
Carbon-Aware Temporal Data Transfer Scheduling
Across Cloud Datacenters

Elvis Rodrigues, Jacob Goldverg, Tevfik Kosar
Department of Computer Science and Engineering

University at Buffalo (SUNY), Amherst, NY 14260, USA
Email: {elvisdav, jacobgol, tkosar}@buffalo.edu

Abstract—Inter-datacenter communication is a significant part
of cloud operations and produces a substantial amount of carbon
emissions for cloud data centers, where the environmental impact
has already been a pressing issue. In this paper, we present a novel
carbon-aware temporal data transfer scheduling framework,
called LinTS, which promises to significantly reduce the carbon
emission of data transfers between cloud data centers. LinTS
produces a competitive transfer schedule and makes scaling
decisions, outperforming common heuristic algorithms. LinTS
can lower carbon emissions during inter-datacenter transfers by
up to 66% compared to the worst case and up to 15% compared
to other solutions while preserving all deadline constraints.

Index Terms—Carbon-aware scheduling, temporal shifting,
data transfers, cloud datacenters.

I. INTRODUCTION

Demand for power in the U.S. is projected to grow by 2.4%
over the next 7 years, of which datacenters are a significant
component with a 15% projected growth till 2030 [1]. Much of
this demand today stems from AI training and inference with
large AI models, emerging new cloud services and network
activity, and diminishing gains of power efficiency with new
iterations of datacenter hardware. In response, technology
companies and cloud providers have set ambitious targets
to achieve net-zero, and even net-negative, carbon emissions
by 2030 [2–4]. With increasing demand from AI workloads,
significant investments have also been made in emerging green
power generation methods such as Small Modular Reactors
(SMRs) [5]. However, despite these investments, a large por-
tion of the energy consumed by cloud datacenters is generated
from brown, carbon-intense sources due to the lack of reliable
renewable energy supply, undermining decarbonization efforts
worldwide [2, 6]. Alongside efforts to make datacenter hard-
ware more power efficient, there have been many studies into
the nature and trends of datacenter workloads and strategies
to make these workloads more carbon efficient [7–11].

Among all the workloads executed by a cloud provider, a
significant amount of time and resources are spent transfer-
ring datasets between different regions and managing these
datasets to maximize availability for clients and users while
minimizing costs to providers. Global inter-datacenter traffic
has exceeded 1.4 Zettabytes and is projected to grow by 30%
every year [12]. This surge in global inter-datacenter traffic
has also made the energy consumption and carbon footprint
of data transfers a critical concern for cloud datacenters, where

the environmental impact has already been a pressing issue.
The datacenters are projected to consume over 500 TWh of
energy in 2025, emitting roughly 225 metric megatons of CO2

calculated from the global average carbon intensity of 450
gCO2 per kWh [13], and serious efforts are needed to curb
the emissions of inter-datacenter communication. Although
networking technologies have advanced significantly in recent
years, data transfers over networks remain highly energy-
intensive and contribute substantially to carbon emissions.
A study reported that sending hard drives between remote
institutions via airplanes is much less carbon-emitting than
transferring the data over communication networks [14].

Given the urgency of reducing carbon emissions of cloud
datacenters, cloud providers must now also consider mini-
mizing the carbon footprint of the data transfer tasks. There
are several strategies at the disposal of cloud providers and
application developers to achieve this, starting with the sus-
tainable design of the datacenter itself with factors such as
the embodied carbon cost and failure rate of hardware, energy
suppliers, and cooling solutions to consider [8]. Cyclical
variations and regional differences in the sources of the power
grid’s energy supply can be studied to exploit temporal and
spatial opportunities to schedule data transfers and place
dataset replicas to further reduce carbon emissions. For this
purpose, tools like ElectricityMaps [15] and WattT ime
[16] have become widely popular. Inter-datacenter transfers
are often time-flexible and interruptible and thus can benefit
from careful scheduling and preemption [17]. For instance, a
study shows that 91% of all inter-datacenter traffic at Baidu’s
datacenters is replication-related and delay-tolerant, which is
considered to corroborate the traffic pattern of other large-scale
cloud service providers [18].

While there is existing work focusing on the placement of
computing tasks and cloud workloads at low-intensity regions
and time zones [9, 19–23], most works do not consider the
non-negligible carbon emissions during data transfers across
datacenters. This paper presents a novel approach to construct
the carbon-aware scheduling of data transfer tasks as a Linear
Programming (LP) optimization problem and uses standard LP
solvers that are efficient and easy to integrate and deploy. More
specifically, this paper makes the following contributions:

• It introduces a novel carbon-aware data transfer sched-
uler, LinTS, for inter-datacenter traffic.



0 10 20 30 40
Hours

0

200

400

600

800

1000

1200

1400

1600
C
ar

bo
n

In
te

ns
it
y

(g
C
O

2
/

kW
h)

low CO2
opportunity

low CO2
opportunity

Tran sfer

Carbon Intensity over 48 Hours

NW-PGE - OR

TEX-ERCO - TX

MIDA-PJM - VA

Combined

(a) Portioning and scheduling of data transfers over 48 hours with
source, intermediate, and destination sites.

(b) Variability of carbon intensity across regions and over time (24-
hour period).

Fig. 1: Spatial and temporal variations in carbon intensity.

• It defines carbon-aware temporal scheduling of data trans-
fers as a linear programming (LP) problem.

• LinTS can make scaling scheduling decisions for transfer
requests, unlike common heuristic scheduling algorithms.

• LinTS can lower carbon emissions during inter-datacenter
transfers by up to 66% compared to the worst case and
up to 15% compared to other solutions.

The paper is organized as follows: Section II provides
background into carbon-aware workload shifting strategies and
discusses the related work in this area; Section III describes
the motivation and foundation for applying LP to carbon-
aware transfer scheduling; Section IV presents and discusses
evaluations of our LP scheduler in simulation and real-world
scenarios; and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The spatial and temporal variances in the carbon intensity
present an opportunity for minimizing the carbon emission
of datacenter workloads by scheduling jobs to geographical
locations and at times of the day/week with low carbon
intensity through historical data and forecasts, and adjusting
task parameters when grid conditions change. As seen in [7],
between 8% to 31% in carbon emissions relative to the global
average can be made using spatial and temporal approaches
and even more when combined. These approaches, however,
presume variances in regional grid carbon intensity to exploit
and their viability may change as the grid’s sources become
greener and more uniform. The nature of the workload also
impacts how suitable spatial and temporal approaches are.
Long-running, data-intensive, batch workloads like machine
learning (ML) training are often delay tolerant and interrupt-
ible and benefit more from temporal approaches. On the other
side, bursty and interactive workloads often benefit more from
spatial approaches when user responsiveness and latency are
important.

Carbon intensity for a region can vary over time due to
variances in the availability of green sources provided by
the grid. For instance, without battery storage, solar power
can be highly available on a sunny morning but less so at
night, requiring brown sources to substitute for. Similarly,

carbon intensity can vary over weeks and months due to
seasonal variations. Thus, recurring workloads would need
to be carefully managed to minimize carbon emissions year-
round. Figure 1(a) shows an example of temporal variations
of the carbon intensity of an end-to-end network path, where
a workload or network transfer can be scheduled in low-
carbon opportunities. Some works like [24] and [20] tune the
power draw of hardware with voltage and frequency scaling,
by lowering voltage or frequency in periods of high intensity
and increasing them in low-intensity periods. The same scaling
principle can be applied to containers, Kubernetes pods, and
nodes as seen in [25] and [22]. Works like [11] and [23]
approach carbon optimization with capacity planning, while
WaitAwhile [26] uses a scheduler that defers, interrupts, and
resumes workloads when possible. Our work extends the ideas
found in WaitAwhile and CarbonScaler [17] for carbon-
aware network transfer temporal scheduling.

Among spatial strategies for carbon optimization, most com-
monly fall into the category of scheduling and real-time migra-
tion and often mix these two ideas in their implementations.
As a workload arrives, a scheduler can use historical data or
carbon intensity forecasts of various datacenters and schedule
that workload in the greenest region possible, balancing factors
such as deadlines, latency requirements, and the overall load.
Figure 1(b) shows the variability of carbon intensity across
different regions and over time (24-hour period). In some
implementations, a monitoring service watches for large devi-
ations in real-time carbon and load data while this workload
is executed and may migrate the task or redirect the client
to another datacenter [11, 27]. A variant of this strategy
involves sharing a workload among multiple datacenters if
it permits, allowing one to better balance carbon efficiency,
datacenter load, and availability [28]. CADRE is a carbon-
aware replication planner that makes spatial decisions and
places replicas in low-intensity regions [19]. Workloads that
are WAN-intensive can benefit from carbon-aware routing and
overlay networks, though it is harder to measure this strategy’s
impact since the routers, switches, and other intermediary
nodes along the path must be accounted for.

All of these strategies require a way to measure or esti-

2



0 5 10 15 20 25 30
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Throughput

Power

0

2

4

6

8

10

N
or

m
al

iz
ed

P
ow

er
(W

)

Normalized Throughput and CPU Power against Threads

(a) Impact of threads on CPU power demand and throughput.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Normalized Throughput

0

2

4

6

8

10

N
or

m
al

iz
ed

P
ow

er
(W

)

Throughput and Power Demand

Actual

Linear Model

(b) Correlation between the achieved throughput and power demand.

Fig. 2: Modeling the correlation between power demand and achieved throughput.

mate power consumption and a source for carbon intensity
data either from power grid providers or through third-party
services like ElectricityMaps and WattT ime. A workload
may sometimes be more CPU-intensive, I/O-intensive, or
network-intensive so some works also seek to isolate the
power consumption of a node’s component for better accuracy.
Power measurement of the CPU package can often be done in
software by reading model-specific registers (MSR) or through
models with tools like perf [29], RAPL [30], NVML [31],
FECoM [32], and powerletrics [33].

While lowering carbon emissions is the main goal for
many of these strategies, it is also important to ensure that
datacenter performance, availability, and reliability are not
compromised. Thus, performance metrics like throughput, tail
latency, scalability, datacenter load, service level agreement
(SLA) violations, and cost of operations are often measured
to show any effects and tradeoffs of these green strategies
[34]. Likewise, due to the varying nature of datacenter work-
loads, some green strategies target workloads with high delay
tolerance while others focus on low tolerance workloads.

Most of the carbon-aware works discussed here study dat-
acenter workload scheduling and management and use strate-
gies that are transferable to network data transfer scheduling,
but there are a few important distinctions between the prob-
lems. Unless the compute task is geographically distributed,
most datacenter tasks discussed in these works are executed in
one location and only have to account for the carbon intensity
of that region, while data transfers will often span multiple
hops across different regions, requiring consideration of the
carbon intensities of multiple zones at once. Another important
distinction is the lack of control over resources in network
transfers. Datacenters have control over all the resources
needed to execute the task and can tune those resources
appropriately, while users often do not enjoy control over
routing decisions and intermediate nodes of a data transfer.
Additionally, the data transfers can be affected by background
data traffic activity, making potential capacity planning and
throughput predictions very challenging.

Several works on datacenter workload management can be
found that employ spatial strategies, temporal strategies, or
both. Some works are concerned primarily with scheduling of

tasks and use static optimization techniques with power mod-
els, carbon and demand forecasts, or power models to produce
execution plans with sometimes mechanisms to reevaluate
plans when forecast errors exceed a threshold [9, 11, 26,
28, 35]. Other works instead focus on real-time optimization,
using admission control strategies [24], hardware voltage and
frequency scaling [20, 24, 25, 36], horizontal scaling [17, 23],
reinforcement learning agents [27], and migration [37–41].

Like LinTS, works like [42], [20], [21], and [43] use some
form of linear, quadratic, and constraint programming in their
schedulers with great degrees of success. However, none of
these works consider the carbon cost of data transfers between
cloud datacenters. While the works discussed above focus on
datacenter workloads without consideration of inter-datacenter
communication, as seen in replication and distributed storage
applications, for example, LinTS explores carbon optimization
for workloads with significant network transfers between dat-
acenters using the carbon intensity of the network path itself.

III. LINTS OVERVIEW

We introduce the data transfer temporal scheduling problem
here, where a scheduler must assign time slots and set threads,
if possible, for a set of transfer requests with file sizes
J = {J1, J2, . . . , Jn} and deadlines D = {D1, . . . , Dn}
while minimizing the total carbon emissions of these transfers.
This entails accounting for all nodes along the transfer path. To
make carbon-aware decisions, the scheduler can use historical
carbon intensity traces or forecasts.

Notation Description

ωi,j Throughput of request i at time slot j
εω Throughput of all requests at all slots as a flattened vector
L First-hop bandwidth limit of the path
sω Throughput scale constant
sP Power scale constant
ci,j Combined carbon intensity of request i at time slot j
ci Combined carbon intensity vector of request i
Ji Size of transfer request i in bytes
Di Deadline of request i in number of slots from origin
!ε Length of time slot in seconds

TABLE I: The list of notations used in the paper.

3



A. LinTS Linear Programming Model
Linear Programming (LP) is an optimization technique used

to minimize or maximize a linear objective function con-
strained to a set of linear inequalities. This can be expressed
in the standard form where one solves for x:

maximize cTx

subject to Ax → b,

and x ↑ 0,

where A is a matrix that expresses the linear inequality and
c is the cost vector to optimize for [44]. Thus, to apply
linear programming, a linear cost function is needed. Works
that study the relationship between network traffic and energy
consumption commonly use either a non-linear model, a linear
model, or a state-based model where power consumption
increases in steps at certain throughput levels [45]; for carbon-
aware temporal transfer scheduling, we adopt the linear model
in this work. For this work, we assume that all requests
received by the scheduler are delay-tolerant, interruptible, and
schedulable.

Our solution, the Linearly-optimized Transfer Scheduler
(LinTS), relies on the assumption that network throughput
through wide-area networks (WANs) and CPU power demand
have a linear-like relationship when throughput is less than
the bottlenecked capacity. To compare the linear model to
the observed relationship, transfers are run on Chameleon
Cloud [46] from TACC in Texas to Chicago. We scale the
number of threads (and sockets) exponentially from 4 threads
to 32 threads and measure the achieved throughput and corre-
sponding power consumption. As seen in Figures 2(a) and
2(b), while throughput and power draw have a non-linear
relationship with the number of threads and with each other,
a linear model can be used to approximate the relationship
between throughput and power demand while the network path
is not saturated or congested.

If L is the bandwidth limit of the path and sω the throughput
scale, we model the throughput ω achieved with ε threads with
the following equation:

ω(ε) = L

(
1 ↓ 1

sωLε + 1

)
(1)

Similarly, given the maximum power Pmax, minimum power
Pmin, and power scale sP , we model the CPU power P drawn
with ε threads as follows:

!P = Pmax ↓ Pmin (2)

P (ε) = !P

(
1 ↓ 1

sP!P ε + 1

)
+ Pmin (3)

While linear programming is useful for choosing times to
start, interrupt, and resume transfers, the power and throughput
models in Equations 1 and 3 can be used to extend the
scheduler to make thread scaling decisions for additional
savings in carbon intensity similar to [17]. Linear program
solutions cannot be restricted to integers, so the scheduler

cannot directly place threads in time slots. Instead, LinTS
makes decisions on the required throughput for each slot and
then uses the inverse of Equation 1 to convert throughput to
threads:

ε(ω) =
1

LsP

(
ω

L ↓ ω

)
(4)

Substituting Equation 4 into Equation 3, we get the following
relation between power draw and throughput:

K =
sP!P

sωL
(5)

P (ω) = Pmax +
!P (ω ↓ L)

(K ↓ 1)ω+ L
(6)

where K is a constant. Restricting throughput to 0 ↔ ω ↔ L,
we can linearize the equation:

P (ω) =
!P

L
ω+ Pmin (7)

Expressing Equation 7 in vector terms where a vector ele-
ment corresponds to a time slot, we get the following linear
objective function:

cTi p =
!P

L
cTi ϑω+ pmin (8)

where ci is the carbon intensity vector for job i. Equation 8
implies that carbon emissions can be minimized by minimizing
throughput, but it does not capture the fact that slower transfers
take longer to complete and can often increase overall carbon
emissions; this can be accounted for with linear constraints.

B. LinTS Constraints
The following constraints are required to produce a feasible

plan for a given set of transfer requests. Let ωi,j be the
throughput of a request i at time slot j, also written as a
flattened throughput vector ϑω in the following constraints.
Deadline constraint. Each request has a deadline D without
slack. Although this cannot be expressed as an inequality that
an LP solver can use, we can encode deadline constraints
through the dimensions of the throughput vector.

dim ϑω =
∑

i

Di

Time-slot constraint. This constraint ensures that the LP
solvers allocate enough throughput and time slots to complete
the transfer request of size J . If a time slot is of length !ϑ ,
then for each request i and time slot j,

Ji ↔
Di∑

j=1

ti,j · ωi,j ↗1 ↔ i ↔ n

where ti,j =

{
0 if slot j not part of request i
!ϑ if slot j part of request i

Thread-limit constraint. This constraint ensures that the sum
of all request bandwidth allocated at a time slot does not
exceed the bandwidth limit L. Then, for each slot j,

4



n∑

i=1

ϖi,j · ωi,j ↔ L ↗1 ↔ j ↔ max
i

(Di)

where ϖi,j =

{
0 if request i not part of slot j
1 if request i part of slot j

Input constraint. Since LinTS assumes a bandwidth limit due
to bottlenecks, the throughput constraint 0 ↔ ωi,j ↔ L ensures
that the throughput cannot exceed this limit.

Taken together, the temporal scheduling problem can be
expressed as the following linear program.

minimize
n∑

i=1

Di∑

j=1

ci,j · ωi,j

subject to Ji ↔
Di∑

j=1

ti,j · ωi,j

and
n∑

i=1

ϖi,j · ωi,j ↔ L

and dim ϑω =
n∑

i=1

Di

and 0 ↔ ωi,j ↔ L

↗1 ↔ i ↔ n, 1 ↔ j ↔ max
i

(Di)

C. LinTS Implementation

LinTS is implemented in Python using SciPy’s efficient
linprog solver [47], and is simulated in Python using
historical carbon intensity traces. It is designed to integrate
with data transfer services as a Python library or a REST API
with Flask.

Algorithm 1 is the core workflow of LinTS. Lines 1 to
5 prepare the cost vector from the weighted trace sums and
encode the deadline constraint through dimensions. Lines 6 to
12 and 20 construct the deadline constraint, and lines 13 to
19 and 21 prepare the byte constraint. Finally, lines 22 to 24
call the ScipPy LP solver, unwrap the solution, and convert
it to threads with Equation 4. Given these constraints, LinTS
allows multiple transfer requests to share a time slot as long
as their collective throughput does not exceed the bandwidth
limit and is free to scale transfer threads up or down as needed.

After producing a plan, the simulator estimates its carbon
emissions with the carbon intensity trace and power curve seen
in Equation 3. Noise is added to the trace to emulate possible
errors in carbon forecasts before iterating over the plan. If a
slot has no threads allocated for any request, then the simulator
assumes no energy consumption at that time as we want to
measure only energy consumed by the transfer requests.

IV. EVALUATION

In this section, we evaluate our solution, LinTS, in reducing
the carbon emissions of data transfers across regions, compar-
ing it to known scheduling algorithms.

Algorithm 1 LinTS Algorithm

1: forecast sums ↘
∑

weights · forecast
2: for f in forecast sums do
3: f ↘ ExpansionMatrix · f
4: end for
5: c ↘ flatten(forecast sums)

Require: dim c =
∑

Di

6: Aub ↘ [] {Upper bound linear constraints}
7: offset ↘ 0
8: for n from 0 to num jobs do
9: byte sum vec ↘ 0

10: byte sum vec[i] ↘ slot time ↗offset ↔ i ↔ Dn

11: Aub ↘ append(Aub, byte sum vec)
12: end for
13: for i from 0 to max(deadlines) do
14: slot constraint ↘ 0
15: for all slots S at time i do
16: slot constraint[S] ↘ 1
17: end for
18: Aub ↘ append(Aub, slot constraint)
19: end for
20: bub ↘ ↓8 · data size vec
21: bub ↘ append(bub, target thrpt vec)
22: thrpt plan ↘ linprog(c, Aub, bub, (0, L))
23: thrpt plan ↘ unflatten(thrpt plan)
24: thread plan ↘ ε(thrpt plan)
25: return thread plan

A. Experimental Setup

Carbon intensity traces. We use 72-hour slices of historical
carbon intensity data from ElectricityMaps consisting of
hourly measurements for every power zone in the US for
all of 2024 [15]. We pick sites with the highest variability
in carbon intensity, namely zones in New Mexico, Colorado,
Utah, Wyoming, South Dakota, South Carolina, and Montana
as seen in Figure 1(b). While ElectricityMaps provides
carbon intensity forecasts that would commonly be used in a
scheduler, it is currently limited to 0 – 72 hours depending on
the subscription plan, making it infeasible for large data trans-
fers spanning over several days or with generous deadlines.
Accounting for errors with forecasts, we add random noise
of 5% and 15% to our historical traces. LinTS in its current
form does not adjust plans as network and carbon conditions
change, leaving this capability for future work.
Node and data transfer characteristics. We simulate a data
transfer over up to 8 nodes: a source, up to six intermediate
nodes (i.e., router, switch, repeater, etc.), and a destination.
While multiple routers and switches are often found in the
data transfer path, we choose a simple WAN of up to 8 nodes
connected by a long wired network to simplify the simulation.
The bandwidth of the link between the source and destination
is known and fixed to 1 Gbps, which we call the ‘first-hop
bandwidth’, but the capacity of other links is unknown. Since

5



Fig. 3: Comparison of algorithms’ carbon emissions when restricted to 25%, 50%, and 75% of first-hop capacity.

one can expect bottlenecks in the data path over a WAN,
the plans produced by the algorithms assume a bottleneck
expressed as a percentage of the first-hop bandwidth. Network
throughput is assumed to scale non-linearly with threads as
seen in Figure 2(a). Similarly, the power consumption of the
node is assumed to scale non-linearly with threads and can
range from 88W to 100W.
Algorithm configurations. Our evaluation compares LinTS to
heuristic algorithms described in [48] and our best heuristic
algorithm where they all produce plans for a set of transfer
requests with paths and deadlines defined. These plans are
evaluated in our simulator to calculate their carbon emissions.
All of the heuristic algorithms below assign the highest
number of threads allowed by the request’s bottleneck to its
time slots; this is sufficient since elapsed time is typically
the dominant component of a request’s footprint. Let J be
the number of jobs, S the number of time slots, and L the
bandwidth limit.

1) First-come First-serve (FCFS) – This is the default
scheduling algorithm for most file transfer services. As
the transfer requests arrive over a network, they are
arranged in a queue in the order determined by arrival
time. Then, for each request in this order, FCFS simply
schedules it without optimizing for carbon footprint by
assigning the first S time slots where S is the minimum
number of slots needed to complete the request before
its deadline; this repeats until the queue is empty.

2) Earliest-Deadline First (EDF) – The EDF algorithm
does not optimize for carbon footprint. The transfer
requests are sorted by deadline in ascending order to
determine priority. Then, a request with the earliest
deadline is assigned to the first S time slots where S is
the minimum number of slots needed by the request. The
algorithm then picks the request with the next earliest
deadline and repeats this process.

3) Worst-Case – When the transfers are scheduled in a
carbon-agnostic manner, in the worst-case scenario, the
transfers can potentially be scheduled to the time slots
with the highest carbon intensity. To emulate this case
and establish a baseline, we use the EDF algorithm to
schedule requests at time slots with the highest carbon

intensities. Then, plans are generated randomly and the
worst-performing plan between the two methods is used
as the worst case.

4) Single Threshold (ST) – This algorithm uses one carbon
intensity threshold to allocate time slots to a data trans-
fer. First, the transfer requests are sorted in ascending
order of deadline to determine priority. If the carbon
intensity at a point in time falls below this threshold,
then ST blocks that time slot and allocates it to the
request. This continues until the request has sufficient
time slots to complete before its deadline. Then, ST
moves to the next request and repeats this process. In our
implementation, the optimal threshold is found through
a binary search since the plan with the lowest feasible
threshold is ideal.

5) Double Threshold (DT) – Instead of one threshold, DT
uses a high and low threshold to offset the overhead
delay of resuming transfers with lower carbon intensity.
Like ST, the requests are sorted by deadline. At a time
slot, if the request was been paused at the previous slot
and the carbon intensity is below the high threshold, then
the slot is given to the request. If the request was paused
in the previous slot and the carbon intensity is below the
low threshold, then the slot is given to the request. We
set ϱ, the difference between the thresholds, to 50 and
used binary search to find the optimal thresholds.

6) LinTS – The request size, deadline, and carbon intensity
are written as linear constraints and fed to a solver to
produce a throughput plan over 72 hours. This plan is
then converted to the corresponding threads plan using
Equation 4. In our evaluations, we set the bandwidth
limit L to 0.25 Gbps for 25%, 0.5 Gbps for 50%, and
0.75 Gbps for 75%. All evaluations use a throughput
scale sω of 1/24. SciPy’s default solver switches be-
tween the simplex and interior-point methods depending
on the size of the input and constraints.

Transfer requests. The algorithms above are used to schedule
200 transfer requests received and queued at roughly the same
time; this point in time is the origin and we set t = 0. The
file sizes range from 10 GB to 50 GB with deadlines ranging
from 48 to 71 hours from origin.

6



03�
25

18

03�
25

21

03�
26

00

03�
26

03

03�
26

06

03�
26

09

03�
26

12

03�
26

15

03�
26

18

Time

800

1000

1200

1400

1600
C
ar

bo
n

In
te

ns
it
y

(g
C
O

2
/

kW
h)

Transfer Intensity

Throughput

2000

3000

4000

5000

T
hr

ou
gh

pu
t

of
S
tr

ea
m

(M
bp

s)

Background Tra�c - Oregon to Virginia via Texas

Fig. 4: Throughput and carbon intensity of transfers from AWS US-West-2 to US-East-1 via TACC over a 24-hour period.

Bandwidth
Limit

Worst
Case

Earliest
Deadline

FCFS DT ST LinTS

25%
7.14 kg

6.75 kg 6.76 kg 6.75 kg 6.74 kg 6.08 kg
50% 4.12 kg 4.11 kg 4.09 kg 4.09 kg 3.56 kg
75% 2.80 kg 2.79 kg 2.77 kg 2.77 kg 2.42 kg

TABLE II: Average carbon emissions of algorithms at 25%,
50%, and 40% of the first-hop bandwidth with 5% error. The
best-performing algorithm is shown in bold.

Simulator. Given a request’s path of a source, intermediate
node, and destination, the 72-hour carbon intensity traces for
their regions are read, and divided and expanded into 288
time slots, 15 minutes each. The request path’s intensity is
then calculated as the sum of the traces; since we assume all
nodes in the path are equally affected by network transfers, we
assign equal weight to these nodes. The transfer requirements
and traces are then fed into the algorithms above to produce
thread plans. The CPU power demand of each plan is then
estimated using Equation 3. For our evaluations, Pmax = 100W
and Pmin = 88W. The power scale sP is set to 1/50. Energy
consumption and carbon emissions are calculated using the
traces. Noise is added to the traces to model errors in forecasts.
Evaluation metric. Since all of the evaluated algorithms
produce feasible plans given transfer sizes and deadlines, we
compare the total emissions and resiliency of the algorithms.

B. Evaluating LinTS

The potential and differences of these algorithms are high-
lighted best when there is high variability in carbon intensity
over time. The worst-case emission is computed by comparing
emissions of the worst heuristic and random solution searches
and taking the larger of the two values. Table II shows the
total carbon emissions of the algorithms when restricted to
25%, 50%, and 75% of the first-hop bandwidth (1 Gbps) with
5% noise added to the traces when evaluated, and Table III
shows total carbon emissions for each algorithm but with 15%
noise added instead; in both scenarios, LinTS outperforms
the other algorithms with 10.1% lower carbon emissions at
25% capacity, 14.2% lower emissions at 50% capacity, and
15.4% lower emissions at 75% capacity when compared to
FCFS, averaging results from the 5% and 15% error scenarios.
Compared to the worst-case, LinTS achieves 14.8%, 50.1%,

Bandwidth
Limit

Worst
Case

Earliest
Deadline

FCFS DT ST LinTS

25%
7.69 kg

7.30 kg 7.30 kg 7.29 kg 7.28 kg 6.56 kg
50% 4.51 kg 4.52 kg 4.48 kg 4.48 kg 3.84 kg
75% 3.06 kg 3.07 kg 3.04 kg 3.04 kg 2.61 kg

TABLE III: Average carbon emissions of algorithms at 25%,
50% and 75% of the first-hop bandwidth with 15% error. The
best-performing algorithm is shown in bold.

and 66.1% lower emissions at 25%, 50%, and 75% capacity
respectively on average.

LinTS outperforms both ST and DT in all capacity settings
with 9.8%, 13.6%, and 13.5% lower emissions respectively
on average. Figure 3 highlights these differences with the
distribution of emissions of each algorithm with 15% noise
added and capacity limited to 25%, 50%, and 75% of first-
hop bandwidth respectively. The solutions generated by LinTS
in general save more carbon than the heuristic algorithms as
indicated by the lower median and quartiles, given that LinTS
allows multiple jobs to run in a time slot and that it makes
scaling decisions with threads unlike the other algorithms here.

C. Impact of Scheduling on Performance
In a WAN setting, it is possible for two or more transfers

to share links along their paths, which can lead to link
contention and congestion. Thus, background network activity
can negatively affect the capacity and bottleneck of the transfer
path at any point in time. With enough demand along the
path at time t, a scheduler that starts or resumes a transfer
at t can potentially increase its total carbon emission since
it may slow down and need more time to complete; deadline
SLAs may be violated too. If congestion improves when the
transfer is scheduled to start or resume, it may finish faster
and yield higher carbon savings. Our evaluations above do not
account for these possibilities since all of the tested scheduling
algorithms do not measure or predict network congestion.
While setting a conservative bottleneck capacity can help
construct plans resilient to congestion, this is not necessarily
a foolproof solution for highly stochastic networks.

Figure 4 shows the carbon intensity and throughput of
Iperf transfers [49] from AWS US-West-2 in Oregon to
AWS US-East-1 in Virginia through TACC in Texas serving
as the intermediate node over a 24-hour period. Iperf is

7



run repeatedly with a fixed number of sockets to assess
any significant background traffic and potential congestion
between these sites, and throughput is measured every 10
minutes. Hourly carbon intensity data is collected at each
hop’s location, starting from Oregon, then Washington, Texas,
Georgia, New York, New Jersey, and finally Virginia; these
locations are determined through the traceroute utility. This
intensity data is then combined into a single intensity trace of
the path as a weighted sum.

In our case, the throughput varies from 3.2 to 4 Gbps
over 24 hours, which can adversely affect plans produced
by any scheduler. As AWS allows users to temporarily boost
throughput for a price, it is possible for a surge in network
activity to cause congestion and further hurt performance.
Considering these changes in network characteristics and their
impact on transfer scheduling, a forecast or monitoring service
is needed to predict or measure background activity and
reevaluate the schedule which is often seen in some datacenter
workload scheduling-related work [23]. This is a potential
research extension left for future work.

V. CONCLUSION AND FUTURE WORK

We present LinTS, a scheduler that intelligently schedules
and scales data transfers between cloud datacenters by con-
structing a linear optimization problem with carbon intensity
forecasts while respecting request deadlines and requirements.
Our simulations show LinTS outperforming threshold methods
commonly seen in other works while remaining lightweight
and easy to integrate with transfer services. With additional
constraints, LinTS can be extended for spatiotemporal schedul-
ing, and multi-objective solvers can be used when there are
tradeoffs in the objective function.

ACKNOWLEDGEMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award number OAC-2313061. We
also thank Chameleon Cloud for making their resources avail-
able for the experiments of this work.

REFERENCES

[1] Carly Davenport et al. Generational Growth: AI data
centers and the coming US power surge. Goldman
Sachs, Apr. 2024. URL: https : / / www. goldmansachs .
com/pdfs/insights/pages/generational-growth-ai-data-
centers-and-the-coming-us-power-surge/report.pdf.

[2] Google Environmental Report 2024. 2024. URL: https:
/ / sustainability . google / reports / google - 2024 -
environmental-report.

[3] Meta 2024 Sustainability Report. 2024. URL: https : / /
sustainability.atmeta.com/2024-sustainability-report.

[4] 2024 Environmental Sustainability Report. 2024. URL:
https : / / www . microsoft . com / en - us / corporate -
responsibility/sustainability/report.

[5] Michael Terrell. New nuclear clean energy agreement
with Kairos Power. Oct. 2024. URL: https://blog.google/
outreach-initiatives/sustainability/google-kairos-power-
nuclear-energy-agreement.

[6] Bilge Acun et al. “Carbon Explorer: A Holistic Frame-
work for Designing Carbon Aware Datacenters”. In:
Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2. ASPLOS 2023.
Vancouver, BC, Canada: Association for Computing
Machinery, 2023, pp. 118–132.

[7] Thanathorn Sukprasert et al. “On the Limitations of
Carbon-Aware Temporal and Spatial Workload Shifting
in the Cloud”. In: Proceedings EuroSys’24. Athens: As-
sociation for Computing Machinery, 2024, pp. 924–941.

[8] Anshul Gandhi et al. “Metrics for Sustainability in
Data Centers”. In: ACM SIGENERGY Energy Infor-
matics Review 3 (2023), pp. 40–46. URL: https://api.
semanticscholar.org/CorpusID:251304999.

[9] Sirui Qi et al. MOSAIC: A Multi-Objective Optimization
Framework for Sustainable Datacenter Management.
2023. arXiv: 2311.08583 [cs.DC].

[10] Thomas Anderson et al. “Treehouse: A Case For
Carbon-Aware Datacenter Software”. In: SIGENERGY
Energy Inform. Rev. 3.3 (Oct. 2023), pp. 64–70.

[11] Ana Radovanović et al. “Carbon-Aware Computing for
Datacenters”. In: IEEE Transactions on Power Systems
38.2 (Mar. 2023), pp. 1270–1280. ISSN: 1558-0679.
DOI: 10.1109/TPWRS.2022.3173250.

[12] Jr. Thomas Barnett et al. Cisco Global Cloud Index
2015–2020. URL: https : / /www.cisco .com/c /dam/m/
en us / service - provider / ciscoknowledgenetwork / files /
622 11 15-16-Cisco GCI CKN 2015-2020 AMER
EMEAR NOV2016.pdf.

[13] Malgorzata Wiatros-Motyka et al. Global Electricity
Review 2023 — Ember — ember-energy.org. https : / /
ember - energy. org / latest - insights / global - electricity -
review-2023/. [Accessed 30-03-2025]. 2023.

[14] Clarisse Aujoux, Kumiko Kotera, and Odile Blanchard.
“Estimating the carbon footprint of the GRAND project,
a multi-decade astrophysics experiment”. In: Astropar-
ticle Physics 131 (2021), p. 102587.

[15] Electricity Maps. 2024. URL: https : / / www .
electricitymaps.com.

[16] WattTime. 2024. URL: https://watttime.org.
[17] Walid A. Hanafy et al. “CarbonScaler: Leveraging

Cloud Workload Elasticity for Optimizing Carbon-
Efficiency”. In: Proc. ACM Meas. Anal. Comput. Syst.
7.3 (Dec. 2023).

[18] Yuchao Zhang et al. “BDS+: An Inter-Datacenter Data
Replication System With Dynamic Bandwidth Separa-
tion”. In: IEEE/ACM Transactions on Networking 29.2
(2021), pp. 918–934. DOI: 10 . 1109 / TNET . 2021 .
3054924.

[19] Zichen Xu et al. “CADRE: Carbon-Aware Data Repli-
cation for Geo-Diverse Services”. In: 2015 IEEE Inter-
national Conference on Autonomic Computing. 2015,
pp. 177–186. DOI: 10.1109/ICAC.2015.15.

[20] Jeonghyeon Park et al. “Carbon-Aware and Fault-
Tolerant Migration of Deep Learning Workloads in

8

https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf
https://sustainability.google/reports/google-2024-environmental-report
https://sustainability.google/reports/google-2024-environmental-report
https://sustainability.google/reports/google-2024-environmental-report
https://sustainability.atmeta.com/2024-sustainability-report
https://sustainability.atmeta.com/2024-sustainability-report
https://www.microsoft.com/en-us/corporate-responsibility/sustainability/report
https://www.microsoft.com/en-us/corporate-responsibility/sustainability/report
https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement
https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement
https://blog.google/outreach-initiatives/sustainability/google-kairos-power-nuclear-energy-agreement
https://api.semanticscholar.org/CorpusID:251304999
https://api.semanticscholar.org/CorpusID:251304999
https://arxiv.org/abs/2311.08583
https://doi.org/10.1109/TPWRS.2022.3173250
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://ember-energy.org/latest-insights/global-electricity-review-2023/
https://ember-energy.org/latest-insights/global-electricity-review-2023/
https://ember-energy.org/latest-insights/global-electricity-review-2023/
https://www.electricitymaps.com
https://www.electricitymaps.com
https://watttime.org
https://doi.org/10.1109/TNET.2021.3054924
https://doi.org/10.1109/TNET.2021.3054924
https://doi.org/10.1109/ICAC.2015.15


the Geo-Distributed Cloud”. In: 2024 IEEE 17th Inter-
national Conference on Cloud Computing (CLOUD).
2024, pp. 494–501.

[21] Adam Lechowicz et al. “CarbonClipper: Optimal
Algorithms for Carbon-Aware Spatiotemporal Work-
load Management”. In: 2024. URL: https : / / api .
semanticscholar.org/CorpusID:271874702.

[22] John Thiede et al. “Carbon Containers: A System-level
Facility for Managing Application-level Carbon Emis-
sions”. In: Proceedings of the 2023 ACM Symposium on
Cloud Computing. SoCC ’23. Santa Cruz: Association
for Computing Machinery, 2023, pp. 17–31.

[23] Sophie Hall et al. Carbon-Aware Computing for Data
Centers with Probabilistic Performance Guarantees.
2024. arXiv: 2410 . 21510 [eess.SY]. URL: https :
//arxiv.org/abs/2410.21510.

[24] Philipp Wiesner et al. “Cucumber: Renewable-Aware
Admission Control for Delay-Tolerant Cloud and Edge
Workloads”. In: European Conference on Parallel Pro-
cessing. 2022. URL: https://doi.org/10.1007/978-3-031-
12597-3 14.

[25] Sirui Qi et al. “CASA: A Framework for SLO and
Carbon-Aware Autoscaling and Scheduling in Server-
less Cloud Computing”. In: ArXiv abs/2409.00550
(2024). URL: https://arxiv.org/abs/2409.00550.

[26] Philipp Wiesner et al. “Let’s wait awhile: how temporal
workload shifting can reduce carbon emissions in the
cloud”. In: Proceedings of the 22nd International Mid-
dleware Conference (2021). URL: https : / /doi .org/10.
1145/3464298.3493399.

[27] Soumyendu Sarkar et al. “Real-time Carbon Footprint
Minimization in Sustainable Data Centers with Rein-
forcement Learning”. In: NeurIPS 2023 Workshop on
Tackling Climate Change with Machine Learning. 2023.

[28] Dongxiang Yan, Mo-Yuen Chow, and Yue Chen. “Low-
Carbon Operation of Data Centers With Joint Workload
Sharing and Carbon Allowance Trading”. In: IEEE
Transactions on Cloud Computing 12 (2024), pp. 750–
761. URL: https://doi.org/10.1109/TCC.2024.3396476.

[29] perf: Linux profiling with performance counters —
perfwiki.github.io. https : / / perfwiki . github . io / main/.
[Accessed 28-03-2025].

[30] Intel® 64 and IA-32 Architectures Software Developer
Manuals — intel.com. https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-sdm.html.
[Accessed 25-03-2025].

[31] NVML API Reference Guide. Nvidia. Nvidia, 2025.
URL: https://docs.nvidia.com/deploy/pdf/NVML API
Reference Guide.pdf.

[32] Saurabhsingh Rajput et al. “Enhancing Energy-
Awareness in Deep Learning through Fine-Grained
Energy Measurement”. In: ACM Trans. Softw. Eng.
Methodol. 33.8 (Dec. 2024). ISSN: 1049-331X. DOI: 10.
1145/3680470. URL: https://doi.org/10.1145/3680470.

[33] GitHub - green-kernel/powerletrics: Powermetrics for
Linux — github.com. https://github.com/green-kernel/
powerletrics. [Accessed 28-03-2025]. Green Kernel.

[34] Jaylen Wang, Udit Gupta, and Sriraman Akshitha.
“Peeling Back the Carbon Curtain: Carbon Optimiza-
tion Challenges in Cloud Computing”. In: Proceedings
of the 2nd Workshop on Sustainable Computer Systems
(2023). URL: https://api.semanticscholar.org/CorpusID:
260380570.

[35] Walid A. Hanafy et al. “Going Green for Less Green:
Optimizing the Cost of Reducing Cloud Carbon Emis-
sions”. In: Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. ASPLOS
’24. La Jolla, CA, USA: Association for Computing
Machinery, 2024, pp. 479–496.

[36] Abel Souza et al. “Ecovisor: A Virtual Energy System
for Carbon-Efficient Applications”. In: Proceedings of
the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 2. ASPLOS 2023. Vancouver, BC,
Canada: Association for Computing Machinery, 2023,
pp. 252–265.

[37] Engin Arslan and Tevfik Kosar. “High-speed transfer
optimization based on historical analysis and real-time
tuning”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 29.6 (2018), pp. 1303–1316.

[38] Tevfik Kosar. Data placement in widely distributed
systems. The University of Wisconsin-Madison, 2005.

[39] George Kola et al. “DISC: A System for Distributed
Data Intensive Scientific Computing.” In: WORLDS.
2004.

[40] Mohak Chadha et al. “GreenCourier: Carbon-Aware
Scheduling for Serverless Functions”. In: Proceedings
of the 9th International Workshop on Serverless Com-
puting (2023). URL: https:/ /dl .acm.org/doi/10.1145/
3631295.3631396.

[41] Viktor Gsteiger et al. “Caribou: Fine-Grained Geospa-
tial Shifting of Serverless Applications for Sustainabil-
ity”. In: URL: https://api.semanticscholar.org/CorpusID:
273692349.

[42] Mohammad Aldossary and Hatem A. Alharbi. “Towards
a Green Approach for Minimizing Carbon Emissions
in Fog-Cloud Architecture”. In: IEEE Access 9 (2021),
pp. 131720–131732. DOI: 10 . 1109 / ACCESS . 2021 .
3114514.

[43] Li Wu et al. CarbonEdge: Leveraging Mesoscale Spa-
tial Carbon-Intensity Variations for Low Carbon Edge
Computing. 2025. arXiv: 2502.14076 [cs.DC]. URL:
https://arxiv.org/abs/2502.14076.

[44] Vašek Chvátal. Linear Programming. en. Macmillan,
Sept. 15, 1983. ISBN: 9780716715870. URL: https : / /
books.google.com/books/about/Linear Programming.
html?hl=&id=DN20 tW BV0C.

[45] Ismail Alan, Engin Arslan, and Tevfik Kosar. “Energy-
aware data transfer algorithms”. In: Proceedings of

9

https://api.semanticscholar.org/CorpusID:271874702
https://api.semanticscholar.org/CorpusID:271874702
https://arxiv.org/abs/2410.21510
https://arxiv.org/abs/2410.21510
https://arxiv.org/abs/2410.21510
https://doi.org/10.1007/978-3-031-12597-3_14
https://doi.org/10.1007/978-3-031-12597-3_14
https://arxiv.org/abs/2409.00550
https://doi.org/10.1145/3464298.3493399
https://doi.org/10.1145/3464298.3493399
https://doi.org/10.1109/TCC.2024.3396476
https://perfwiki.github.io/main/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://docs.nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf
https://docs.nvidia.com/deploy/pdf/NVML_API_Reference_Guide.pdf
https://doi.org/10.1145/3680470
https://doi.org/10.1145/3680470
https://doi.org/10.1145/3680470
https://github.com/green-kernel/powerletrics
https://github.com/green-kernel/powerletrics
https://api.semanticscholar.org/CorpusID:260380570
https://api.semanticscholar.org/CorpusID:260380570
https://dl.acm.org/doi/10.1145/3631295.3631396
https://dl.acm.org/doi/10.1145/3631295.3631396
https://api.semanticscholar.org/CorpusID:273692349
https://api.semanticscholar.org/CorpusID:273692349
https://doi.org/10.1109/ACCESS.2021.3114514
https://doi.org/10.1109/ACCESS.2021.3114514
https://arxiv.org/abs/2502.14076
https://arxiv.org/abs/2502.14076
https://books.google.com/books/about/Linear_Programming.html?hl=&id=DN20_tW_BV0C
https://books.google.com/books/about/Linear_Programming.html?hl=&id=DN20_tW_BV0C
https://books.google.com/books/about/Linear_Programming.html?hl=&id=DN20_tW_BV0C


the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’15.
Austin, Texas: Association for Computing Machinery,
2015.

[46] Kate Keahey et al. “Lessons Learned from the
Chameleon Testbed”. In: Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC
’20). USENIX Association, July 2020.

[47] linprog; SciPy v1.15.2 Manual — docs.scipy.org. https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.linprog.html. [Accessed 28-03-2025].

[48] Roozbeh Bostandoost et al. “Data-driven Algorithm Se-
lection for Carbon-Aware Scheduling”. In: Proceedings
of the 3rd Workshop on Sustainable Computer Systems.
HotCarbon. Vol. 24. 2024.

[49] Vivien Gueant. iPerf - The TCP, UDP and SCTP
network bandwidth measurement tool — iperf.fr. https:
//iperf.fr/. [Accessed 28-03-2025].

10

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://iperf.fr/
https://iperf.fr/

	Introduction
	Background and Related Work
	LinTS Overview
	LinTS Linear Programming Model
	LinTS Constraints
	LinTS Implementation

	Evaluation
	Experimental Setup
	Evaluating LinTS
	Impact of Scheduling on Performance

	Conclusion and Future Work

