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ABSTRACT 

Complications during surgery or severe medical conditions often require immediate intervention to prevent adverse outcomes. 
This study proposes a simulation-based framework for an automated cardiac support system that integrates real-time heart rate 
monitoring, CPR actuation, and drug delivery using advanced technologies. The system utilizes an FPGA-based controller to 
process patient data from ECG sensors and pulse oximeters, enabling multi-parameter decision-making based on heart rate and 
oxygen saturation levels. Bradycardia (<50 bpm with SpO₂ <95%) triggers automated CPR, while tachycardia (>120 bpm with 
SpO₂ ≥95%) activates intravenous drug delivery of adenosine, followed by a saline flush. LiDAR technology is employed to 
precisely map the patient’s chest contours, ensuring optimal placement and alignment of the CPR device for effective 
compressions. MATLAB simulations validate the accuracy of LiDAR-based chest mapping with an error margin of ±2 mm, 
while FPGA simulations demonstrate timely responsiveness with CPR activation occurring within 10 ns and drug delivery also 
initiated within 10 ns. The results highlight the feasibility of integrating these technologies into a unified framework for real-
time cardiac support. While this study is limited to simulations conducted using LabVIEW, MATLAB, and Xilinx Vivado, it 
provides a theoretical foundation for future prototyping and experimental validation using CPR manikins and intravenous drug 
setups. This approach has the potential to revolutionize emergency response protocols by offering reliable and cost-effective 
automated cardiac care in critical settings. 
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1. INTRODUCTION 

Cardiac complications during surgery pose significant risks to patient safety, often requiring 
immediate and effective intervention to prevent adverse outcomes. Traditional methods heavily depend 
on the swift response of medical personnel to administer CPR and appropriate drugs, which can be 
particularly challenging in the time-sensitive environment of an operating room [1]. Recent advancements 
in medical technology offer opportunities to automate and enhance these critical responses, potentially 
improving patient outcomes even outside a hospital [2]. This paper explores the development of an 
automated emergency CPR support system equipped with an integrated drug delivery mechanism. The 
system continuously monitors the heart rate of a patient undergoing an operation or in a severe medical 
condition, using predefined thresholds to trigger CPR when the heart rate drops critically low and 
administer drugs when the heart rate exceeds safe limits. This dual-function approach aims to provide 
seamless cardiac support, reduce the workload on medical staff, and increase the chances of patient 
survival during cardiac events. 

Automated CPR devices are designed to ensure consistent and effective chest compressions during 
cardiac arrest, making a critical difference in life-threatening situations. One such device, the LUCAS 
(Lund University Cardiac Assist System), has become a trusted tool in emergency medical services and 
hospitals. Unlike manual CPR, which can vary in quality due to fatigue or human error, devices like 
LUCAS consistently deliver reliable compressions, improving the chances of patient survival [3], which 



can be crucial in maintaining perfusion during cardiac arrest. However, these devices are primarily used 
in pre-hospital and emergency settings and are not typically integrated with surgical procedures or 
automated drug delivery systems. Automated drug delivery systems have been gaining attention for their 
ability to adjust medication administration based on real-time physiological data. In the context of cardiac 
care, such systems have been explored for delivering antiarrhythmic drugs and managing blood pressure 
[4]. For instance, insulin pumps in diabetes management have successfully demonstrated the efficacy of 
automated drug delivery [5]. While these systems showcase the potential of automation (under medical 
team administration) in medical applications, their integration with emergency CPR systems remains 
limited. Intraoperative cardiac monitoring is essential for detecting and responding to hemodynamic 
changes during surgery. Technologies such as electrocardiography (ECG) and pulse oximetry are standard 
in operating rooms to monitor heart rate and oxygen saturation. Monitoring SpO₂ provides critical insights 
into peripheral perfusion and oxygen delivery to tissues, enabling timely detection of hypoxemia, which 
may exacerbate cardiac complications during surgery or emergencies. Advanced monitoring systems 
leverage machine learning algorithms to forecast cardiac events, facilitating proactive medical 
interventions. For example, a study in npj Digital Medicine introduced and validated a real-time machine 
learning model for predicting in-hospital cardiac arrests using ECG-based heart rate data [7]. This model 
showed remarkable potential for early detection, enabling prompt medical action. Additionally, a meta-
analysis published in Scientific reports emphasizes the effective predictive capabilities of machine 
learning algorithms, particularly support vector machines and boosting methods, in cardiovascular 
diseases [8]. These insights highlight the significant role of machine learning in improving the accuracy 
of cardiac event predictions.   

Despite these advancements, there is a need for systems that not only monitor but also autonomously 
respond to critical cardiac events by initiating CPR and administering drugs. This study introduces a 
conceptual model for integrating automated CPR with drug delivery systems, aiming to evaluate its 
theoretical feasibility and potential impact. Existing research has primarily focused on individual 
components, such as mechanical/auto CPR devices [9] or app-based drug delivery systems [10], rather 
than a combined approach. A few studies have explored the potential benefits of such integration in 
improving patient outcomes during cardiac arrest [11][12]. As the integration of automated CPR with drug 
delivery is a relatively novel concept, our work establishes a theoretical framework, providing a 
foundation for future prototyping and experimental validation.  

This paper takes only the initial step in that direction. FPGA (Field-Programmable Gate Array)-based 
systems have gained significant attention in health monitoring applications due to their flexibility, real-
time processing capabilities, and low latency. These systems are particularly well-suited for applications 
requiring real-time bio-signal processing, such as ECG (electrocardiogram) and SpO2 monitoring, where 
FPGAs efficiently handle signal acquisition, filtering, and QRS complex detection, enabling arrhythmia 
classification and heart rate variability analysis [13]. Similarly, EEG (electroencephalogram) monitoring 
systems leverage FPGAs for real-time brainwave analysis, supporting applications like seizure detection 
and brain-computer interfaces [14]. In wearable health monitoring devices, FPGAs process data from 
multiple sensors to track vital signs, including heart rate, blood pressure, and blood oxygen saturation 
(SpO₂), while enabling wireless communication for remote health tracking [15]. Moreover, FPGAs are 
utilized in advanced medical imaging modalities, such as ultrasound and CT systems, to accelerate image 
processing and enhance diagnostic capabilities [16]. Their inherent advantages, including parallel 
processing, reconfigurability, and low power consumption, make FPGAs an ideal choice for multi-
parameter health monitoring systems that combine ECG, EEG, and temperature data into a single platform 
[17]. These characteristics highlight the potential of FPGA-based solutions in improving real-time health 



monitoring and diagnosis. This work focuses on developing a simulation-based framework for an 
automated cardiac support system. The proposed system modeled using LabVIEW, MATLAB, and Xilinx 
Vivado, demonstrates the feasibility of integrating real-time heart rate and blood oxygen level monitoring, 
CPR actuation, and automated drug delivery. While this study does not include physical hardware 
implementation, it provides a theoretical foundation for future prototyping and experimental validation 
upon securing funding. Unlike existing systems that focus on individual components such as mechanical 
CPR devices or automated drug delivery units, this work integrates these functionalities into a unified 
framework controlled by an FPGA. The novelty lies in combining real-time heart rate monitoring with 
LiDAR-based chest mapping (simulated in MATLAB) and dynamic drug dosage computation (modeled 
in Verilog). The subsequent section provides an in-depth discussion of the integration of automated CPR 
with drug delivery based on an FPGA-based controller. 

2. METHODOLOGY 

The proposed emergency CPR support system with integrated drug delivery is designed to provide 
real-time cardiac support for patients during and after surgery. A flowchart indicating the steps involved 
shown in Fig. 1. The system consists of four main components: a heart rate monitoring module (ECG 
machine), a CPR actuation mechanism, an automated drug delivery unit, and a FPGA based controller to 
control and keep track of heartbeats and initiate the CPR system or drug delivery based on real-time 
anomalies. The detailed procedure is described in the following sub-sections. 
2.1 Heart Rate Monitoring Module 

The system uses high-precision electrocardiography (ECG) sensors to continuously monitor the 
patient’s heart rate and rhythm. Additional sensors, such as pulse oximeters, provide supplementary data 
on oxygen saturation levels (SpO₂). The FPGA-based controller [18] processes data from both sensors in 
real time using algorithms programmed to detect abnormal conditions such as bradycardia (<50 bpm with 
SpO₂ <95%) or tachycardia (>120 bpm with SpO₂ ≥95%) [19]. By combining these parameters, the system 
ensures that decisions are made based on comprehensive physiological data rather than relying solely on 
heart rate thresholds. 
2.2 CPR Actuation Mechanism 

The LUCAS chest compression system [20] is integrated into the system to deliver chest 
compressions. The device is positioned over the patient’s chest and operates based on predefined 
compression depth and rate settings. We used LiDAR (Light Detection and Ranging) [21] based detection 
for auto-measuring the area of the chest to fit it properly to get the maximum therapeutic benefit. We 
programmed the LiDAR based CPR actuation in MATLAB platform, all the measurement calculation is 
discussed in more detail later in the results section. When the heart rate monitoring module (FPGA 
controller) detects bradycardia, the system activates the mechanical CPR device to initiate chest 
compressions. The device continues to operate until the heart rate returns to a safe level or medical 
personnel intervene. The LiDAR-based chest mapping process uses mathematical modeling to ensure 
precise alignment with patient contours, as described in detail in section 3.1. 
2.3 Automated Drug Delivery Unit 

The system includes reservoirs for storing emergency medications. We used “Adenosine” [22] as a 
drug because it does not make the blood thin [23]; if this were allowed to happen then the patient could 
die during the surgery due to excessive bleeding. Precision pumps are used to administer these drugs 
intravenously. We programmed the FPGA with a Verilog code to control the bradycardia and tachycardia 
situation effectively. Both the MATLAB and Verilog codes are available in the following GitHub 
repository: https://github.com/PranabeshTAMU/Automated_CPR. The Verilog code of the FPGA 



controller determines the drug dosage based on heart rate data. The whole system model is shown on 
Fig.2. We discussed the main algorithm of our code in the subsection below. 
2.4 Detection and Decision-Making by the FPGA Controller 

The algorithm continuously compares the heart rate to a predefined low threshold. If the heart rate 
drops below this threshold, the system classifies it as bradycardia and triggers the CPR actuation 
mechanism (Fig. 3). Similarly, the algorithm monitors heart rates exceeding a predefined high threshold. 
If the heart rate is too high, it triggers the drug delivery unit to administer a calming medication. CPR 
initiation starts upon detecting bradycardia, the algorithm sends a command to the CPR device to start 
compressions (Fig. 3). The device operates according to ACLS (Advanced Cardiac Life Support) 
guidelines [24]. Drug administration is initiated by tachycardia, the algorithm determines the appropriate 
drug and dosage. The system is designed to factor in patient-specific parameters such as weight, age, and 
medical history to personalize treatment. These parameters can be defined by the medical administration 
team to tailor drug dosage and interventions more accurately. However, in this simulation-based study, we 
did not use these patient-specific parameters. Instead, we relied on predefined drug doses as outlined in 
Table 3 (e.g., 6 mg for initial adenosine administration and 12 mg for a second dose if required). These 
predefined doses align with standard medical protocols for treating supraventricular tachycardia (SVT). 
Future work will involve incorporating patient-specific parameters into the system to enable dynamic and 
personalized decision-making during real-world applications. 
2.5 System block diagram 

This diagram (Fig.2) provides a high-level view of the entire system, showing the main components 
and their interconnections. The first one is the heart rate monitoring module consisting of ECG sensors, a 
data processor (inside the ECG machine itself, which provides all the collected data in real time), a CPR 
actuation mechanism which consists of a mechanical CPR device and a LiDAR, a control unit, a drug 
delivery unit with drug reservoirs and precision pumps. Both the modules are connected with a FPGA 
based central control unit. The heart rate monitoring module focuses on the components and connections 
within the heart rate monitoring module, which includes ECG sensors connected to the patient through 
lead wires, a signal conditioning circuit, and a data processor (controller) equipped with an analog-to-
digital converter (ADC) and a heart rate detection algorithm [25]. The connections are as follows: ECG 
sensors connect to the signal conditioning circuit, which then connects to the ADC. The ADC is linked to 
the controller, which communicates with the central control unit (Table 1). For the experiment that we 
carried out, we considered a mechanical CPR, which includes a motor/actuator, a compression pad, and a 
control unit featuring a motor driver and LiDAR feedback sensors (for positioning), and we activated it 
through the FPGA controller (Central control unit) when the bradycardia occurred. The central control 
unit (FPGA) connects to the LiDAR based control unit of the auto CPR, which links to the motor driver. 
The motor driver then connects to the motor/actuator, which is attached to the compression pad. Feedback 
sensors connect back to the control unit [26]. The automated drug delivery unit block diagram (Fig. 2) 
illustrates the components and connections within the drug delivery unit, which consists of multiple drug 
reservoirs and precision pumps (such as peristaltic or syringe pumps) components and processes, and it is 
similar like a continuous glucose monitor insulin pumps [27]. The following is a detailed description of 
how such a device consisting of the following components would work: LiDAR sensors, data processor 
(MATLAB-based), mechanical CPR device, control algorithm, and central control unit (FPGA controller). 
The CPR device is placed on or near the patient’s chest. The LiDAR sensors are activated to start scanning 
the chest. LiDAR sensors emit laser pulses and measure the time it takes for the pulses to return [28], 
mapping the chest area. The data processor creates a detailed 3D model of the chest. The LiDAR analyzes 
the chest dimensions and contour based on the 3D model, the adjustable pads on the mechanical CPR 



device expand or contract to fit the chest snugly. ensures that the device is correctly positioned for optimal 
compression, and this guarantees that the CPR device fits perfectly over the chest, maximizing 
effectiveness. Realtime adjustments are made to maintain correct placement and force, adjust in real-time 
to any changes in the chest contour during CPR, and maintain optimal performance. By integrating LiDAR 
technology with advanced control systems, this automated CPR device could significantly improve the 
precision and effectiveness of life-saving chest compressions in emergencies. The central control unit 
processes the heart rate data using decision-making algorithms to determine if CPR or drug delivery is 
needed. If CPR is required, the central control unit sends a control signal to the CPR actuation mechanism 
to initiate chest compressions. If drug delivery is needed, the central control unit sends a control signal to 
the automated drug delivery Unit to administer the appropriate medication. 

The following section presents simulated results from MATLAB and FPGA implementations, 
validating the feasibility of our proposed system. 

3. RESULTS 

In the previous section, it is shown how the proposed model works for a patient who is undergoing an 
operation/surgery and what the interconnection blocks of the proposed system are. In this section, the 
simulated result of the controller and the LiDAR-based chest area mapping is shown for auto CPR. 
3.1 CPR auto adjustment with LiDAR scanner 

LiDAR technology enables precise mapping of the patient’s chest by generating a dense point cloud 
representing its 3D geometry. To ensure accurate alignment of the CPR device, mathematical modeling is 
used to fit an ellipsoid to this data. In the context of LiDAR detection, an ellipsoid can be used to model 
the shape and distribution of points in a point cloud [29]. A LiDAR point cloud is a collection of data 
points in 3D space, typically generated by a LiDAR scanner that emits laser beams and measures the 
reflected signals to calculate distances. Each point in the cloud represents a position in 3D space and is 
characterized by its (x, y, z) coordinates. The LiDAR scanner collects a dense set of ‘N’ points, typically 
corresponding to the surface of an object—in this case, the patient's chest or any other target area for CPR 
adjustment. An ellipsoid is a three-dimensional geometric shape that resembles a stretched or compressed 
sphere, and it can be mathematically defined by its center, three principal radii (semi-axes), and 
orientation. It is used to fit the CPR object over the patient’s chest. An ellipsoid centered at (x0, y0, z0) 
with semi-axes a, b, and c aligned along the coordinate axes can be described by the equation: 
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Fitting an ellipsoid to a LiDAR point cloud typically involves the following steps: Collect the LiDAR 
point cloud data, which consists of points (xi, yi, zi). The centroid of the point cloud is calculated by taking 
the average of the x, y, z coordinates of all N points: 
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where N is the number of points, defines the size of the dataset being used to fit the ellipsoid. A larger N 
generally leads to better accuracy in modeling the surface shape because more data points allow the 
ellipsoid fitting algorithm to capture fine details of the 3D geometry. The higher the N, the more precise 
the ellipsoid fitting will be, ensuring the CPR device aligns accurately with the chest curvature. 
Calculation of the covariance matrix of the centered data points: 
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where C is the covariance matrix. Now perform eigen decomposition on the covariance matrix C: 
𝐶 = 𝑄𝛬𝑄்  (eq. 4) 

where Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The lengths of the 
semi-axes a, b, and c are related to the eigenvalues λ1, λ2, and λ3 of the covariance matrix: 

𝑎 = ඥλଵ, 𝑏 = ඥλଶ, 𝑐 = ඥλଷ   (eq. 5) 
The orientation of the ellipsoid is given by the eigenvectors in Q. Combining the center, semi-axes, and 
orientation, the equation of the ellipsoid in its general form (considering rotation) can be written as: 

𝑋்𝐴𝑋 = 1  (eq. 6) 
where, 𝑋 = (𝑥 − 𝑥଴) and 𝐴 = 𝑄𝛬ିଵ𝑄் which is derived from the eigenvalues and eigenvectors of the 
covariance matrix. The covariance matrix of the centered LiDAR point cloud data is calculated using 
Equation (3), where CC represents the variability of the points in each dimension. This matrix is essential 
for determining the shape and orientation of the ellipsoid that fits the data. Eigen decomposition of C, as 
shown in Equation (4), yields eigenvalues (λ1, λ2, λ3) and eigenvectors (Q), which correspond to the semi-
axis lengths (a, b, c) and orientation of the ellipsoid. These parameters are used to accurately model the 
patient's chest contour for optimal CPR device positioning. An example of this LiDAR point cloud and 
fitted ellipsoid parameters is shown on Table 2 and the 3D ellipsoid model generated by using the 
MATLAB code is shown in Fig. 4, the MATLAB code is available at the following GitHub repository: 
https://github.com/PranabeshTAMU/Automated_CPR.  LiDAR technology enables precise mapping of 
the patient’s chest by generating a dense point cloud representing its 3D geometry. MATLAB simulations 
validate that this approach achieves an average error margin of ±2 mm in chest contour alignment, 
ensuring optimal placement of the CPR device. 
3.2 FPGA simulation results based on ECG sensor’s real-time data of the patient 

We assume that the system is fully connected to the patient's body, enabling real-time monitoring and 
intervention. The heart rate and oxygen saturation (SpO₂) levels are continuously monitored using ECG 
sensors and pulse oximeters, ensuring comprehensive physiological data for decision-making. Using 
LiDAR-based detection, the CPR device adjusts its position over the patient’s chest to ensure accurate 
compressions. Meanwhile, an intravenous drug delivery module is positioned on the patient's arm for rapid 
medication administration. 

Figure 3 illustrates how the FPGA system monitors heart rate and oxygen saturation levels using ECG 
sensors and pulse oximeters. Bradycardia (<50 bpm with SpO₂ <95%) triggers CPR activation, while 
tachycardia (>120 bpm with SpO₂ ≥95%) initiates drug delivery. When the heartbeat is within the normal 
range (50–120 beats per minute), and SpO₂ levels are ≥95%, the controller remains inactive (Fig. 3), 
meaning neither the drug delivery nor CPR system is activated.  

An intravenous line (IV) inserted into a vein, typically in the patient's arm, provides direct access for 
administering medication. Adenosine is injected rapidly over a few seconds (rapid IV push), followed 
immediately by a saline flush to ensure quick and effective delivery into the bloodstream. The dosing 
guidelines for treating supraventricular tachycardia (SVT) in adults are as follows: Initial dose: 6 mg rapid 
IV bolus; Second dose: If ineffective within 1–2 minutes, a second dose of 12 mg may be given (Table 3). 
This activation is one-shot rather than continuous, requiring further decisions by medical personnel based 
on patient response. 

In our FPGA implementation, delays are controlled using counters within Verilog always blocks 
triggered by clock edges. Saline flush activation lasts for 10 clock cycles following drug delivery 
(drug_delivery_activate), ensuring timely administration of medication. Similarly, IV-line setup is 
automatically deactivated after 20 clock cycles to complete the drug delivery process. 



The FPGA simulation was conducted using Xilinx Vivado, with Verilog code programmed to model 
real-time decision-making based on patient heart rate and SpO₂ data. Heart rate values were simulated 
within a range of 30–150 bpm to cover bradycardia, tachycardia, and normal conditions. When 
bradycardia was detected (<50 bpm with SpO₂ <95%), the cpr_activate signal was asserted, triggering 
CPR actuation. Similarly, tachycardia detection (>120 bpm with SpO₂ ≥95%) asserted 
the drug_delivery_activate signal, initiating drug administration with dosage computed based on patient-
specific parameters. 

The simulation results of our test bench are shown in Fig. 5, where all values are presented in 
hexadecimal format. Figure 5 illustrates the output signals generated by the FPGA controller during 
simulation. These signals include cpr_activate, drug_delivery_activate, and drug_dosage, which 
dynamically adjust based on patient-specific parameters. Table 4 provides a breakdown of simulation 
results across different input conditions. 

The FPGA simulation results demonstrate that CPR activation occurs only when bradycardia (<50 
bpm) is detected alongside low oxygen saturation (<95%) and valid ECG signals. Similarly, drug delivery 
activation occurs within 10 ns of detecting tachycardia (>120 bpm), provided normal oxygen levels 
(≥95%) and valid ECG signals are present. These results validate the system's ability to avoid false 
positives by considering multiple physiological parameters. Simulations conducted in MATLAB confirm 
that LiDAR-based chest mapping achieves an average error margin of ±2 mm, ensuring precise alignment 
of CPR devices with patient contours. The observed behavior aligns with design logic, demonstrating 
reliability in detecting and responding to critical heart rate conditions. 

   
 
 
 
 
 

 

 
Figure 1: Flowchart of the proposed automatic CPR 

system with inbuilt drug delivery 

 
Figure 2: Block diagram of the proposed automatic CPR 

system with intravenous drug delivery system 



 
 
 
 
 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 3: Workflow of the FPGA controller for real-time 

decision-making based on heart rate and oxygen 
saturation (SpO₂) levels. The system uses two 

comparators to detect bradycardia (<50 bpm with SpO₂ 
<95%) and tachycardia (>120 bpm with SpO₂ ≥95%), 

triggering either CPR activation or drug delivery 
respectively. When heart rate and SpO₂ are within 

normal ranges, the controller remains inactive. The 
diagram illustrates how the FPGA processes ECG data 
and controls interventions, including CPR actuation and 

intravenous drug administration, based on patient-
specific conditions. 

 
Figure 4: 3D ellipsoid model generated by LiDAR to 

target the CPR area of the patient using MATLAB 



 

 

 

 

 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 3: Suggested drug delivery steps with amount and delay 
Drug name Amount Time to delivery Delay for 2nd dose  
Adenosine (1st dose) 6 mg 1-2 sec 1-2 minutes 

Saline reflux 10-20 mL rapid 1-2 minutes 
Adenosine (2nd dose) 12 mg 1-2 sec - 

 

Table 2:  LiDAR point cloud and fitted ellipsoid parameters 
Fitted Ellipsoid Parameters Values 

Number of Points (N) 10,000 

Center Coordinates (x0, y0, z0 ) (0.00,−0.01,−0.02) m 
Semi-Axis Lengths (a, b, c) (10.00,8.00,6.00) m 

Orientation (Eigenvectors Q) 
൥
1 0 0
0 1 0
0 0 1

൩ 

Eigenvalues (λ1, λ2, λ3) (100.00,64.00,36.00) 
Ellipsoid Equation (௫ି଴.଴ଶ)మ

଴.଴ଷమ
+

(௬ି଴.ଵହ)మ

଴.଴ଶమ
+

(௭ି଴.ଵ଴)మ

଴.଴ଵమ
= 1   

 

Figure 5: FPGA simulation results showing activation signals 
(cpr_activate and drug_delivery_activate) based on multi-parameter decision-making using heart 
rate thresholds, oxygen saturation levels (SpO₂), and ECG signal validity. The cpr_activate signal 
is triggered for bradycardia (<50 bpm with SpO₂ <95%), while the drug_delivery_activate signal 

is asserted for tachycardia (>120 bpm with SpO₂ ≥95%). The drug_dosage output dynamically 
adjusts based on simulated patient weight and age, ensuring personalized treatment. All values in 

the simulation results are presented in hexadecimal format. 

Table 1:  All system blocks interconnection 
Unit Connected with 

ECG-Sensors Data Processor 

Data Processor Central Control Unit 
Central Control Unit 1.Mechanical CPR Device (Control Unit) 

2.Drug Delivery Unit (Control Algorithms) 
Drug Reservoirs Precision Pumps 
Precision Pumps Intravenous Line to Patient 

 



4. CONCLUSION 

In conclusion, the auto CPR integrated with drug delivery module introduced here presents a novel 
solution that combines advanced control technology, mechanical actuation, and automated drug delivery 
to provide efficient and timely emergency medical care. Utilizing a LiDAR system to accurately map and 
fit the auto CPR device to the patient's chest, the project ensures precise and effective chest compressions. 
The integration of ECG sensors and a central control unit enables real-time monitoring of heart rate, and 
the initiation of CPR and drug delivery based on the patient's condition. The system not only improves the 
accuracy and responsiveness of CPR administration but also enhances patient outcomes during critical 
moments. The automated drug delivery unit, capable of administering adenosine and saline flushes, adds 
another layer of sophistication by ensuring that medications are delivered promptly and accurately. While 
this study is limited to simulations, the results validate the feasibility of real-time decision-making for 
cardiac support using an FPGA controller. Future work will involve prototyping and experimental 
validation using CPR manikins equipped with pressure sensors and intravenous drug delivery setups to 
measure response times and accuracy. Overall, this approach, if properly implemented and taken to the 
finish line, stands to revolutionize emergency response protocols, offering reliable and life-saving 
technology that can be deployed in various settings to save lives and in a very cost-effective way.  

5. FUTURE WORK 

Developing an integrated system for automated CPR and drug delivery presents several challenges, 
including the need for reliable sensors, robust algorithms for decision-making, and ensuring the proper 
drug doses based on patient’s other medical conditions. However, advancements in sensor technology, 
machine learning, and biomedical engineering provide significant opportunities to overcome these 

Table 4: FPGA simulation result breakdown 

Time 
(ns) 

Heart 
Rate 
(bpm) 

Oxygen 
Level 
(%) 

ECG 
Signal 
Valid 

CPR 
Activate 

Drug 
Delivery 
Activate 

Drug Dosage 
(mg) Remarks 

50 70 98 Yes 0 0 0 
Normal range, 
no action 

100 40 85 Yes 1 0 0 
Bradycardia, 
CPR activated 

150 130 98 Yes 0 1 6 
Tachycardia, 
drug delivery 

200 50 95 No 0 0 0 
Invalid ECG, 
no action 

250 70 88 Yes 1 0 0 

Critical 
oxygen 
desaturation 

300 50 95 Yes 0 0 0 

Edge case: 
lower limit, no 
action 

350 120 95 Yes 0 0 0 

Edge case: 
upper limit, no 
action 

400 125 97 Yes 0 1 6 
Tachycardia, 
drug delivery 

 



challenges. By leveraging these technologies, the proposed system aims to enhance intraoperative cardiac 
care, offering a seamless response to life-threatening events and reducing the reliance on manual 
interventions. This study lays the groundwork for developing a fully functional automated cardiac support 
system. The next steps include:  

 Obtain valuable feedback about our model from medical practitioners. 
 Building a physical prototype incorporating LiDAR sensors, FPGA controllers, and mechanical 

CPR devices. 
 Testing the system on CPR manikins equipped with pressure sensors to measure compression 

depth and force distribution. These experiments will validate whether LiDAR-guided adjustments 
improve therapeutic outcomes compared to traditional methods.  

 Collaborating with medical professionals to evaluate system performance in real-world scenarios. 
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