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Abstract— Head and neck cancer (HNC) presents significant 
therapeutic challenges due to pathway redundancies and 
resistance mechanisms. To address this, we developed a Boolean 
network model integrating key signaling pathways—EGFR, 
Wnt, Hippo-YAP, MAPK/ERK, and PI3K/mTOR—to 
systematically assess single and combination drug therapies. 
Using the Normalized Mean Size Difference (NMSD) metric, we 
quantified the efficacy of targeted drugs (FDA approved or 
under investigation with promising efficacy) against tumors 
with multiple mutations. 

Our simulations identified VT3989 (YAP/TEAD inhibitor) 
as the most effective monotherapy. Among two-drug 
combinations, Ulixertinib (ERK inhibitor) and VT3989 
exhibited the lowest NMSD, indicating strong synergistic 
inhibition of MAPK and Hippo pathways. Adding Vorinostat 
(FBXW7 modulator) further enhanced efficacy, achieving 80% 
efficacy. The most effective combination—Temsirolimus 
(mTOR inhibitor), Ulixertinib, VT3989, and Vorinostat—
demonstrated an 88.3% improvement over untreated 
conditions. 

Our findings support a shift from sequential to concurrent 
multi-pathway targeting, mirroring clinical evidence that 
combination approaches delay resistance. The hierarchical 
NMSD reductions from 0.685 (single-agent) to 0.120 (four-drug 
therapy) highlight the advantage of combination size in pathway 
control. This computational framework provides a rationale for 
prioritizing Temsirolimus-containing quadruple therapies, 
offering a novel precision oncology strategy for HNC with 
complex mutational landscapes.  

Keywords— Boolean Network, Combination Therapy, Drug 
Repurposing, Head and Neck Cancer, Targeted Therapy, TEAD 
Inhibitor, Vorinostat, YAP/TEAD Inhibitor. 

I. INTRODUCTION 

Head and neck cancer (HNC) encompasses a diverse 
group of malignancies arising from the oral cavity, pharynx, 
and larynx and remains a significant global health concern. 
According to the American Cancer Society's 2025 Cancer 
Facts & Figures report, an estimated 71,110 new cases of 

HNCs will be diagnosed in the U.S. in 2024, with 
approximately 16,110 deaths expected [1]. This represents 
about 4% of all cancers in the U.S. Globally, the incidence of 
HNC is projected to increase by 30% annually by 2030. This 
rise is largely attributed to increases in oropharyngeal cancer, 
particularly HPV (Human Papillomavirus)-related cases in 
developed countries [2]. In fact, it is expected that HPV will 
overtake tobacco as the leading contributor to the global HNC 
burden in the coming years [3]. Recent trends show that HNC 
incidence is rising more rapidly in women, especially those 
under 50 years old. From 2002 to 2021, cancer incidence in 
women younger than 50 increased from 51% higher than men 
to 82% higher. This trend is particularly notable for oral 
cancers, with significant increases observed across all age 
groups, especially in older women [4] [5]. In Europe, a study 
using data from the Polish Cancer Register (1999-2021) 
revealed increasing incidence rates across different age 
cohorts, with the 60-69 age group showing the fastest 
increase, particularly for oral and oropharyngeal cancers in 
women.  In the UK, HNC mortality rates are projected to rise 
by 12% between 2023-2025 and with an estimated 6,700 
deaths annually by 2038-2040 [6]. Despite advances in 
surgical techniques, radiotherapy, and chemotherapy, the 5-
year survival rate of HNC patients remains below 50%, 
largely due to late diagnosis, high rates of recurrence, and 
therapeutic resistance [7]. Current treatments are often limited 
by toxicity and lack of specificity, underscoring the urgent 
need for more precise, targeted therapeutic strategies. 

Molecular studies have revealed that HNC is driven 
by complex dysregulations in several oncogenic pathways, 
including EGFR, PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, 
JAK/STAT, Wnt/β-catenin, and Hippo-YAP/TAZ, alongside 
frequent mutations in tumor suppressors like p53, PTEN, and 
FBXW7 [8][9]. These alterations promote uncontrolled 
proliferation, evasion of apoptosis, angiogenesis, and 
metastasis. Consequently, targeting multiple pathways 
simultaneously through drug combinations has emerged as a 
promising strategy to overcome compensatory signaling and 
resistance mechanisms [10]. 
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In recent years, FDA-approved drugs have been 
increasingly investigated for repurposing in HNC, owing to 
their established safety profiles and expedited clinical 
translation. However, given the high interconnectivity and 
feedback within HNC signaling networks, empirically 
identifying effective drug combinations remains challenging 
[11]. Computational approaches, particularly Boolean 
network (BN) modeling, provide a powerful framework to 
simulate pathway behavior and predict cellular responses 
under various perturbations [12]. Boolean models, by 
simplifying the states of biological systems into binary ones 
(ON/OFF), enable the exploration of complex gene regulatory 
and signaling networks, making them ideal for hypothesis-
driven drug discovery in cancer research. 

In this study, we constructed a comprehensive BN 
model of HNC, integrating key components involved in tumor 
growth, survival, angiogenesis, and apoptosis. We 
systematically simulated the effects of twelve targeted drugs 
(FDA approved or under investigation with promising 
efficacy), both as monotherapies and in combination, to 
identify optimal therapeutic strategies that disrupt oncogenic 
signaling and restore tumor-suppressive functions. This 
network-driven approach aims to guide robust combination 
therapies, ultimately contributing to personalized and more 
effective treatments for HNC patients. 

II. OVERVIEW OF HNC PATHWAY 

HNC is driven by the dysregulation of multiple 
interconnected signaling pathways (Fig.1) that control cell 

proliferation, apoptosis, angiogenesis, and immune evasion 
[13]. Molecular alterations, including gene mutations, 
amplifications, and loss of tumor suppressor functions, 
contribute to the aggressive progression of HNC [14]. The key 
oncogenic drivers and tumor suppressors identified in the 
constructed Boolean model of HNC are integrated into a 
complex network, reflecting the real tumor biology of this 
disease [15]. 

The process begins with the activation of receptor 
tyrosine kinases (RTKs), such as EGFR, FGFR, VEGFR, and 
MET. These receptors are stimulated by their respective 
ligands, including EGF, FGF, VEGF, and hepatocyte growth 
factor (HGF) [16]. Activation of these receptors initiates 
intracellular signaling cascades that promote proliferation and 
survival. One major downstream pathway activated by RTKs 
is the PI3K/AKT/mTOR pathway, which then activates 
increased protein synthesis, enhanced cell survival, and 
resistance to apoptosis [17]. The tumor suppressor PTEN, 
which normally inhibits this pathway, is frequently lost or 
inactivated in HNC, further amplifying PI3K/AKT signaling 
[18]. 

Parallel to PI3K signaling, RTKs also activate the 
RAS/RAF/MEK/ERK pathway. This cascade promotes cell 
cycle progression by inducing the expression of key regulators 
such as Cyclin D1, MYC, and JUN [19]. These transcription 
factors stimulate the production of proteins necessary for the 
G1/S transition of the cell cycle, including Cyclin E and 
CDK4/6. Mutations in HRAS, although less common in HNC, 
can further drive the persistent activation of this proliferative 
signaling [20]. 

 
FIGURE 1. HNC signaling pathway. 
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In addition to RTK-driven pathways, Wnt signaling 
is another critical oncogenic pathway in HNC. The binding of 
Wnt ligands to the FZD and LRP5/6 receptors inhibits the 
destruction complex that normally degrades β-catenin. 
Stabilized β-catenin accumulates in the nucleus, where it 
induces the transcription of MYC, Cyclin D1, and JUN, 
contributing to increased proliferation and survival of cancer 
cells [21]. 

The Hippo signaling pathway plays a major tumor-
suppressive role by regulating the activity of YAP and TAZ 
transcription coactivators. Under normal conditions, upstream 
components of the Hippo pathway, including FAT1, MST1/2, 
SAV1, and LATS1/2, inhibit YAP/TAZ, preventing them 
from entering the nucleus. However, mutations or deletions of 
FAT1 and LATS1/2, which are common in HNC, lead to 
unchecked YAP/TAZ activation. In the nucleus, YAP/TAZ 
bind to TEAD1 and stimulate the expression of proliferative 
genes such as Cyclin D1, MYC, and connective tissue growth 
factor (CTGF) [22]. 
Hypoxia, a common feature in solid tumors, further promotes 
tumor progression in HNC through the stabilization of HIF1A. 
Under low oxygen conditions, HIF1A induces the expression 
of VEGFs, which are essential for angiogenesis, ensuring the 
tumor maintains an adequate blood supply. This supports 
continued tumor growth and metastasis [23]. 

Another key driver in HNC is the JAK/STAT3 
signaling pathway. Activated by cytokines and growth factors, 
STAT3 translocates to the nucleus, where it enhances the 
expression of VEGFs, MYC, Cyclin D1, and other survival 
genes, promoting immune evasion and sustained tumor 
growth [24]. 

Cell cycle progression in HNC is tightly controlled 
by several key regulators. Cyclin D1 forms a complex with 
CDK4/6, leading to the phosphorylation and inactivation of 
the retinoblastoma protein (Rb), which releases E2F 
transcription factors to induce the expression of Cyclin E and 
other S-phase genes [8]. Cyclin E reinforces S-phase entry, 
while MYC supports proliferation by upregulating genes 
involved in metabolism, ribosome biogenesis, and DNA 
replication. Activator Protein-1(AP-1) is a transcription factor 
complex that regulates gene expression in response to various 
stimuli, including cytokines, growth factors, stress, and 
bacterial and viral infections. JUN, a component of the AP-1  
complex, further enhances proliferation by inducing Cyclin 
D1 and VEGFs, and it also contributes to invasion through 
upregulation of matrix metalloproteinases [25]. 

A. Key oncogenes and activated pathways in HNC 

Several components of the HNC network function as 
oncogenes when mutated or overexpressed, driving 
uncontrolled growth and survival: 

EGFR is overexpressed in up to 90% of HNC cases, 
promoting persistent activation of downstream 
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK signaling 
pathways [26]. FGFR1 amplifications and mutations are 
reported in 10–15% of HNC cases, contributing to sustained 
mitogenic signaling [27]. MET amplification and 
overexpression are observed in 13–21% of cases, enhancing 

invasive and metastatic capabilities [28]. The 
PI3K/AKT/mTOR pathway is frequently dysregulated in 
HNC, with alterations occurring in PIK3CA mutations 
(8.6%), PIK3CA amplifications (14.2%), and PI3K 
overexpression (27.2%), leading to pathway hyperactivation. 
[29]. RAS is mutated in 4–6% of HNC cases, leading to 
constitutive MAPK pathway activation [20]. STAT3 is 
hyperactivated up to 70% in most of the HNC cases, 
supporting tumor growth, inflammation, and immune evasion 
[30]. Aberrant activation of β-catenin through Wnt signaling 
is less common in HNC but contributes to tumor progression 
in specific subtypes [31]. YAP/TAZ is activated by the loss of 
Hippo pathway regulators (e.g., FAT1, LATS1/2), driving 
transcription of proliferative and anti-apoptotic genes through 
TEAD [32]. MYC is frequently overexpressed (up to 30% of 
cases), promoting cell cycle progression and metabolic 
reprogramming [33]. Cyclin D1 (CCND1) is amplified in 
approximately 30–40% of HNC cases, leading to dysregulated 
G1/S phase transition [20]. VEGF is induced by hypoxia 
(HIF1A), driving angiogenesis to sustain tumor growth [23]. 

B. Tumor suppressors and their inactivation in HNC 

The Frequent loss or mutation of tumor suppressors further 
drives tumorigenesis: 

p53 is mutated in 70–80% of HPV-negative HNC, 
impairing DNA damage response, apoptosis, and cell cycle 

a)  

b)  
FIGURE 2. (a) Example of a signaling pathway with drug intervention. 
(b) BN model example of the signaling pathway, with a stuck-at-1 (SA1) 
fault at gene E, and a drug intervention at gene E to repair the SA1 fault.  
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arrest [24]. PTEN loss is observed in 10–15% of cases, leading 
to constitutive PI3K pathway activation [29]. FBXW7 is 
mutated in around 5–10% of HNC cases, resulting in the 
stabilization of oncogenic proteins like Cyclin E and MYC 
[25]. CREBBP and EP300 are frequently altered epigenetic 
regulators, mutated or deleted in approximately 10–15% of 
cases, leading to global transcriptional dysregulation, 
impaired p53 function, and reduced apoptosis [22]. FAT1 is 
mutated in 20–30% of HNC cases, resulting in the inactivation 
of Hippo signaling, enabling unchecked YAP/TAZ activity 
[22]. 

III. METHODOLOGY 

Figure 1 displays the complete biological pathway 
network for HNC, where the diamond-shaped input nodes 
represent growth factors, tumor suppressors, receptor tyrosine 
kinases (RTKs), and transmembrane receptors. The elliptical-
shaped nodes on the right side represent reporter genes that 
serve as outputs for our model design, while the square-shaped 
nodes in the center represent the interconnected genes and 
proteins that mediate the signaling interactions throughout the 
pathway. Solid black arrows in that design represent activation 
or stimulatory effects, and red lines with hammerhead (T-
shaped or blunt endings) represent inhibition or suppressive 
effects. By mapping these complex molecular interactions 
within the HNC pathway, we establish a foundation for 
identifying effective combination therapies, particularly 
through network-based approaches such as Boolean network 
modeling. The detailed procedure involved is discussed 
below. 

A. Boolean network modeling of HNC 

BNs offer a straightforward and effective approach for 
modeling cellular signaling pathways, particularly in 
complex systems like HNC. In this framework, each 

component of the network, such as a gene or a protein, is 
represented as a node that exists in one of two possible states: 
active (on) or inactive (off) [34][35]. This binary abstraction 
aligns well with the switch-like behavior observed in genetic 
regulatory networks (GRNs), where genes are either 
expressed or silenced depending on the cellular context. 
Within the BN framework, the nodes symbolize genes or 
signaling molecules, and the edges define the regulatory 
interactions between them, which can be described through 
logical functions such as AND, OR, and NOT (Fig. 2). 

The Boolean modeling framework operates like a digital 
logic circuit, where regulatory influences are treated as logic 
gates that control the activation state of downstream nodes. 
This enables complex signaling dynamics to be simplified 
into clear, rule-based relationships. For example, in Fig. 2, 
our illustrative toy pathway model, if either gene A or gene B 
activates gene D, this can be represented as an OR logic 
function, where the presence of either input activates the 
output. When a single component, such as E, directly 
activates another component F, without any additional inputs, 
this is represented through a direct (buffer) connection. 
Additionally, the drug binding with gene E is modeled using 
an AND logic gate, where gene D and the drug influence gene 
E at the same time. By applying this Boolean logic structure 
across the entire HNC network, we can accurately map 
intricate molecular interactions into a combinational logic 
system. This results in a multi-input, multi-output (MIMO) 
model that captures the complex regulatory architecture of 
HNC signaling (Fig 3). The ideal (non-proliferative) input 
and corresponding output states of that system are indicated 
in Tables I & II, respectively.  We used NI Multisim to design 
all our BN models for this experiment. The Boolean modeling 
approach used here provides a valuable tool for simulating 

 
FIGURE 3. Boolean Network model for HNC pathway. 
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the effects of drug interventions, identifying potential 
therapeutic targets, and understanding the global behavior of 
oncogenic and tumor suppressor pathways within the disease 
context. 

When multiple pathways converge on a common target 
with potentially conflicting regulatory effects, we assign 
logical operators based on documented biological behavior. 
For example, if a target can be activated independently by 
either gene A or gene B, we modeled this using an OR gate. 
If activation requires simultaneous input from both, we used 
an AND gate. In scenarios where upstream signals exert 
opposing influences (activation vs. inhibition), we applied 
hierarchical logic, prioritizing the dominant regulatory 
pathway according to literature evidence. This method aligns 
with established Boolean network modeling practices and 
mimics how cells integrate diverse, and sometimes 
contradictory, signals to make context-dependent decisions. 

For computational analysis, both the input and output of 
the network are expressed as binary row vectors. In this 
representation, a value of zero (0) signifies an inactive gene, 
while a value of one (1) represents an active gene. These 
binary vectors define the activation state of key components 
within the network, allowing systematic evaluation of how 
faults and therapies alter the signaling dynamics. 

The components of the input vector are given by  
Input = [MET, FGF, EGF, VEGF, WNT, JAK, HYPOXIA,       
             PTEN, NOTCH, FAT1, STRIPAK]  

    while the components of the output vector are given by  
Output = [CCNE, E2F, MYC, JUN, VEGFs, EP300, CTGF].  
In this study, the input vector is defined as [00000001010], 

which reflects the absence of external growth signals and the 
activation of molecular inhibitors, conditions that are expected 
to produce a non-proliferative output in a fault-free network. 
Under these normal conditions, the BN generates an output 
vector of [00000000], indicating controlled cellular behavior 
with no abnormal proliferation and intact apoptotic processes. 

However, when mutations or faults are introduced into the 
network, applying the same input results in a different, disrupted 
output, signifying dysregulated signaling that may promote 
uncontrolled growth or impair apoptosis. The primary goal of 

therapeutic intervention in this context is to apply drug 
treatments that shift the faulty output as close as possible to the 
non-proliferative reference state of [00000000]. From a 
biological perspective, this involves steering the mutated 
signaling pathways back towards a regulated, non-proliferative 
state while reactivating programmed cell death through carefully 
selected drug combinations. 

B. Modeling abnormalities in the HNC pathway 

HNC primarily develops because of disrupted cellular 
signaling, where alterations in normal regulatory pathways 
lead to the loss of cell cycle control, excessive proliferation, 
and impaired apoptosis. These abnormalities within the 
signaling network can be effectively represented in Boolean 
models as “stuck-at faults,” a concept borrowed from digital 
circuit theory. In this context, a stuck-at fault occurs when a 
gene or protein node becomes permanently fixed in an active 
(stuck-at-1) or inactive (stuck-at-0) state, regardless of the 
upstream signals that would normally regulate its behavior 
[35]. Such faults may result from genetic mutations, 
amplifications, deletions, or other structural abnormalities, 
causing persistent oncogenic activation or loss of tumor 
suppressor functions. Here, it is important to point out that 
the stuck-at-fault terminology does have direct clinical 
relevance to cancer. Stuck-at-1 faults correspond to gain-of-
function mutations for oncogenes, while stuck-at-0 faults 
correspond to loss-of-function mutations for tumor 
suppressors.   

In the case of our BN model for HNC, these faults are 
used to simulate the effects of common mutations found in 
the disease. For instance, if a gene like Cyclin D1, which 
promotes cell cycle progression, becomes constitutively 
active due to amplification or overexpression, this is modeled 
as a stuck-at-1 fault. This means that Cyclin D1 continues to 
drive proliferation regardless of upstream regulatory inputs. 
Consequently, downstream nodes that control DNA 
replication and cell division remain persistently activated, 
contributing to tumor growth. A therapeutic intervention in 
this scenario might involve the application of CDK4/6 
inhibitors, designed to block the downstream effects of 
Cyclin D1 overactivity and restore controlled cycle 
progression. 

TABLE II 
OUTPUTS OF THE HNC BN (WITHOUT FAULTS) AND THEIR 

CORRESPONDING NON-PROLIFERATIVE STATES 

Output 
Non-proliferative 

State 
CCNE 0 
E2F 0 

MYC 0 
JUN 0 

VEGFs 0 
EP300 0 

CREBBP 0 
CTGF 0 

 

TABLE I 
INPUTS TO THE HNC BN AND THEIR CORRESPONDING NON-

PROLIFERATIVE STATES 

Input 
Non-proliferative 

State 
MET 0 
FGF 0 
EGF 0 

VEGF 0 
WNT 0 
JAK 0 

HYPOXIA 0 
PTEN 1 

NOTCH 0 
FAT1 1 

STRIPAK 0 
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Similarly, the inactivation of critical tumor suppressors in 
HNC, such as p53 or PTEN, can be modeled as stuck-at-0 
faults. Under normal conditions, p53 responds to DNA 
damage and oncogenic stress by triggering apoptosis or 
halting the cell cycle [8] [9]. However, when p53 is mutated 
and loses its function, it becomes permanently inactive, 
failing to regulate key downstream pathways. This loss 
contributes to unchecked proliferation, survival, and 
accumulation of further mutations, accelerating cancer 
progression. Boolean fault modeling allows us to pinpoint 
such defects and simulate strategies that might compensate 
for these losses, such as activating alternative tumor 
suppressive pathways or using targeted therapies to block the 
hyperactive oncogenic signals that arise from p53 
inactivation. 

The stuck-at faults mentioned above directly correspond 
to common classes of clinical mutations observed in HNC 
patients. For instance, stuck-at-1 faults represent gain-of-
function mutations in oncogenes such as PIK3CA (mutated 
in 20-25% of HNC cases) or EGFR overexpression 
(occurring in up to 90% of cases), where the protein becomes 
constitutively active regardless of upstream regulatory 
signals. Conversely, stuck-at-0 faults model loss-of-function 
mutations in tumor suppressors like p53 (mutated in 70-80% 
of HPV-negative HNC) or PTEN loss (observed in 10-15% 
of cases), where the protective function is permanently 
disabled, which can create a synergistic effect that drives 
aggressive tumor growth [16]. Using the BN, we can explore 
which drug combinations—such as pairing PI3K inhibitors 
with mTOR inhibitors—might be most effective in 
suppressing these cooperative oncogenic signals. 

In summary, applying stuck-at fault modeling within a 
BN offers deep insights into the mutational landscape of 
HNC. It not only helps in identifying the critical nodes that 
are driving malignancy but also supports the development of 
rational, combination-based therapeutic strategies aimed at 
correcting or bypassing persistent disruptions in the signaling 
network. By leveraging this system-level understanding, we 
can work towards more precise and effective treatments 
tailored to the specific molecular alterations present in each 
patient's tumor. 

C. Simulation for fault mitigation with drug intervention 

Using our BN model of HNC, we systematically evaluate 
various targeted drugs (Table III) combinations to determine 
their ability to counteract specific genetic and signaling 
abnormalities, modeled as faults. In this approach, each fault 
represents a distinct molecular alteration—such as the 
persistent activation of an oncogene or the loss of a tumor 
suppressor, reflecting the diverse mutational profiles 
commonly observed in HNC tumors. The goal is to identify 
the most effective drug combinations that can neutralize the 
impact of these faults and restore the network's behavior as 
closely as possible to its non-proliferative, fault-free state. 

To guide this process, we first define the ideal activation 
patterns of all nodes in a normal, non-mutated network, and 
these are shown in Tables I and II. When a fault occurs, it 
alters the output profile of the network, leading to aberrant 

activity of key genes responsible for cell proliferation, 
survival, and apoptosis. For each fault scenario, we search for 
the drug combinations that best correct these abnormal 
outputs. If complete correction is not possible, we aim to 
minimize the deviation from the non-proliferative state. 

To quantify how far a faulted network deviates from the 
normal state, we use the size difference (SD) score, which 
measures the difference between the output vectors of the 
faulted and fault-free networks. Higher SD scores indicate 
greater activation of proliferative (oncogenic) genes and 
reduced activity of tumor-suppressive (pro-apoptotic) genes, 
suggesting a more aggressive cancer phenotype. Therefore, 
the most effective therapy for each fault is the combination of 
drugs that produces the smallest SD score, reflecting the 
greatest restoration of normal signaling, which we discuss in 
detail in the next subsection. 

In our simulations, we also account for the practical 
aspect of therapeutic application by prioritizing drug 
combinations that involve fewer agents in order to minimize 
potential toxicity and adverse effects. To maintain 
computational efficiency and reflect realistic clinical 
scenarios, we limit our fault analysis to cases involving up to 
three simultaneous faulty genes and restrict the therapeutic 
search space to combinations involving no more than four 
drugs. 

D. Computing the effects of drug combinations 

The complete list of FDA-approved or under 
investigation drugs considered in this study, along with their 
respective molecular targets within the HNC network, is 
presented in Table III. To assess the therapeutic potential of 
these interventions, we systematically analyzed the effects of 
each drug combination on the network's behavior in the 
presence of one, two, or three simultaneous faults, 
representing common genetic mutations and pathway 
disruptions observed in HNC. 

From a systems biology perspective, the BN model of 
HNC operates similarly to a multi-input, multi-output 
(MIMO) digital circuit, where the state of the system's 
outputs is determined by its inputs. In the absence of 
mutations (the fault-free condition), the BN accurately 

TABLE III 
DRUGS AND THEIR RESPECTIVE TARGETS 

Drugs Targets 
  Cetuximab [36] EGFR 
  Erdafitinib [37] FGFR 

  Bevacizumab [38] VEGFR 
  Buparlisib [39] PI3K 

  Capivasertib [40] AKT 
  Temsirolimus [41] mTOR 

  Ulixertinib [42] ERK 
  Ruxolitinib [43] JAK 
  Palbociclib [44] CDK4/6 

  VT3989 [45] TEAD 
  LGK974 [46] WNT/β-catenin 

  Vorinostat [47] FBXW7 
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reflects the balanced signaling of a non-proliferative cell, 
producing a stable, controlled output corresponding to 
regulated proliferation and apoptosis. However, the 
introduction of faults—such as persistent activation of 
oncogenes or inactivation of tumor suppressors—disrupts 
this balance. The resulting output shifts toward an abnormal, 
cancerous state, mirroring the dysregulated signaling typical 
of malignant HNC cells. 

When non-proliferative input conditions are applied to a 
faulty network, the output deviates from the ideal, non-
proliferative output state due to the effects of these faults. By 
introducing drugs into this faulty network, the goal is to 
determine whether the intervention can correct the network 
behavior, restoring the output closer to the non-proliferative 
state. To evaluate the effectiveness of each drug or drug 
combination, we calculate the SD score, a quantitative 
measure of the difference between the faulty network's output 
and the fault-free, non-proliferative output. 

The specific drugs used in these simulations, listed in Table 
III, are represented as a row vector of their activity states, as 
follows: 
[Cetuximab, Erdafitinib, Bevacizumab, Buparlisib, 
Capivasertib, Temsirolimus, Ulixertinib, Ruxolitinib, 
Palbociclib, VT3989, LGK974, Vorinostat]. 

This vector format allows us to systematically model the 
influence of individual drugs or combinations on the overall 
behavior of the HNC network. 

In our BN model for HNC, each element of the drug vector is 
assigned a binary value of one or zero, indicating whether a 
specific drug is administered (1) or not (0). As outlined earlier, 
the primary goal is to guide the output of a faulty network as 
close as possible to the non-proliferative, non-cancerous output 
state through targeted drug interventions. 

To objectively measure how well a drug or drug combination 
restores the network toward this ideal state, we use the SD 
metric. The SD score quantifies the dissimilarity between two 
binary output vectors—one representing the output of the faulty 
network and the other representing the non-proliferative, fault-
free network. The SD value increases as the difference between 
these two vectors grows, indicating more severe disruptions to 
cellular behavior. 

Mathematically, SD is calculated by comparing two binary 
vectors, a=(a1,...,an) and b=(b1,...,bn), where each element is 
either 0 (inactive gene) or 1 (active gene), and ‘n’ is the length 
of the vectors. A confusion matrix is constructed to count 
matches and mismatches across corresponding positions in the 
two vectors: 

                     𝑎௜ = 1    𝑎௜ = 0

𝑀 =
𝑏௜ = 1
𝑏௜ = 0

ቀ
     𝐴         𝐵   
    𝐶        𝐷  

 ቁ
     (1)                            

 A: Number of positions where both vectors have a 
value of 1 (true positives). 

 D: Number of positions where both vectors have a 

value of 0 (true negatives). 
 B: Positions where the first vector has a 1 and the 

second has a 0 (mismatch type 1). 
 C: Positions where the first vector has a 0 and the 

second has a 1 (mismatch type 2). 
These counts are then used to calculate the SD score, where 

higher SD values indicate greater deviation from the non-
proliferative state. In biological terms, this suggests a higher 
degree of abnormal proliferation and reduced apoptosis, both of 
which are characteristic of aggressive cancer progression. The 
SD score is given by  

  𝑆𝐷(𝑎, 𝑏) = (
஻ା஼

஺ା஻ା஼ା஽
)ଶ, 𝑠𝑜 𝑡ℎ𝑎𝑡  𝑆𝐷 ∈ [0,1]           (2) 

To assess the effectiveness of each drug combination, we 
applied our BN across all modeled faults and computed the SD 
for each scenario. The results of these simulations are organized 
into a matrix, as shown in Table IV, where each column 
represents a specific fault, and each row represents a different 
drug combination. For any given fault, the most effective therapy 
is identified as the drug combination with the lowest SD value in 
that column. 

To evaluate overall performance across all faults, we sum the 
SD values across the faults for each drug combination. The 
combination with the smallest total SD is considered the most 
effective at globally minimizing the impact of mutations across 
the network. In Table IV, the first drug combination emerges as 
the most effective across all three fault locations by achieving 
the lowest SD sum. 

To further explore therapeutic performance under realistic 
clinical scenarios, we accounted for the occurrence of multiple 
simultaneous faults, reflecting the complex mutational profiles 
often observed in HNC. We computed SD scores for all 
combinations involving one, two, and three concurrent faults 
within the network. Given the presence of 33 possible fault 
locations, this resulted in a total of 6,017 fault combinations 
(calculated as 33C1 + 33C2 + 33C3 = 6,017). For each of these fault 
combinations, we tested the effect of each drug or drug 
combination and calculated the SD score relative to the non-
proliferative output state. 

After compiling the full SD matrix for all fault and drug 
combinations, we normalized the results to ensure comparability 
and calculated the Normalized Mean Size Difference (NMSD) 
for each drug. NMSD is a dimensionless value ranging from 

TABLE IV 
A MODEL NMSD MATRIX: NORMALIZED COMPUTATIONAL EFFECT OF 

VARIOUS DRUGS IN A BOOLEAN NETWORK MODEL 

 
Fault 

1 
Fault 

2 
Fault 

3 
SD 

Sum 
NMSD 

DC1 0.2 0.3 0.6 1.1 0.5 
DC2 0.1 0.6 0.7 1.4 0.636 
DC3 0.3 0.5 0.8 1.6 0.727 
ND 0.5 0.8 0.9 2.2 1.000 
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0 to 1, where 0 indicates perfect similarity between the 
outputs (meaning the drug successfully restores non-
proliferative behavior), and 1 represents complete 
dissimilarity (where the drug has no corrective effect). 
Therefore, a lower NMSD score reflects a more effective 
therapeutic intervention, while a higher NMSD score 
suggests that the drug combination is insufficient in 
counteracting the cancerous signaling caused by the faults. 

𝑁𝑀𝑆𝐷 (𝐷𝑟𝑢𝑔௜) =
ெ௘௔௡(ௌ஽(஽௥௨௚೔))

ெ௘௔௡(ௌ஽(௎௡௧௥௘௔௧௘ௗ))
                             (3) 

The NMSD allows us to identify the most effective treatment 
by comparing the average SD of each drug combination to the 
average SD of the untreated (fault-only) condition. 

A sample NMSD calculation is presented in Table IV, where 
the most effective drug combination for a specific fault is the one 
with the lowest SD value. For example, in this case, drug 
combination 2 (DC2) is the most effective for fault 1, drug 
combination 1 (DC1) is optimal for fault 2, and drug 
combination 1 (DC1) again performs best for fault 3. To 
determine the overall best-performing therapy across all faults, 
we calculate the NMSD for each drug combination. The 
combination with the lowest NMSD value is considered the 
most effective, as it consistently minimizes the impact of 
mutations across the network. Based on this analysis, drug 
combination 1 (DC1) demonstrated the greatest overall efficacy 
in managing the faulty network behavior of HNC. 

All BN simulations and NMSD score calculations were 
implemented in Python, and the complete codebase supporting 
these analyses is publicly available for reproducibility and 
further research at the following link: 
https://github.com/PranabeshTAMU/HNC. 

IV. RESULTS AND DISCUSSION 

With the BN model established in the previous section, we 
proceed to evaluate the effectiveness of various drug 
combinations in counteracting specific mutations and pathway 
malfunctions associated with HNC. For each identified mutation 
or dysfunction within the network, the primary objective is to 
determine the most suitable combination therapy capable of 
minimizing the disruptive effects of the fault and restoring 
balanced cellular behavior. 

For this study, we calculated the NMSD score (as defined in 
Equation 3) to evaluate the effectiveness of each drug 
combination applied to the BN model of HNC. The analysis 
considered cases with one, two, and three simultaneous faults 
(representing mutations or pathway disruptions). With a total of 
12 drugs and limiting the maximum number of drugs in any 
combination to four, this resulted in 12C1 + 12C2 + 12C3 + 
12C4 = 793 possible drug combinations. 

Considering the 33 fault locations within the network, the total 
number of fault scenarios analyzed was 33C1 + 33C2 + 33C3 = 
6,017 unique fault combinations. The corresponding NMSD 
matrix generated from this analysis has a dimension of 793 drug 
combinations by 6,017 fault combinations. Due to the large scale 
of this dataset, presenting the entire matrix in full is impractical. 

Instead, we summarized the NMSD scores for all drug 
combinations across the different fault scenarios, categorized by 
cases involving single, double, and triple faults. Using the 
method described previously, the BN simulations were executed 
in Python, and the complete result is provided in the 
supplementary materials (see Additional File 1). Some of the top 
single and two drug combinations are shown in Figs.4 and 5. 

In the following subsections, we present the theoretical results 
obtained from these simulations, alongside corresponding 
interpretations of the most effective drug combinations 
identified for managing mutations in HNC. 

A. Best treatment strategy for single mutation 

We used column charts to illustrate the effectiveness of 
various drug combinations. VT3989, a TEAD inhibitor, was 
found to be the most effective single-agent drug with an 
NMSD score of 0.64 (Table V), showing a 36% reduction 
compared to untreated conditions. The most effective two-
drug combination was Ulixertinib + VT3989, with an NMSD 
score of 0.33, representing a 67% reduction compared to the 
untreated case. For three-drug combinations, Ulixertinib + 
VT3989 + Vorinostat yielded the best results with an NMSD 
score of 0.17. The most effective four-drug combination was 
Ulixertinib + VT3989 + LGK974 + Vorinostat, achieving an 
NMSD score of 0.09, which demonstrates a significant 
reduction in NMSD score compared to the untreated case. 

TABLE V 
ROBUST DRUG INTERVENTION STRATEGY 

FOR SINGLE MUTATION 
Drug Combinations NMSD 

Untreated 1 
VT3989 0.6434 
Ulixertinib + VT3989 0.3329 
Ulixertinib + VT3989 + Vorinostat 0.1733 
Ulixertinib + VT3989 + LGK974 + Vorinostat 0.09352 

TABLE VI 
ROBUST DRUG INTERVENTION STRATEGY 

FOR TWO MUTATIONS 
Drug Combinations NMSD 

Untreated 1 
VT3989 0.692 
Ulixertinib + VT3989 0.4203 
Ulixertinib + VT3989 + Vorinostat 0.2066 
Temsirolimus + Ulixertinib + VT3989 + Vorinostat 0.1187 

 

TABLE VII 
ROBUST DRUG INTERVENTION STRATEGY 

FOR THREE MUTATIONS 
Drug Combinations NMSD 

Untreated 1 
Vorinostat 0.7185 
VT3989 + Vorinostat 0.4808 
Ulixertinib + VT3989 + Vorinostat 0.2423 
Temsirolimus + Ulixertinib + VT3989 + Vorinostat 0.1468 
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B. Best treatment strategy for two mutations 

Similar to the previous subsection, we evaluated drug 
efficacies for two mutations. As shown in Table VI, VT3989 
emerged as the most effective single drug with an NMSD 
score of 0.69. VT3989 is a nov el TEAD auto palmitoylation 
inhibitor that targets the Hippo pathway. For two-drug 
combinations, Ulixertinib + VT3989 proved most effective 
with an NMSD score of 0.42. The most effective three-drug 
combination was Ulixertinib + VT3989 + Vorinostat, 
achieving an NMSD score of 0.21. Finally, the four-drug 
combination with the lowest NMSD score (0.12) was 
Temsirolimus + Ulixertinib + VT3989 + Vorinostat. 

C. Best treatment strategy for three mutations 

 In this subsection, we evaluated the best single, two-
, three-, and four-drug combinations to treat HNC with three  
simultaneous mutations. As shown in our analysis, the most 
effective single drug was Vorinostat, achieving an NMSD 
score of 0.72.  For two-drug combinations, VT3989 + 
Vorinostat was identified as the most effective, with an 
NMSD score of 0.48. The best three-drug combination was 

Ulixertinib + VT3989 + Vorinostat, which achieved an 
NMSD score of 0.24. Finally, the most effective four-drug 

 

 

 
 
FIGURE 4. All monotherapy drugs (which are used for this 
experiment), with respective NMSD scores to treat HNC with single, 
two, and three mutations at a time. 
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FIGURE 5. Some of the best two-drug combinations with the lowest 
NMSD score to treat HNC with single, two, and three mutations at a time. 
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combination was Temsirolimus + Ulixertinib + VT3989 + 
Vorinostat, with an NMSD score of 0.15. 

D. Best overall drug combinations and analysis of results 

The summary of complete  simulation results is shown in  
Fig.6, where the top performing drugs are listed with 
respective NMSD scores for all single, two and three mutation 
conditions. In that bar plot we showed the best single, two 
three and four drug combinations to treat HNC based on 
lowest average NMSD (mean of single, two and three fault 
NMSD scores)  scores. The results of our simulation provide 
a comprehensive analysis of targeted therapeutic strategies for 
HNC, identifying optimal drug combinations based on the 
NMSD score. The lower the NMSD score, the closer the 
network dynamics align with a non-proliferative state, making 
these drug combinations promising candidates for HNC 
treatment. 

Our findings highlight VT3989 as the most effective 
single-drug th erapy, achieving an average NMSD score of 
0.685. VT3989 specifically targets TEAD [45], a key 
downstream effector of the Hippo signaling pathway, which 
plays a crucial role in regulating cellular proliferation and 
apoptosis. TEAD dysregulation in HNC has been associated 
with tumor progression and therapeutic resistance, suggesting 
that inhibiting this node can disrupt oncogenic signaling. 

For dual-drug therapy, the combination of Ulixertinib + 
VT3989 demonstrated the highest efficacy, with an average 
NMSD score of 0.414. Ulixertinib is a potent inhibitor of ERK 
[42], a critical component of the RAS-RAF-MEK-ERK 
pathway, which is frequently overactivated in HNC and 
contributes to uncontrolled cell growth. By simultaneously 
targeting ERK and TEAD, this combination effectively 
modulates both proliferative and survival pathways, thereby 
enhancing therapeutic impact. 

Expanding to three-drug regimens, the combination of 
Ulixertinib + VT3989 + Vorinostat emerged as the top-
performing trio, further reducing the NMSD score to 0.207. 
FBXW7 is an E3 ubiquitin ligase that regulates the 
degradation of several oncogenic proteins, including MYC, 
Cyclin E, NOTCH, and mTOR [48]. Some studies suggest that 
HDAC(histone deacetylase) inhibitor Vorinostat, influences 

the expression of FBXW7, possibly by altering chromatin 
accessibility and transcriptional regulation [47]. The addition   
of Vorinostat potentially enhances the efficacy of Ulixertinib 
and VT3989 by disrupting compensatory survival 
mechanisms and reactivating tumor-suppressor pathways. 

Finally, the best-performing four-drug combination, 
Temsirolimus + Ulixertinib + VT3989 + Vorinostat, achieved 
the lowest average NMSD score of 0.12, indicating a near-
complete normalization of pathway dynamics. Temsirolimus, 
an mTOR inhibitor [41], suppresses PI3K/AKT/mTOR 
signaling, a key driver of metabolic reprogramming and cell 
survival in HNC. The inclusion of Temsirolimus likely 
enhances the therapeutic response by reducing metabolic 
support for tumor cells, thereby increasing sensitivity to the 
other three agents. 

Our Boolean network model successfully simulates the 
effects of multiple simultaneous perturbations, as evidenced 
by our systematic analysis of single, dual, triple, and 
quadruple drug combinations (793 total combinations tested). 
The model maintains stability across all perturbation 
scenarios, with the NMSD metric providing consistent 
quantitative measures of therapeutic efficacy. The hierarchical 
improvement in average NMSD scores from single-drug 
therapy (0.685) to four-drug combinations (0.12) 
demonstrates that the model can be used to  predict the effects 
of multiple interventions without loss of computational 
stability. 

V. CONCLUSION AND FUTURE WORK 

In this study, we developed a comprehensive BN model 
of HNC, incorporating key signaling pathways governing 
tumor growth, survival, angiogenesis, and apoptosis. By 
systematically simulating the effects of twelve FDA-
approved or under investigation drugs, we identified the most 
effective single, dual, triple, and quadruple drug combinations 
based on NMSD scores, which measure the extent to which 
pathway behavior is restored to a normal state. 

It is important to note that Boolean network models, while 
powerful for systems-level analysis, involve certain 
abstractions that differ from the continuous and stochastic 

 
FIGURE 6. Best overall single, two, three and four drug combinations based on average NMSD score. 
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nature of biological systems. The binary on/off states used in 
our model represent simplified versions of the graded protein 
expression levels and pathway activities observed in real 
cells. Similarly, the discrete time steps in Boolean networks 
do not capture the continuous temporal dynamics and varying 
reaction kinetics of biological processes. Despite these 
limitations, Boolean models have proven valuable for 
identifying key regulatory relationships and predicting 
system-level behaviors, as demonstrated in numerous 
successful applications in cancer research. 

Our findings highlight VT3989 (TEAD inhibitor) as the 
best-performing single drug, indicating the Hippo pathway as 
a critical therapeutic target in HNC. The combination of 
Ulixertinib (ERK inhibitor) + VT3989 significantly improved 
therapeutic efficacy by simultaneously disrupting the MAPK 
and Hippo pathways. Further enhancement was observed with 
the addition of Vorinostat (influences the function of 
FBXW7, which is a tumor suppressor gene), and 
Temsirolimus (mTOR inhibitor), which suppresses metabolic 
adaptation and survival mechanisms. The best four-drug 
combination, Temsirolimus + Ulixertinib + VT3989 + 
Vorinostat, achieved the lowest NMSD score, suggesting its 
potential to comprehensively inhibit tumor-promoting 
pathways. 

VT3989 has shown promising results in clinical trials for 
patients with advanced malignant mesothelioma and other 
tumors with specific mutations [49][50][51][52]. The 
combination of VT3989 with other targeted therapies, such as 
Ulixertinib (an ERK inhibitor) and Vorinostat (a histone 
deacetylase inhibitor), likely provides synergistic effects by 
targeting different but complementary pathways involved in 
cancer progression. The addition of Temsirolimus, an mTOR 
inhibitor, to the combination further enhances the multi-
targeted approach, potentially addressing multiple cancer-
driving pathways simultaneously. 

These results underscore the importance of a multi-
targeted therapeutic approach in HNC treatment. By 
simultaneously blocking key oncogenic drivers, our proposed 
drug combinations have the potential to overcome 
compensatory resistance mechanisms and improve patient 
outcomes. This network-based strategy provides valuable 
insights for precision oncology, offering a rational framework 
for developing effective combination therapies in HNC. 

Collectively, these results underscore the importance of 
multi-targeted approaches in HNC therapy. The synergistic 
effects of these drug combinations disrupt multiple oncogenic 
pathways, minimizing compensatory resistance mechanisms. 
Our findings suggest that an optimal therapeutic strategy 
involves the inhibition of TEAD (Hippo pathway), ERK 
(MAPK pathway), FBXW7 (tumor suppressor), and mTOR 
(metabolic control), providing a robust framework for 
precision medicine in HNC treatment. Further experimental 
validation and clinical translation of these results will be 
crucial to confirm their efficacy and safety. So, future work 
will focus on: 

a) In Vitro and In Vivo Validation: 

 Testing the identified drug combinations in HNC 
cell lines and patient-derived xenografts (PDX) 
to validate their efficacy in reducing tumor 
growth and promoting apoptosis. 

 Assessing potential synergistic effects and 
toxicity profiles of the top-performing drug 
combinations. 

 Correlating experimental results with in silico 
predictions to confirm the reliability of the 
Boolean network model in guiding precision 
therapy decisions. 

b) Incorporation of Additional Pathways and 
Mutations: 

 Expanding the BN to include immune checkpoint 
regulators (e.g., PD-L1, CTLA-4) to evaluate 
immunotherapy-based combinations [52]. 

 Investigating the impact of patient-specific 
mutations to refine treatment strategies for 
personalized medicine. 

c) Clinical Data Integration and Machine Learning 
Optimization: 

 Incorporating HNC patient gene expression and 
drug response datasets to further validate and 
refine the model. 

 Using machine learning techniques to predict 
novel drug combinations that may enhance 
therapeutic efficacy. 

By integrating computational modeling with experimental 
validation, this research paves the way for personalized, data-
driven treatment approaches in HNC. The insights gained 
from this study can serve as a foundation for future clinical 
trials, ultimately improving therapeutic strategies for HNC 
patients. 
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