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Abstract. Hyperspectral imaging provides a powerful means of material 

identification by capturing detailed spectral information across a broad range of 

wavelengths. However, the accurate classification of materials remains 

challenging due to spectral mixing and the lack of ground truth data. This paper 

proposes a robust approach for hyperspectral endmember extraction and material 

identification by integrating the N-FINDR algorithm with spectral information 

divergence (SID)-based spectral library matching. The proposed method 

enhances segmentation accuracy by identifying pure spectral signatures 

(endmembers) and associating them with actual materials using the ECOSTRESS 

spectral library. Experimental validation using the Pavia University 

hyperspectral dataset demonstrates the effectiveness of this approach in 

extracting, identifying, and segmenting endmember materials with high 

precision. The results underscore the advantages of combining geometric-based 

endmember extraction with spectral matching techniques to improve 

hyperspectral image analysis. 

Keywords: Endmember extraction, spectral unmixing, N-FINDR, spectral 

information divergence (SID), spectral library matching, spectral classification, 

hyperspectral image segmentation. 

1   Introduction 

Hyperspectral imaging captures a broad spectrum of wavelengths, with each spectral 
band corresponding to a specific wavelength of light [1]-[10]. This technique enables 
the identification of materials or objects based on their spectral signatures—distinctive 
patterns of reflectance or emittance across different wavelengths. Unlike conventional 
imaging, hyperspectral imaging captures both spatial and spectral data [11]. It not only 
includes visible spectrum, but also includes ultraviolet (UV) and long-wave infrared 
(LWIR) wavelengths. Because it covers the visible, near-infrared, and mid-infrared 
regions, hyperspectral images can capture highly detailed spectral information with 
narrow, adjacent wavelength bands within a defined spectral range [12]. This capability 
is particularly valuable in remote sensing, where it helps distinguish features such as 
vegetation, water bodies, and infrastructure based on their unique spectral 
characteristics [13]. Its ability to provide intricate spectral information makes 
hyperspectral imaging essential for applications like target detection, material 
identification, and surface classification.  
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The main objective of hyperspectral image analysis is to enhance classification and 
mapping accuracy. However, two major obstacles impede this goal [14]. The first is the 
lack of sufficient ground truth labels or limited training samples, which results in the 
Hughes effect. This effect causes classification performance to decrease because when 
the number of spectral features increases, the classification tends to be less accurate. 
The second challenge is spectral mixing, which is caused by the sensor's spatial 
resolution or when multiple surface materials are contained within a single pixel. As a 
result, the spectral reflectance of different materials blends in a linear fashion, 
complicating the accurate categorization of mixed pixels into distinct material classes. 

To address these challenges, endmembers extraction has emerged as a powerful 
solution to mitigate the effects of the Hughes effect and spectral mixing, which can 
result in enhanced classification performance [15]. Endmembers are the purest pixel 
spectra in the hyperspectral image, which ideally represent a unique material or 
substance in the scene. Endmember extraction (EE) is a crucial process that involves 
identifying the pure spectral signatures that represent the different materials present in 
a remotely sensed hyperspectral image.  

Existing endmember extraction or identification algorithms are designed to extract 
the most pure, representative spectra (endmembers) from hyperspectral images. These 
algorithms play a crucial role in hyperspectral image analysis by identifying distinct 
spectral signatures that represent the materials or objects present in the scene. However, 
despite their importance, a common limitation across all these methods is that they 
focus on extracting the spectral features and do not automatically link the extracted 
endmembers to real-world materials or classes.  

To address the limitation of material identification, several approaches have been 
developed. One such approach is Spectral Library Matching. This method links the 
extracted endmembers to specific materials by comparing them with spectral libraries 
containing known material spectra. When an extracted endmember closely matches a 
reference spectrum in the library, the material corresponding to that spectrum can be 
identified. This technique relies heavily on the availability of comprehensive spectral 
libraries and is a straightforward way to label endmembers based on known material 
signatures.  

To interpret the extracted endmembers effectively, we will propose a hyperspectral 
endmember extraction and material identification method by combining the N-FINDR 
algorithm with spectral information divergence-driven spectral library matching. 

The remainder of the paper is organized as follows. Section II provides the literature 
review. Section III provides the details of the proposed method, including the N-FINDR 
endmember extraction algorithm and the spectral information divergence (SID) spectral 
matching method. Section IV described the Pavia University hyperspectral image 
dataset. It also demonstrates experimental results. Section V provides the conclusions. 

 
2   Literature Review 

Endmember extraction is a vital task in hyperspectral image analysis, focused on 
identifying the purest spectral signatures (endmembers) that represent the materials or 
objects in the scene. Various methods have been developed for endmember extraction, 
which have their unique advantages and limitations. These methods can be generally 
grouped into the following categories. 



1) Geometric Approaches: One of the most widely used methods for endmember 
extraction is the vertex component analysis (VCA) [16]. VCA exploits the geometry of 
the data by looking for the vertices of the convex hull formed by the spectra in high-
dimensional space. This method is efficient and can handle large datasets. However, 
the main limitation of VCA is its assumption of spectral purity, which can lead to issues 
when spectral mixing occurs in complex scenes. The N-FINDR algorithm [17] (N-
dimensional Iterative Spectral Mixture Analysis) is another geometric approach that 
identifies endmembers by maximizing the volume of the simplex formed by a set of 
selected pixels in the spectral space. The algorithm iteratively selects pixels that best 
represent the purest endmembers, and its output is the set of endmembers that 
corresponds to the highest volume simplex. While N-FINDR is known for its simplicity 
and effectiveness in extracting endmembers from relatively simple datasets, it can 
struggle when spectral mixing is prevalent or when there is a high degree of noise in 
the data. 
2) Statistical Approaches: In contrast to geometric methods, statistical approaches to 
endmember extraction focus on the statistical properties of the hyperspectral data. One 
prominent example is independent component analysis (ICA) [18], which aims to 
extract statistically independent components from hyperspectral data. Unlike Principal 
Component Analysis (PCA), which seeks orthogonal components, ICA identifies 
components that are statistically independent. ICA is particularly useful when the data 
involve mixed signals, and it has been successfully applied to remote sensing tasks 
where endmembers correspond to independent materials in a scene. However, the 
assumption of statistical independence may not always hold in real-world scenarios, 
especially when the endmembers are spectrally similar. Another popular statistical 
technique is Principal Component Analysis (PCA) [19]. PCA reduces the 
dimensionality of hyperspectral data by transforming the original spectra into a set of 
orthogonal components. PCA can be used for endmember extraction by selecting the 
components that best represent the spectral variation in the data. However, PCA often 
struggles to directly identify physical endmembers, as it tends to mix spectral 
information from different materials in the same component. 
3) Optimization-Based Approaches: Optimization-based techniques focus on finding 
the set of endmembers that most accurately represent the hyperspectral data by 
minimizing a defined objective function. A common method is Spectral Mixture 
Analysis (SMA) [20], which posits that each pixel in the image is a combination of 
multiple endmembers. The objective of SMA is to identify the endmembers that, when 
combined, provide the closest match to the observed pixel spectra. SMA has the 
advantage of being able to model mixed pixels, making it particularly useful in 
heterogeneous environments. However, it requires accurate initial estimates of 
endmembers and can be computationally intensive. Another optimization-based 
approach is the Sparse Unmixing technique [21], which aims to decompose 
hyperspectral data into a sparse combination of endmembers. This method exploits the 
assumption that only a few endmembers are present in each pixel, and it uses 
optimization algorithms to find a sparse representation of the data. Sparse unmixing has 
gained popularity in recent years due to its ability to handle mixed pixels and its ability 
to extract endmembers even when the data is highly corrupted by noise. However, one 
of the challenges with sparse unmixing is that it requires careful tuning of regularization 
parameters to ensure optimal performance. 



 

 

4) Hybrid Approaches: Recently, there has been an increasing interest in hybrid 
methods that combine multiple endmember extraction techniques. For example, semi-
supervised learning techniques [22] have been employed to improve endmember 
extraction by integrating endmember identification with machine learning classifiers. 
These hybrid approaches use labeled data to refine the extraction process and can 
significantly improve accuracy in complex scenes where traditional methods may 
struggle. Notably, promising hybrid approach involves combining spectral library 
matching with endmember extraction [23]. In this method, the endmembers extracted 
using traditional techniques are matched to a spectral library of known materials. By 
comparing the extracted endmembers to reference spectra, researchers can identify the 
materials represented by the endmembers. This approach has the advantage of 
automating the identification process, though it still relies on the availability of a 
comprehensive and accurate spectral library. 

 
3   Proposed Methodology 

3.1 Endmember Extraction 

N-FINDR (N-dimensional-FINDing Endmembers Algorithm) is an algorithm 
designed to automatically find endmembers in hyperspectral images, which are the pure 
spectral signatures of materials in a given hyperspectral dataset. The algorithm assumes 
that each pixel in the hyperspectral image is a mixture of several endmembers, and it 
identifies a set of endmembers within the dataset. Below is the proposed N-FINDR 
algorithm. 
Input: 

• 𝑋 ∈ ℝ𝑚×𝑛: Hyperspectral data matrix (with m bands and n pixels) 
• K: The number of endmembers to be found. 
• 𝑇𝑚𝑎𝑥: The maximum number of iterations for the algorithm. 

Initialization: 
• Select an initial random subset of K pixels from the dataset as candidate 

endmembers. This subset can be chosen randomly or based on some heuristics. 
Compute the Spectral Geometry: 

• For each combination of the selected endmembers, the algorithm computes a 
measure of how well the selected endmembers span the data. The measure 
typically used is the volume of the simplex formed by the candidate 
endmembers, which is used to evaluate the diversity and spread of the 
endmembers in the high-dimensional space. 

Iterative Process: 
• For each iteration:  

1. Compute the Spectral Volume:  
▪ For the current selection of endmembers, calculate the 

volume of the simplex they form. The volume is a measure 
of the spread of the endmembers in the hyperspectral space. 

▪ The volume V of the simplex formed by endmembers is 
given by the determinant of a matrix formed by the 
endmember vectors. 



2. Select the next candidate:  
▪ The next step involves selecting a pixel from the dataset that 

will increase the volume of the simplex. This can be done 
by replacing one of the current endmembers with a pixel that 
increases the volume. 

3. Evaluate and update the selection:  
▪ If the new selection improves the spectral volume (i.e., it 

increases the diversity of the endmembers), update the 
endmembers. Otherwise, keep the existing ones. 

Stopping Criteria: 

• The algorithm stops when the maximum number of iterations 𝑇𝑚𝑎𝑥  is 

reached or when no improvement in volume is observed (i.e., the endmembers 

are stable). 

Output: 

• The final set of K endmembers that best represent the data. 

 

3.2 Spectral Information Divergence (SID) 

Spectral matching is a critical process in analyzing pixel spectra, because it can link 

an endmember to a material class [24]. This process involves comparing the 

endmember's spectrum with reference spectra from spectral libraries and measuring the 

differences in spectral information. In this paper, the ECOSTRESS spectral library is 

utilized as the reference, which is a comprehensive collection of spectral signatures for 

various natural and artificial materials. After loading the reference spectra from the 

ECOSTRESS library, we evaluate their similarity to the endmember spectrum by 

examining both the geometric characteristics and the probability distribution of the 

pixel spectra. This integrated information can improve the ability to differentiate 

spectrally similar targets within the same class. Spectral similarity is measured using 

the spectral information divergence (SID) method, which quantifies the divergence 

between the probability distributions of pixel spectra in a hyperspectral dataset and 

reference spectra. The proposed spectral information divergence (SID) algorithm is 

described below. 

Given two spectra, S₁ and S₂, we normalize them and ensure that their sum equals 1. 

This helps convert the spectra into probability distributions. 

𝑆1
𝑛𝑜𝑟𝑚 =

𝑆1

∑ 𝑆1(𝑖)
𝑛
𝑖=1

 and 𝑆2
𝑛𝑜𝑟𝑚 =

𝑆2

∑ 𝑆2(𝑖)
𝑛
𝑖=1

    (1) 

Where n is the number of spectral bands. 

SID is calculated using the Kullback-Leibler (KL) divergence between the two 

normalized spectra. The formula for SID between two spectra 𝑆1
𝑛𝑜𝑟𝑚 and 𝑆2

𝑛𝑜𝑟𝑚 is 

given by: 

𝑆𝐼𝐷(𝑆1, 𝑆2) = 𝐷𝐾𝐿(𝑆1
𝑛𝑜𝑟𝑚||𝑆2

𝑛𝑜𝑟𝑚) + 𝐷𝐾𝐿(𝑆2
𝑛𝑜𝑟𝑚||𝑆1

𝑛𝑜𝑟𝑚)  (2) 

where 𝐷𝐾𝐿(𝑃||𝑄) represents the Kullback-Leibler divergence, which is defined as: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖)𝑛
𝑖=1 log (

𝑃(𝑖)

𝑄(𝑖)
)     (3) 

where P(i) represents the normalized value of spectrum 𝑆1
𝑛𝑜𝑟𝑚, 

Q(i) represents the normalized value of spectrum 𝑆2
𝑛𝑜𝑟𝑚. 



 

 

The Kullback-Leibler (KL) divergence measures how one distribution (the actual 

spectrum) diverges from the expected distribution (the reference spectrum). 

 

4   Experimental Results 

4.1 Pavia University Dataset 

The Pavia University dataset is a widely used hyperspectral image dataset captured 

by the Reflective Optics System Imaging Spectrometer (ROSIS-03) sensor over the 

University of Pavia, Italy. It consists of 610 × 340 pixels with 103 spectral bands 

covering the 0.43-0.86 µm wavelength range [25]. The dataset includes ground truth 

labels for nine land cover classes, such as asphalt, meadows, and trees, making it a 

benchmark for hyperspectral image classification tasks, as shown in TABLE I. 

 

TABLE I. THE PAVIA UNIVERSITY CLASSES AND THEIR RESPECTIVE 

GROUND TRUTH SAMPLE NUMBER  

 

 

 

 

 

4.2 Endmember Spectra Extraction 

The following analysis will use the spectral signatures from the ECOSTRESS 

spectral library [26] as reference spectra and a sample from the Pavia University dataset 

as test data for identifying endmember materials.  

We read the spectral information corresponding to different material from the 

ECOSTRESS spectral library by using the readEcostressSig function. The materials 

include roof material, concrete, road, mollisol, utisol, tree, ice, tap water, and sea water. 

The reference spectra from the ECOSTRESS library are shown in Fig. 1. 

 

 

 

 

 

 

 

 

# Class Samples 
1 Asphalt 1,890 
2 Meadows 2,830 
3 Gravel 2,210 

4 Trees 1,350 

5 Painted Metal Sheets 520 

6 Bare Soil 720 

7 Bitumen 210 

8 Bricks 1,020 

9 Cement 2,430 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We load the test data from the Pavia University dataset using the hypercube function, 

which produces a hypercube object containing both the data cube and its corresponding 

metadata. The test data contains 9 endmembers latent that includes Asphalt, Meadows, 

Gravel, Trees, Painted Metal Sheets, Bare Soil, Bitumen, Bricks, Cement.  

To determine the total number of spectrally distinct endmembers in the test data, we 

use the countEndmembersHFC function. This function estimates the number of 

endmembers based on the Harsanyi-Farrand-Chang (HFC) method. To minimize false 

detections, we set the probability of false alarm (PFA) to a low value (i.e. 10−27). 

We then extract the endmembers from the test data using the N-FINDR method. We 

retrieve the wavelength values from the hypercube object and then plot the extracted 

endmember signatures, as shown in Fig. 2.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. Full spectra of the extracted endmember signatures using the N-FINDR 

method. 

Fig. 1. Spectral signatures read from the ECOSTRESS spectral library. 

 



 

 

4.3 Endmember Material Identification Using Spectral Library 

In this experiment, we calculate the similarity between a reference spectrum from the 

library and a test spectrum to be classified using the spectral information divergence 

(SID) method.  

The SID function computes the matching score between two spectra based on their 

probability distributions. Generally, a lower SID score indicates a better match between 

the test and reference spectra. The test spectrum is then classified as belonging to the 

class of the reference spectrum that provides the best match. 

To classify the second and fourth endmember materials, we assess the spectral 

similarity between the reference spectra from the library and the corresponding 

endmember spectra. The class corresponding to the index with the lowest SID score is 

assigned to each endmember. Consequently, the second endmember is identified as Soil, 

and the fourth endmember is identified as Tree. 

 

4.4 Segment Endmember Regions in Test Data 

To visually inspect the identification results, we localize and segment the image 

regions corresponding to the endmember materials in the test data. We use the sid 

function to calculate the pixel-wise spectral similarity between the pixel spectrum and 

the extracted endmember spectrum. Next, we apply thresholding to segment the target 

endmember regions in the test data and generate the segmented image. We set the 

threshold value to 15 to identify the best matching pixels.  

To enhance visualization and interpretation, we generate an RGB image of the test 

data using the colorize function.  

Then we create an overlay of the segmented Soil (endmember 2) and Tree 

(endmember 4) endmember regions on the RGB image.  

We display the binary segmentation results for the Soil (endmember 2) and Tree 

(endmember 4) endmember regions, as shown in Fig. 3. Fig. 3 (a) exhibits the binary 

segmentation results of the Soil (endmember 2) endmember region, and Fig. 3 (b) 

shows the binary segmentation results of the Tree (endmember 4) endmember region.  

 

 

 

 

 

 

 

 
 

 
 

 
Fig. 3. Segmented images of endmember 2 (Soil) and endmember 4 (Tree). (a) The 

binary segmentation results of the endmember 2 (Soil) endmember region. (b) The 

binary segmentation results of the endmember 4 (Tree) endmember region.  

 

   (a)     (b) 



In addition, an RGB version of the test data is created, and an overlay of the 

segmented Soil and Tree endmember regions are added to the RGB image as shown in 

Fig. 4. Fig. 4 (a) is the RGB transformation of the test data, and Fig. 4 (b) displays an 

overlay of the segmented endmember 2 (Soil) and endmember 4 (Tree) endmember 

regions on the RGB image.  

 

 

 

 

 

 

 

 

 

 

 
 

5 Conclusions 

This paper proposes a framework for endmember extraction and material 

identification in hyperspectral image analysis. The approach develops an N-FINDR 

algorithm for spectral endmember extraction. In addition, it designs a spectral 

information divergence (SID) method to identify those materials by matching the 

extracted endmembers with reference spectra from the ECOSTRESS spectral library. 

The experimental results highlighted the effectiveness of the proposed method in 

accurately identifying materials within hyperspectral images. The segmentation results 

further validated the capability of the proposed approach in localizing specific materials 

in hyperspectral data. The findings underscore the importance of combining spectral 

matching techniques with endmember extraction for improved classification and 

material identification in hyperspectral imaging applications. 

 

6 Future Work 

Future research could focus on enhancing the coverage and diversity of spectral 

libraries, such as ECOSTRESS, to improve material classification accuracy. In 

addition, integrating deep learning techniques, including convolutional neural networks 

(CNNs) and transformer-based models, could further automate and refine endmember 

identification by learning complex spectral patterns. Additionally, addressing spectral 

variability caused by environmental factors like lighting conditions, atmospheric 

effects, and sensor noise would enhance the robustness of classification methods. 

Optimizing the N-FINDR and spectral information divergence (SID) algorithms for 

Fig. 4. (a) RGB transformation of the test data. (b) An overlay of the segmented 

endmember 2 (Soil) and endmember 4 (Tree) endmember regions on the RGB image.  

   (a)     (b) 



 

 

real-time processing would also be beneficial, enabling faster hyperspectral image 

analysis in practical applications. Finally, exploring hybrid approaches that combine 

traditional spectral matching with statistical and machine learning methods could lead 

to more robust and adaptable hyperspectral imaging solutions. 
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