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Abstract

Generative recommendation (GR) is an emerging paradigm
that tokenizes items into discrete tokens and learns to au-
toregressively generate the next tokens as predictions. While
this token-generation paradigm is expected to surpass tradi-
tional transductive methods, potentially generating new items
directly based on semantics, we empirically show that GR
models predominantly generate items seen during training
and struggle to recommend unseen items. In this paper, we
propose SpecGR, a plug-and-play framework that enables
GR models to recommend new items in an inductive setting.
SpecGR uses a drafter model with inductive capability to pro-
pose candidate items, which may include both existing items
and new items. The GR model then acts as a verifier, accept-
ing or rejecting candidates while retaining its strong ranking
capabilities. We further introduce the guided re-drafting tech-
nique to make the proposed candidates more aligned with

the outputs of generative recommendation models, improving
verification efficiency. We consider two variants for drafting:
(1) using an auxiliary drafter model for better flexibility, or
(2) leveraging the GR model’s own encoder for parameter-
efficient self-drafting. Extensive experiments on three real-
world datasets demonstrate that SpecGR exhibits both strong
inductive recommendation ability and the best overall perfor-
mance among the compared methods.

Code — https://github.com/Jamesding000/SpecGR

Introduction

Generative recommendation (GR) is an emerging paradigm
for sequential recommendation tasks (Rajput et al. 2024;
Zhai et al. 2024; Zheng et al. 2024). By tokenizing each
item into a few discrete tokens (named semantic IDs), mod-
els are trained to autoregressively generate the next tokens,
which are then parsed as predicted items. Compared to con-
ventional sequential recommendation methods (Kang and
McAuley 2018; Sun et al. 2019), GR models scale up more
easily and achieve better performance (Rajput et al. 2024;
Deng et al. 2025), benefiting from the power of scaling
laws (Zhang et al. 2023; Zhai et al. 2024).

Unlike item ID-based transductive models such as SAS-
Rec (Kang and McAuley 2018), which cannot recommend
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Figure 1: (1 & 2) GR models struggle to generate unseen
items in an inductive setting. (3) SpecGR, a draft-then-verify
framework, leverages GR models to verify candidates from
an inductive drafter, enabling new-item recommendations.

new items due to the absence of their IDs in the trained
model, GR models are expected to exhibit inductive capa-
bilities by capturing semantic correlations and generating
semantic tokens for previously unseen items. However, our
empirical analysis shows that GR models systematically as-
sign higher likelihoods to seen semantic ID sequences than
to unseen ones. As shown quantitatively in Table 2, GR
yields near-zero recommendation performance on unseen
items. We attribute this to the models’ tendency to overfit to
the semantic ID patterns present in the training data (Yang
et al. 2024), making it unlikely for their outputs to match the
semantic IDs of new items (Figure 1). In scenarios where
up-to-date recommendations are critical (e.g., news or short-
video platforms), a flexible, on-the-fly inference framework
is essential for the practical deployment of GR models.

In this work, we aim to develop inductive generative
recommendation models that can recommend new items
on-the-fly. Achieving this goal is non-trivial. In traditional
recommendation systems, inductive recommendation (Wu
et al. 2021) is typically achieved by incorporating side in-
formation and K-nearest neighbor (KNN) search. Although



GR models can also tokenize items with side information
into semantic IDs, as previously discussed, they struggle to
generate unseen semantic ID patterns through autoregres-
sive decoding (Freitag and Al-Onaizan 2017; Rajput et al.
2024). Recent efforts have explored blending GR outputs
with items retrieved by non-GR methods (Rajput et al. 2024;
Yang et al. 2024). However, these approaches fail to fully
exploit the modeling strengths of GR models, resulting in
suboptimal performance.

To this end, we propose SpecGR (Speculative Generative
Recommendation), an inductive generative recommendation
framework that can be integrated with GR models in a plug-
and-play manner. We extend the concept of the drafter-
verifier framework in the original speculative decoding tech-
nique (Leviathan, Kalman, and Matias 2023; Chen et al.
2023; He et al. 2023b). Rather than relying on a lightweight
homologous model for inference acceleration, we explore
the integration of models with different paradigms and ca-
pabilities. Specifically, we employ a KNN-based inductive
model as the drafter to generate small batches of candidate
items, while a GR model with stronger recommendation ca-
pabilities serves as the verifier, responsible for accepting or
rejecting these candidates. Instead of merely blending out-
puts from different models, SpecGR ensures that all final
recommendations are ranked based on scores assigned by
the GR verifier. In addition, we propose guided re-drafting
to improve the quality of candidate items proposed by the
drafter model, leveraging the semantic ID prefixes gener-
ated by the verifier GR model. Furthermore, to reduce the
overhead of maintaining a separate drafter model, we intro-
duce SpecGR++ that enables the encoder of the GR model
to serve as a drafter.

Extensive experiments are conducted on three public
datasets. We split the training and evaluation sets chrono-
logically using fixed timestamp cut-offs.  This setup en-
sures that recommendation models are evaluated in a setting
where new items appear over time. The experimental results
demonstrate that SpecGR significantly improves the ability
of GR models to recommend new items and achieves strong
overall performance compared to existing methods.

Related Work

Generative recommendation. Traditional sequential rec-
ommendation typically assigns a unique learnable embed-
ding to each item, leading to optimization challenges due
to large item vocabulary size (Hidasi et al. 2016; Kang and
McAuley 2018; Sun et al. 2019). Generative recommenda-
tion (GR) addresses this by tokenizing items into discrete
tokens and predicting the next item via autoregressive next-
token generation (Rajput et al. 2024; Zheng et al. 2024; Liu,
Hou, and McAuley 2024; Hou et al. 2025b). GR has demon-
strated improved memory efficiency (Rajput et al. 2024; Hou
et al. 2025a), scalability (Zhai et al. 2024), and promising
end-to-end retrieval capabilities to unify retrieval and rank-
ing (Deng et al. 2025). Despite these advantages, GR models
tend to generate only semantic IDs observed during training,
severely limiting their generalizability to unseen items. De-
spite a few early attempts (Rajput et al. 2024; Yang et al.

2024), this direction remains largely underexplored. In this
work, we focus on developing effective frameworks that ex-
tend GR models to inductively recommend new items.

Cold-start & inductive recommendation. The item cold-
start problem refers to the challenge of recommending items
with limited interactions (Zhang et al. 2025; Wei et al. 2021;
Zhou, Zhang, and Yang 2023). Common approaches use
meta-learning that helps models generalize better from lim-
ited interactions, via gradient-based optimization (Lee et al.
2019), task adaptation (Lin et al. 2021; Wu and Zhou 2023),
or memory-augmented modules (Dong et al. 2020; Zheng
et al. 2021b). Inductive recommendation particularly tackles
the challenge of recommending new items without any asso-
ciated interactions. Existing methods leverage side informa-
tion like tags or descriptions (Pazzani and Billsus 2007; Zhu
etal. 2020; Li et al. 2023), modality representations (Hou
et al. 2022, 2023; Sheng et al. 2024), and behavior pat-
terns (Wu et al. 2021, 2020a). However, for GR models, the
unique challenge lies in their intrinsic inability to generate
unseen items during autoregressive token generation. Re-
cent approaches enhance inductive capability by integrating
heuristic candidates (Rajput et al. 2024) or dense retrieval
results (Yang et al. 2024) with GR outputs. In this work, we
propose a novel framework that converts the role of GR from
generation to verification for inductive recommendation.

Speculative  decoding. Large language models
(LLMs) (Achiam et al. 2023; Zhaoet al. 2023) have
revolutionized a wide range of applications, yet suffer from
high inference latency due to autoregressive decoding and
large model size. Speculative decoding was proposed to
accelerate LLM inference by leveraging a lightweight, ho-
mologous drafter model to generate future token sequences,
which are then verified by a stronger target model, achieving
lower latency and lossless performance (Leviathan, Kalman,
and Matias 2023; Chen et al. 2023). Subsequent efforts have
developed efficient drafting strategies (Cai et al. 2024; He
et al. 2023b; Elhoushi et al. 2024), improved draft quality to
maximize acceptance rate (Xiao et al. 2024; Gloeckle et al.
2024), and applied the framework to diverse domains (Wang
et al. 2024b; De Bortoli et al. 2025). Recently, Lin et al.
(2024) extended speculative decoding to accelerate top-K
sequence generation in the GR setting. In this work, rather
than focusing on acceleration, we leverage the draft-verify
framework to bring inductive  capabilities to generative
recommendation models.

Methodology
Problem Setup and Formulation

We follow the inductive sequential recommendation
task (Hou et al. 2022; Yuan et al. 2023). The input is a se-
quence of items {X 1, X2, ..., X} ordered chronologically
based on user interaction time. Each item X € I has asso-
ciated text features, such as title, description, and category.
Here, w denotes the length of the item sequence. The task is
to predict the next item of interest. Note that in the inductive
setting, the target item may not appear in the training set,
called new or unseen items in the following sections.
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a draft-and-verify framework that iteratively performs drafting and

verification until enough items are accepted. (a) Inductive Drafting. The inductive drafter first retrieves a set of candidates
that contain new items. We present two drafting methods: using an auxiliary model or the GR’s encoder output (namely, self-
drafting) for item retrieval. (b) Target-aware Verifying. The GR model accepts or rejects the candidates based on the likelihood
of being the target. (c) Guided Redrafting. If not enough items are accepted, the GR filters the candidate space for the next

drafting round based on the generated beam sequences.

In this work, we focus on developing a general inductive
recommendation framework for generative recommendation
models. Typical GR models like TIGER (Rajput et al. 2024)
will tokenize each itemX; into a semantic ID pattern, ID :=
[(ci), (&), ..., (¢)] wherel denotes the number of digits of
one item’s semantic ID pattern, and (¢) denotes one digit of
semantic ID. In this way, the input for GR models can be
represented as follows by replacing the items in the original
item sequence with the corresponding semantic IDs:

X= [( bos)l ID1I IDZI L IIDWI (eos)] 7 (1)

where (bos) and (eos) are special tokens indicating the
start and ending positions of a semantic ID sequence. Then
the GR models are trained to generate K semantic ID pat-
terns, which will be further parsed into recommended items
with top- K probabilities. In the inductive setting, we as-
sume that new items have been assigned semantic ID pat-
terns. These new items can be parsed if the outputs of the
GR models match the new semantic ID patterns.

Speculative Generative Recommendation

We begin by providing an overview of the proposed SpecGR
framework, as illustrated in Figure 2. The framework con-
sists of four components: (1) Inductive Drafting. Given the
same input item sequence as the generative recommenda-
tion model, a drafter model with inductive recommendation
capabilities proposes a set of candidate items as recommen-
dation drafts. (2) Target-aware Verifying. The GR model,
acting as a verifier, either accepts or rejects the candidates

based on the probability that they could be targets of the
input sequence. (3) Guided Re-drafting. If the number of
accepted items does not meet the required recommendations
K , the GR model guides the drafter to re-draft and propose
the next set of candidate items. (4) Adaptive Exiting. Once
K items are accepted, the framework exits and outputs the
items, sorted by the scores given by the GR model. This pro-
cess selects high-quality, unseen items through drafting and
verifying, while maintaining the strong recommendation ca-
pabilities of generative recommendation models.

Inductive Drafting Instead of expecting GR models to di-
rectly generate the semantic IDs of unseen items, we employ
an inductive drafter model to first propose “recommenda-
tion drafts” that may include unseen items. Given the input
item sequence X , the drafter model D(+) performs inductive
drafting by recommending a set of§ candidates Q = D(X)
where |Q| = & Note that in the original speculative decod-
ing technique, the drafter model is considered an efficient
approximation of the target model (Leviathan, Kalman, and
Matias 2023; Chen et al. 2023), functioning as a homolo-
gous model to the verifier model. Here, we extend the above
restriction in choosing drafter models. We do not require
the drafter model to be a GR model but instead an induc-
tive model to bring new capabilities to the following verifier
model (in our case, the GR model). This approach allows
high-quality unseen items to be introduced into the system,
which are then verified by the more expressive generative
model and finally included in the recommendations. Hence,



the inductive drafter can be any inductive recommendation
model, and we will discuss two effective instantiations in the
subsequent Drafting Strategies section.

Target-aware Verifying While inductive drafters excel at
recommending unseen items, they are not as effective as GR
models in modeling input sequences and providing recom-
mendations. Therefore, after obtaining candidates Q from
the inductive drafting process, we use the generative model
to verify them, rejecting items with low likelihood.

* Target-aware likelihood for ranking. Given a candidate
item as a potential target, we use the GR model as a query-
likelihood model (QLM) (Zhuang et al. 2023; Zhuang, Li,
and Zuccon 2021; Nogueira, Lin, and Epistemic 2019). The
QLM scores the query, i.e., input sequence and the potential
target, by measuring the likelihood of the model consecu-
tively generating the tokens in the query. Previous studies
have demonstrated that generative language models, such
as TS5 (Raffel et al. 2020), exhibit robust zero-shot query-
likelihood ranking performance in document retrieval tasks,
without explicit fine-tuning for document ranking (Zhuang
et al. 2023). Accordingly, conditioning on the input  se-
quence X , we adopt the conditional probability of gener-
ating the target semantic ID pattern as the verification score.

* Likelihood score calculation. However, naively apply-
ing the QLM for verification would result in low scores for
unseen items. This happens because not all digits of seman-
tic IDs are derived from item semantics. In addition to the
tokens learned purely from item semantics, existing meth-
ods usually add an extra digit to avoid conflicts, known as
the item identification token (Rajput et al. 2024; Liu, Hou,
and McAuley 2024). For unseen items, the probability of
generating this identification token lies outside the model-
ing distribution and therefore primarily consists of noise.

To provide a fair verification score for unseen items, we
exclude the identification token and calculate only the proba-
bility of other digits. The target-aware verification score can
be computed as:

; logP(¢ | &, X% ifx; €L

V(X ¢, X) = ! »
logP (¢ | &,X ifx, €EI*\]

i=1

2)
where V(-) denotes the verifier model, which takes the in-
put sequence X and the potential target item X; as inputs,
outputing the log-likelihood probability scores./ denotes the
total number of digits in each semantic ID pattern, where the
last digit is assumed to be the item identification token.P (-)
denotes the backbone autoregressive model, which takes se-
mantic ID sequences and outputs the likelihood scores. ¢!
refers to the j-th digit of the semantic ID for the target item
X¢. The set I *\ I represents the unseen items.

To alleviate the bias caused by varying lengths of seman-
tic IDs for unseen and existing items, we normalize the log-
likelihood scores by the corresponding number of digits. Af-
ter obtaining the likelihood score, we accept the items if

1
=

V(x ¢ X) >y , where y is a hyperparameter and can be
tuned on the validation set.

Guided Re-drafting If fewer than K items are accepted
from the initial batch of drafted candidates, the drafter
model D(-) must generate an additional batch of § new
candidates. Intuitively, since these candidates appear lower
in the drafter’s ranking, their expected acceptance proba-
bility under the verifier V(-) is substantially reduced. To
counteract this decline in acceptance rate, we introduce the
guided re-drafting mechanism that steers subsequent can-
didate batches toward regions of the item space that better
match the verifier’s scoring distribution.

Guided re-drafting operates by steering the drafter models
using a set of semantic ID prefixes generated by the verifier
models (GR models). Specifically, after verifying the j-th
batch of recommendation drafts, the verifier model gener-
ates a set of beam sequences B; using beam search, where
each sequence is a j-digit semantic ID prefix. In the next
draft-verify iteration, the drafter model is guided to propose
only candidates Q; whose prefixes match those in B; :

Q= Xi|¥€EDWX), (G ....HEB , ()

where B/- denotes the set of semantic ID prefixes, with a
hyperparameter S as the set size. Guided re-drafting hap-
pens along with the beam search decoding process of the

GR model. Itis important to note that the total number of
draft-verify iterations will not exceed /, which corresponds
to the maximum length of the semantic IDs, and is also equal
to the maximum number of decoding steps.

Adaptive Exiting SpecGR can adaptively terminate the
draft-verify iterations based on the number  of candidate
items accepted by the verifier (GR) model. When the num-
ber of accepted items reachesK , the loop exits, avoiding the
need to generate full-length sequences off. This adaptive ap-
proach reduces inference time, as fewer generation steps are
required. If, after the final iteration, there are still not enough
accepted items, the beam sequences will be appended to the
recommendation list until K is reached. As aresult, even
in the worst case, SpecGR does not incur additional time
overhead compared to decoding with beam search. Finally,
we rank the recommendation list by using the verification
scores of the accepted items, along with the beam scores if
items from beam sequences are included.

Drafting Strategies

In this section, we present two methods for drafting: by us-
ing an auxiliary draft model, and by reusing the encoder of
generative recommendation models (namely SpecGR++).

Auxiliary Draft Model The most straightforward way to
draft is to introduce an auxiliary inductive recommendation
model. An example is UniSRec (Hou et al. 2022), which
uses modality-based item representations for KNN search.
When new items are added, their representations can be di-
rectly incorporated into the item pool. The model can then
retrieve new items if their modality-based representations
are similar to the sequence representations.



Self-Drafting via GR Encoder Despite the flexibility of
using an auxiliary model as the drafter, issues such as com-
munication latency and distribution shift may arise. Thus,
we propose SpecGR++, which reuses the encoder module
of the generative recommendation model to function as an

inductive drafter model. The general idea is to encode both
(1) the semantic IDs of a single item, and (2) the input se-

mantic ID sequence of user history, using the same encoder

module. Then we apply KNN search to retrieve semantic IDs

of both existing and new items.

* Semantic ID-based item and sequence representa-
tions. To derive sequence representations, we use the same
input format as our GR model (Equation (1)). To derive
item representations, we format the semantic IDs of a sin-
gleitem X; in the same way as the encoder’s input, i.e.,
[(bos), ID;, (eos)], where ID; represents the semantic ID
pattern of item X;. To obtain the item and sequence repre-

sentations, we take the last hidden state from the GR encoder

and apply mean pooling.

* Item-sequence contrastive pretraining. Prior work
shows that hidden states from generative models are not di-
rectly suitable as representations (Ni et al. 2022a,b). To ob-
tain strong inductive embeddings, we jointly train the GR
encoder with a contrastive objective following (Chen et al.
2020; Hou et al. 2022). Given sequence embeddings s; and
next-item embeddings i j » the contrastive loss is:

R exp(s; - i;/t)

logp
Bem H :
= j 1 expls; - /T)

We optimizel ¢ jointly with the next-token generation loss:
1 ﬁgcn 1 X b

LGen=_7 T
Bgen b=1 Lb t=1

Le=— B “)

log P (&, | &<c, Xp). (5

To ensure sufficient in-batch negatives for the contrastive ob-

jective, we use a larger embedding batch (i.e.Bemp > B gen).
The final multi-task loss is expressed asL =A 1L cL + L Gen,
where A1 is a hyperparameter balancing the two tasks.

* Learning-to-rank fine-tuning. Following Li et al.
(2023), to further enhance the ranking ability of the seman-
tic ID encoder, we continue to fine-tune the encoder using
the cross-entropy loss L cp on alarger batch of negative
items (equivalent to L ¢, in Equation (4) with By, = |I]).
To enable efficient large-batch training, the item representa-
tions are frozen at the beginning of the fine-tuning phase.
The overall loss for fine-tuning can be writtenas L~ =
A2l cg + L Gen, Where A3 is a hyperparameter.

Experiments
In this section, we present experimental results to answer the
following Research Questions (RQ).

¢ RQ1: How does SpecGR perform compared with state-
of-the-art baselines on overall and seen/unseen subsets?

* RQ2: Do all of SpecGR’s designs take effect?

¢ RQ3: How do key hyperparameters affect SpecGR’s per-
formance and efficiency?

* RQ4: Is SpecGR an effective plug-and-play framework
for different drafters and GR backbones?

Experimental Setup

Datasets We use three categories, Video Games (Games),
Office Products (Office), and Cell Phones and Accessories
(Phones), from the Amazon Reviews 2023 dataset  (Hou
et al. 2024a) as our experimental datasets. To assess the per-
formance of SpecGR in real-world settings, we utilize pre-
processed benchmarks! that exclude users and items with
fewer than five interactions. The data is split into training,
validation, and test sets based on predefined timestamp cut-
offs. Notably, since the datasets are split by timestamps,
the validation and test sets naturally include unseen items.
This simulates a more realistic scenario in comparison to
the widely-used leave-last-out splitting.

Compared Methods We report results for two SpecGR
variants: SpecGRaux, which uses UniSRec (Hou et al. 2022)
as an auxiliary drafter, and SpecGR++, which uses its own
encoder module for drafting. We compare SpecGR against
the following state-of-the-art methods: ID-based methods
such as SASRec (Kang and McAuley 2018); feature+ID-
based methods such as FDSA (Zhang et al. 2019) and S 3.
Rec (Zhou et al. 2020); modality-based methods such as
UniSRec (Hou et al. 2022) and RecFormer (Li et al. 2023);
and generative methods including TIGER, TIGER¢ (Ra-
jput et al. 2024), and LIGER (Yang et al. 2024). Notably,
TIGER( employs a heuristic strategy that mixes a fixed pro-
portion of unseen items into TIGER’s recommendation list.

Evaluation Setting We adopt Recall@K and NDCG@K
as metrics to evaluate the compared methods, where K €
{10, 50}. In addition, based on whether the target items in
the test set are existing items or new items (not shown in the
training set), we split our test set into two subsets, named In-
Sample and Unseen, respectively. The model checkpoints
of all compared methods that have the best overall perfor-
mance on the validation set will be evaluated on the test set.

Implementation Details We use UniSRec (Houet al.
2022) as the auxiliary drafter model for SpecGRxux and
TIGER (Rajput et al. 2024) as the GR backbone for both
SpecGR variants. Input sequences are truncated to a max-
imum of 20 items, following Rajput et al. (2024), and
the same semantic ID tokenization process is applied.
SpecGR++ is trained using a multi-task setup (A =A , =
6.0) combining generation and contrastive objectives, fol-
lowed by a learning-to-rank fine-tuning phase. We use
Bgm, =2048 and Bge, =256 . Hyperparameters such as
the draft threshold (y), beam size (), and draft size () are
tuned on validation splits.

Performance Analysis (RQ1)

Overall performance. We compare SpecGR with sequen-
tial and generative recommendation baselines across three
public datasets; results are summarized in Table 1.  ID-
based and feature-based methods generally show poor per-
formance, especially on sparse  datasets (e.g., Phones).
Modality-based methods, such as UniSRec and Recformer,

"https://huggingface.co/datasets/McAuley-Lab/Amazon-
Reviews-2023/tree/main/benchmark/5core/timestamp w_his



Table 1: Performance comparison of different models. The best and the second-best performance is denoted in bold and un-
“Improv.” denotes the

derlined fonts, respectively. “R@K?” is short for “Recall@K” and “N@K” is short for “NDCG@K”.

improvement ratio of SpecGR compared to the best-performing baseline model.

ID-based Feature + ID Modality-based Generative Ours
Dataset Metric 3 - Improv.
SASRecp FDSA S°-Rec SASRect UniSRec Recformer TIGER TIGERc: LIGER SpecGRp,x SpecGR++
R@10 0.0186 0.0190 0.0195 0.0179 0.0225 0.0243 0.0222 0.0226 0.0139 0.0254 0.0250 +4.53%
Games N@10 0.0093 0.0101 0.0094  0.0091 0.0115 0.0111 0.0114 0.0115 0.0068 0.0128 0.0124 +10.40%
R@50 0.0477 0.0496  0.0473 0.0507 0.0621 0.0740 0.0584 0.0611 0.0635 0.0778 0.0717 +5.13%
N@50 0.0162 0.0167 0.0154  0.0161 0.0200 0.0218 0.0193 0.0198 0.0172 0.0239 0.0225 +9.72%
R@10 0.0093 0.0095 0.0100  0.0091 0.0119 0.0126 0.0132 0.0130 0.0059 0.0138 0.0134 +3.99%
Office N@10 0.0047 0.0050 0.0052  0.0048 0.0062 0.0039 0.0071 0.0070 0.0029 0.0072 0.0070 +1.68%
R@50 0.0217 0.0224 0.0234  0.0233 0.0322 0.0340 0.0308 0.0312 0.0268 0.0360 0.0332 +5.93%
N@50 0.0074 0.0078 0.0080  0.0078 0.0105 0.0106 0.0109 0.0110 0.0072 0.0119 0.0113 +8.76%
R@10 0.0052 0.0067 0.0058  0.0072 0.0084 0.0074 0.0090 0.0087 0.0048 0.0099 0.0101 +11.90%
Phones N@10 0.0027 0.0035 0.0028  0.0037 0.0045 0.0036 0.0047 0.0046 0.0022 0.0050 0.0052 +10.64%
R@50 0.0143 0.0184 0.0151 0.0188 0.0233 0.0236 0.0232 0.0233 0.0226 0.0285 0.0275 +20.64%
N@50 0.0047 0.0060 0.0048  0.0062 0.0077 0.0070 0.0078 0.0078 0.0059 0.0090 0.0090 +14.80%

Table 2: Model performance breakdown on the “in-sample” and “unseen” subsets.
subset relative to the entire test data have been labeled. The best and second-best results are bolded and underlined.

The proportions of the test cases in each

Games Phones
Model #Params.
In-Sample Unseen In-Sample Unseen
(M) Orerall (39.7%) (60.3%) Orerall (31.8%) (68.2%)
R@50 N@50 R@50 N@50 R@50 N@50 R@50 N@50 R@50 N@50 R@50 N@50
UniSRec 2.90 0.0621 0.0200 0.1386 0.0461 0.0118 0.0029 0.0233 0.0077 0.0604 0.0211 0.0060 0.0014
Recformer 233.73 0.0740 0.0218 0.1082 0.0333 0.0514 0.0142 0.0236 0.0070 0.0340 0.0103 0.0188 0.0055
TIGER 13.26 0.0584 0.0193 0.1472 0.0486 - - 0.0232 0.0078 0.0730 0.0245 - -
TIGERc 13.26 0.0611 0.0198 0.1447 0.0482 0.0061 0.0011 0.0233 0.0078 0.0691 0.0238 0.0019 0.0003
LIGER 13.26 0.0635 0.0172 0.0438 0.0160 0.0765 0.0179 0.0226 0.0059 0.0472 0.0107 0.0111 0.0037
SpecGRpux 16.16 0.0778 0.0239 0.1485 0.0457 0.0312 0.0096 0.0285 0.0090 0.0748 0.0237 0.0069 0.0021
SpecGR++ 13.28 0.0717 0.0225 0.1323 0.0439 0.0318 0.0084 0.0275 0.0090 0.0730 0.0246 0.0063 0.0017

show improved performance by leveraging powerful  text
embeddings from Pretrained Language Models  (PLMs).
Generative recommendation models achieve the best results
through autoregressive modeling of fine-grained semantic
IDs. Among all models, SpecGR consistently achieves the
best overall performance (e.g., up to +14.8% in NDCG @50,
and +20.64% in Recall@50). Notably, SpecGR++ attains
both better parameter efficiency and comparable perfor-
mance to SpecGR a.x, highlighting the GR encoder’s effec-
tiveness in learning robust semantic ID-based representa-
tions for inductive recommendation.

Subset Analysis. Next, we analyze the detailed perfor-
mance breakdown on the in-sample and unseen subsets,

as shown in Table 2.  TIGER achieves strong in-sample
performance but fails to generalize inductively on the un-
seen subset. SpecGR addresses this limitation by integrating
inductive drafting with GR-based verification, greatly im-
proving inductive generalization without compromising in-
sample quality. Recformer is the best-performing modality-
based method. However, its LLM backbone has signifi-
cantly larger model size compared to other baselines. While
LIGER attains higher performance on unseen items via
dense retrieval-based candidate blending, its heuristic com-
bination of candidates introduces irrelevant items, yielding
a suboptimal trade-off and degraded overall recommenda-

tion quality. In contrast, SpecGR employs GR’s target-aware
likelihood scores to filter inductive candidates, resulting in
strong inductive ability and the best overall performance.

Ablation Study (RQ2)

SpecGR Inference Framework. First, we assess the contri-
butions of inference components in SpecGR++, as summa-
rized in Table 3. Inductive drafting (1.1) and likelihood score
adjustment (1.2) substantially enhance inductive generaliza-
tion by incorporating meaningful unseen candidates. Guided
re-drafting (1.3) boosts recommendation quality when initial
drafting provides insufficient accepted candidates. Remov-
ing verification-based re-ranking (1.4) and adaptive exiting
(1.5) results in performance degradation, confirming the im-
portance of these modules in maintaining a balance between
in-sample accuracy and inductive capability.

SpecGR++ Training Paradigm. Next, we analyze training
paradigm variants for SpecGR++. Directly using TIGER’s
encoder states without dedicated representation learning
(2.1) severely limits inductive recommendation. Contrastive
pretraining (2.2) significantly improves representation qual-
ity, and subsequent fine-tuning (2.3) further refines perfor-
mance, validating our two-stage training design.



Table 3: Ablation study on SpecGR++ inference and training. The best and second-best results are bolded and underlined.

Games

Office Phones

Variants

R@50 N@50 R@10 N@10

R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10

(1.1) w/o inductive drafting

(1.3) w/o guided re-drafting
(1.4) w/o item re-ranking
(1.5) w/o adaptive exiting

0.0609 0.0202 0.0235 0.0121
(1.2) w/o likelihood score adjustment 0.0712 0.0221 0.0236 0.0119
0.0611 0.0202 0.0235 0.0121
0.0703 0.0219 0.0239 0.0120
0.0694 0.0200 0.0203 0.0095

0.0306 0.0109 0.0132 0.0070 0.0233 0.0080 0.0092 0.0049
0.0331 0.0103 0.0118 0.0057 0.0236 0.0081 0.0092 0.0049
0.0309 0.0110 0.0132 0.0070 0.0264 0.0086 0.0096 0.0050
0.0334 0.0113 0.0131 0.0069 0.0264 0.0083 0.0093 0.0047
0.0313 0.0108 0.0126 0.0068 0.0265 0.0086 0.0095 0.0050

(2.1) TIGER for SpecGR++
(2.2) w/o contrastive pretraining
(2.3) w/o fine-tuning

0.0582 0.0192 0.0224 0.0114
0.0581 0.0193 0.0221 0.0115
0.0692 0.0225 0.0222 0.0111

0.0302 0.0105 0.0127 0.0067 0.0232 0.0078 0.0090 0.0047
0.0313 0.0108 0.0126 0.0068 0.0234 0.0077 0.0093 0.0050
0.0325 0.0110 0.0129 0.0068 0.0259 0.0087 0.0098 0.0051

SpecGR++ 0.0717 0.0225 0.0250 0.0124 0.0332 0.0113 0.0134 0.0070 0.0275 0.0090 0.0101 0.0052
v, DTS Deam Size vy MM s GR  Drafter U-N@50  O-N@50
— 35% 36%  36% KL
» Sy BB L[ PP Wo.oso 0 Baseline - 0.0193
1 21%-/' \f e T I TIGER GR Encoder (SpecGR++) 0.0084 0.0225 (+16.6%)
oiz] 18 =B ooz (02 Semantic-KNN 0.0085  0.0231 (+19.7%)
5% = \.\. 0.01 UniSRec 0.0096 0.0239 (+23.8%)
1"/7' -
0107 1 5 20 50 100 1 5 20 50 100 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2.2”.”” Basehne - 00 1 98
DSI GR Encoder (SpecGR++) 0.0061 0.0217 (+9.6%)
—@— In-Sample Recall@50  —m— Unseen Recall@50 Unseen Prop. (%) Time per Rec. (s) SemantiC—KNN 00049 0021 7 (+9.6%)
UniSRec 0.0058 0.0220 (+11.1%)

Figure 3: Impact of hyperparameters on SpecGR’s perfor-
mance and efficiency. (Left, middle): Bars show the propor-
tion of unseen items in recommendations. (Right): Bars rep-
resent inference latency in seconds. Lines depict the trade-
off between in-sample and unseen Recall@50.

Hyperparameter Analysis (RQ3)

We analyze how model hyperparameters affect recommen-
dation behaviors and performance. We conduct hyperparam-
eter analyses of SpecGR++ on the Video Games dataset,
with results shown in Figure 3. The base hyperparameters
are § =50,y = —1.6, and 8 = 50, with specific parameters
adjusted in each plot while keeping others fixed.

* Draft size (6) controls the proportion of unseen items in
recommendations, as all unseen items originate from draft-
ing. Increasing draft size enhances inductive performance
but may degrade in-sample metrics due to the fixed num-
ber of accepted candidates. The optimal value is selected via
hyperparameter tuning on the validation set.

* Beam size (3) controls the search space for guided re-
drafting. As shown in Figure 3, increasing beam size im-
proves in-sample performance but reduces inductive ability.

* Threshold (y) controls the acceptance rate of drafted
candidates, impacting the number of decoding steps needed
for K recommendations. As shown in Figure 3, it governs
the performance-efficiency trade-off. Lower thresholds de-
grade in-sample performance due to overly easy candidate
acceptance. We select ¥ using the elbow criterion that bal-
ances marginal performance gain against additional latency.

Plug-and-Play Framework (RQ4)

To evaluate SpecGR’s plug-and-play capability, we integrate
it with multiple inductive drafters (SemanticKNN, UniS-

Table 4: NDCG@50 on the unseen subset (U-N@50) and
overall test set (O-N@50) for different GR backbones and
drafter configurations on Video Games dataset.

Rec, and the GR encoder (SpecGR++)) and multiple GR
backbones (TIGER and DSI  (Tay et al. 2022)). Notably,
DSI employs hierarchical K-means tokenization to derive
item semantic IDs. As shown in Table 4, both GR back-
bones are originally unable to generate unseen items. Inte-
grating SpecGR improves overall performance by approxi-
mately 15% on average, while enabling strong inductive rec-
ommendation. This improvement holds across lightweight
retrieval (Semantic-KNN), modality-based models (UniS-
Rec), and self-drafting using the GR encoder, demonstrating
that SpecGR is robust to different drafting paradigms and
input modalities. Thus, SpecGR is model-agnostic to drafter
choice and serves as a plug-and-play framework that equips
any semantic-ID-based GR model with inductive capability.

Conclusion
In this paper, we propose SpecGR, a plug-and-play frame-
work that extends the capability of generative recommen-
dation models for inductive recommendation. Our method,
inspired by speculative decoding, leverages an inductive
model as a drafter to propose candidate items and uses the
GR model as a verifier to ensure that only high-quality can-
didates are recommended. We further propose two drafting
strategies: (1) using an auxiliary model for flexibility, and (2)
using the GR model’s own encoder for parameter-efficient
self-drafting. Extensive experiments on three public datasets
demonstrate strong inductive and overall recommendation
performance for SpecGR.
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Additional Related Work: Cold-Start
Recommendation

The item cold-start problem (ICS) (Zhang et al. 2025), a
longstanding challenge in recommender systems, requires
models to recommend newly added items with limited or
no historical interaction data, and therefore external knowl-
edge have to leveraged. In what follows, we review existing
works based on four major external sources: (1) content fea-
tures (2) graph relations (3) cross-domain information and
(4) world knowledge from LLM:s.

Content features Due to the lack of interaction records,
early works naturally leveraged content features (e.g., ti-
tles, descriptions, and categories) to address cold-start rec-
ommendation. In scenarios with a few interactions, studies
focused on data-efficient learning to quickly improve cold-
start performance. Meta-learning (Wang et al. 2020) is a
widely adopted approach that pretrains models on warm in-
teractions to capture general interaction patterns and then
adapts parameters to new cold-start items using limited data.
Early works achieved this through gradient-based optimiza-
tion for rapid parameter adaptation (Lee et al. 2019; Finn,
Abbeel, and Levine 2017; Donget al. 2020). Later ap-
proaches incorporated task relationships to better transfer
warm knowledge to cold-start scenarios using techniques
such as soft-clustering (Lin et al. 2021) and domain-specific
neural architectures (Wu and Zhou 2023). In more challeng-
ing ICS scenarios with no interaction data, studies focus on
deriving content-based item representations while still main-
taining strong performance on warm items. Early works ex-
plored perturbation training strategies to reduce reliance on
interactions and encourage models to learn generalized rec-
ommendations solely from content features (Volkovs, Yu,
and Poutanen 2017; Zhu et al. 2020). Others formulated
item representation learning as an explicit knowledge align-
ment task, bridging warm interaction-based and content-
based representations through methods such as contrastive
learning (Wei et al. 2021; Zhou, Zhang, and Yang 2023) and
generative adversarial networks (GANSs) (Chen et al. 2022;
Alshehri and Zhang 2022).

Graph relations In recent years, graph neural net-
works (Wu et al. 2020c) have gained attention for model-
ing user-item interaction graphs in recommendation, with
its power in modeling higher-order relationships beyond
direct interactions and content features. However, a key
challenge remains in effectively propagating information to
cold-start items, where interaction signals are sparse. One
typical methods trains the model to infer probable edges on
the original use item interaction graph for cold-start items
to enable information aggregation. Typical training tasks in-
volves masking and reconstruction (Kim et al. 2024), maxi-
mizing mutual information (Wang et al. 2024a), and uncer-
tainty estimation (Liu et al. 2023b). On the other hand, an-
other stream of work enrich the existing interaction graph
with more fine-grained connections to propagate informa-
tion to cold-start items. The constructed edges includes se-
mantic links (Cao et al. 2022; Liu et al. 2020), multi-view
feature extractions (Zheng et al. 2021a), and knowledge re-

lations (Du et al. 2022).

Cross-domain information To mitigate data sparsity for
cold-start item recommendation, researchers have explored
using cross-domain interactions to learn generalizable pat-
terns and transfer knowledge from data-rich domains (Zhu
et al. 2019, 2021; Xie et al. 2022). However, a key chal-
lenge lies in designing effective transfer techniques that ac-
count for discrepancies between domains. Early works pri-
marily relied on overlapping information between the source
and target domain, including items (Singh and Gordon 2008;
Zhu et al. 2021) or attributes (Tang et al. 2012). To address
distributional differences, distribution alignment (Liu et al.
2023c; Wang et al. 2021) and invariant representation learn-
ing (Wuet al. 2020b; He et al. 2018) has been proposed
to build robust item representations to facilitate knowledge
transfer. Recently, with the rise of pretrained language mod-
els (PLMs), text representations have proven to be powerful
semantic bridges, reducing the need for explicit entity over-
laps between domains (Ding et al. 2021; Geng et al. 2022;
Hou et al. 2022). To learn universal representations from
text, many approaches leverage pretraining across multiple
domains, followed by fine-tuning on domain-specific tasks
to enable seamless cross-domain transfer (Hou et al. 2022,
2023; Li et al. 2023).

World knowledge from LLMs In recent years, the de-
velopment of Large Language Models (LLMs) (Zhao et al.
2023; Achiam et al. 2023; Touvron et al. 2023) has en-
abled their application across a wide range of recommen-
dation scenarios due to their well-learned world knowledge
from web-scale internet data, which allow them to easily un-
derstand cold-start items. One direct application, the ‘LLM
for Rec’ methods, mainly involves prompting (Liu et al.
2023a; Dai et al. 2023; Hou et al. 2024b), finetuning (Zhang
et al. 2024; Bao et al. 2023), retrieval-augmented genera-
tion (RAG) (Di Palma 2023; Contal and McGoldrick 2024,
Wu et al. 2024), and conversational dialogue systems (He
et al. 2023a; Sun et al. 2024). While these approaches re-
quire minimal pre-training, they suffer from high inference
latency and hallucinations. To mitigate these issues, recent
methods use LLMs to generate modality-based item repre-
sentations(Hou et al. 2022; Li et al. 2023; Hou et al. 2023)
and train backbone models on these frozen representations,
achieving state-of-the-art performance in cold-start scenar-
i0s.

Additional Implementation Details
SpecGR++ Training Details

We train SpecGR++ with Distributed Data Parallel (DDP)
using 4 GPUs (NVIDIA RTX A6000, 48GB each, Ubuntu
22.04.5 LTS). The random seed is fixed to 42 for repro-
ducibility. During pretraining, we compute the generation
loss L gen With a batch size of 256, and the contrastive loss

L ¢ with an effective batch size of 2048 (negatives gathered
across GPUs). We train for up to 200,000 steps with early
stopping, selecting learning rates from {0.001, 0.0003} For
fine-tuning, SpecGR++ is trained for 15 epochs with a batch
size of 256 and a learning rate of 10™#. The draft threshold



Table Al: Average validation Recall@50 for SpecGR++
across different training embedding batch sizes.

Batch Size Avg. R@50
1024 0.0598
2048 0.0692
4096 0.0769

y is tuned between -1.1 and -1.8 (step size 0.1), and beam
size 8 and draft size § are set to 50 or K . For SpecGR auy,
it is trained on a single GPU with the same hyperparameters
but without distributed negative gathering.

Embedding Batch Size Ablation

During SpecGR++ training, to ensure the model receives
sufficient negative training signals, we leverage much larger
batch sizes for embedding task than generative task. We re-
port the performance against the effective batch size, which
equals the batch size X number of gpus in the distributed
setting Table A1. We can see that larger embedding batch
size positively affects the performance of embeddings from
SpecGR’s encoder.

Baseline Model Reproductions

We reproduce TIGER by following the instructions provided
in its original implementation (Rajput et al. 2024). For Rec-
former, we utilize pretrained checkpoints from a popular re-
production repository? and fine-tune them on our processed
datasets. We implement LIGER by closely following the
method details, pseudocode, and hyperparameter configu-
rations outlined in the original paper (Lin et al. 2024). For
item text embeddings, we use representations obtained from
a pretrained T5 sentence encoder. All other baseline mod-
els (e.g., SASRec variants and modality-based methods) are
implemented using the open-source RecBole library (Zhao
et al. 2021). We conduct thorough hyperparameter tuning
for all baseline models and report results using the best-
performing configuration for fair comparison.

TIGER¢ Implementation

Following Rajput et al. (2024), during inference, we use
TIGER to generate top- K candidates and retrieve unseen

items whose semantic prefix (i.e., semantic IDs without the
last identifier token) appears in this list. A hyperparameter €
controls the maximum proportion of unseen items included.
After retrieving X unseen candidates, where x <= € - K , we
append them after the first K — X generated candidates to
finalize the recommendation. We tune € on each dataset and
report the best results in Table 3.

SpecGR++ Training Details
Case Study: Guided Redrafting

From Table 3, guided re-drafting leverages the generative
backbone to refine redrafted candidates, enhancing overall

2https://github.com/AaronHeee/RecFormer

Table A2: Statistics of the datasets. “New%” denotes the
proportion of interactions with unseen target items. “#Items”
and “#Inter.” are in thousands (K).

Items Train Valid Test
Dataset
#Items New% #Inter.  #Inter. New% #Inter. New%
Games 256 103 6453 33.1 279 415 603
Office 77.6 15.11230.2 136.1 162 211.3 594

Phones 1115 15.11841.5 2329 330 2974 68.3

Table A3: Acceptance rate (%) per decoding step with and
without guided re-drafting wheny = —1.4.

Step 1 2 3 4

w/o 10.34 5.93 4.25 2.63
w 10.34 6.62 551 5.75

performance. To analyze its mechanism and impact, we con-
duct a case study under a fixed threshold (y = —1.4). First,
Table A3 reports the comparison of acceptance rate per de-
coding step between naive drafting (w/0)  and guided re-
drafting (w). Under a strict threshold, we can see that the
step-1 acceptance rate is low, highlighting the need for re-
drafting. Guided re-drafting consistently increases the num-
ber of accepted items in later steps, improving verifica-
tion efficiency. Furthermore, Table A4 presents the impact
of guided re-drafting on overall and subset-specific perfor-
mance under a fixed threshold. As shown, guided re-drafting
yields improvements across all categories, particularly in the
unseen subset, where recall and NDCG scores rise by ap-
proximately 10%. This validates that leveraging redrafted
tokens to constrain the drafting scope results in higher-
quality candidates in subsequent steps.

Ablation: Comparison with Ensemble
Methods

We compare SpecGRy,x with ensemble-based variants com-
bining GR and modality-based models, as shown in Ta-
ble AS5. The Score-based Ensemble linearly combines
TIGER’s likelihood scores and UniSRec’s ranking scores.
The Ranking-based Ensemble averages item ranking posi-
tions from both models to mitigate score scale mismatches.
The 2-Stage Ensemble selects top- K items using UniSRec
and re-ranks them with TIGER’s scores. All ensemble meth-
ods have unseen performance bounded by the two base mod-
els, TIGER and UniSRec, since simple score aggregation or
re-ranking does not introduce inductive capabilities. In con-
trast, SpecGR uses guided re-drafting to effectively leverage
the backbone’s modeling capability for enhancing unseen
candidates’ quality. The results illustrate the effectiveness of
the proposed SpecGR methods.

Inference Speed Acceleration

Generative recommendation (GR) models rely on autore-
gressive next-token generation, which incurs high inference
latency. SpecGR addresses this by employing speculative



Table A4: Performance comparison with and without guided
re-drafting when y = —1.4.

Overall In-Sample
R@50 N@50 R@50 N@50 R@50 N@50

w/o 0.0702 0.0218 0.0288 0.0076 0.1331 0.0434
w  0.0721 0.0223 0.0317 0.0082 0.1333 0.0436

Unseen

Table AS: Performance comparison of SpecGR yx (UniS-
Rec drafter) against ensemble variants. The best and second-
best scores are bolded and underlined.

Model Overall Unseen In-Sample
R@50 N@50 R@50 N@50 R@50 N@50
Single Model
TIGER 0.0584 0.0193 - - 0.1472 0.0486
UniSRec 0.0621 0.0200 0.0118 0.0029 0.1386 0.0461
Ensemble Method

0.0571 0.0191 0.0050 0.0009 0.1333 0.0456
Ranking-based 0.0678 0.0218 0.0056 0.0011 0.1624 0.0532
2-Stage 0.0621 0.0205 0.0118 0.0026 0.1386 0.0477

SpecGR (UniSRec) 0.0778 0.0239 0.0312 0.0096 0.1485 0.0457

Score-based

retrieval-based drafting, where candidate items proposed by
the drafter can be efficiently verified by the GR verifier, sig-
nificantly reducing the number of required autoregressive
decoding steps.

Drafting and Verification Latency

To clearly illustrate SpecGR’s efficiency, we report detailed
inference latency results (in seconds) separated into drafting
(D) and verification (V) stages across various draft  sizes.
As shown in Table A6, SpecGR++ achieves remarkably
low drafting latency due to its efficient encoder-based draft-
ing mechanism, demonstrating significant overall speed im-
provements compared to TIGER.

Table A6: Empirical inference latency (seconds) across
drafting (D) and verification (V) stages.
Draft Size 20 (D/V) 50 (D/V) 100 (D/V)

SpecGR (UniSRec) 0.0110/0.0261 0.0112/0.0249 0.0112/0.0227
SpecGR++ 0.0003/0.0261 0.0003 /0.0249 0.0003 /0.0235
TIGER -/0.0403 -/0.0403 -/0.0403

Acceleration w.r.t. Generation Length

We analyze how SpecGR reduces inference latency as the
generation length increases. Specifically, we illustrate the
acceleration factor w.r.t. the number of digits in semantic
IDs. We train SpecGR++ with a TIGER backbone across
different semantic ID lengths (ranging from 2 to 16 digits)
and report the acceleration factor relative to the TIGER base-
line. The acceleration factor is defined as the inverse ratio of
inference time. As shown in Figure A1, in standard GR set-
tings with 4-digit semantic IDs, SpecGR achievesa 1.7x

16 digits
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Figure A1: Inference speed acceleration factor w.r.t. differ-
ent numbers of semantic ID digits.

inference speedup while maintaining strong overall perfor-
mance (see the Experiments section). Moreover, longer se-
mantic IDs lead to even higher acceleration as fewer decod-
ing steps are needed per item.

Theoretical Time Complexity

We further analyze the expected time complexity of
SpecGR, where each item is represented by / semantic to-
kens. Let K be the number of items to recommend, & the
draft size per iteration, and p the acceptance probability
of a drafted item. We denote the runtime for a single for-
ward pass in the GR encoder and decoder as  Cepcoger and
C decoder » respectively. A standard GR model (e.g., TIGER)
must decode all / tokens for K beams, yielding a complex-
ity:

Costriger = O(C encoder 1 C decoder )-
For SpecGR, inductive drafting requires one forward pass
and a KNN search, denoted asC grqf¢ . Verification and beam
search happen in parallel with a cost of Cgecoger per itera-
tion. The expected number of iterations to obtain K valid
recommendations is bounded by:

K
op

Thus, SpecGR’s expected time complexity is:

T=0 = O()).

COStSpecGR =0(C draft Cencoder + T+ C gecoder ),
with an expected acceleration factor:

Cencoder +1-C decoder

K .
Cdraft +C encoder s ' Cdecoder

Empirical Acceptance Rates and Speedup

We empirically measure the acceptance probability p for
various drafting methods and report their corresponding
acceleration factors in Table A7.  For the SemanticKNN
drafter, item sequences are encoded using mean text embed-
dings from the most recent five items, and top- K items are
retrieved via KNN search. Across all methods, SpecGR con-
sistently outperforms traditional GR models.



Table A7: Empirically measured acceptance rate p and ex-

pected acceleration factor for different drafters aty = —1.4.
Drafter Acceptance Rate (p) Acceleration Factor
SpecGR++ Encoder 0.44 1.72
UniSRec 0.35 1.38
SemanticKNN 0.20 1.11

Scalability Analysis

SpecGR exhibits favorable scalability in multiple dimen-
sions compared to traditional GR models:

e Model Size. As the GR model scales, assuming
Cencoder = C decoder » SpecGR maintains a constant ac-

celeration factor K+11 , demonstrating robust scalability.
&

* Semantic ID Length. The acceleration factor grows lin-
early as the semantic ID length increases, i.e.,O %/1 ,

highlighting SpecGR’s advantage in scenarios requiring
long sequences, as quantitatively shown in Figure Al.

Additional Further Analysis

We briefly discuss SpecGR’s capabilities compared to tradi-
tional methods. Leveraging the draft-then-verify framework,
SpecGR seamlessly integrates into diverse recommendation
scenarios, adapting to dynamic needs (Table A9). For in-
stance, when deployed as a ranker model, it exploits autore-
gressive generation for efficient subset ranking. Addition-
ally, its tunable hyperparameters enable real-time control-
lable inductive ability and controllable inference speed. See
the section Other New Capabilities for broader implications.

Subset Ranking

In this section, we assess new capability of SpecGR in effi-
cient subset ranking compared to traditional subset ranking
methods for GR models. Since most deep learning-based
recommendation methods unavoidably introduce high la-
tency, they are typically used as ranking models rather than
retrieval models (Covington, Adams, and Sargin 2016; Hou
et al. 2024b). In the subset ranking setting, the model of in-
terest is applied as a ranker to rank a given subset of items
(I, < |I;|< |I]). Subset ranking is out-of-the-box for
traditional sequential recommendation models by selecting
a subset of candiates when performing KNN search. How-
ever, for generative recommendation models, subset ranking
presents a challenge as they inherently recommend items by
searching for the topK decoding paths across the entire item
space.

Batch scoring (BS) A simple approach to address this is
through batch scoring, which involves splitting the item sub-
set into fixed-size batches and scoring them consecutively
with the generative model. However, this method grows lin-
early with batch size and is impractical for large subsets, as
shown in Figure A2.
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Figure A2: (Left) Inference latency comparison for subset
ranking. Both x- and y-axis use log scale. (Right) Accep-
tance rate comparison for different drafting strategies.

Table A8: Comparison of different models based on param-
eter efficiency and training time.

Model Trainable (M) Non-train T}'aining
Total Non-emb Emb -able M)  Time (h)
SASRecip 7.24 0.10 7.13 0 3.6
UniSRec 2.90 2.90 0 85.62 18.3
Recformer 233.73 106.32 127.41 0 226.0
TIGER 13.26 13.11 0.15 0 16.2
TIGERc 13.26 13.11 0.15 0 16.2
SpecGRaux  16.16 16.02 0.15 85.62 34.5
SpecGR++ 13.28 13.13 0.15 14.27 42.8

Constrained beam search (CBS)  An enhanced method
is to use constrained beam search (Anderson et  al. 2016;
Post and Vilar 2018; De Cao et al. 2020). Constrained beam
search constructs a trie using all allowed prefixes to restrict
the search space at each decoding step. However, this ap-
proach introduces significant computational overhead. The
time complexity for CBS is O(T - n - 2€), where T is the
sequence length, np is the beam size, and C is the number
of constraints (Chen et al. 2025). The large computational
overhead and exponential growth with the number of con-
straints makes it inefficient for large-scale ranking tasks, as
shown quantitatively in Figure A2.

SpecGR for subset ranking SpecGR effectively ad-
dresses this issue by restricting the drafter model’s range

to a specified subset. This ensures that all recommendations
originate from within the subset. As demonstrated in Fig-

ure A2, SpecGR achieves a3.5% speedup for subset sizes <
10* compared to TIGER with constrained beam search (de-
noted as CBS). Moreover, SpecGR maintains a time com-

plexity that is bounded by its full ranking complexity as the
retrieval size increases, making it a highly efficient solution
for subset ranking tasks.

Other New Capabilities

As a direct impact of the adjustable hyperparameters ana-
lyzed in the Experiments section, SpecGR possesses two
other new capabilities: controllable inductive ability and
controllable inference speed.



Table A9: Comparison of SpecGR against existing models
across different scenarios and model capabilities.

Recommendation Scenario Model Capability

Model . .

Efficient Inductive Auto- Controllable Controllable

Subset Recom- regressive Inductive Inference

Ranking mendation  Generation Ability Speed
SASRecip " % % % %
UniSRec " " % % %
Recformer " " % % %
TIGER % % " % %
TIGER( % " " " %
SpecGRpux "
SpecGR++

Controllable inductive ability allows platforms to dynam-
ically adjust their recommendation strategy based on sea-
sonal demand, favoring new items during certain periods
while prioritizing established products at  others. For in-
stance, e-commerce platforms could increase the inductive
ability of SpecGR to promote new items, and reduce it dur-
ing clearance sales.

Controllable inference speed enables platforms to trade off
model performance for faster inference speed during high-
traffic periods, ensuring responsive user experiences.

In summary, as shown in Table A9, SpecGR inherits the
architecture of generative recommendation, allowing effec-
tive scaling on large datasets. It also extends high perfor-
mance and low inference speed to broader real-life recom-
mendation settings, adapting to specific data characteristics
and recommendation needs.

Further discussion on SpecGR++ Architecture

SpecGR++ utilizes its encoder as the self-drafter, effectively
eliminating the need for maintaining a separate draft model
for drafting, resulting in a more integrated method during
inference. In this section, we will study the additional ad-
vantages of the SpecGR++ compared to the SpecGR with
an auxiliary model.

Parameter Efficiency and Speed

First, SpecGR++ uses intermediate encoder outputs for
drafting, resulting in nearly no additional computational cost
and parameter sizes compared to GR. We report the total
number of parameters and training time required for differ-
ent methods in Table A8. As we can see, SpecGR inher-
ents GR’s advantages for scaling for the larger dataset as it
assigns most of the parameters into non-embedding layers.
Due to the additional embedding training tasks, SpecGR++
training time is slightly longer than training a drafter model
and TIGER, and is 2.6x more GPU hours than training a
TIGER. However, we believe that it is worthwhile to con-
sider the acceleration during inference time. We’ve also pro-
vided a distributed training implementation in the released
code.

Unified Representation Space

Because both the drafter and verifier use the encoder’s rep-
resentation, we observe a higher acceptance rate for the self-
drafter compared to drafting with auxiliary models.  This
leads to better recommendation efficiency, where less decod-
ing step is required.

Notably, we also observe a slight increase in genera-
tive performance after SpecGR++ pretraining compared to
generation-only training (e.g., TIGER). Recent studies have
shown similar results, indicating that with a unified repre-
sentation space, a model can maintain high performance in
both generative and embedding tasks in NLP (Muennighoff
et al. 2024). Our study further confirms that generation and
representation are not conflicting tasks in the recommen-
dation setting but rather two complementary approaches to
solving the same problem. We look forward to seeing future
research in recommendation systems that explores the unifi-
cation and overlap between generative recommendation and
representational recommendation.
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