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Abstract— Head and neck cancer (HNC) presents significant
therapeutic challenges due to pathway redundancies and
resistance mechanisms. To address this, we developed a Boolean
network model integrating key signaling pathways—EGFR,
Wnt, Hippo-YAP, MAPK/ERK, and PI3K/mTOR—to
systematically assess single and combination drug therapies.
Using the Normalized Mean Size Difference (NMSD) metric, we
quantified the efficacy of targeted drugs (FDA approved or
under investigation with promising efficacy) against tumors
with multiple mutations.

Our simulations identified VT3989 (YAP/TEAD inhibitor)
as the most effective monotherapy. Among two-drug
combinations, Ulixertinib (ERK inhibitor) and VT3989
exhibited the lowest NMSD, indicating strong synergistic
inhibition of MAPK and Hippo pathways. Adding Vorinostat
(FBXW7 modulator) further enhanced efficacy, achieving 80%
efficacy. The most effective combination—Temsirolimus
(mTOR inhibitor), Ulixertinib, VT3989, and Vorinostat—
demonstrated an 88.3% improvement over untreated
conditions.

Our findings support a shift from sequential to concurrent
multi-pathway targeting, mirroring clinical evidence that
combination approaches delay resistance. The hierarchical
NMSD reductions from 0.685 (single-agent) to 0.120 (four-drug
therapy) highlight the advantage of combination size in pathway
control. This computational framework provides a rationale for
prioritizing Temsirolimus-containing quadruple therapies,
offering a novel precision oncology strategy for HNC with
complex mutational landscapes.

Keywords— Boolean Network, Combination Therapy, Drug
Repurposing, Head and Neck Cancer, Targeted Therapy, TEAD
Inhibitor, Vorinostat, YAP/TEAD Inhibitor.

1. INTRODUCTION

Head and neck cancer (HNC) encompasses a diverse
group of malignancies arising from the oral cavity, pharynx,
and larynx and remains a significant global health concern.
According to the American Cancer Society's 2025 Cancer
Facts & Figures report, an estimated 71,110 new cases of
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HNCs will be diagnosed in the U.S. in 2024, with
approximately 16,110 deaths expected [1]. This represents
about 4% of all cancers in the U.S. Globally, the incidence of
HNC is projected to increase by 30% annually by 2030. This
rise is largely attributed to increases in oropharyngeal cancer,
particularly HPV (Human Papillomavirus)-related cases in
developed countries [2]. In fact, it is expected that HPV will
overtake tobacco as the leading contributor to the global HNC
burden in the coming years [3]. Recent trends show that HNC
incidence is rising more rapidly in women, especially those
under 50 years old. From 2002 to 2021, cancer incidence in
women younger than 50 increased from 51% higher than men
to 82% higher. This trend is particularly notable for oral
cancers, with significant increases observed across all age
groups, especially in older women [4] [5]. In Europe, a study
using data from the Polish Cancer Register (1999-2021)
revealed increasing incidence rates across different age
cohorts, with the 60-69 age group showing the fastest
increase, particularly for oral and oropharyngeal cancers in
women. In the UK, HNC mortality rates are projected to rise
by 12% between 2023-2025 and with an estimated 6,700
deaths annually by 2038-2040 [6]. Despite advances in
surgical techniques, radiotherapy, and chemotherapy, the 5-
year survival rate of HNC patients remains below 50%,
largely due to late diagnosis, high rates of recurrence, and
therapeutic resistance [7]. Current treatments are often limited
by toxicity and lack of specificity, underscoring the urgent
need for more precise, targeted therapeutic strategies.

Molecular studies have revealed that HNC is driven
by complex dysregulations in several oncogenic pathways,
including EGFR, PI3K/AKT/mTOR, RAS/RAF/MEK/ERK,
JAK/STAT, Wnt/B-catenin, and Hippo-YAP/TAZ, alongside
frequent mutations in tumor suppressors like p53, PTEN, and
FBXW7 [8][9]. These alterations promote uncontrolled
proliferation, evasion of apoptosis, angiogenesis, and
metastasis. Consequently, targeting multiple pathways
simultaneously through drug combinations has emerged as a
promising strategy to overcome compensatory signaling and
resistance mechanisms [10].
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FIGURE 1. HNC signaling pathway.

In recent years, FDA-approved drugs have been
increasingly investigated for repurposing in HNC, owing to
their established safety profiles and expedited clinical
translation. However, given the high interconnectivity and
feedback within HNC signaling networks, empirically
identifying effective drug combinations remains challenging
[11]. Computational approaches, particularly Boolean
network (BN) modeling, provide a powerful framework to
simulate pathway behavior and predict cellular responses
under various perturbations [12]. Boolean models, by
simplifying the states of biological systems into binary ones
(ON/OFF), enable the exploration of complex gene regulatory
and signaling networks, making them ideal for hypothesis-
driven drug discovery in cancer research.

In this study, we constructed a comprehensive BN
model of HNC, integrating key components involved in tumor
growth, survival, angiogenesis, and apoptosis. We
systematically simulated the effects of twelve targeted drugs
(FDA approved or under investigation with promising
efficacy), both as monotherapies and in combination, to
identify optimal therapeutic strategies that disrupt oncogenic
signaling and restore tumor-suppressive functions. This
network-driven approach aims to guide robust combination
therapies, ultimately contributing to personalized and more
effective treatments for HNC patients.

II. OVERVIEW OF HNC PATHWAY

HNC is driven by the dysregulation of multiple
interconnected signaling pathways (Fig.1) that control cell

proliferation, apoptosis, angiogenesis, and immune evasion
[13]. Molecular alterations, including gene mutations,
amplifications, and loss of tumor suppressor functions,
contribute to the aggressive progression of HNC [14]. The key
oncogenic drivers and tumor suppressors identified in the
constructed Boolean model of HNC are integrated into a
complex network, reflecting the real tumor biology of this
disease [15].

The process begins with the activation of receptor
tyrosine kinases (RTKs), such as EGFR, FGFR, VEGFR, and
MET. These receptors are stimulated by their respective
ligands, including EGF, FGF, VEGF, and hepatocyte growth
factor (HGF) [16]. Activation of these receptors initiates
intracellular signaling cascades that promote proliferation and
survival. One major downstream pathway activated by RTKs
is the PI3K/AKT/mTOR pathway, which then activates
increased protein synthesis, enhanced cell survival, and
resistance to apoptosis [17]. The tumor suppressor PTEN,
which normally inhibits this pathway, is frequently lost or
inactivated in HNC, further amplifying PI3K/AKT signaling
[18].

Parallel to PI3K signaling, RTKs also activate the
RAS/RAF/MEK/ERK pathway. This cascade promotes cell
cycle progression by inducing the expression of key regulators
such as Cyclin D1, MYC, and JUN [19]. These transcription
factors stimulate the production of proteins necessary for the
G1/S transition of the cell cycle, including Cyclin E and
CDK4/6. Mutations in HRAS, although less common in HNC,
can further drive the persistent activation of this proliferative
signaling [20].



In addition to RTK-driven pathways, Wnt signaling
is another critical oncogenic pathway in HNC. The binding of
Wnt ligands to the FZD and LRP5/6 receptors inhibits the
destruction complex that normally degrades p-catenin.
Stabilized B-catenin accumulates in the nucleus, where it
induces the transcription of MYC, Cyclin D1, and JUN,
contributing to increased proliferation and survival of cancer
cells [21].

The Hippo signaling pathway plays a major tumor-

suppressive role by regulating the activity of YAP and TAZ
transcription coactivators. Under normal conditions, upstream
components of the Hippo pathway, including FAT1, MST1/2,
SAV1, and LATS1/2, inhibit YAP/TAZ, preventing them
from entering the nucleus. However, mutations or deletions of
FATI1 and LATS1/2, which are common in HNC, lead to
unchecked YAP/TAZ activation. In the nucleus, YAP/TAZ
bind to TEADI and stimulate the expression of proliferative
genes such as Cyclin D1, MYC, and connective tissue growth
factor (CTGF) [22].
Hypoxia, a common feature in solid tumors, further promotes
tumor progression in HNC through the stabilization of HIF1A.
Under low oxygen conditions, HIF1A induces the expression
of VEGFs, which are essential for angiogenesis, ensuring the
tumor maintains an adequate blood supply. This supports
continued tumor growth and metastasis [23].

Another key driver in HNC is the JAK/STAT3
signaling pathway. Activated by cytokines and growth factors,
STATS3 translocates to the nucleus, where it enhances the
expression of VEGFs, MYC, Cyclin D1, and other survival
genes, promoting immune evasion and sustained tumor
growth [24].

Cell cycle progression in HNC is tightly controlled
by several key regulators. Cyclin D1 forms a complex with
CDK4/6, leading to the phosphorylation and inactivation of
the retinoblastoma protein (Rb), which releases E2F
transcription factors to induce the expression of Cyclin E and
other S-phase genes [8]. Cyclin E reinforces S-phase entry,
while MYC supports proliferation by upregulating genes
involved in metabolism, ribosome biogenesis, and DNA
replication. Activator Protein-1(AP-1) is a transcription factor
complex that regulates gene expression in response to various
stimuli, including cytokines, growth factors, stress, and
bacterial and viral infections. JUN, a component of the AP-1
complex, further enhances proliferation by inducing Cyclin
D1 and VEGFs, and it also contributes to invasion through
upregulation of matrix metalloproteinases [25].

A. Key oncogenes and activated pathways in HNC

Several components of the HNC network function as
oncogenes when mutated or overexpressed, driving
uncontrolled growth and survival:

EGFR is overexpressed in up to 90% of HNC cases,
promoting  persistent  activation ~ of  downstream
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK  signaling
pathways [26]. FGFR1 amplifications and mutations are
reported in 10-15% of HNC cases, contributing to sustained
mitogenic  signaling [27]. MET amplification and
overexpression are observed in 13-21% of cases, enhancing
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FIGURE 2. (a) Example of a signaling pathway with drug intervention.
(b) BN model example of the signaling pathway, with a stuck-at-1 (SA1)
fault at gene E, and a drug intervention at gene E to repair the SA1 fault.

invasive and  metastatic  capabilities [28].  The
PI3K/AKT/mTOR pathway is frequently dysregulated in
HNC, with alterations occurring in PIK3CA mutations
(8.6%), PIK3CA amplifications (14.2%), and PI3K
overexpression (27.2%), leading to pathway hyperactivation.
[29]. RAS is mutated in 4-6% of HNC cases, leading to
constitutive MAPK pathway activation [20]. STAT3 is
hyperactivated up to 70% in most of the HNC cases,
supporting tumor growth, inflammation, and immune evasion
[30]. Aberrant activation of B-catenin through Wnt signaling
is less common in HNC but contributes to tumor progression
in specific subtypes [31]. YAP/TAZ is activated by the loss of
Hippo pathway regulators (e.g., FAT1, LATS1/2), driving
transcription of proliferative and anti-apoptotic genes through
TEAD [32]. MYC is frequently overexpressed (up to 30% of
cases), promoting cell cycle progression and metabolic
reprogramming [33]. Cyclin D1 (CCND1) is amplified in
approximately 30—40% of HNC cases, leading to dysregulated
G1/S phase transition [20]. VEGF is induced by hypoxia
(HIF1A), driving angiogenesis to sustain tumor growth [23].

B. Tumor suppressors and their inactivation in HNC

The Frequent loss or mutation of tumor suppressors further
drives tumorigenesis:

p53 is mutated in 70-80% of HPV-negative HNC,
impairing DNA damage response, apoptosis, and cell cycle



T

CCNE

0 Rﬂ{,12 M§{J3 EI}{J‘I s 25V
Key = Space L~ 1> 1>
UFFER BUFFER BUFFER
FGFR 2 OR2
0 . CDK4by6_32 Rb_33
L = -
Key=Space  BUFFER %!“5‘—31 > E2F
F EGER 3 OR3 BUFFER BUFFER 29 2y
0
Key = Space BUFFER
PI3K_17 OR2
F VEGFR 8| | 4 PIP3 18 PKB AKT 19 mTQR 22 cum2 myYc
Key = Space 1 ;})_L j) 5V
OR2 OR2 BUFFER BUFFER
T RS 4 ORS
Key = Space BUFFER 115 U4 4|U>2" Beatenin_16
Y
LRP5by6 OR2 NoT NoT IORE JUN
um3 2,
BUFFER us 7}
STAT3_7 NoT OR%
tef £
Key = Space BUFFER VEGFs
HYPOXIA 5 25V
PQ 4 ?
Lo} > ﬁ DY
Key = Space BUFFER oR
PTEN %ﬁ invert p53 21
i—‘w
K,y,,a“ OR2 NOT BUFFER EP300
1 25V
NIQ;'[!CH CREBBP
0 [ 24
Key = Space NOT T 25V
OR2
FBjWLzS ‘ %qu“
NoT us or CTGF

et

BUFFER

ST AK
0

MAwJ
>

Key = Space NoT

AT1 L
NOTMSTIby2 25
Key = Space
BUFFER Mog1.27 ATS1by2 28
SAV1_26 AND2 BUFFER %
AND3

1>
NOT

JJ 25v
YAP{Q\Z,ZQ TEED,SO 1

1>
BUFFER BUFFER

FIGURE 3. Boolean Network model for HNC pathway.

arrest [24]. PTEN loss is observed in 10—15% of cases, leading
to constitutive PI3K pathway activation [29]. FBXW7 is
mutated in around 5-10% of HNC cases, resulting in the
stabilization of oncogenic proteins like Cyclin E and MYC
[25]. CREBBP and EP300 are frequently altered epigenetic
regulators, mutated or deleted in approximately 10-15% of
cases, leading to global transcriptional dysregulation,
impaired p53 function, and reduced apoptosis [22]. FATI is
mutated in 20-30% of HNC cases, resulting in the inactivation
of Hippo signaling, enabling unchecked YAP/TAZ activity
[22].

III. METHODOLOGY

Figure 1 displays the complete biological pathway
network for HNC, where the diamond-shaped input nodes
represent growth factors, tumor suppressors, receptor tyrosine
kinases (RTKSs), and transmembrane receptors. The elliptical-
shaped nodes on the right side represent reporter genes that
serve as outputs for our model design, while the square-shaped
nodes in the center represent the interconnected genes and
proteins that mediate the signaling interactions throughout the
pathway. Solid black arrows in that design represent activation
or stimulatory effects, and red lines with hammerhead (T-
shaped or blunt endings) represent inhibition or suppressive
effects. By mapping these complex molecular interactions
within the HNC pathway, we establish a foundation for
identifying effective combination therapies, particularly
through network-based approaches such as Boolean network
modeling. The detailed procedure involved is discussed
below.

A. Boolean network modeling of HNC

BNs offer a straightforward and effective approach for
modeling cellular signaling pathways, particularly in
complex systems like HNC. In this framework, each

component of the network, such as a gene or a protein, is
represented as a node that exists in one of two possible states:
active (on) or inactive (off) [34][35]. This binary abstraction
aligns well with the switch-like behavior observed in genetic
regulatory networks (GRNs), where genes are either
expressed or silenced depending on the cellular context.
Within the BN framework, the nodes symbolize genes or
signaling molecules, and the edges define the regulatory
interactions between them, which can be described through
logical functions such as AND, OR, and NOT (Fig. 2).

The Boolean modeling framework operates like a digital
logic circuit, where regulatory influences are treated as logic
gates that control the activation state of downstream nodes.
This enables complex signaling dynamics to be simplified
into clear, rule-based relationships. For example, in Fig. 2,
our illustrative toy pathway model, if either gene A or gene B
activates gene D, this can be represented as an OR logic
function, where the presence of either input activates the
output. When a single component, such as E, directly
activates another component F, without any additional inputs,
this is represented through a direct (buffer) connection.
Additionally, the drug binding with gene E is modeled using
an AND logic gate, where gene D and the drug influence gene
E at the same time. By applying this Boolean logic structure
across the entire HNC network, we can accurately map
intricate molecular interactions into a combinational logic
system. This results in a multi-input, multi-output (MIMO)
model that captures the complex regulatory architecture of
HNC signaling (Fig 3). The ideal (non-proliferative) input
and corresponding output states of that system are indicated
in Tables I & II, respectively. We used NI Multisim to design
all our BN models for this experiment. The Boolean modeling
approach used here provides a valuable tool for simulating



TABLEI
INPUTS TO THE HNC BN AND THEIR CORRESPONDING NON-
PROLIFERATIVE STATES

Non-proliferative

Input State
MET 0
FGF 0
EGF 0
VEGF 0
WNT 0
JAK 0
HYPOXIA 0
PTEN 1
NOTCH 0
FATI 1
STRIPAK 0

the effects of drug interventions, identifying potential
therapeutic targets, and understanding the global behavior of
oncogenic and tumor suppressor pathways within the disease
context.

When multiple pathways converge on a common target
with potentially conflicting regulatory effects, we assign
logical operators based on documented biological behavior.
For example, if a target can be activated independently by
either gene A or gene B, we modeled this using an OR gate.
If activation requires simultaneous input from both, we used
an AND gate. In scenarios where upstream signals exert
opposing influences (activation vs. inhibition), we applied
hierarchical logic, prioritizing the dominant regulatory
pathway according to literature evidence. This method aligns
with established Boolean network modeling practices and
mimics how cells integrate diverse, and sometimes
contradictory, signals to make context-dependent decisions.

For computational analysis, both the input and output of
the network are expressed as binary row vectors. In this
representation, a value of zero (0) signifies an inactive gene,
while a value of one (1) represents an active gene. These
binary vectors define the activation state of key components
within the network, allowing systematic evaluation of how
faults and therapies alter the signaling dynamics.

The components of the input vector are given by

Input = [MET, FGF, EGF, VEGF, WNT, JAK, HYPOXIA,

PTEN, NOTCH, FAT1, STRIPAK]

while the components of the output vector are given by

Output =[CCNE, E2F, MYC, JUN, VEGFs, EP300, CTGF].

In this study, the input vector is defined as [00000001010],
which reflects the absence of external growth signals and the
activation of molecular inhibitors, conditions that are expected
to produce a non-proliferative output in a fault-free network.
Under these normal conditions, the BN generates an output
vector of [00000000], indicating controlled cellular behavior
with no abnormal proliferation and intact apoptotic processes.

However, when mutations or faults are introduced into the
network, applying the same input results in a different, disrupted
output, signifying dysregulated signaling that may promote
uncontrolled growth or impair apoptosis. The primary goal of

TABLE II
OUTPUTS OF THE HNC BN (WITHOUT FAULTS) AND THEIR
CORRESPONDING NON-PROLIFERATIVE STATES

Non-proliferative
Output State
CCNE 0
E2F
MYC
JUN
VEGFs
EP300
CREBBP
CTGF
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therapeutic intervention in this context is to apply drug
treatments that shift the faulty output as close as possible to the
non-proliferative reference state of [00000000]. From a
biological perspective, this involves steering the mutated
signaling pathways back towards a regulated, non-proliferative
state while reactivating programmed cell death through carefully
selected drug combinations.

B. Modeling abnormalities in the HNC pathway

HNC primarily develops because of disrupted cellular
signaling, where alterations in normal regulatory pathways
lead to the loss of cell cycle control, excessive proliferation,
and impaired apoptosis. These abnormalities within the
signaling network can be effectively represented in Boolean
models as “stuck-at faults,” a concept borrowed from digital
circuit theory. In this context, a stuck-at fault occurs when a
gene or protein node becomes permanently fixed in an active
(stuck-at-1) or inactive (stuck-at-0) state, regardless of the
upstream signals that would normally regulate its behavior
[35]. Such faults may result from genetic mutations,
amplifications, deletions, or other structural abnormalities,
causing persistent oncogenic activation or loss of tumor
suppressor functions. Here, it is important to point out that
the stuck-at-fault terminology does have direct clinical
relevance to cancer. Stuck-at-1 faults correspond to gain-of-
function mutations for oncogenes, while stuck-at-0 faults
correspond to loss-of-function mutations for tumor
SUpPressors.

In the case of our BN model for HNC, these faults are
used to simulate the effects of common mutations found in
the disease. For instance, if a gene like Cyclin D1, which
promotes cell cycle progression, becomes constitutively
active due to amplification or overexpression, this is modeled
as a stuck-at-1 fault. This means that Cyclin D1 continues to
drive proliferation regardless of upstream regulatory inputs.
Consequently, downstream nodes that control DNA
replication and cell division remain persistently activated,
contributing to tumor growth. A therapeutic intervention in
this scenario might involve the application of CDK4/6
inhibitors, designed to block the downstream effects of
Cyclin D1 overactivity and restore controlled cycle
progression.



Similarly, the inactivation of critical tumor suppressors in
HNC, such as p53 or PTEN, can be modeled as stuck-at-0
faults. Under normal conditions, p53 responds to DNA
damage and oncogenic stress by triggering apoptosis or
halting the cell cycle [8] [9]. However, when p53 is mutated
and loses its function, it becomes permanently inactive,
failing to regulate key downstream pathways. This loss
contributes to unchecked proliferation, survival, and
accumulation of further mutations, accelerating cancer
progression. Boolean fault modeling allows us to pinpoint
such defects and simulate strategies that might compensate
for these losses, such as activating alternative tumor
suppressive pathways or using targeted therapies to block the
hyperactive oncogenic signals that arise from p53
inactivation.

The stuck-at faults mentioned above directly correspond
to common classes of clinical mutations observed in HNC
patients. For instance, stuck-at-1 faults represent gain-of-
function mutations in oncogenes such as PIK3CA (mutated
in 20-25% of HNC cases) or EGFR overexpression
(occurring in up to 90% of cases), where the protein becomes
constitutively active regardless of upstream regulatory
signals. Conversely, stuck-at-0 faults model loss-of-function
mutations in tumor suppressors like p53 (mutated in 70-80%
of HPV-negative HNC) or PTEN loss (observed in 10-15%
of cases), where the protective function is permanently
disabled, which can create a synergistic effect that drives
aggressive tumor growth [16]. Using the BN, we can explore
which drug combinations—such as pairing PI3K inhibitors
with  mTOR inhibitors—might be most effective in
suppressing these cooperative oncogenic signals.

In summary, applying stuck-at fault modeling within a
BN offers deep insights into the mutational landscape of
HNC. It not only helps in identifying the critical nodes that
are driving malignancy but also supports the development of
rational, combination-based therapeutic strategies aimed at
correcting or bypassing persistent disruptions in the signaling
network. By leveraging this system-level understanding, we
can work towards more precise and effective treatments
tailored to the specific molecular alterations present in each
patient's tumor.

C. Simulation for fault mitigation with drug intervention

Using our BN model of HNC, we systematically evaluate
various targeted drugs (Table IIT) combinations to determine
their ability to counteract specific genetic and signaling
abnormalities, modeled as faults. In this approach, each fault
represents a distinct molecular alteration—such as the
persistent activation of an oncogene or the loss of a tumor
suppressor, reflecting the diverse mutational profiles
commonly observed in HNC tumors. The goal is to identify
the most effective drug combinations that can neutralize the
impact of these faults and restore the network's behavior as
closely as possible to its non-proliferative, fault-free state.

To guide this process, we first define the ideal activation
patterns of all nodes in a normal, non-mutated network, and
these are shown in Tables I and II. When a fault occurs, it
alters the output profile of the network, leading to aberrant

TABLE III
DRUGS AND THEIR RESPECTIVE TARGETS
Drugs Targets
Cetuximab [36] EGFR
Erdafitinib [37] FGFR
Bevacizumab [38] VEGFR
Buparlisib [39] PI3K
Capivasertib [40] AKT
Temsirolimus [41] mTOR
Ulixertinib [42] ERK
Ruxolitinib [43] JAK
Palbociclib [44] CDK4/6
VT3989 [45] TEAD
LGK974 [46] WNT/B-catenin
Vorinostat [47] FBXW7

activity of key genes responsible for cell proliferation,
survival, and apoptosis. For each fault scenario, we search for
the drug combinations that best correct these abnormal
outputs. If complete correction is not possible, we aim to
minimize the deviation from the non-proliferative state.

To quantify how far a faulted network deviates from the
normal state, we use the size difference (SD) score, which
measures the difference between the output vectors of the
faulted and fault-free networks. Higher SD scores indicate
greater activation of proliferative (oncogenic) genes and
reduced activity of tumor-suppressive (pro-apoptotic) genes,
suggesting a more aggressive cancer phenotype. Therefore,
the most effective therapy for each fault is the combination of
drugs that produces the smallest SD score, reflecting the
greatest restoration of normal signaling, which we discuss in
detail in the next subsection.

In our simulations, we also account for the practical
aspect of therapeutic application by prioritizing drug
combinations that involve fewer agents in order to minimize
potential toxicity and adverse effects. To maintain
computational efficiency and reflect realistic clinical
scenarios, we limit our fault analysis to cases involving up to
three simultaneous faulty genes and restrict the therapeutic
search space to combinations involving no more than four
drugs.

D. Computing the effects of drug combinations

The complete list of FDA-approved or under
investigation drugs considered in this study, along with their
respective molecular targets within the HNC network, is
presented in Table III. To assess the therapeutic potential of
these interventions, we systematically analyzed the effects of
each drug combination on the network's behavior in the
presence of one, two, or three simultaneous faults,
representing common genetic mutations and pathway
disruptions observed in HNC.

From a systems biology perspective, the BN model of
HNC operates similarly to a multi-input, multi-output
(MIMO) digital circuit, where the state of the system's
outputs is determined by its inputs. In the absence of
mutations (the fault-free condition), the BN accurately



reflects the balanced signaling of a non-proliferative cell,
producing a stable, controlled output corresponding to
regulated proliferation and apoptosis. However, the
introduction of faults—such as persistent activation of
oncogenes or inactivation of tumor suppressors—disrupts
this balance. The resulting output shifts toward an abnormal,
cancerous state, mirroring the dysregulated signaling typical
of malignant HNC cells.

When non-proliferative input conditions are applied to a
faulty network, the output deviates from the ideal, non-
proliferative output state due to the effects of these faults. By
introducing drugs into this faulty network, the goal is to
determine whether the intervention can correct the network
behavior, restoring the output closer to the non-proliferative
state. To evaluate the effectiveness of each drug or drug
combination, we calculate the SD score, a quantitative
measure of the difference between the faulty network's output
and the fault-free, non-proliferative output.

The specific drugs used in these simulations, listed in Table
111, are represented as a row vector of their activity states, as
follows:

[Cetuximab, Erdafitinib, Bevacizumab, Buparlisib,
Capivasertib,  Temsirolimus,  Ulixertinib, = Ruxolitinib,
Palbociclib, VT3989, LGK974, Vorinostat].

This vector format allows us to systematically model the
influence of individual drugs or combinations on the overall
behavior of the HNC network.

In our BN model for HNC, each element of the drug vector is
assigned a binary value of one or zero, indicating whether a
specific drug is administered (1) or not (0). As outlined earlier,
the primary goal is to guide the output of a faulty network as
close as possible to the non-proliferative, non-cancerous output
state through targeted drug interventions.

To objectively measure how well a drug or drug combination
restores the network toward this ideal state, we use the SD
metric. The SD score quantifies the dissimilarity between two
binary output vectors—one representing the output of the faulty
network and the other representing the non-proliferative, fault-
free network. The SD value increases as the difference between
these two vectors grows, indicating more severe disruptions to
cellular behavior.

Mathematically, SD is calculated by comparing two binary
vectors, a=(ai,...,a,) and b=(by,...,bn), where each element is
either O (inactive gene) or 1 (active gene), and ‘n’ is the length
of the vectors. A confusion matrix is constructed to count
matches and mismatches across corresponding positions in the
two vectors:

ai==1 a; = 0

TN

e A: Number of positions where both vectors have a
value of 1 (true positives).
e D: Number of positions where both vectors have a

TABLE IV
A MODEL NMSD MATRIX: NORMALIZED COMPUTATIONAL EFFECT OF
VARIOUS DRUGS IN A BOOLEAN NETWORK MODEL

Fault | Fault | Fault SD NMSD
1 2 3 Sum
DC1 0.2 0.3 0.6 1.1 0.5
DC2 0.1 0.6 0.7 1.4 0.636
DC3 0.3 0.5 0.8 1.6 0.727
ND 0.5 0.8 0.9 2.2 1.000

value of 0 (true negatives).

e B: Positions where the first vector has a 1 and the
second has a 0 (mismatch type 1).

e C: Positions where the first vector has a 0 and the
second has a 1 (mismatch type 2).

These counts are then used to calculate the SD score, where
higher SD values indicate greater deviation from the non-
proliferative state. In biological terms, this suggests a higher
degree of abnormal proliferation and reduced apoptosis, both of
which are characteristic of aggressive cancer progression. The
SD score is given by

B+C
A+B+C+D

SD(a,b) = ( )2, so that SD € [0,1] )

To assess the effectiveness of each drug combination, we
applied our BN across all modeled faults and computed the SD
for each scenario. The results of these simulations are organized
into a matrix, as shown in Table IV, where each column
represents a specific fault, and each row represents a different
drug combination. For any given fault, the most effective therapy
is identified as the drug combination with the lowest SD value in
that column.

To evaluate overall performance across all faults, we sum the
SD values across the faults for each drug combination. The
combination with the smallest total SD is considered the most
effective at globally minimizing the impact of mutations across
the network. In Table IV, the first drug combination emerges as
the most effective across all three fault locations by achieving
the lowest SD sum.

To further explore therapeutic performance under realistic
clinical scenarios, we accounted for the occurrence of multiple
simultaneous faults, reflecting the complex mutational profiles
often observed in HNC. We computed SD scores for all
combinations involving one, two, and three concurrent faults
within the network. Given the presence of 33 possible fault
locations, this resulted in a total of 6,017 fault combinations
(calculated as 33C; +33C, + 3C;3 = 6,017). For each of these fault
combinations, we tested the effect of each drug or drug
combination and calculated the SD score relative to the non-
proliferative output state.

After compiling the full SD matrix for all fault and drug
combinations, we normalized the results to ensure comparability
and calculated the Normalized Mean Size Difference (NMSD)
for each drug. NMSD is a dimensionless value ranging from



0 to 1, where O indicates perfect similarity between the
outputs (meaning the drug successfully restores non-
proliferative behavior), and 1 represents complete
dissimilarity (where the drug has no corrective effect).
Therefore, a lower NMSD score reflects a more effective
therapeutic intervention, while a higher NMSD score
suggests that the drug combination is insufficient in
counteracting the cancerous signaling caused by the faults.

Mean(SD(Drug;))
Mean(SD(Untreated))

NMSD (Drug;) = 3)

The NMSD allows us to identify the most effective treatment
by comparing the average SD of each drug combination to the
average SD of the untreated (fault-only) condition.

A sample NMSD calculation is presented in Table IV, where
the most effective drug combination for a specific fault is the one
with the lowest SD value. For example, in this case, drug
combination 2 (DC2) is the most effective for fault 1, drug
combination 1 (DC1) is optimal for fault 2, and drug
combination 1 (DC1) again performs best for fault 3. To
determine the overall best-performing therapy across all faults,
we calculate the NMSD for each drug combination. The
combination with the lowest NMSD value is considered the
most effective, as it consistently minimizes the impact of
mutations across the network. Based on this analysis, drug
combination 1 (DC1) demonstrated the greatest overall efficacy
in managing the faulty network behavior of HNC.

All BN simulations and NMSD score calculations were
implemented in Python, and the complete codebase supporting
these analyses is publicly available for reproducibility and
further research at the following link:
https://github.com/PranabeshTAMU/HNC.

IV. RESULTS AND DISCUSSION

With the BN model established in the previous section, we
proceed to evaluate the effectiveness of various drug
combinations in counteracting specific mutations and pathway
malfunctions associated with HNC. For each identified mutation
or dysfunction within the network, the primary objective is to
determine the most suitable combination therapy capable of
minimizing the disruptive effects of the fault and restoring
balanced cellular behavior.

For this study, we calculated the NMSD score (as defined in
Equation 3) to evaluate the effectiveness of each drug
combination applied to the BN model of HNC. The analysis
considered cases with one, two, and three simultaneous faults
(representing mutations or pathway disruptions). With a total of
12 drugs and limiting the maximum number of drugs in any
combination to four, this resulted in 12C1 + 12C2 + 12C3 +
12C4 =793 possible drug combinations.

Considering the 33 fault locations within the network, the total
number of fault scenarios analyzed was 33C; + 3C, + 3C; =
6,017 unique fault combinations. The corresponding NMSD
matrix generated from this analysis has a dimension of 793 drug
combinations by 6,017 fault combinations. Due to the large scale
of this dataset, presenting the entire matrix in full is impractical.

Instead, we summarized the NMSD scores for all drug
combinations across the different fault scenarios, categorized by
cases involving single, double, and triple faults. Using the
method described previously, the BN simulations were executed
in Python, and the complete result is provided in the
supplementary materials (see Additional File 1). Some of the top
single and two drug combinations are shown in Figs.4 and 5.

In the following subsections, we present the theoretical results
obtained from these simulations, alongside corresponding
interpretations of the most effective drug combinations
identified for managing mutations in HNC.

A. Best treatment strategy for single mutation

We used column charts to illustrate the effectiveness of
various drug combinations. VT3989, a TEAD inhibitor, was
found to be the most effective single-agent drug with an
NMSD score of 0.64 (Table V), showing a 36% reduction
compared to untreated conditions. The most effective two-
drug combination was Ulixertinib + VT3989, with an NMSD
score of 0.33, representing a 67% reduction compared to the
untreated case. For three-drug combinations, Ulixertinib +
VT3989 + Vorinostat yielded the best results with an NMSD
score of 0.17. The most effective four-drug combination was
Ulixertinib + VT3989 + LGK974 + Vorinostat, achieving an
NMSD score of 0.09, which demonstrates a significant
reduction in NMSD score compared to the untreated case.

TABLE V
ROBUST DRUG INTERVENTION STRATEGY
FOR SINGLE MUTATION
Drug Combinations NMSD
Untreated 1
VT3989 0.6434
Ulixertinib + VT3989 0.3329
Ulixertinib + VT3989 + Vorinostat 0.1733
Ulixertinib + VT3989 + LGK974 + Vorinostat 0.09352
TABLE VI
ROBUST DRUG INTERVENTION STRATEGY
FOR TWO MUTATIONS
Drug Combinations NMSD
Untreated 1
VT3989 0.692
Ulixertinib + VT3989 0.4203
Ulixertinib + VT3989 + Vorinostat 0.2066
Temsirolimus + Ulixertinib + VT3989 + Vorinostat 0.1187

TABLE VII
ROBUST DRUG INTERVENTION STRATEGY
FOR THREE MUTATIONS

Drug Combinations NMSD
Untreated 1
Vorinostat 0.7185
VT3989 + Vorinostat 0.4808
Ulixertinib + VT3989 + Vorinostat 0.2423
Temsirolimus + Ulixertinib + VT3989 + Vorinostat 0.1468
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FIGURE 4. All monotherapy drugs (which are used for this
experiment), with respective NMSD scores to treat HNC with single,
two, and three mutations at a time.

B. Best treatment strategy for two mutations

Similar to the previous subsection, we evaluated drug
efficacies for two mutations. As shown in Table VI, VT3989
emerged as the most effective single drug with an NMSD
score of 0.69. VT3989 is a nov el TEAD auto palmitoylation
inhibitor that targets the Hippo pathway. For two-drug
combinations, Ulixertinib + VT3989 proved most effective
with an NMSD score of 0.42. The most effective three-drug
combination was Ulixertinib + VT3989 + Vorinostat,
achieving an NMSD score of 0.21. Finally, the four-drug
combination with the lowest NMSD score (0.12) was
Temsirolimus + Ulixertinib + VT3989 + Vorinostat.

C. Best treatment strategy for three mutations

In this subsection, we evaluated the best single, two-
, three-, and four-drug combinations to treat HNC with three
simultaneous mutations. As shown in our analysis, the most
effective single drug was Vorinostat, achieving an NMSD
score of 0.72. For two-drug combinations, VT3989 +
Vorinostat was identified as the most effective, with an
NMSD score of 0.48. The best three-drug combination was
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FIGURE 5. Some of the best two-drug combinations with the lowest
NMSD score to treat HNC with single, two, and three mutations at a time.

Ulixertinib + VT3989 + Vorinostat, which achieved an
NMSD score of 0.24. Finally, the most effective four-drug
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FIGURE 6. Best overall single, two, three and four drug combinations based on average NMSD score.

combination was Temsirolimus + Ulixertinib + VT3989 +
Vorinostat, with an NMSD score of 0.15.

D. Best overall drug combinations and analysis of results

The summary of complete simulation results is shown in
Fig.6, where the top performing drugs are listed with
respective NMSD scores for all single, two and three mutation
conditions. In that bar plot we showed the best single, two
three and four drug combinations to treat HNC based on
lowest average NMSD (mean of single, two and three fault
NMSD scores) scores. The results of our simulation provide
a comprehensive analysis of targeted therapeutic strategies for
HNC, identifying optimal drug combinations based on the
NMSD score. The lower the NMSD score, the closer the
network dynamics align with a non-proliferative state, making
these drug combinations promising candidates for HNC
treatment.

Our findings highlight VT3989 as the most effective
single-drug th erapy, achieving an average NMSD score of
0.685. VT3989 specifically targets TEAD [45], a key
downstream effector of the Hippo signaling pathway, which
plays a crucial role in regulating cellular proliferation and
apoptosis. TEAD dysregulation in HNC has been associated
with tumor progression and therapeutic resistance, suggesting
that inhibiting this node can disrupt oncogenic signaling.

For dual-drug therapy, the combination of Ulixertinib +
VT3989 demonstrated the highest efficacy, with an average
NMSD score of 0.414. Ulixertinib is a potent inhibitor of ERK
[42], a critical component of the RAS-RAF-MEK-ERK
pathway, which is frequently overactivated in HNC and
contributes to uncontrolled cell growth. By simultaneously
targeting ERK and TEAD, this combination effectively
modulates both proliferative and survival pathways, thereby
enhancing therapeutic impact.

Expanding to three-drug regimens, the combination of
Ulixertinib + VT3989 + Vorinostat emerged as the top-
performing trio, further reducing the NMSD score to 0.207.
FBXW?7 is an E3 ubiquitin ligase that regulates the
degradation of several oncogenic proteins, including MYC,
Cyclin E, NOTCH, and mTOR [48]. Some studies suggest that
HDAC(histone deacetylase) inhibitor Vorinostat, influences
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the expression of FBXW?7, possibly by altering chromatin
accessibility and transcriptional regulation [47]. The addition
of Vorinostat potentially enhances the efficacy of Ulixertinib
and VT3989 by disrupting compensatory survival
mechanisms and reactivating tumor-suppressor pathways.

Finally, the best-performing four-drug combination,
Temsirolimus + Ulixertinib + VT3989 + Vorinostat, achieved
the lowest average NMSD score of 0.12, indicating a near-
complete normalization of pathway dynamics. Temsirolimus,
an mTOR inhibitor [41], suppresses PI3K/AKT/mTOR
signaling, a key driver of metabolic reprogramming and cell
survival in HNC. The inclusion of Temsirolimus likely
enhances the therapeutic response by reducing metabolic
support for tumor cells, thereby increasing sensitivity to the
other three agents.

Our Boolean network model successfully simulates the
effects of multiple simultaneous perturbations, as evidenced
by our systematic analysis of single, dual, triple, and
quadruple drug combinations (793 total combinations tested).
The model maintains stability across all perturbation
scenarios, with the NMSD metric providing consistent
quantitative measures of therapeutic efficacy. The hierarchical
improvement in average NMSD scores from single-drug
therapy (0.685) to four-drug combinations (0.12)
demonstrates that the model can be used to predict the effects
of multiple interventions without loss of computational
stability.

V. CONCLUSION AND FUTURE WORK

In this study, we developed a comprehensive BN model
of HNC, incorporating key signaling pathways governing
tumor growth, survival, angiogenesis, and apoptosis. By
systematically simulating the effects of twelve FDA-
approved or under investigation drugs, we identified the most
effective single, dual, triple, and quadruple drug combinations
based on NMSD scores, which measure the extent to which
pathway behavior is restored to a normal state.

It is important to note that Boolean network models, while
powerful for systems-level analysis, involve certain
abstractions that differ from the continuous and stochastic



nature of biological systems. The binary on/off states used in
our model represent simplified versions of the graded protein
expression levels and pathway activities observed in real
cells. Similarly, the discrete time steps in Boolean networks
do not capture the continuous temporal dynamics and varying
reaction kinetics of biological processes. Despite these
limitations, Boolean models have proven valuable for
identifying key regulatory relationships and predicting
system-level behaviors, as demonstrated in numerous
successful applications in cancer research.

Our findings highlight VT3989 (TEAD inhibitor) as the
best-performing single drug, indicating the Hippo pathway as
a critical therapeutic target in HNC. The combination of
Ulixertinib (ERK inhibitor) + VT3989 significantly improved
therapeutic efficacy by simultaneously disrupting the MAPK
and Hippo pathways. Further enhancement was observed with
the addition of Vorinostat (influences the function of
FBXW7, which is a tumor suppressor gene), and
Temsirolimus (mTOR inhibitor), which suppresses metabolic
adaptation and survival mechanisms. The best four-drug
combination, Temsirolimus + Ulixertinib + VT3989 +
Vorinostat, achieved the lowest NMSD score, suggesting its
potential to comprehensively inhibit tumor-promoting
pathways.

VT3989 has shown promising results in clinical trials for
patients with advanced malignant mesothelioma and other
tumors with specific mutations [49][50][51][52]. The
combination of VT3989 with other targeted therapies, such as
Ulixertinib (an ERK inhibitor) and Vorinostat (a histone
deacetylase inhibitor), likely provides synergistic effects by
targeting different but complementary pathways involved in
cancer progression. The addition of Temsirolimus, an mTOR
inhibitor, to the combination further enhances the multi-
targeted approach, potentially addressing multiple cancer-
driving pathways simultaneously.

These results underscore the importance of a multi-
targeted therapeutic approach in HNC treatment. By
simultaneously blocking key oncogenic drivers, our proposed
drug combinations have the potential to overcome
compensatory resistance mechanisms and improve patient
outcomes. This network-based strategy provides valuable
insights for precision oncology, offering a rational framework
for developing effective combination therapies in HNC.

Collectively, these results underscore the importance of
multi-targeted approaches in HNC therapy. The synergistic
effects of these drug combinations disrupt multiple oncogenic
pathways, minimizing compensatory resistance mechanisms.
Our findings suggest that an optimal therapeutic strategy
involves the inhibition of TEAD (Hippo pathway), ERK
(MAPK pathway), FBXW7 (tumor suppressor), and mTOR
(metabolic control), providing a robust framework for
precision medicine in HNC treatment. Further experimental
validation and clinical translation of these results will be
crucial to confirm their efficacy and safety. So, future work
will focus on:

a) In Vitro and In Vivo Validation:
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e  Testing the identified drug combinations in HNC
cell lines and patient-derived xenografts (PDX)
to validate their efficacy in reducing tumor
growth and promoting apoptosis.

e Assessing potential synergistic effects and
toxicity profiles of the top-performing drug
combinations.

e Correlating experimental results with in silico
predictions to confirm the reliability of the
Boolean network model in guiding precision
therapy decisions.

b) Incorporation of Additional
Mutations:

e Expanding the BN to include immune checkpoint
regulators (e.g., PD-L1, CTLA-4) to evaluate
immunotherapy-based combinations [52].

e Investigating the impact of patient-specific
mutations to refine treatment strategies for
personalized medicine.

¢) Clinical Data Integration and Machine Learning
Optimization:

e Incorporating HNC patient gene expression and
drug response datasets to further validate and
refine the model.

e Using machine learning techniques to predict
novel drug combinations that may enhance
therapeutic efficacy.

By integrating computational modeling with experimental
validation, this research paves the way for personalized, data-
driven treatment approaches in HNC. The insights gained
from this study can serve as a foundation for future clinical
trials, ultimately improving therapeutic strategies for HNC
patients.
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