables.

Under these substitutions, the equations for BLOCK ISOMORPHISM of r(T'),r(T") become precisely the
original equations for BLOCK IsoMORPHISM of T, T’, together with equations of the form I, E;I; = E;, where
E; is the s x t gadget matrix in the upper-left in the i-th slice. Thus we get a (1, 3)-reduction.

Finally, this is then repeated in the other two directions to reduce the number of blocks in all three
directions to one, thus giving an instance of TENSOR ISOMORPHISM. O
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6.5 Putting it all together

Finally, we combine all the above to prove Theorem 6.2.

Proof of Theorem 6.2. Let m = cn with ¢ > 10%. By Theorem 6.1, random 3XOR instances with clause
density ¢ require PC degree Q2(n/c?) = Q(n) (in our case) to refute. The number of instances that the
random distribution assigns nonzero probability is (255)) ~ (Z:;) > nen [(en)en = Penlogn—cn > (Qnlogn),
By Theorem 6.6, there is a (1,3)-many-one reduction from those instances to {£1}-MONOMIAL EQUIV-
ALENCE OF {1} MULTILINEAR NONCOMMUTATIVE CUBIC FORMS, where the number of variables in the
cubic form is the same as the number of variables in the 3XOR instance. By Theorem 6.9 there is then a
(2,6)-many-one reduction to MONOMIAL EQUIVALENCE OF {+1} NONCOMMUTATIVE CUBIC FORMS, where
the number of variables in the output cubic form is linear in the original number of variables, and such
that the output forms have the property that any monomial equivalence between them has all its nonzero
entries being 6-th roots of unity. This thus satisfies the hypothesis of Theorem 6.12 with d = 6, so there is a
(6,12)-many-one reduction to EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS, where the output has a
quadratic number of variables compared to the input. Finally, combining Lemmata 6.15 and 6.16, we get a
(1,3) reduction from EQUIVALENCE OF NONCOMMUTATIVE CUBIC FORMS to TENSOR ISOMORPHISM, which
further increases the size quadratically. In total, the size increases multiply, yielding a quartic size increase.
The substitution degrees multiply and the derivation degrees we take the max, yielding a (12,12)-many-one
reduction from Random 3XOR to TENSOR ISOMORPHISM on tensors of size O(n*) x O(n*) x O(n*). By
Lemma 2.2, any PC refutation of these TENSOR ISOMORPHISM instances requires degree Q(n). O

We note that our lower bound for tensor isomorphism also applies to the stronger Sum-of-Squares proof
system. This is due to the fact that there is lower bound for random 3XOR in Sum-of-Squares, as shown
by Grigoriev [Gri01] and independently by Schoenbeck [Sch08], which makes the dependence on the clause
density explicit.

Theorem 6.17 ([Sch08, Theorem 12]). A random 3-XOR instance with clause density A = m/n = dn®, for
all sufficiently large constants d, requires SoS degree Q(n'=¢) to refute, with probability 1 — o(1).

In particular, this is a linear Q(n) lower bound in the case of constant clause density (e = 0), which
matches the PC lower bound of Theorem 6.1.

As we observe all of our reductions go through in Sum-of-Squares, since Sum-of-Squares simulates PC
over the reals due to Berkholz [Berl8]. Furthermore, this simulation preserves degrees of proofs up to a
constant factor.

Theorem 6.18 ([Berl8, Theorem 1.1]). If a system of polynomial equations F over the reals has a PC
refutation of degree d and size s, it also has a sum-of-squares refutation of degree 2d and size poly(s).

Hence, by combining Theorems 6.17, 6.18 and the PC reduction used to prove 6.2, we obtain the following
lower bound for tensor isomorphism in Sum-of-Squares.

Theorem 6.19. Qver the real numbers, there is a distribution on n X n X n TENSOR ISOMORPHISM whose
associated equations require SoS degree Q(/n) to refute with probability 1 - o(1).

7 Open Questions

Beyond Conjecture 1.7, we highlight several more questions we find interesting about the algebraic proof
complexity of TENSOR ISOMORPHISM.

7.1 Degree

Open Question 7.1. What is the correct value for the PC degree of rank-r TENSOR ISOMORPHISM?

Note that by using the reductions from Section 6, we can produce (random) r x r X r tensors that require
PC degree Q(r'/4) to refute. However, the number of variables is 612, this lower bound is only Q(N'/8)
where N is the number of variables. Since their rank could be as large as R = O(r?) (and indeed, very likely
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is), the upper bound we get from Theorem 4.1 is only 20" (without the 2 — z axioms) or O(r*) (with the
x? — x axioms, with ¢ = O(1)). Even in the latter case, this leaves a polynomial gap between the lower and
upper bounds (without those the gap is exponential).

We note that the upper bound in Theorem 4.1 without the x? — x equations already applies to the
weaker Nullstellensatz proof system. Is there a polynomial upper bound on PC degree—as a function of
rank—without the z¢ — x axioms?

7.2 Size

In the presence of the Boolean axioms, there is a size-degree tradeoff for PC (or even PCR—a system with
the same degree bounds as PC, but is stronger when measuring size by number of monomials or number of
symbols) [CEI96, ABRWO04]. This implies that in the presence of the Boolean axioms, a good degree lower
bound implies a good size lower bound. But TI does not have the Boolean axioms.

Open Question 7.2. Get lower and upper bounds on the size of PC proofs for TENSOR (NON-)ISOMORPHISM.
Are there subexponential size upper bounds, despite the polynomial degree lower bounds?

7.3 Other matrix problems

While many different tensor-related problems are all equivalent to TI, in the case of matrices, we have
three genuinely different problems: matrix equivalence (2-TT), matrix conjugacy, and matrix congruence.
Conjugacy is determined by the Rational Normal Form or Jordan Normal Form, while congruence depends
on the field (e.g., over algebraically closed fields it only depends on rank, over R it depends on the signature,
and over finite fields it depends on whether the determinant is a square or not).

Open Question 7.3. What is the PC complexity (size, degree, etc.) of matrix conjugacy? Of matrix
congruence?

More precisely, for conjugacy we have in mind the system of equations:
XM=MX XX'=X'X =1,
and for congruence the system of equations:

XMXT =M XX'=X'X=1.

7.4 Bounded border rank

Not only can testing a tensor for bounded rank can be done in polynomial time (Remark 1.4), testing a
tensor for bounded border-rank can also be done in polynomial time (see, e.g., [Grol3]), by evaluating a
polynomial number of easy-to-evaluate equations. While several partial results are available, the gap for
what is known about the ratio between rank and border rank is quite large: there are 3-tensors known whose
rank approaches 3 times their border rank [Zuil7], but the currently known upper bound is Lehmkuhl and
Lickteig [LL89], who show that for tensors of border rank b, the ratio of rank to border rank is at most
c®(®) | See the Zuiddam’s introduction [Zuil7] for more details.

Open Question 7.4. What is the PC degree of testing isomorphism of tensors of bounded border-rank?
Can such tests be done (by any method) in polynomial time?
7.5 Relating different reductions from Graph Isomorphism

While we chose a particular reduction from GI to TT for the lower bound in Section 5, we are aware of
several others, including:

e GI to PERMUTATIONAL CODE EQUIVALENCE [PR97, Luk93, Miy96], then to MATRIX LIE ALGEBRA
CoNJUGACY [Grol2], then to TT [FGS19];

e GI to SEMISIMPLE MATRIX LIE ALGEBRA CONJUGACY [Grol2], and then to TI [FGS19];
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e GI to ALTERNATING MATRIX SPACE ISOMETRY [GQ21b, HQ21], then to TT [FGS19];

e GI to ALGEBRA ISOMORPHISM [Gri81, AS05], then to TI [FGS19].

We believe all of these can be realized as low-degree PC reduction as well. In the first arXiv version of
[GQ21D], they asked which of these might be equivalent in some sense (though there the final target was
ALTERNATING MATRIX SPACE ISOMETRY, another Tl-complete problem, rather than TT itself). Here we
make this question slightly more precise, in terms of PC reductions:

Open Question 7.5. Which, if any, of the reductions above from GRAPH ISOMORPHISM to TENSOR Iso-
MORPHISM are equivalent under low-degree PC?
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