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Abstract. Hyperspectral imaging provides a powerful means of material
identification by capturing detailed spectral information across a broad range of
wavelengths. However, the accurate classification of materials remains
challenging due to spectral mixing and the lack of ground truth data. This paper
proposes a robust approach for hyperspectral endmember extraction and material
identification by integrating the N-FINDR algorithm with spectral information
divergence (SID)-based spectral library matching. The proposed method
enhances segmentation accuracy by identifying pure spectral signatures
(endmembers) and associating them with actual materials using the ECOSTRESS
spectral library. Experimental validation using the Pavia University
hyperspectral dataset demonstrates the effectiveness of this approach in
extracting, identifying, and segmenting endmember materials with high
precision. The results underscore the advantages of combining geometric-based
endmember extraction with spectral matching techniques to improve
hyperspectral image analysis.

Keywords: Endmember extraction, spectral unmixing, N-FINDR, spectral
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1 Introduction

Hyperspectral imaging captures a broad spectrum of wavelengths, with each spectral
band corresponding to a specific wavelength of light [1]-[10]. This technique enables
the identification of materials or objects based on their spectral signatures—distinctive
patterns of reflectance or emittance across different wavelengths. Unlike conventional
imaging, hyperspectral imaging captures both spatial and spectral data [11]. It not only
includes visible spectrum, but also includes ultraviolet (UV) and long-wave infrared
(LWIR) wavelengths. Because it covers the visible, near-infrared, and mid-infrared
regions, hyperspectral images can capture highly detailed spectral information with
narrow, adjacent wavelength bands within a defined spectral range [12]. This capability
is particularly valuable in remote sensing, where it helps distinguish features such as
vegetation, water bodies, and infrastructure based on their unique spectral
characteristics [13]. Its ability to provide intricate spectral information makes
hyperspectral imaging essential for applications like target detection, material
identification, and surface classification.
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The main objective of hyperspectral image analysis is to enhance classification and
mapping accuracy. However, two major obstacles impede this goal [14]. The first is the
lack of sufficient ground truth labels or limited training samples, which results in the
Hughes effect. This effect causes classification performance to decrease because when
the number of spectral features increases, the classification tends to be less accurate.
The second challenge is spectral mixing, which is caused by the sensor's spatial
resolution or when multiple surface materials are contained within a single pixel. As a
result, the spectral reflectance of different materials blends in a linear fashion,
complicating the accurate categorization of mixed pixels into distinct material classes.

To address these challenges, endmembers extraction has emerged as a powerful
solution to mitigate the effects of the Hughes effect and spectral mixing, which can
result in enhanced classification performance [15]. Endmembers are the purest pixel
spectra in the hyperspectral image, which ideally represent a unique material or
substance in the scene. Endmember extraction (EE) is a crucial process that involves
identifying the pure spectral signatures that represent the different materials present in
a remotely sensed hyperspectral image.

Existing endmember extraction or identification algorithms are designed to extract
the most pure, representative spectra (endmembers) from hyperspectral images. These
algorithms play a crucial role in hyperspectral image analysis by identifying distinct
spectral signatures that represent the materials or objects present in the scene. However,
despite their importance, a common limitation across all these methods is that they
focus on extracting the spectral features and do not automatically link the extracted
endmembers to real-world materials or classes.

To address the limitation of material identification, several approaches have been
developed. One such approach is Spectral Library Matching. This method links the
extracted endmembers to specific materials by comparing them with spectral libraries
containing known material spectra. When an extracted endmember closely matches a
reference spectrum in the library, the material corresponding to that spectrum can be
identified. This technique relies heavily on the availability of comprehensive spectral
libraries and is a straightforward way to label endmembers based on known material
signatures.

To interpret the extracted endmembers effectively, we will propose a hyperspectral
endmember extraction and material identification method by combining the N-FINDR
algorithm with spectral information divergence-driven spectral library matching.

The remainder of the paper is organized as follows. Section II provides the literature
review. Section III provides the details of the proposed method, including the N-FINDR
endmember extraction algorithm and the spectral information divergence (SID) spectral
matching method. Section IV described the Pavia University hyperspectral image
dataset. It also demonstrates experimental results. Section V provides the conclusions.

2 Literature Review

Endmember extraction is a vital task in hyperspectral image analysis, focused on
identifying the purest spectral signatures (endmembers) that represent the materials or
objects in the scene. Various methods have been developed for endmember extraction,
which have their unique advantages and limitations. These methods can be generally
grouped into the following categories.



1) Geometric Approaches: One of the most widely used methods for endmember
extraction is the vertex component analysis (VCA) [16]. VCA exploits the geometry of
the data by looking for the vertices of the convex hull formed by the spectra in high-
dimensional space. This method is efficient and can handle large datasets. However,
the main limitation of VCA is its assumption of spectral purity, which can lead to issues
when spectral mixing occurs in complex scenes. The N-FINDR algorithm [17] (N-
dimensional Iterative Spectral Mixture Analysis) is another geometric approach that
identifies endmembers by maximizing the volume of the simplex formed by a set of
selected pixels in the spectral space. The algorithm iteratively selects pixels that best
represent the purest endmembers, and its output is the set of endmembers that
corresponds to the highest volume simplex. While N-FINDR is known for its simplicity
and effectiveness in extracting endmembers from relatively simple datasets, it can
struggle when spectral mixing is prevalent or when there is a high degree of noise in
the data.

2) Statistical Approaches: In contrast to geometric methods, statistical approaches to
endmember extraction focus on the statistical properties of the hyperspectral data. One
prominent example is independent component analysis (ICA) [18], which aims to
extract statistically independent components from hyperspectral data. Unlike Principal
Component Analysis (PCA), which seeks orthogonal components, ICA identifies
components that are statistically independent. ICA is particularly useful when the data
involve mixed signals, and it has been successfully applied to remote sensing tasks
where endmembers correspond to independent materials in a scene. However, the
assumption of statistical independence may not always hold in real-world scenarios,
especially when the endmembers are spectrally similar. Another popular statistical
technique is Principal Component Analysis (PCA) [19]. PCA reduces the
dimensionality of hyperspectral data by transforming the original spectra into a set of
orthogonal components. PCA can be used for endmember extraction by selecting the
components that best represent the spectral variation in the data. However, PCA often
struggles to directly identify physical endmembers, as it tends to mix spectral
information from different materials in the same component.

3) Optimization-Based Approaches: Optimization-based techniques focus on finding
the set of endmembers that most accurately represent the hyperspectral data by
minimizing a defined objective function. A common method is Spectral Mixture
Analysis (SMA) [20], which posits that each pixel in the image is a combination of
multiple endmembers. The objective of SMA is to identify the endmembers that, when
combined, provide the closest match to the observed pixel spectra. SMA has the
advantage of being able to model mixed pixels, making it particularly useful in
heterogeneous environments. However, it requires accurate initial estimates of
endmembers and can be computationally intensive. Another optimization-based
approach is the Sparse Unmixing technique [21], which aims to decompose
hyperspectral data into a sparse combination of endmembers. This method exploits the
assumption that only a few endmembers are present in each pixel, and it uses
optimization algorithms to find a sparse representation of the data. Sparse unmixing has
gained popularity in recent years due to its ability to handle mixed pixels and its ability
to extract endmembers even when the data is highly corrupted by noise. However, one
of the challenges with sparse unmixing is that it requires careful tuning of regularization
parameters to ensure optimal performance.



4) Hybrid Approaches: Recently, there has been an increasing interest in hybrid
methods that combine multiple endmember extraction techniques. For example, semi-
supervised learning techniques [22] have been employed to improve endmember
extraction by integrating endmember identification with machine learning classifiers.
These hybrid approaches use labeled data to refine the extraction process and can
significantly improve accuracy in complex scenes where traditional methods may
struggle. Notably, promising hybrid approach involves combining spectral library
matching with endmember extraction [23]. In this method, the endmembers extracted
using traditional techniques are matched to a spectral library of known materials. By
comparing the extracted endmembers to reference spectra, researchers can identify the
materials represented by the endmembers. This approach has the advantage of
automating the identification process, though it still relies on the availability of a
comprehensive and accurate spectral library.

3  Proposed Methodology

3.1 Endmember Extraction

N-FINDR (N-dimensional-FINDing Endmembers Algorithm) is an algorithm
designed to automatically find endmembers in hyperspectral images, which are the pure
spectral signatures of materials in a given hyperspectral dataset. The algorithm assumes
that each pixel in the hyperspectral image is a mixture of several endmembers, and it
identifies a set of endmembers within the dataset. Below is the proposed N-FINDR
algorithm.

Input:

e X € R™™: Hyperspectral data matrix (with m bands and n pixels)

e K: The number of endmembers to be found.

® T The maximum number of iterations for the algorithm.

Initialization:

e Select an initial random subset of K pixels from the dataset as candidate

endmembers. This subset can be chosen randomly or based on some heuristics.
Compute the Spectral Geometry:

e For each combination of the selected endmembers, the algorithm computes a
measure of how well the selected endmembers span the data. The measure
typically used is the volume of the simplex formed by the candidate
endmembers, which is used to evaluate the diversity and spread of the
endmembers in the high-dimensional space.

Iterative Process:
e For each iteration:
1. Compute the Spectral Volume:

= For the current selection of endmembers, calculate the
volume of the simplex they form. The volume is a measure
of the spread of the endmembers in the hyperspectral space.

* The volume V of the simplex formed by endmembers is
given by the determinant of a matrix formed by the
endmember vectors.



2. Select the next candidate:
=  The next step involves selecting a pixel from the dataset that
will increase the volume of the simplex. This can be done
by replacing one of the current endmembers with a pixel that
increases the volume.
3. Evaluate and update the selection:
= If the new selection improves the spectral volume (i.e., it
increases the diversity of the endmembers), update the
endmembers. Otherwise, keep the existing ones.
Stopping Criteria:

e The algorithm stops when the maximum number of iterations Ty, iS
reached or when no improvement in volume is observed (i.e., the endmembers
are stable).

Output:
e The final set of K endmembers that best represent the data.

3.2 Spectral Information Divergence (SID)

Spectral matching is a critical process in analyzing pixel spectra, because it can link
an endmember to a material class [24]. This process involves comparing the
endmember's spectrum with reference spectra from spectral libraries and measuring the
differences in spectral information. In this paper, the ECOSTRESS spectral library is
utilized as the reference, which is a comprehensive collection of spectral signatures for
various natural and artificial materials. After loading the reference spectra from the
ECOSTRESS library, we evaluate their similarity to the endmember spectrum by
examining both the geometric characteristics and the probability distribution of the
pixel spectra. This integrated information can improve the ability to differentiate
spectrally similar targets within the same class. Spectral similarity is measured using
the spectral information divergence (SID) method, which quantifies the divergence
between the probability distributions of pixel spectra in a hyperspectral dataset and
reference spectra. The proposed spectral information divergence (SID) algorithm is
described below.

Given two spectra, S1 and Sz, we normalize them and ensure that their sum equals 1.
This helps convert the spectra into probability distributions.

Slnorm — $1 : norm _ S2 : (1)

PHIRAO) T S2(D)

Where n is the number of spectral bands.

SID is calculated using the Kullback-Leibler (KL) divergence between the two
normalized spectra. The formula for SID between two spectra S;"°"™ and S,™*"™ is

given by:
SID(S1,S5) = Dir (S ™ [152"7™) + Dy (82" [15,7™) ()
where Dg; (P||Q) represents the Kullback-Leibler divergence, which is defined as:
. P(i
Diu(PIIQ) = ik, P(D) log (£7) 3)
where P(i) represents the normalized value of spectrum S;™°"™,
Q(i) represents the normalized value of spectrum S,™°"™.



The Kullback-Leibler (KL) divergence measures how one distribution (the actual
spectrum) diverges from the expected distribution (the reference spectrum).

4  Experimental Results
4.1 Pavia University Dataset

The Pavia University dataset is a widely used hyperspectral image dataset captured
by the Reflective Optics System Imaging Spectrometer (ROSIS-03) sensor over the
University of Pavia, Italy. It consists of 610 x 340 pixels with 103 spectral bands
covering the 0.43-0.86 um wavelength range [25]. The dataset includes ground truth
labels for nine land cover classes, such as asphalt, meadows, and trees, making it a
benchmark for hyperspectral image classification tasks, as shown in TABLE 1.

TABLE I. THE PAVIA UNIVERSITY CLASSES AND THEIR RESPECTIVE
GROUND TRUTH SAMPLE NUMBER

# Class Samples
1 Asphalt 1,890
2 Meadows 2,830
3 Gravel 2,210
4 Trees 1,350

5 Painted Metal Sheets 520

6 Bare Soil 720

7 Bitumen 210

8 Bricks 1,020
9 Cement 2430

4.2 Endmember Spectra Extraction

The following analysis will use the spectral signatures from the ECOSTRESS
spectral library [26] as reference spectra and a sample from the Pavia University dataset
as test data for identifying endmember materials.

We read the spectral information corresponding to different material from the
ECOSTRESS spectral library by using the readEcostressSig function. The materials
include roof material, concrete, road, mollisol, utisol, tree, ice, tap water, and sea water.
The reference spectra from the ECOSTRESS library are shown in Fig. 1.
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Fig. 1. Spectral signatures read from the ECOSTRESS spectral library.

We load the test data from the Pavia University dataset using the hypercube function,
which produces a hypercube object containing both the data cube and its corresponding
metadata. The test data contains 9 endmembers latent that includes Asphalt, Meadows,
Gravel, Trees, Painted Metal Sheets, Bare Soil, Bitumen, Bricks, Cement.

To determine the total number of spectrally distinct endmembers in the test data, we
use the countEndmembersHFC function. This function estimates the number of
endmembers based on the Harsanyi-Farrand-Chang (HFC) method. To minimize false
detections, we set the probability of false alarm (PFA) to a low value (i.e. 10727).

We then extract the endmembers from the test data using the N-FINDR method. We
retrieve the wavelength values from the hypercube object and then plot the extracted
endmember signatures, as shown in Fig. 2.
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Fig. 2. Full spectra of the extracted endmember signatures using the N-FINDR
method.



4.3 Endmember Material Identification Using Spectral Library

In this experiment, we calculate the similarity between a reference spectrum from the
library and a test spectrum to be classified using the spectral information divergence
(SID) method.

The SID function computes the matching score between two spectra based on their
probability distributions. Generally, a lower SID score indicates a better match between
the test and reference spectra. The test spectrum is then classified as belonging to the
class of the reference spectrum that provides the best match.

To classify the second and fourth endmember materials, we assess the spectral
similarity between the reference spectra from the library and the corresponding
endmember spectra. The class corresponding to the index with the lowest SID score is
assigned to each endmember. Consequently, the second endmember is identified as Soil,
and the fourth endmember is identified as Tree.

4.4 Segment Endmember Regions in Test Data

To visually inspect the identification results, we localize and segment the image
regions corresponding to the endmember materials in the test data. We use the sid
function to calculate the pixel-wise spectral similarity between the pixel spectrum and
the extracted endmember spectrum. Next, we apply thresholding to segment the target
endmember regions in the test data and generate the segmented image. We set the
threshold value to 15 to identify the best matching pixels.

To enhance visualization and interpretation, we generate an RGB image of the test
data using the colorize function.

Then we create an overlay of the segmented Soil (endmember 2) and Tree
(endmember 4) endmember regions on the RGB image.

We display the binary segmentation results for the Soil (endmember 2) and Tree
(endmember 4) endmember regions, as shown in Fig. 3. Fig. 3 (a) exhibits the binary
segmentation results of the Soil (endmember 2) endmember region, and Fig. 3 (b)
shows the binary segmentation results of the Tree (endmember 4) endmember region.
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member region: Mollisol
Noped

Segmented Endmember region: Tree

(a) (b)
Fig. 3. Segmented images of endmember 2 (Soil) and endmember 4 (Tree). (a) The
binary segmentation results of the endmember 2 (Soil) endmember region. (b) The
binary segmentation results of the endmember 4 (Tree) endmember region.



In addition, an RGB version of the test data is created, and an overlay of the
segmented Soil and Tree endmember regions are added to the RGB image as shown in
Fig. 4. Fig. 4 (a) is the RGB transformation of the test data, and Fig. 4 (b) displays an
overlay of the segmented endmember 2 (Soil) and endmember 4 (Tree) endmember
regions on the RGB image.

RGB Transformation of Test Data Segmented Regions Overlay
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Fig. 4. (a) RGB transformation of the test data. (b) An overlay of the segmented
endmember 2 (Soil) and endmember 4 (Tree) endmember regions on the RGB image.

5 Conclusions

This paper proposes a framework for endmember extraction and material
identification in hyperspectral image analysis. The approach develops an N-FINDR
algorithm for spectral endmember extraction. In addition, it designs a spectral
information divergence (SID) method to identify those materials by matching the
extracted endmembers with reference spectra from the ECOSTRESS spectral library.
The experimental results highlighted the effectiveness of the proposed method in
accurately identifying materials within hyperspectral images. The segmentation results
further validated the capability of the proposed approach in localizing specific materials
in hyperspectral data. The findings underscore the importance of combining spectral
matching techniques with endmember extraction for improved classification and
material identification in hyperspectral imaging applications.

6 Future Work

Future research could focus on enhancing the coverage and diversity of spectral
libraries, such as ECOSTRESS, to improve material classification accuracy. In
addition, integrating deep learning techniques, including convolutional neural networks
(CNNs) and transformer-based models, could further automate and refine endmember
identification by learning complex spectral patterns. Additionally, addressing spectral
variability caused by environmental factors like lighting conditions, atmospheric
effects, and sensor noise would enhance the robustness of classification methods.
Optimizing the N-FINDR and spectral information divergence (SID) algorithms for



real-time processing would also be beneficial, enabling faster hyperspectral image
analysis in practical applications. Finally, exploring hybrid approaches that combine
traditional spectral matching with statistical and machine learning methods could lead
to more robust and adaptable hyperspectral imaging solutions.
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