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ABSTRACT

Leading large language models (LLMs) are trained on public data.

However, the majority of the world’s data is dark data not publicly

accessible, mainly in the form of private organizational data or

enterprise data. We show that the performance of methods based

on LLMs seriously degrades when tested on real-world enterprise

datasets. Current benchmarks, based on public data, overestimate

the performance of LLMs. We release a new benchmark dataset,

the Goby Benchmark, to advance discovery in enterprise data inte-

gration. Based on our experience with this enterprise benchmark,

we propose techniques to uplift the performance of LLMs on en-

terprise data, including: (1) hierarchical annotation, (2) runtime

class-learning, and (3) ontology synthesis. We show that, once

these techniques are deployed, the performance on enterprise data

becomes on par with that of public data. The Goby benchmark can

be obtained at https://goby-benchmark.github.io/.

1 INTRODUCTION

Despite intensive academic and industrial interest, the uptake of

large language models (LLMs) for data management and integration

tasks remains limited in practice. A study by Gartner reports that at

least 30% of LLM-based enterprise projects will be abandoned after

proof of concept by the end of 2025 [19]. For example, commercial

LLM-based legal research tools by industry leaders LexisNexis and

Thomson Reuters were measured to have only 40-65% accuracy [12].

Their failures were su�ciently high pro�le that John Roberts, chief

justice of the United States Supreme Court, rebuked lawyers using

LLM-based tools in his 2023 summary of the state of the judicial

system [16].

LLM-based techniques have been intensively studied for data

integration over the last two years by the database community,

including entity matching [13], column type annotation [11], wrap-

per induction [2], and candidate key identi�cation [23]. Industry

data management practitioners have also embraced these tech-

niques, with LLM-based techniques deployed in Azure Data Lake,

Microsoft Excel, and Amazon Q for Business. Several startups in

the LLM-for-data-management space, including Unstructured and

Numbers Station, have attracted tens of millions in investment

dollars. Interest continues to be high.
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Public benchmarks are widely used to quantify LLM performance

on these tasks. Examples include VizNet [7], T2Dv2 [15], and FDA-

510k. These benchmarks are overwhelmingly comprised of public

data collected from the web. In the VizNet dataset, 25% of data is

from open government datasets (e.g.,World Bank and NOAA tables),

and another 25% is from public web tables. In T2Dv2, 100% of tables

are fully wiki-type tables. The most popular label in that dataset

is PopulatedPlace, which corresponds to well-known cities and

towns. In FDA-510k, the dataset is comprised entirely of public

Federal Food and Drug Administration reports on the web.

On these benchmarks, several studies �nd LLM-based approaches

are state of the art [11]. However, the aforementioned Gartner re-

port �nds that the most common reason for abandoning LLM-based

technology is the low quality of results. This posits the question:

what explains the LLM performance gap between research and prac-

tice?

These challenges are not new. An industry survey by Rexer

Analytics in 2023 reports that only 32% of machine learning im-

plementations in the enterprise achieve deployment [1]. Among

solutions that involve the introduction of fundamental architectural

changes (such as LLMs), only 22% reach successful deployment. A

signi�cant reason is population drift: the data on which the model

is deployed are signi�cantly di�erent from the data it is trained

on. An in�uential early work indicates that at consumer �nance

�rms, learned approaches last two months before they are no longer

e�ective on the shifting data distribution and must be re-trained [5].

This highlights a fundamental limitation of LLMs in data inte-

gration: out-of-the-box models like GPT are likely to fail. A survey

on LLM-based data annotation emphasizes that while LLMs can

automate labeling processes, they often inherit biases from their

training data and exhibit overcon�dence in their predictions. Con-

sequently, companies frequently rely on human oversight to ensure

the accuracy and reliability of the labeled data [21].

This work is a call to action: evaluating LLM performance on public

data management benchmarks risks presenting an overly rosy picture

of its abilities. In the �rst part of the paper, Section 2, we discuss

data management benchmarks, explaining that they can exist on

a spectrum of public-to-private sources. Then, we present Goby,

a new benchmark built with real enterprise in Section 3. Finding

that LLM-based approaches perform more poorly on the Goby

Benchmark than comparable public-data benchmarks, we propose

new concepts for adapting LLMs to enterprise data and empirically

evaluate these in Section 4. Finally, we discuss our results and

future directions in Section 5. To resolve this data gap, we in the

data management community must “do the work” and develop more

realistic benchmarks.
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2 BACKGROUND

Benchmarks and their accompanying datasets can be categorized,

in general terms, into two buckets: public and private. On the fully-

public end, there are standard benchmarks such as VizNet [7] and

GitTables [9]. These contain verbatim public data from web sources.

Another well-known example is the Spider Benchmark [24], which

compiles databases from sources such as Wikipedia but generates

questions over them using the traditional graduate-student-based

approach. On the other end, there are private datasets made from

proprietary data sources and labeled with proprietary labels, which

are not possible to understand outside the originating organization.

Our dataset is oriented towards these private datasets.

Further, separate from the issue of public accessibility is the

over-representation of some high-visibility domains in benchmarks.

Examples of such domains are celebrities, government, and geogra-

phy. While these domains are very well-represented on the public

web, they do not make up the bulk of enterprise data.

Task suitability is another concern. Many existing benchmarks

are constructed in a manner not authentic to enterprise use. These

benchmarks are created by crawling the web for speci�c patterns

that are easy to identify. For example, GitTables is constructed by

searching GitHub for patterns such as id and state, and similarly,

for T2Dv2, tables that were easy to annotate were selected from

Wikipedia. In other words, the “how” of data collection dictates the

“what” of the database content. On the other hand, organizations

generally decide on “what” datasets they have a business need for

and then the “how” of data collection.

Virtually all academic systems are evaluated on public datasets

(e.g., [2, 11, 13]). Gartner reports that lack of ability to perform

evaluation is common in enterprise setting: industry generally does

not have its own benchmarks [19]. In personal communication with

practitioners building data management systems, we have found

this to be true.

Many research systems focused speci�cally on public data, such

as the seminal WebTables system [3]. Prior work noted the poor

generalization of many deep learning techniques [11]. The reason

for that is the high risk of over�tting to the training data, which

restricts the model’s ability to generalize and adapt to new, unseen

data and contexts. For example, consider the performance of the

deep learning model DoDuo [18]. In the setting where it is trained

and tested on the same data distribution (VizNet), the performance

is strong. However, when we attempt to generalize by training on

the similarly structured Wiki dataset and testing it on VizNet, its

performance drops by at least 30% in terms of F1-score, precision,

and recall [11]. This comparison is merely between two public

datasets with very similar data types and structures. An unseen

private dataset, which often has unique structures and proprietary

labels, may pose an even bigger challenge. This underlines the

necessity for more robust approaches to bridge the gap between

private and public data sources.

We focus this paper on a speci�c data integration task: semantic

column type annotation [8]. Given a relational table, column anno-

tation involves assigning to each column a type which corresponds

to the type of values stored in that column. The classes are drawn

from a set of labels: if those labels are basic types (e.g., date, time),

the problem is called atomic type annotation, while if the labels

Table 1: Key characteristics of the Goby dataset.

Goby

# Tables 1 187

Avg. Rows / Table 3 405

Avg. Col / Table 20

Total Rows 4 042 519

Total Columns 23 203

have semantic meaning (e.g., birthday, deadline date, best-by date),

it is semantic. We focus on the latter formulation in this paper.

3 GOBY BENCHMARK

Goby is a benchmark dataset we derive from a production industry

workload in the event promotion andmarketing setting. The dataset

was compiled around 2017 and encompasses over 4 million events.

Constructing Goby . The dataset was constructed over several

years. First, over one thousand wrappers were written by profes-

sional developers in order to convert web pages and APIs into

relational tables. Once those wrappers were developed, they were

executed to obtain 4.1 million rows of data, each corresponding to

an event. Next, the team developed a set of semantic types common

to all the events. The labels were applied to 40% of the columns.

The rest of the columns were miscellaneous data not of interest to

the task. Finally, the semantic type mappings were used to create a

universal schema which uni�es all the source tables into one.

Benchmark components. Its components are:

(1) a semantic type hierarchy developed by domain experts

(2) nearly 1 200 source tables, each corresponding to the output

of one wrapper

(3) mapping each annotatedwith the semantic types of its columns

(4) a universal table in which all data from the source tables is

uni�ed

Benchmark Characteristics. All in all, Goby is comprised of a

total of 4.04 million rows and 23 203 columns. Key characteristics

quantifying the dataset are provided in Table 1.

Goby exhibits high task suitability for data integration tasks. This

is because the constructionmethod is realistic and tailored for a data

integration pipeline. We also highlight that Goby is semantically-

rich as compared to with other benchmarks. The most common

labels are those related to events, such as location and organizer

details. Meanwhile, typical benchmarks contain labels with low

semantic information, for example the three most popular semantic

types in one benchmark [9] are the generic labels id, name and

type.

Further, because of the method of construction, Goby has more

realistic table structure. This can be seen in the average number

of rows: 3 400, and columns: 20. This re�ects the need to have a

minimum amount of business information about each event. Prior

benchmarks such as VizNet have an average of only 3 columns

per dataset, while T2Dv2 has only 118 rows per table; both are

unrealistic. The larger number of rows and columns re�ects the

reality of enterprise data.
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Table 3: Ability to reconstruct classes. This table of the per-

centage of classes were we able to infer, as compared to the

number of classes in the ground truth labels.

True Label Predicted Label

Exact Match (71%)

LOC1.ADDRESS Address

HOURS OperatingHours

LOC1.LON Geolocation

...

Semantic Match (20%)

STATE Location

ZIP Location

...

No Match (9%)

DESCRIPTION Activity

...

granularity and 10% are semantically wrong. This motivates the

next experiment to recover from granularity failures.

4.3 Building a Hierarchy

We address the challenge of label granularity by learning an on-

tology: a structure of classes. Starting with the data dictionary of

the relevant classes, we aim at the goal of creating an ontology. We

consider this ontology successful if it faithfully captures all ground-

truth, human-labeled classes. We show an example in Figure 5. In

section 4.3, we will show that such a synthesized ontology can cap-

ture 100% of the ground-truth labels and resolves the granularity

issue.

First, we test the LLM’s ability to transform its predicted classes

into a hierarchy. We build the tree in an iterative approach, similar

to the class learning prior. The main di�erence is that we utilize

batching to give the model enough context to select appropriate

superclasses. We �nd this a resounding success: the model can

produce superclasses that have 100% coverage of both the learned

and ground truth classes. We show the learned ontology in Figure 5.

We also show the mapping from ground truth labels to the ontology

in Table 4.

Now that we have the ontology, integrating a hierarchical ap-

proach into LLM requires a number of architectural decisions that

we experiment with in the next sub-section, section 4.4. As we will

see, how the hierarchy is integrated into the LLM makes a large

impact on the performance.

4.4 Encoding: Full context required

Once the ontology is learned, it must be encoded into the language

model for prediction. We investigate several methods of integrating

hierarchical information into LLMs. These included both archi-

tectural and semantic approaches. We consistently found that ap-

proaches that presented the full context to the LLMs outperformed

those which attempted to feed only the relevant context.

prompt LLM label

Grammar-constrained decoding (GCD):

C = 0

C = 1

C = 2

C = 3 ...

property

event location contact misc bees ...

lat long apple ...

Figure 2: Mechanism of grammar-constrained decoding

(GCD). GCD is applied to ensure the LLM complies with the

ontology to �nd for given data instance a correct hierarchical-

classes. Possible classes are constrained to the given dictio-

naries and relations are based on the previous layer. During

decoding only valid token continuations compliant with the

grammar (shown in green) are considered. Tokens outside

the grammar (shown in red) are rejected.

Grammar-constrained decoding. Large language models perform

sampling to extract tokens from the conditional token probability

distributions they output [6]. Common approaches include beam

search, top-: , temperature and nucleus sampling. This architecture

leads to the possibility of constraining the search space of the sam-

pling to match some grammar [22]. Figure 2 shows the mechanism

by which this approach works.

Listing 4.1 (Sample GBNF Grammar used for GCD).

root ::= answer

answer ::= "Semantic-type::" property

property ::= event | location | contact | misc

event ::= "EVENT::" sub-event

sub-event ::= "TITLE" | "STARTDATE" | "DURATION" ...

location ::= "LOCATION::" sublocation

sublocation ::= "LAT" | "LONG" | "ZIP" | "CITY" | "STATE" ...

contact ::= "CONTACT::" sub-contact

sub-contact ::= "WEBSITE" | "URL" | "PHONE" | "EMAIL" ...

meta ::= "META::" sub-misc

sub-meta ::= "RATING" | "TOTAL_NUMBER_OF_RATINGS" ...

Step-by-step prompting. Another method to encode the ontology

is presenting a series of prompts within the same context. This is

illustrated in �gure 4. Starting at the root of the class tree, the model

is presented with the �rst level of the ontology. Once a super-class

is chosen, the children of that node are presented to the model in

the next prompt. This process is repeated until the model selects

a leaf node. This approach can be considered a chain-of-thought

method.

Tree serialization. The �nal approach we consider is serializing

the class tree and providing it to the model. This involves traversing

the tree in pre-order and enumerating each path from the root. This

allows the model’s attention mechanism to selectively attend to

more valid paths in the tree. Surprisingly, as will will show shortly,

this approach has the most robust performance.
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times in the corpus, at least 10-100 occurrences [10]. This con-

tamination has been con�rmed for a number of benchmarks. For

instance, the MMLU (Massive Multitask Language Understanding)

benchmark was also being tested and GPT-4 was able to accurately

guess missing options in the benchmark test with 57% exact accu-

racy [4].

Another explanation is dataset shift. As explained earlier, this in-

volves a change in the generative distribution underlying the train-

ing and runtime populations. These models also struggle on recall of

tail entities, averaging 6-20% accuracy across all domains [20]. For

tail entities in specialized domains, such as literature or academia,

accuracy on tail entities drops to 3-5% range [20]. This is evidence

against the LLM memorizing benchmark answers for these more

specialized benchmarks. Other evidence in support of the data shift

cause is recent work which tests LLM performance on data drawn

from the same distribution as the benchmarks but produced after

model training. On this sub-population which temporally cannot

be subject to data contamination, the authors �nd minimal change

in model performance [11].

Cost. This also remains an elusive facet of LLM applications.

Generally, the volume of “dark” enterprise data dwarfs that which

is publicly available. Findings that LLMs are too cost prohibitive

to run on public data are magni�ed in the enterprise setting, par-

ticularly due to extensive data duplication in the business setting.

E�ective table summarization becomes key: it is necessitated by

the limited context window size of language models, which causes

an inability to ingest whole tables. Current approaches for sum-

marization are ad-hoc—a principled approach would be welcome.

Scalability remains a unsolved challenge too. The superior per-

formance of the (relatively context-consuming) tree serialization

approach raises concerns.

The insights gleaned in this work translate more widely into

general data management problems: we have a work-in-progress

on applying lessons learned in this approach to problem outside

data integration, focusing on natural language to query translation

in the enterprise.

6 CONCLUSION

In this paper, we introduce Goby, the �rst data integration bench-

mark utilizing real enterprise data. We show that LLM-based ap-

proaches to data integration tasks such as semantic column type

annotation, having been trained on public data, experience a sig-

ni�cant drop in performance on enterprise data (i.e., evaluating

them on public benchmarks paints a false picture). More speci�-

cally, we show that out-of-the-box LLM performance on the Goby

Benchmark dataset is lower than that on public datasets such as

VizNet. We then propose and test approaches to bridge the gap

between publicly trained LLMs and their use for enterprise data

integration, primarily based on hierarchical clustering. We �nd

these approaches e�ective in remedying the discovered gap for the

semantic column type annotation task and invite our community

for further research using on our Goby Benchmark which we are

making publicly available.
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