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ABSTRACT

Leading large language models (LLMs) are trained on public data.
However, the majority of the world’s data is dark data not publicly
accessible, mainly in the form of private organizational data or
enterprise data. We show that the performance of methods based
on LLMs seriously degrades when tested on real-world enterprise
datasets. Current benchmarks, based on public data, overestimate
the performance of LLMs. We release a new benchmark dataset,
the Goby Benchmark, to advance discovery in enterprise data inte-
gration. Based on our experience with this enterprise benchmark,
we propose techniques to uplift the performance of LLMs on en-
terprise data, including: (1) hierarchical annotation, (2) runtime
class-learning, and (3) ontology synthesis. We show that, once
these techniques are deployed, the performance on enterprise data
becomes on par with that of public data. The Goby benchmark can
be obtained at https://goby-benchmark.github.io/.

1 INTRODUCTION

Despite intensive academic and industrial interest, the uptake of
large language models (LLMs) for data management and integration
tasks remains limited in practice. A study by Gartner reports that at
least 30% of LLM-based enterprise projects will be abandoned after
proof of concept by the end of 2025 [19]. For example, commercial
LLM-based legal research tools by industry leaders LexisNexis and
Thomson Reuters were measured to have only 40-65% accuracy [12].
Their failures were sufficiently high profile that John Roberts, chief
justice of the United States Supreme Court, rebuked lawyers using
LLM-based tools in his 2023 summary of the state of the judicial
system [16].

LLM-based techniques have been intensively studied for data
integration over the last two years by the database community,
including entity matching [13], column type annotation [11], wrap-
per induction [2], and candidate key identification [23]. Industry
data management practitioners have also embraced these tech-
niques, with LLM-based techniques deployed in Azure Data Lake,
Microsoft Excel, and Amazon Q for Business. Several startups in
the LLM-for-data-management space, including Unstructured and
Numbers Station, have attracted tens of millions in investment
dollars. Interest continues to be high.
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Public benchmarks are widely used to quantify LLM performance
on these tasks. Examples include VizNet [7], T2Dv2 [15], and FDA-
510k. These benchmarks are overwhelmingly comprised of public
data collected from the web. In the VizNet dataset, 25% of data is
from open government datasets (e.g., World Bank and NOAA tables),
and another 25% is from public web tables. In T2Dv2, 100% of tables
are fully wiki-type tables. The most popular label in that dataset
is PopulatedPlace, which corresponds to well-known cities and
towns. In FDA-510k, the dataset is comprised entirely of public
Federal Food and Drug Administration reports on the web.

On these benchmarks, several studies find LLM-based approaches
are state of the art [11]. However, the aforementioned Gartner re-
port finds that the most common reason for abandoning LLM-based
technology is the low quality of results. This posits the question:
what explains the LLM performance gap between research and prac-
tice?

These challenges are not new. An industry survey by Rexer
Analytics in 2023 reports that only 32% of machine learning im-
plementations in the enterprise achieve deployment [1]. Among
solutions that involve the introduction of fundamental architectural
changes (such as LLMs), only 22% reach successful deployment. A
significant reason is population drift: the data on which the model
is deployed are significantly different from the data it is trained
on. An influential early work indicates that at consumer finance
firms, learned approaches last two months before they are no longer
effective on the shifting data distribution and must be re-trained [5].

This highlights a fundamental limitation of LLMs in data inte-
gration: out-of-the-box models like GPT are likely to fail. A survey
on LLM-based data annotation emphasizes that while LLMs can
automate labeling processes, they often inherit biases from their
training data and exhibit overconfidence in their predictions. Con-
sequently, companies frequently rely on human oversight to ensure
the accuracy and reliability of the labeled data [21].

This work is a call to action: evaluating LLM performance on public
data management benchmarks risks presenting an overly rosy picture
of its abilities. In the first part of the paper, Section 2, we discuss
data management benchmarks, explaining that they can exist on
a spectrum of public-to-private sources. Then, we present Goby,
a new benchmark built with real enterprise in Section 3. Finding
that LLM-based approaches perform more poorly on the Goby
Benchmark than comparable public-data benchmarks, we propose
new concepts for adapting LLMs to enterprise data and empirically
evaluate these in Section 4. Finally, we discuss our results and
future directions in Section 5. To resolve this data gap, we in the
data management community must “do the work” and develop more
realistic benchmarks.
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2 BACKGROUND

Benchmarks and their accompanying datasets can be categorized,
in general terms, into two buckets: public and private. On the fully-
public end, there are standard benchmarks such as VizNet [7] and
GitTables [9]. These contain verbatim public data from web sources.
Another well-known example is the Spider Benchmark [24], which
compiles databases from sources such as Wikipedia but generates
questions over them using the traditional graduate-student-based
approach. On the other end, there are private datasets made from
proprietary data sources and labeled with proprietary labels, which
are not possible to understand outside the originating organization.
Our dataset is oriented towards these private datasets.

Further, separate from the issue of public accessibility is the
over-representation of some high-visibility domains in benchmarks.
Examples of such domains are celebrities, government, and geogra-
phy. While these domains are very well-represented on the public
web, they do not make up the bulk of enterprise data.

Task suitability is another concern. Many existing benchmarks
are constructed in a manner not authentic to enterprise use. These
benchmarks are created by crawling the web for specific patterns
that are easy to identify. For example, GitTables is constructed by
searching GitHub for patterns such as id and state, and similarly,
for T2Dv2, tables that were easy to annotate were selected from
Wikipedia. In other words, the “how” of data collection dictates the
“what” of the database content. On the other hand, organizations
generally decide on “what” datasets they have a business need for
and then the “how” of data collection.

Virtually all academic systems are evaluated on public datasets
(e.g., [2, 11, 13]). Gartner reports that lack of ability to perform
evaluation is common in enterprise setting: industry generally does
not have its own benchmarks [19]. In personal communication with
practitioners building data management systems, we have found
this to be true.

Many research systems focused specifically on public data, such
as the seminal WebTables system [3]. Prior work noted the poor
generalization of many deep learning techniques [11]. The reason
for that is the high risk of overfitting to the training data, which
restricts the model’s ability to generalize and adapt to new, unseen
data and contexts. For example, consider the performance of the
deep learning model DoDuo [18]. In the setting where it is trained
and tested on the same data distribution (VizNet), the performance
is strong. However, when we attempt to generalize by training on
the similarly structured Wiki dataset and testing it on VizNet, its
performance drops by at least 30% in terms of F1-score, precision,
and recall [11]. This comparison is merely between two public
datasets with very similar data types and structures. An unseen
private dataset, which often has unique structures and proprietary
labels, may pose an even bigger challenge. This underlines the
necessity for more robust approaches to bridge the gap between
private and public data sources.

We focus this paper on a specific data integration task: semantic
column type annotation [8]. Given a relational table, column anno-
tation involves assigning to each column a type which corresponds
to the type of values stored in that column. The classes are drawn
from a set of labels: if those labels are basic types (e.g., date, time),
the problem is called atomic type annotation, while if the labels
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Table 1: Key characteristics of the Goby dataset.

Goby

# Tables 1187
Avg. Rows / Table 3 405
Avg. Col / Table 20
Total Rows 4042519
Total Columns 23 203

have semantic meaning (e.g., birthday, deadline date, best-by date),
it is semantic. We focus on the latter formulation in this paper.

3 GOBY BENCHMARK

Goby is a benchmark dataset we derive from a production industry
workload in the event promotion and marketing setting. The dataset
was compiled around 2017 and encompasses over 4 million events.

Constructing Goby . The dataset was constructed over several
years. First, over one thousand wrappers were written by profes-
sional developers in order to convert web pages and APIs into
relational tables. Once those wrappers were developed, they were
executed to obtain 4.1 million rows of data, each corresponding to
an event. Next, the team developed a set of semantic types common
to all the events. The labels were applied to 40% of the columns.
The rest of the columns were miscellaneous data not of interest to
the task. Finally, the semantic type mappings were used to create a
universal schema which unifies all the source tables into one.

Benchmark components. Its components are:

(1) a semantic type hierarchy developed by domain experts

(2) nearly 1 200 source tables, each corresponding to the output
of one wrapper

(3) mapping each annotated with the semantic types of its columns

(4) a universal table in which all data from the source tables is
unified

Benchmark Characteristics. All in all, Goby is comprised of a
total of 4.04 million rows and 23 203 columns. Key characteristics
quantifying the dataset are provided in Table 1.

Goby exhibits high task suitability for data integration tasks. This
is because the construction method is realistic and tailored for a data
integration pipeline. We also highlight that Goby is semantically-
rich as compared to with other benchmarks. The most common
labels are those related to events, such as location and organizer
details. Meanwhile, typical benchmarks contain labels with low
semantic information, for example the three most popular semantic
types in one benchmark [9] are the generic labels id, name and
type.

Further, because of the method of construction, Goby has more
realistic table structure. This can be seen in the average number
of rows: 3 400, and columns: 20. This reflects the need to have a
minimum amount of business information about each event. Prior
benchmarks such as VizNet have an average of only 3 columns
per dataset, while T2Dv2 has only 118 rows per table; both are
unrealistic. The larger number of rows and columns reflects the
reality of enterprise data.
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Figure 1: Semantic column label distribution in the Goby
dataset.

While some of the underlying data from Goby has been used
in a prior data curation paper [17], we now curate and release the
dataset as a benchmark for the first time.

Goby is a private benchmark, according to the public-private
taxonomy presented in section 2. In particular, while the domain
doesn’t require proprietary knowledge (events around town), the
data is not from web tables but scrapped with human-programmed
scripts from APIs, then labelled with private labels. To the best
of our knowledge, Goby is the first data integration benchmark
derived from a private dataset.

Goby does not contain any private personal identifiable informa-
tion (PII). It also does not contain any data pertaining to individual
users.

Download Goby at https://goby-benchmark.github.io/.

4 INSIGHTS AND EXPERIMENTS

In this section, we explore the performance of large language mod-
els (LLMs) in the context of enterprise data, highlighting the lim-
itations of previous models and benchmarks, as well as novel ap-
proaches we discovered for optimizing LLM performance. Through
our experiments, we present key insights that not only build upon
prior work but also introduce innovative techniques for integrating
and analyzing enterprise data using LLMs. To backup these obser-
vations, we provide empirical evidence and detail in the design
decisions made during the model development process, offering a
clear reasoning for each step.

Experimental setup. We conduct an experimental evaluation us-
ing the following large language models: OpenAI's gpt-3.5-turbo
and Meta’s L1ama2 with 13 billion parameters. Experiments utiliz-
ing grammar-constrained decoding were conducted using L1ama2
since OpenAl Ap1s do not expose the required raw token probabili-
ties.

4.1 Enterprise performance gap

We begin by evaluating LLM approaches on the Goby enterprise
dataset in comparison to the public benchmark VizNet for the task
of semantic column-type annotation. Overall, we find the outcome
that LLMs perform considerably worse on Goby compared to the
public data benchmark.

The semantic column-type annotation task is a multi-class classi-
fication problem. We evaluate using the standard metrics precision
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Table 2: Performance discrepancies in LLM performance for
column-type annotation on our enterprise benchmark Goby
versus the public benchmark VizNet.

Metric Goby VizNet [11] Difference
Precision P 77.1% 91.2% 14.1%
Recall R 70.0% 88.8% 18.8%
F; Score 0.71 0.89 0.18

P, recall R and their harmonic mean, the F; score. Precision is de-
fined as ratio of true positives to the sum of true positives and false
positives. Recall is defined as the ratio of true positives to the sum
of true positives and false negatives. The F; score reflects a metric
in which precision and recall are equally weighted. Because of the
multi-class setting, the reported scores are macro-averaged. Addi-
tionally, we note that the LLM can decline to answer or provide an
unparsable answer, lowering the recall but not precision.

The underlying approach for extracting semantic column-type
predictions is the same as the CHORUS system [11], we refer the
reader to that paper for more details. In this experiment, the model
is given access to the set of valid labels. We will remove this as-
sumption in a later experiment.

Empirically, we find a gap between prior benchmarks and Goby
of 0.18 F; points, 14.1 percentage points of precision and 18.8 pre-
centage points of recall. This is shown in Table 2.

4.2 Tterative dictionary construction

The first step in our approach involves synthesizing a data dictio-
nary and then generalizing it into an ontology. A Data dictionary
is a list of possible data types and acceptable values, optionally
with some metadata on their semantic meaning. Ontologies can be
considered to be data dictionaries with a hierarchy.

The development of data dictionaries involve making many ar-
bitrary distinctions. Label granularity is an example: the curator
may choose to have the classes street address, full address
and PO box or combine them under just one heading, address.
Further, because of coordination failure between multiple labelers,
redundant synonymous labels such as wages and salary can be
present. As such, finding a perfect match for the dictionary created
by a human curator is not the goal.

Now we start testing the ability of large language models to iter-
atively construct the class labels. In this experiment, we randomly
sample from the Goby tables to learn the classes. The process is
seeded with a small number of starting classes. We then consider a
column at a time, presenting a sample of 5 unique values from that
attribute. If the LLM predicts an existing class for the column, we
continue onto the next column. Otherwise, we extract a new label
for the column and add that to the pool of labels. The process is
terminated when the quiescence condition is met: the observation
of 5 tables sequentially, all of which do not require the creation of
any new labels.

The evaluation metric here is coverage, the portion of ground-
truth label for which there exists a synthesized label. We find that
the LLM can obtain 70.5% coverage. This is shown in Table 3. In
the 29.5% of classes that are not recovered, 20% are due to incorrect
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Table 3: Ability to reconstruct classes. This table of the per-
centage of classes were we able to infer, as compared to the
number of classes in the ground truth labels.

True Label Predicted Label
Exact Match (71%)

LOC1.ADDRESS Address

HOURS OperatingHours
LOC1.LON Geolocation
Semantic Match (20%)

STATE Location

ZIP Location

No Match (9%)

DESCRIPTION Activity

granularity and 10% are semantically wrong. This motivates the
next experiment to recover from granularity failures.

4.3 Building a Hierarchy

We address the challenge of label granularity by learning an on-
tology: a structure of classes. Starting with the data dictionary of
the relevant classes, we aim at the goal of creating an ontology. We
consider this ontology successful if it faithfully captures all ground-
truth, human-labeled classes. We show an example in Figure 5. In
section 4.3, we will show that such a synthesized ontology can cap-
ture 100% of the ground-truth labels and resolves the granularity
issue.

First, we test the LLM’s ability to transform its predicted classes
into a hierarchy. We build the tree in an iterative approach, similar
to the class learning prior. The main difference is that we utilize
batching to give the model enough context to select appropriate
superclasses. We find this a resounding success: the model can
produce superclasses that have 100% coverage of both the learned
and ground truth classes. We show the learned ontology in Figure 5.
We also show the mapping from ground truth labels to the ontology
in Table 4.

Now that we have the ontology, integrating a hierarchical ap-
proach into LLM requires a number of architectural decisions that
we experiment with in the next sub-section, section 4.4. As we will
see, how the hierarchy is integrated into the LLM makes a large
impact on the performance.

4.4 Encoding: Full context required

Once the ontology is learned, it must be encoded into the language
model for prediction. We investigate several methods of integrating
hierarchical information into LLMs. These included both archi-
tectural and semantic approaches. We consistently found that ap-
proaches that presented the full context to the LLMs outperformed
those which attempted to feed only the relevant context.
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Figure 2: Mechanism of grammar-constrained decoding
(GCD). GCD is applied to ensure the LLM complies with the
ontology to find for given data instance a correct hierarchical-
classes. Possible classes are constrained to the given dictio-
naries and relations are based on the previous layer. During
decoding only valid token continuations compliant with the
grammar (shown in green) are considered. Tokens outside
the grammar (shown in red) are rejected.

Grammar-constrained decoding. Large language models perform
sampling to extract tokens from the conditional token probability
distributions they output [6]. Common approaches include beam
search, top-k, temperature and nucleus sampling. This architecture
leads to the possibility of constraining the search space of the sam-
pling to match some grammar [22]. Figure 2 shows the mechanism
by which this approach works.

LISTING 4.1 (SAMPLE GBNF GRAMMAR USED FOR GCD).
root ::= answer

answer ::= "Semantic-type::" property

property ::= event | location | contact | misc

event ::= "EVENT::" sub-event

sub-event ::= "TITLE" | "STARTDATE" | "DURATION"
location ::= "LOCATION::" sublocation

sublocation ::= "LAT" | "LONG" | "ZIP" | "CITY" | "STATE" ...
contact ::= "CONTACT::" sub-contact

sub-contact ::= "WEBSITE" | "URL" | "PHONE" | "EMAIL" ...
meta ::= "META::" sub-misc

sub-meta ::= "RATING" | "TOTAL_NUMBER_OF_RATINGS"

Step-by-step prompting. Another method to encode the ontology
is presenting a series of prompts within the same context. This is
illustrated in figure 4. Starting at the root of the class tree, the model
is presented with the first level of the ontology. Once a super-class
is chosen, the children of that node are presented to the model in
the next prompt. This process is repeated until the model selects
a leaf node. This approach can be considered a chain-of-thought
method.

Tree serialization. The final approach we consider is serializing
the class tree and providing it to the model. This involves traversing
the tree in pre-order and enumerating each path from the root. This
allows the model’s attention mechanism to selectively attend to
more valid paths in the tree. Surprisingly, as will will show shortly,
this approach has the most robust performance.
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Legend: Instruction, Data sample, Metadata, Task-
specific knowledge, Prefix.

You are a helpful data analysis assistant. Suggest a
semantic type from these classes. Reply with a single
class.

CLASSES:

PROPERTY::EVENT_INFO

PROPERTY::EVENT_INFO::TITLE
PROPERTY::EVENT_INFO::DURATION

PROPERTY::CONTACT_DETAILS
PROPERTY::CONTACT_DETAILS::PHONE_NUMBER

TABLE: serialized_table
COL-NAME:‘col_name*
VALUES: sampled values
SEMANTIC-TYPE:

Figure 3: Tree-serialization approach. This figure shows the
model prompt when serializing the ontology tree and pre-
senting it to the model as one structure.

You are a helpful [...]

EVENT_INFO,
CONTACT_DETAILS,
LOCATION_INFO

*CO,\ITACTiDETAILS *

* EVENT _INFO

Select a
subclass of Select a subclass of
EVENT INFO CONTACT DETAILS
VENUE, PHONE_NUMBER R
START TIME, FAX
START DATE, SIGNUP_URL

¥ ¥ ¥

Figure 4: Step-by-step prompting. The model navigates a tree
of potential prompts by making completions at each node.
This figure shows the sequence of prompts used in this mode
of operation, allowing the LLM to reason step-by-step. The
prompt structure and table serialization are in line with those
shown in Figure 3.

Evaluation. We consider a prediction correct if it matches the
ground truth label in our mapping, or if the most-recent common
ancestor (MRcA) is the direct parent of the prediction. We find the
tree-serialization approach most effective, bringing total F; score
to 0.85. Grammar-based decoding paradoxically results in a lower
score F; 0.66, while step-by-step approach achieves a modest lift of
0.05 F; points from the baseline of 0.71. This is in line with prior
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Table 4: Mapping the ground-truth classes into our ontol-
ogy. This table shows that our ontology can accommodate
all the ground-truth labels, resolving the granularity issue
illustrated in Table 3. Overall, we achieve 100% coverage of
the classes.

Learned Mapping Ground Truth Label

PROPERTY:LOCATION:FULL_ADDR LOC1.ADDRESS

LOC1.STREET ADDRESS
CALL TO_ACTION_URL

PROPERTY::CONTACT::URL
WEBSITE
OTHER_URL
VENUE_LINK
MORE_INFO

Property

Event Location Contact Meta

TITLE LAT WEBSITE IMAGE
STARTDATE LON URL # OF
RATIN
DURATION ZIP PHONE GS
ARTIST STATE EMAIL
FULL_ADDR

Figure 5: Example of the synthesized ontology. The base
classes, in black, are first learned iteratively. The super-
classes, in orange, and their relations are built in the
ontology-learning step.

work that finds the GCD produces sequences that have overall
low probability [14]. We note that the commonality between the
two lower-performing approaches is that the LLM cannot examine
the whole ontology: in the step-by-step prompts only one path is
examined (no backtracking) while in the GCD-approach only nodes
the beam search examines are considered. The approach that loads
the whole ontology into the context performs best.

5 DISCUSSION

Our findings support the hypothesis that enterprise data presents
new challenges to LLMs not captured by public-data benchmarks.
We find that a hierarchical approach allows for successfully learning
labels and making predictions on enterprise data.

Dataset contamination or distribution shift? Two principal mecha-
nisms may explain the observed performance gap. The data contam-
ination theory posits that the LLMs have been trained on (portions
of) test set of the benchmark dataset. This is because the massive
corpuses they are trained on are composed largely of web data,
which may include the downstream test datasets. Further, LLM
have the demonstrated ability to “memorize” discrete sequences
(such as individual addresses or phone numbers) and recall them
on demand—albeit only when these sequences are duplicated many
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times in the corpus, at least 10-100 occurrences [10]. This con-
tamination has been confirmed for a number of benchmarks. For
instance, the MMLU (Massive Multitask Language Understanding)
benchmark was also being tested and GPT-4 was able to accurately
guess missing options in the benchmark test with 57% exact accu-
racy [4].

Another explanation is dataset shift. As explained earlier, this in-
volves a change in the generative distribution underlying the train-
ing and runtime populations. These models also struggle on recall of
tail entities, averaging 6-20% accuracy across all domains [20]. For
tail entities in specialized domains, such as literature or academia,
accuracy on tail entities drops to 3-5% range [20]. This is evidence
against the LLM memorizing benchmark answers for these more
specialized benchmarks. Other evidence in support of the data shift
cause is recent work which tests LLM performance on data drawn
from the same distribution as the benchmarks but produced after
model training. On this sub-population which temporally cannot
be subject to data contamination, the authors find minimal change
in model performance [11].

Cost. This also remains an elusive facet of LLM applications.
Generally, the volume of “dark” enterprise data dwarfs that which
is publicly available. Findings that LLMs are too cost prohibitive
to run on public data are magnified in the enterprise setting, par-
ticularly due to extensive data duplication in the business setting.
Effective table summarization becomes key: it is necessitated by
the limited context window size of language models, which causes
an inability to ingest whole tables. Current approaches for sum-
marization are ad-hoc—a principled approach would be welcome.
Scalability remains a unsolved challenge too. The superior per-
formance of the (relatively context-consuming) tree serialization
approach raises concerns.

The insights gleaned in this work translate more widely into
general data management problems: we have a work-in-progress
on applying lessons learned in this approach to problem outside
data integration, focusing on natural language to query translation
in the enterprise.

6 CONCLUSION

In this paper, we introduce Goby, the first data integration bench-
mark utilizing real enterprise data. We show that LLM-based ap-
proaches to data integration tasks such as semantic column type
annotation, having been trained on public data, experience a sig-
nificant drop in performance on enterprise data (i.e., evaluating
them on public benchmarks paints a false picture). More specifi-
cally, we show that out-of-the-box LLM performance on the Goby
Benchmark dataset is lower than that on public datasets such as
VizNet. We then propose and test approaches to bridge the gap
between publicly trained LLMs and their use for enterprise data
integration, primarily based on hierarchical clustering. We find
these approaches effective in remedying the discovered gap for the
semantic column type annotation task and invite our community
for further research using on our Goby Benchmark which we are
making publicly available.
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