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Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a
signi!cant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy
system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety
speci!cations) at every time step remains a formidable challenge. In contrast, existing work in the !eld of safe control provides
guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system
dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a
model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure
provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certi!cate) and a subsequent
safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically
prove that the implicit safe set algorithm guarantees !nite time convergence to the safe set and forward invariance for both
continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark,
where it achieves zero safety violations while gaining 95% ± 9% cumulative reward compared to state-of-the-art safe DRL
methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
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1 Introduction
Deep reinforcement learning (DRL) has achieved impressive results in continuous control tasks (Fujimoto et al.
2025; Govinda et al. 2025; Schulman et al. 2017; Zhao, F. Li, Sun, Chen, et al. 2024), but its real-world deployment
is hindered by the absence of hard safety guarantees. Ensuring safety in terms of persistently satisfying hard state
constraints has long been recognized as a critical requirement in robotics (Zhao, He, Chen, et al. 2023; Zhao, F. Li,
Sun, Wang, et al. 2024). For example, vehicles must avoid colliding with pedestrians; robotic arms should not
strike walls; and aerial drones must steer clear of buildings. When robots learn skills via reinforcement learning,
they need to su"ciently explore the environment to discover optimal policies. However, such exploration is
not inherently safe. A common strategy to encourage safe behavior is to introduce penalties for visiting unsafe
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states. While these posterior measures are widely adopted (Papini et al. 2022; Pirotta et al. 2013; Zhao, He, Chen,
et al. 2023), they are often insu"cient to ensure robust safety. Instead, prior measures are required to proactively
prevent robots from entering unsafe states in the !rst place.
Constraining robot motion to persistently satisfy hard safety speci!cations in uncertain environments is an

active area of research in the safe control community. Among the most widely used approaches are energy
function-based methods. These methods (Ames et al. 2014; Gracia et al. 2013; Khatib 1986; C. Liu and Tomizuka
2014) de!ne an energy function that assigns low energy to safe states and construct a control law that dissipates
this energy. When the energy function and the control law are properly designed, the system remains within
the safe set (i.e., exhibits forward invariance) and may also converge to safe states in !nite time if it starts from
an unsafe condition (i.e., demonstrates !nite-time convergence). Initially developed for deterministic systems,
these methods have been extended to handle stochastic and uncertain systems (Cheng et al. 2019; Cosner et al.
2023; Pandya et al. 2024; Taylor and Ames 2020), where uncertainties may arise from state measurements, the
future evolution of the ego robot, or the behavior of obstacles. Furthermore, they have been integrated with
robot learning frameworks to enhance safety assurance (Du et al. 2023; Fisac et al. 2018; H. Zhang et al. 2025).
However, a key limitation of energy function-based methods is their reliance on white-box analytical models of
the system dynamics (e.g., the Kinematic Bicycle Model (Kong et al. 2015)) for both o#ine construction of the
energy function and online computation of the safe control signal.

This paper extends the class of energy function-based methods by proposing a model-free safe control approach
that provides safety guarantees without requiring an analytical dynamics model. The proposed method is capable
of safeguarding any robot learning algorithm by integrating safety constraints directly into the control synthesis.
The key insight underlying our approach is that a safe control law can be synthesized without access to a
white-box analytical dynamics model, provided that a black-box dynamics function is available—that is, a function
that maps the current state and control input to the next state. Importantly, such black-box models are often
accessible in real-world applications, for example, through high-!delity digital twin simulators (Abou-Chakra
et al. 2025; Das et al. 2022; M. Liu et al. 2021) or deep neural network dynamics models trained in a data-driven
manner (F. Li et al. 2025; W. Zhang et al. 2021). While this paper does not explicitly analyze formal guarantees
on the accuracy of the black-box dynamics, it focuses on developing a reliable approach to synthesize the safe
control strategy using only the black-box dynamics models, which is essential when designing safety-critical
learning-based control systems in practice.
The key questions that we want to answer are: 1) how to synthesize the energy function (in our case called

the safety index) with black-box dynamics, so that there always exists a feasible control to dissipate the system
energy at all potentially unsafe states; 2) how to e"ciently synthesize the optimal safe control with black-box
dynamics, such that the control input can both dissipate the system energy and achieve good task e"ciency;
and 3) how to formally prove that the synthesized energy function and the generated safe control can guarantee
forward invariance and !nite time convergence to the safe set. We propose a safety index design rule to address
the !rst question, and a sample-e"cient algorithm to perform black-box constrained optimization to address the
second question. As for the third question, we show that under certain assumptions, the proposed safety index
design rule together with the proposed black-box optimization algorithm can guarantee forward invariance and
!nite time convergence to a subset within the safe set. By combining these approaches with the (model-based)
safe set algorithm (C. Liu and Tomizuka 2014), we propose the (model-free) implicit safe set algorithm (ISSA). We
then use ISSA to safeguard deep reinforcement learning (DRL) agents.
A short version of this paper has been presented earlier (Zhao, He, and C. Liu 2021), where ISSA is proposed

and evaluated with the assumption that the sampling time is almost zero (i.e., the system evolves almost like a
continuous-time system). In reality, most control and simulation systems are implemented in a discrete-time
manner with non-negligible sampling time. As a result, the controller may not be able to respond immediately to
potential violations of safety. Therefore, assuring provable safety for discrete-time systems with non-negligible
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sampling time is important. In this paper, we introduce a general version of the implicit safe set algorithm
which explicitly takes the sampling time into consideration. In particular, a novel convergence trigger (CTrigger)
algorithm is introduced. The key contributions of this paper are summarized below:

• We propose two techniques to enable safe control with black-box models: (o#ine) continuous-time and
discrete-time safety index design rules for mobile robots in a 2D plane, and a (online) sample-e"cient
black-box optimization algorithm using adaptive momentum boundary approximation (AdamBA).

• We propose the implicit safe set algorithm (ISSA) using these two techniques, which guarantees to generate
safe controls for all system states without knowing the explicit system dynamics. We show that ISSA can
safeguard DRL agents to ensure zero safety violation during training in Safety Gym. Our code is available
on Github.1

• Weprovide the theoretical guarantees that 1) ISSA ensures the forward-invariance safety for both continuous-
time and discrete-time systems; and 2) !nite time convergence safety when ISSA is combined with CTrigger
for both continuous-time and discrete-time systems (i.e., with any sampling time step).

In the remainder of the paper, we !rst formulate the mathematical problem in Section 2. We then discuss
related work about safe reinforcement and safe control in Section 3. In Section 4 and Section 5, we !rst introduce
the implicit safe set algorithm, and provide theoretical results in continuous-time systems. We further extend the
implicit safe set algorithm to the discrete-time systems and provide theoretical guarantees of forward invariance
and !nite time convergence in Section 6 and Section 7, respectively. Finally, we validate our proposed method in
Safety Gym environments in Section 8.

2 Problem Formulation
Dynamics. Let 𝐿𝐿 → X ↑ R𝑀𝐿 be the robot state at time step 𝑀 , where 𝑁𝑁 is the dimension of the state space X;

𝑂𝐿 → U ↑ R𝑀𝑀 be the control input to the robot at time step 𝑀 , where 𝑁𝑂 is the dimension of the control space U.
Denote the sampling time as 𝑃𝑀 . The system dynamics are de!ned as:

𝐿𝐿+1 = 𝑄 (𝐿𝐿 ,𝑂𝐿 ), (1)

where 𝑄 : X ↓U ↔ X is a function that maps the current robot state and control to the next robot state. For
simplicity, this paper considers deterministic dynamics. The proposed method can be easily extended to the
stochastic case through robust safe control (Emam et al. 2025), which will be left for future work. Moreover, it is
assumed that we can only access an implicit black-box form of 𝑄 , e.g., as an implicit digital twin simulator or a
deep neural network model. Note that the word implicit refers to that we can only do point-wise evaluation of
𝑄 (𝐿,𝑂) without any explicit knowledge or analytical form of 𝑄 (𝐿,𝑂).

!
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Fig. 1. Visualization of robot notations.

1https://github.com/intelligent-control-lab/Implicit_Safe_Set_Algorithm
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Safety Speci!cation. The safety speci!cation requires that the system state should be constrained in a regular
and closed subset in the state space, called the safe set X𝑃 . The safe set can be represented by the zero-sublevel set
of a continuous and piecewise smooth function 𝑅0 : R𝑀𝐿 ↔ R, i.e., X𝑃 = {𝐿 | 𝑅0 (𝐿) ↗ 0}. X𝑃 and 𝑅0 are directly
speci!ed by users. A state 𝐿 (𝑀0) is considered safe if it belongs to the safe set X𝑃 at time 𝑀0, notwithstanding the
possibility that the trajectory 𝐿 (𝑀) may exit X𝑃 at some later time 𝑀1 > 𝑀0. The notion for the state, conditioned
on the control policy, to result in a trajectory that always lies in the safe set is called invariantly safe, which
is later captured by the notion of forward invariance. Hence the safe set X𝑃 captures static safety and forward
invariance, which usually happens within a subset of X𝑃 , captures dynamic safety. Nevertheless, the design of 𝑅0
is straightforward in most scenarios. For example, for collision avoidance, 𝑅0 can be designed as the negative
closest distance between the robot and environmental obstacles.

Reward and Nominal Control. A robot learning controller generates the nominal control which is subject
to modi!cation by the safeguard. The learning controller aims to maximize rewards in an in!nite-horizon
deterministic Markov decision process (MDP). AnMDP is speci!ed by a tuple (X,U,𝑆, 𝑇 , 𝑄 ), where 𝑇 : X↓U ↔ R
is the reward function, 0 ↗ 𝑆 < 1 is the discount factor, and 𝑄 is the deterministic system dynamics de!ned in (1).

Safeguard Synthesis. Building on top of the nominal learning agent, the core problem of this paper is to
synthesize a safeguard for the learning agent, which monitors and modi!es the nominal control to ensure forward
invariance in a subset of the safe set X𝑃 and !nite time convergence to that subset. Forward invariance of a set
means that the robot state will never leave the set if it starts from the set. Finite time convergence to a set means
that the robot state will return to the set in a !nite amount of time if it is not initially in the set. The reason why
we need to !nd a subset instead of directly enforcing forward invariance of X𝑃 is that X𝑃 may contain states that
will inevitably go to the unsafe set no matter what the control input is. These states need to be penalized when
we synthesize the energy function. For example, when a vehicle is moving toward an obstacle at high speed, it
would be too late to stop. Even if the vehicle is safe now (if X𝑃 only constrains the position), it will eventually
collide with the obstacle (unsafe). Then we need to assign high energy values to these inevitably-unsafe states.

Collision Avoidance for Mobile Robots. In this paper, we are focused on collision avoidance for mobile robots in a
2D plane. The robot and the obstacles are all geometrically simpli!ed as point-mass circles with bounded collision
radius. The safety speci!cation is de!ned as 𝑅0 = max𝑄 𝑅0𝑄 , where 𝑅0𝑄 = 𝑃𝑅𝑄𝑀 ↘ 𝑃𝑄 , and 𝑃𝑄 denotes the distance
between the center point of the robot and the center point of the 𝑈-th obstacle (static or non-static), and the radius
of both the obstacle and the robot are considered in 𝑃𝑅𝑄𝑀 such that 𝑃𝑅𝑄𝑀 ≃ obstacle radius + robot radius. Denote
𝑉 , 𝑊 and𝑋 as the relative velocity, relative acceleration and relative angular velocity of the robot with respect to
the obstacle, respectively, as shown in !g. 1.2 The remaining discussions are based on the following assumption.

A&&’()*#"+ 1 (A%*’,*#"+ R-,%.,/#0#*1). 1) The state space is bounded (𝑉 → [0, 𝑉𝑅𝑆𝑁 ]), and the relative
acceleration and angular velocity are bounded and both can achieve zeros, i.e.,𝑋 → [𝑋𝑅𝑄𝑀,𝑋𝑅𝑆𝑁 ] for𝑋𝑅𝑄𝑀 ↗ 0 ↗ 𝑋𝑅𝑆𝑁

and 𝑊 → [𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 ] for 𝑊𝑅𝑄𝑀 ↗ 0 ↗ 𝑊𝑅𝑆𝑁 ; 2) For all possible values of 𝑊 and𝑋 , there always exists an input 𝑂 such
that the closed-loop low-level servo tracks that pair within the sampling period 𝑃𝑀 .

These assumptions are easy to meet in practice. The bounds in the !rst assumption will be directly used to
synthesize the safety index 𝑅 (will be introduced in Section 3). The second assumption enables us to turn the
question on whether there exists a feasible safe control in U to the question on whether there exists 𝑊 and𝑋 to

2Note that in our de!nition, 𝑇 = ⇐𝑈 , where 𝑈 is the angle between the robot’s heading vector and the vector from the robot to the obstacle.
The de!nition of 𝑇 is di$erent from the robot angular velocity in the world frame, where 𝑇 is in%uenced by the 1) the robot’s motion around
the obstacle, which changes the vector from the robot to the obstacle and 2) the robot’s self-rotation in world frame, which changes the
robot’s heading. Since the obstacle is treated as a circle, we do not consider its self-rotation in the world frame. In real world systems, a
robot’s self-rotation is bounded, and its motion around the obstacle is also bounded. Therefore, 𝑇 is bounded.
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in%uence 𝑅 . The requirement is satis!ed by most wheeled or tracked mobile bases whose wheel/track torques can
be commanded independently. It does not imply that the robot should be able to perform holonomic motion in
Cartesian space; translational motion remains subject to the usual non-holonomic constraint. Our experiments use
MuJoCo’s unicycle and quadruped models whose low-level velocity controllers meet this reachability property.

3 Related Work
Safe Reinforcement Learning. Safe RL methods enforce safety through either soft safety constraints or hard

safety constraints. For example, as for the safety speci!cation of mobile robots, soft safety contraints limit a
number of crashes per trajectory, whereas hard safety constraints require mobile robots should never crash
into pedestrians. Typical safe RL methods for soft safety constraints include risk-sensitive safe RL (Garcıa and
Fernández 2015; Noorani et al. 2025), Lagrangian methods (Ray et al. 2019), trust-region-based constrained policy
optimization (Achiam et al. 2017; Zhao, Chen, Sun, F. Li, et al. 2024; Zhao, F. Li, Sun, Wang, et al. 2024). These
methods are able to !nd policies that satisfy the safety constraint in expectation, but cannot ensure all visited
states are safe. The methods that are more closely related to ours are safe RL methods with hard safety constraints.
Safe RL methods with hard constraints can be divided into two categories: 1) safeguarding learning policies using
control theories; and 2) safeguarding learning policies through a safety layer to encourage safe actions.

For the !rst category, safeguard methods are proposed based on 1) Control Barrier Function (CBF), 2) Hamilton-
Jacobi reachability, and 3) Lyapunovmethod. Richard et al. (Cheng et al. 2019) propose a general safe RL framework,
which combines a CBF-based safeguard with RL algorithms to guide the learning process by constraining the
exploratory actions to the ones that will lead to safe future states. However, this method strongly relies on the
control-a"ne structure of the dynamics system, which restricts its applicability to general non-control-a"ne
unknown dynamics systems. Ferlez et al. (Ferlez et al. 2020) also propose a ShieldNN leveraging Control Barrier
Function to design a safety !lter neural network with safety guarantees. However, ShieldNN is specially designed
for an environment with the kinematic bicycle model (KBM) (Kong et al. 2015) as the dynamical model, which
cannot be directly applied to general problems. Besides CBF, reachability analysis is also adopted for the safeguard
synthesis. Fisac et al. (Fisac et al. 2018) propose a general safety framework based on Hamilton-Jacobi reachability
methods that works in conjunction with an arbitrary learning algorithm. However, these methods (Fisac et al.
2018; Pham et al. 2018) still rely heavily on the explicit analytic form of system dynamics to guarantee constraint
satisfaction. In addition to CBF and reachability, Lyapunov methods are used to verify stability of a known
system in control, which can be used to determine whether states and actions are safe or unsafe. Berkenkamp
et al. (Berkenkamp et al. 2017) combine RL with Lyapunov analysis to ensure safe operation in discretized
systems. Though provable safe control can be guaranteed under some Lipschitz continuity conditions, this
method still requires explicit knowledge of the system dynamics (analytical form). In summary, control theory
based safeguard methods provide good safety guarantees. However, those methods rely on the assumptions of 1)
explicit knowledge of dynamics model or 2) control-a"ne dynamics model, which are hard to be satis!ed in real
world robotics applications.

The second category to make RL meet hard safety constraints is shield synthesis–style approaches, where a
safety layer monitors the action proposed by the RL policy and corrects it, if necessary, to satisfy safety constraints.
Such methods can guarantee safety online by projecting unsafe actions into a certi!ed safe set before execution.
Dalal et al. (Dalal et al. 2018) propose to learn the system dynamics directly from o#ine collected data, and
then add a safety layer that analytically solves a control correction formulation at each state to ensure every
state is safe. However, the closed-form solution relies on the assumption of the linearized dynamics model and
cost function, which is not true for most dynamics systems. They also assume the set of safe control can be
represented by a linearized half-space for all states, which does not hold for most of the discrete-time system (i.e.,
safe control may not exist for some states). Yinlam et al. (Chow et al. 2019) propose to project either the policy
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parameters or the action to the set induced by linearized Lyapunov constraints, which still su$er from the same
linear approximation error and non-control-a"ne systems as in (Dalal et al. 2018) and is not able to guarantee
zero-violation. Bejarano et al. (Bejarano et al. 2025) integrate safety !lters into the RL training process, allowing
the controller to adapt to the presence of the !lter and thereby improving the overall safety–performance trade-o$
and sample e"ciency. However, their approach still fundamentally relies on an analytical dynamics model, which
limits applicability in scenarios where such a model is unavailable or inaccurate. These works all fall under the
general paradigm of shield synthesis in RL, where a pre-speci!ed or learned model is used online to intercept
and correct unsafe actions before execution. In contrast, our proposed method does not require the explicit form
or control-a"ne form of system dynamics, and our method can be guaranteed to generate safe control as long as
the safe set is regular (i.e., the set equal to the closure of its interior; for example, it is not a collection of singleton
points) and contains forward invariant subsets.

Safe Control. Representative energy function-based methods for safe control include potential !eld meth-
ods (Khatib 1986), control barrier functions (CBF) (Ames et al. 2014), safe set algorithms (SSA) (C. Liu and
Tomizuka 2014), sliding mode algorithms (Gracia et al. 2013), and a wide variety of bio-inspired algorithms (J.
Zhang et al. 2017). The next step towards safe controller synthesis is to design a desired energy function o#ine,
ensuring that 1) the low energy states are safe and 2) there always exists a feasible control input to dissipate
the energy. SSA has introduced a rule-based approach (Z. Li et al. 2023) to synthesize the energy function
as a continuous, piece-wise smooth scalar function on the system state space 𝑅 : R𝑀𝐿 ↔ R. And the energy
function 𝑅 (𝐿) is called a safety index in this approach. The general form of the safety index was proposed as
𝑅 = 𝑅⇒

0 + 𝑌1 ⇐𝑅0 + · · · + 𝑌𝑀𝑅
(𝑀)
0 where 1) the roots of 1 + 𝑌1𝑍 + . . . + 𝑌𝑀𝑍𝑀 = 0 are all negative real (to ensure zero-

overshooting of the original safety constraints); 2) the relative degree from 𝑅 (𝑀)
0 to 𝑂 is one (to avoid singularity);

and 3) 𝑅⇒
0 de!nes the same set as 𝑅0 (to nonlinear shape the gradient of 𝑅 at the boundary of the safe set). It

is shown in (C. Liu and Tomizuka 2014) that if the control input is unbounded (U = R𝑀𝑀 ), then there always
exist a control input that satis!es the constraint ⇐𝑅 ↗ 0 when 𝑅 = 0; and if the control input always satis!es that
constraint, then the set {𝐿 | 𝑅 (𝐿) ↗ 0} ⇑ {𝐿 | 𝑅0 (𝐿) ↗ 0} is forward invariant. In practice, the actual control
signal is computed through a quadratic projection of the nominal control 𝑂𝑉 to the control constraint:

𝑂 =argmin
𝑂→U

⇓𝑂 ↘ 𝑂𝑉 ⇓2 s.t. ⇐𝑅 ↗ ↘𝑎 (𝑅), (2)

where ⇐𝑅 ↗ ↘𝑎 (𝑅) is a general form of the constraint; 𝑎 : R ↔ R is a non-decreasing function that 𝑎 (0) ≃ 0.
For example, in CBF, 𝑎 (𝑅) is designed to be 𝑏𝑅 for some positive scalar 𝑏. In SSA, 𝑎 (𝑅) is designed to be
a positive constant when 𝑅 ≃ 0 and ↘⇔ when 𝑅 < 0. Note there are two major di$erences between this
paper and the existing results presented in (C. Liu and Tomizuka 2014). First, this paper considers constrained
control space, which then requires careful selection of the parameters in 𝑅 to make sure the control constraint
U𝑃 (𝐿) := {𝑂 → U | ⇐𝑅 ↗ ↘𝑎 (𝑅)} is nonempty for states that 𝑅 ≃ 0. Secondly and most importantly, this paper
considers general black-box dynamics, while the existing work considers analytical control-a"ne dynamics.
For analytical control-a"ne dynamic models, U𝑃 (𝐿) is essentially a half-space, and the projection (2) can be
e"ciently computed by calling a quadratic programming solver. However, for black-box dynamics, this constraint
is challenging to quantify.
Since real-world robot systems are always controlled in discrete-time with dynamics 𝐿𝐿+1 = 𝑄 (𝐿𝐿 ,𝑂𝐿 ), we

consider the discrete-time version of the set of safe controlU𝑊
𝑃 (𝐿) := {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 (𝐿)↘𝑎, 0}} in

the remaining discussions. By de!ning L(𝑅) := {𝐿 |𝑅 (𝐿) ↗ 0} , our ultimate goal is to ensure forward invariance
and !nite-time convergence with respect to the set S := X𝑃 ⇑ L(𝑅). Notice that the continuous-time system is a
special case of a discrete-time system where the simulation time step (sampling time) is negligible, i.e. 𝑃𝑀 ↔ 0.
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Additionally,U𝑃 (𝐿) andU𝑊
𝑃 (𝐿) pose similar requirements for safe control, which require 𝑅 to decrease at the

next time step when 𝑅 ≃ 0 at the current time step.

4 Implicit Safe Set Algorithm for Systems with Negligible Sampling Time
This section introduces the implicit safe set algorithm (ISSA), which is able to leverage energy function-based
methods (SSA in particular) with black-box dynamics, and be used to safeguard any nominal policy. ISSA contains
two parts: 1) a safety index synthesis rule to make sureU𝑊

𝑃 (𝐿) is nonempty for all 𝐿 , and 2) a sample-e"cient black-
box optimization method to solve the projection of the nominal control to U𝑊

𝑃 (𝐿). With these two components,
the overall pipeline of the implicit safe set algorithm is summarized as follows:

• O"line: Design the safety index 𝑅 (𝐿) according to the safety index design rule.
• Online: Project nominal control intoU𝑊

𝑃 (𝐿) during online robot maneuvers.

4.1 Synthesize Safety Index for Continuous-time System
The safety index for collision avoidance in 2D plane will be synthesized without referring to the speci!c dynamic
model, but under the following assumptions.

A&&’()*#"+ 2 (2D C"00#&#"+ A2"#!,+%- 3"$ %"+*#+’"’&4*#(- &1&*-(). 1) The system time step 𝑃𝑀 ↔ 0.
2) At any given time, there can at most be one obstacle becoming safety-critical, such that 𝑅𝑄 ≃ 0 (Sparse Obstacle
Environment).

These assumptions are easy to meet in practice. The !rst assumption ensures that the discrete-time approxi-
mation error is negligible, i.e., the system can essentially be treated as a continuous-time system. The second
assumption makes the safety index design rule applicable with multiple moving obstacles.

Following the rules in (C. Liu and Tomizuka 2014), we parameterize the safety index as 𝑅 =max𝑄 𝑅𝑄 ,

𝑅𝑄 = 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝑄 ↘ 𝑌 ⇐𝑃𝑄 , (3)

where all 𝑅𝑄 share the same set of tunable parameters 𝑐,𝑁,𝑌,𝑎 → R+. We illustrate the behavior of the safety index
𝑅 with respect to 𝑃 and ⇐𝑃 under varying 𝑌 and 𝑁 in Figure 2. Our goal is to choose these parameters such that
U𝑊

𝑃 (𝐿) is always nonempty. Under the above assumptions, the safety index design rule is constructed below. The
main idea of designing the safety index is to derive the su"cient condition of parameters of 𝑅 to ensure there
exist safe controls for all states.
Safety Index Design Rule for Continuous-Time System: By setting 𝑎 = 0, the parameters 𝑌,𝑁, and 𝑐

should be chosen such that

𝑁(𝑐 + 𝑃𝑀𝑅𝑄𝑀 + 𝑌𝑉𝑅𝑆𝑁 )
𝑁↘1
𝑁

𝑌
↗ ↘𝑊𝑅𝑄𝑀

𝑉𝑅𝑆𝑁
, (4)

where 𝑉𝑅𝑆𝑁 is the maximum relative velocity that the robot can achieve in the obstacle frame. This design rule,
together with the conditions in Assumption 1 and Assumption 2, guarantees that the safe control setU𝑊

𝑃 (𝐿) is
non-empty at any arbitrary state, which is the key to establishing Theorem 1. The proof of this non-emptiness is
provided in Proposition 1.

4.2 Understanding of Safety Index Design Rule
Design philosophy. We treat 𝑁 as a user-chosen shaping parameter for the safety index, while 𝑌 is then selected to
satisfy (4) so that a safe control set U𝑊

𝑃 (𝐿) is non-empty for all states. We begin with the role of 𝑌 .
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(a) 3D: 𝑌 = 0.5, 𝑁 = 1 (b) 3D: 𝑌 = 0.5, 𝑁 = 4 (c) 3D: 𝑌 = 5, 𝑁 = 1

(d) 2D: 𝑌 = 0.5, 𝑁 = 1 (e) 2D: 𝑌 = 0.5, 𝑁 = 4 (f) 2D: 𝑌 = 5, 𝑁 = 1

Fig. 2. Combined visualization of the safety index 𝑅 with respect to 𝑃 and ⇐𝑃 under varying 𝑌 and 𝑁: 3D surface plots (top
row; 𝑑-axis is 𝑅 , brighter is higher) and 2D heat maps (bo!om row; darker red indicates more positive 𝑅—unsafe, darker blue
more negative 𝑅—safe; red line shows the zero level set 𝑅 = 0). In the axes, “+” denotes positive and “–” denotes negative
values. The design (𝑌 = 0.5,𝑁 = 1) is also discussed in Section 8.

E"ect of 𝑌 . With safety index parameterization form in (3), the coe"cient 𝑌 scales the index’s sensitivity to the
relative speed ⇐𝑃 . Increasing 𝑌 steepens the slope of 𝑅 along the ⇐𝑃 axis, so 𝑅 rises more aggressively when the
robot is closing in (i.e., ⇐𝑃 < 0). Visually, compare Fig. 2(a,d) (𝑌=0.5,𝑁=1) and Fig. 2(c,f) (𝑌=5,𝑁=1): the surface tilts
more strongly with ⇐𝑃 , indicating earlier and stronger reactions to robot-obstacle approach speed ( ⇐𝑃). Equation (4)
explains why 𝑌 cannot be arbitrarily small: to keep the safe control set nonempty, 𝑌 must growwhen the maximum
relative velocity 𝑉max is larger or when the available maximum deceleration |𝑊min | is smaller. Intuitively, faster
environments or weaker braking demand earlier reactions, i.e., the larger the 𝑌 is, the more sensitive the safety
mechanism is to ⇐𝑃 , working like a time-to-collision style constraint.

E"ect of 𝑁 (distance–velocity trade-o"). The distance term 𝑃𝑀min ↘𝑃𝑀 in (3) sharpens as 𝑁 increases, redistributing
attention toward short distances. Comparing Fig. 2(a,d) (𝑌=0.5,𝑁=1) and Fig. 2(b,e) (𝑌=0.5,𝑁=4), the surface rises
much more quickly as 𝑃 shrinks. Thus, for the same (𝑃, ⇐𝑃), a larger 𝑁 yields a larger 𝑅 when the robot is close, i.e.,
less tolerance to running toward an obstacle at short range, yet allows more tolerance to aggressive motion when
the robot is far away. In other words, increasing 𝑁 changes the preference of the safety index: strict when close,
permissive when far.
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Why 𝑁 and 𝑌 should change together. Once 𝑁 is chosen to set that preference, 𝑌 must be tuned to preserve
feasibility under (4). A larger 𝑁 makes 𝑅 grow rapidly at small 𝑃 ; with bounded deceleration |𝑊min |, there is only
so much (and so fast) the controller can slow down. To ensure nonempty set of safe control that prevents 𝑅 from
diverging upward, the design must respond more sensitively when ⇐𝑃 decreases, i.e., increase 𝑌 . This coupling is
explicit in (4), where 𝑁 and 𝑌 appear together (through a factor of the form 𝑀

𝑋

(
𝑐 +𝑃𝑀min + 𝑌 𝑉max

) (𝑀↘1)/𝑀): raising 𝑁
typically necessitates raising 𝑌 to keep the inequality satis!ed. Practically: choose 𝑁 to sculpt proximity sensitivity;
then increase 𝑌 as needed to guarantee a nonempty safe control set by considering speed/braking limits of the
environment.

4.3 Sample-E!icient Black-Box Constrained Optimization
The nominal control 𝑂𝑉𝐿 needs to be projected to U𝑊

𝑃 (𝐿) by solving the following optimization:

min
𝑂𝑂 →U

⇓𝑂𝐿 ↘ 𝑂𝑉𝐿 ⇓2

s.t. 𝑅 (𝑄 (𝐿𝐿 ,𝑂𝐿 )) ↗ max{𝑅 (𝐿𝐿 ) ↘ 𝑎, 0}
(5)

A key insight we have is that: since the objective of (5) is convex, its optimal solution will always lie on the
boundary ofU𝑊

𝑃 (𝐿) if 𝑂𝑉 ω U𝑊
𝑃 (𝐿). Therefore, it is desired to have an e"cient algorithm to !nd the safe controls

on the boundary ofU𝑊
𝑃 (𝐿). To e"ciently perform this black-box optimization, we propose a sample-e"cient

boundary approximation algorithm called Adaptive Momentum Boundary Approximation Algorithm (AdamBA),
which is summarized in Algorithm 1. AdamBA leverages the idea of adaptive line search with exponential
outreach/decay to e"ciently search for the boundary points. The inputs for AdamBA are the approximation
error bound (𝑒), learning rate (𝑓), reference control (𝑂𝑉 ), gradient vector covariance (ω), gradient vector number
(𝑁), reference gradient vector (↖𝑉𝑉 ), safety status of reference control (𝑔), and the desired safety status of control
solution (𝑔𝑌𝑍𝑆𝑎 ).

We illustrate the main boundary approximation procedures of AdamBA in Figure 3, where AdamBA is supposed
to !nd the boundary points ofU𝑊

𝑃 (𝐿) (green area) with respect to the reference control𝑂𝑉 ω U𝑊
𝑃 (𝐿) (red star). The

core idea of the AdamBA algorithm follows the adaptive line search (Armijo 1966), where three main procedures
are included. I. AdamBA !rst initializes several unit gradient vectors (green vectors) to be the sampling directions,
as shown in Figure 3a. II. AdamBA enters the exponential outreach phase by exponentially increasing the gradient
vector length until they reach U𝑊

𝑃 (𝐿) as shown in Figure 3b. Note that we discard those gradient vectors that go
out of control space (red vectors). III. Next, AdamBA enters the exponential decay phase by iteratively applying
Bisection search to !nd boundary points as shown in Figure 3c. Finally, a set of boundary points will be returned
after AdamBA converges as shown in Figure 3d. Note that AdamBA and the line search methods are fundamentally
similar to each other, while the purpose of AdamBA is to !nd the boundary of safe/unsafe action, while the line
search methods are to !nd the minimum of a function. It can be shown that the boundary approximation error
can be upper bounded within an arbitrary resolution.

Relation to momentum methods. The proposed AdamBA algorithm employs a momentum-inspired strategy in
step-size control. During the exponential outreach phase, the step length 𝑓 is geometrically ampli!ed (𝑓 ↙ 2𝑓)
as long as the sampled point remains within the admissible region and retains its nominal safety label. This
behavior emulates the inertial buildup of momentum and allows for rapid traversal of benign interior space. Upon
detecting a change in the safety status, the algorithm transitions to a bisection-based exponential decay stage,
re!ning the bracketing pair until a prescribed tolerance 𝑕 is satis!ed. This mirrors the damping phase observed
in line-search corrections.
The interplay between these phases underscores the importance of hyperparameter selection. An initial 𝑓

that is too small results in wasted outreach doublings, while an overly aggressive choice may cause immediate
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Fig. 3. Illustration of the procedure of the AdamBA algorithm. The algorithm is divided into four stages.

Algorithm 1 Adaptive Momentum Boundary Approximation

1: procedure A!,(BA(𝑒, 𝑓, ω,𝑁,𝑂𝑉 , ↖𝑉𝑉 , 𝑔, 𝑔𝑌𝑍𝑆𝑎 )
2: Initialize:
3: if ↖𝑉𝑉 is empty then
4: Generate 𝑁 Gaussian distributed unit gradient vectors ↖𝑉𝑄 ∝ N(0, ω), 𝑈 = 1, 2, . . . ,𝑁
5: else
6: Initialize one unit gradient vector ↖𝑉1 = ↖𝑏𝑃

⇓ ↖𝑏𝑃 ⇓
7: Approximation:
8: for 𝑈 = 1, 2, · · · ,𝑁 do
9: Initialize the approximated boundary point 𝑖𝑄 = 𝑂𝑉 , and stage = exponential outreach.
10: while stage = exponential outreach do
11: Set 𝑖𝑃 ↙ 𝑖𝑄 and 𝑖𝑐𝑃 ↙ 𝑖𝑄
12: 𝑖𝑄 = 𝑖𝑄 + ↖𝑉𝑄𝑓
13: if 𝑖𝑄 is out of the control set then
14: break
15: if 𝑖𝑄 safety status ε 𝑔 then
16: Set 𝑖𝑐𝑃 ↙ 𝑖𝑄 , stage ↙ exponential decay
17: break
18: 𝑓 = 2𝑓
19: if stage = exponential decay then
20: Apply Bisection method to locate boundary point until ⇓𝑖𝑐𝑃 ↘ 𝑖𝑃 ⇓ < 𝑒
21: Set 𝑖𝑄 ↙ 𝑖𝑃 if 𝑔𝑌𝑍𝑆𝑎 = 𝑔 , 𝑖𝑄 ↙ 𝑖𝑐𝑃 otherwise
22: Return Approximated Boundary Set 𝑖

overshoot and necessitate excessive corrective iterations. Similarly, the tolerance 𝑕 governs the trade-o$ between
computational cost and boundary !delity. Empirically, setting 𝑓 to 5–10% of the state-space scale, using a growth
factor of 2, and selecting 𝑕 commensurate with actuator resolution have been found tominimize the total number of
evaluations. Additionally, periodic resampling of probe directions helps mitigate directional bias in non-stationary
environments. Collectively, these design principles enable AdamBA to harness momentum-like dynamics for fast
yet precise boundary localization, making it a practical tool for safety-critical control applications.
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Algorithm 2 Implicit Safe Set Algorithm (ISSA)
1: procedure ISSA(𝑒, 𝑓, ω,𝑁,𝑂𝑉 )
2: Phase 1: 𝐿 Phase 1
3: Use AdamBA(𝑒, 𝑓, ω,𝑁,𝑂𝑉 , ′,UNSAFE, SAFE) to sample a collection S of safe control on the boundary of

U𝑊
𝑃 .

4: if S = ′ then
5: Enter Phase 2
6: else
7: For each primitive action 𝑂𝑄 → S, compute the deviation 𝑃𝑄 = ⇓𝑂𝑄 ↘ 𝑂𝑉 ⇓2
8: return argmin𝑂𝑄 𝑃𝑄
9:
10: Phase 2: 𝐿 Phase 2
11: Use grid sampling by iteratively increasing sampling resolution to !nd an anchor safe control 𝑂𝑆 , s.t.

safety status of 𝑂𝑆 is SAFE.
12: Use AdamBA(𝑒, ⇓𝑂

𝑃 ↘𝑂𝑅 ⇓
4 , ω, 1,𝑂𝑉 , 𝑂𝑅↘𝑂𝑃

⇓𝑂𝑅↘𝑂𝑃 ⇓ ,UNSAFE, SAFE) to search for boundary point 𝑂⇒

13: if 𝑂⇒ is not found then
14: Use AdamBA(𝑒, ⇓𝑂

𝑃 ↘𝑂𝑅 ⇓
4 , ω, 1,𝑂𝑆, 𝑂𝑃 ↘𝑂𝑅

⇓𝑂𝑃 ↘𝑂𝑅 ⇓ , SAFE, SAFE) to search for boundary point 𝑂𝑆⇒

15: Return 𝑂𝑆⇒
16: else
17: Return 𝑂⇒

4.4 Implicit Safe Set Algorithm for Continuous-Time System
Leveraging AdamBA and the safety index design rule, we construct the implicit safe set algorithm (ISSA) to
safeguard the potentially unsafe reference control. The proposed ISSA is summarized in Algorithm 2. Note that
ISSA is presented under the context of discrete-time system with negligible sampling time, andU𝑊

𝑃 (line 3 of
Algorithm 2) is the same as U𝑃 when the sampling time is negligible. The key idea of ISSA is to use AdamBA for
e"cient search and grid sampling for worst cases. The inputs for ISSA are the approximation error bound (𝑒), the
learning rate (𝑓), gradient vector covariance (ω), gradient vector number (𝑁) and reference unsafe control (𝑂𝑉 ).
Note that ISSA is only needed when the reference control is not safe.

ISSA contains an o#ine stage and an online stage. In the o#ine stage, we synthesize the safety index according
to the design rules. There are two major phases in the online stage for solving (5). In online-phase 1, we directly
use AdamBA to !nd the safe controls on the boundary ofU𝑊

𝑃 (𝐿), and choose the control with minimum deviation
from the reference control as the !nal output. In the case that no safe control is returned in online-phase 1 due to
sparse sampling, online-phase 2 is activated. We uniformly sample the control space and deploy AdamBA again
on these samples to !nd the safe control on the boundary of U𝑊

𝑃 (𝐿). It can be shown in Section 5.2 that the ISSA
algorithm is guaranteed to !nd a feasible solution of (5) since the nonempty set of safe control is guaranteed by
the safety index design rule in (4). And we show in Section 5 that the solution ensures forward invariance in the
set S = X𝑃 ⇑ L. Note that Phase 2 may consume signi!cant computational resources, potentially compromising
real-time performance. To avoid jerky movements caused by delayed computations, parallel processing and other
acceleration techniques can be employed to speed up grid sampling.
Although the ISSA algorithm builds upon the safe set algorithm (C. Liu and Tomizuka 2014), the proposed

safety index synthesis and AdamBA algorithm can be applied to other energy function-based methods to generate
safe controls with or without an explicit analytical dynamics model.
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5 Theoretical Results for ISSA When the Sampling Time is Negligible
T.-"$-( 1 (F"$5,$! I+2,$#,+%- 3"$ C"+*#+’"’&4T#(- S1&*-(). If the control system satis!es the conditions

in Assumption 1 and Assumption 2, and the safety index design follows the rule described in Section 4.1, the implicit
safe set algorithm in Algorithm 2 guarantees the forward invariance to the set S ∞ X𝑃 .

To prove the main theorem, we introduce two important propositions to show that 1) the set of safe control is
always nonempty if we choose a safety index that satis!es the design rule in section 4.1; and 2) the proposed
algorithm 2 is guaranteed to !nd a safe control if there exists one. With these two propositions, it is then
straightforward to prove the forward invariance to the set 𝑔 ∞ X𝑃 . In the following discussion, we discuss the
two propositions in Section 5.1 and Section 5.2, respectively. Then, we prove Theorem 1 in Section 5.3.

5.1 Feasibility of the Safety Index for Continuous-Time System
P$")"&#*#"+ 1 (N"+4-()*#+-&& "3 *.- &-* "3 &,3- %"+*$"0). If 1) the dynamic system satis!es the conditions

in Assumption 1 and Assumption 2; and 2) the safety index is designed according to the rule in Section 4.1, then the
robot system in 2D plane has nonempty set of safe control at any state, i.e.,U𝑊

𝑃 (𝐿) ε ′,∈𝐿 .

Note that the set of safe control U𝑊
𝑃 (𝐿) := {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 (𝐿) ↘ 𝑎, 0}} is non-empty if and only

if it is non-empty in the following two cases: 𝑅 (𝐿) ↘ 𝑎 < 0 or 𝑅 (𝐿) ↘ 𝑎 ≃ 0. In the following discussion, we !rst
show that the safety index design rule guarantees a non-empty set of safe control if there’s only one obstacle
when 𝑅 (𝐿) ↘𝑎 ≃ 0 (Lemma 1). Then we show that the set of safe control is non-empty if there’s only one obstacle
when 𝑅 (𝐿) ↘ 𝑎 < 0 (Lemma 2). Finally, we leverage Lemma 1 and Lemma 2 to show U𝑊

𝑃 (𝐿) is non-empty if
there’re multiple obstacles at any state.

5.1.1 Preliminary Results. In this section, we will introduce some preliminary results.

L-((, 1. If the dynamic system satis!es the conditions in Assumption 1 and Assumption 2 and there is only one
obstacle in the environment, then the safety index design rule in Section 4.1 ensures that U𝑊

𝑃 (𝐿) ε ′ for 𝐿 such that
𝑅 (𝐿) ↘ 𝑎 ≃ 0.

P$""3. For 𝐿 such that 𝑅 (𝐿) ↘ 𝑎 ≃ 0, the set of safe control becomes

U𝑊
𝑃 (𝐿) = {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ 𝑅 (𝐿) ↘ 𝑎} (6)

According to the !rst condition in Assumption 2, we have 𝑃𝑀 ↔ 0. Therefore, the discrete-time approximation
error approaches zero, i.e., 𝑅 (𝑄 (𝐿,𝑂)) = 𝑅 (𝐿) + 𝑃𝑀 · ⇐𝑅 (𝐿,𝑂) + ε, where ε ↔ 0. Then we can rewrite (6) as:

U𝑊
𝑃 (𝐿) = {𝑂 → U | ⇐𝑅 ↗ ↘𝑎/𝑃𝑀} (7)

According to (3), ⇐𝑅 = ↘𝑁𝑃𝑀↘1 ⇐𝑃 ↘ 𝑌 ∋𝑃 . We ignored the subscript 𝑈 since it is assumed that there is only one
obstacle. Therefore, the non-emptiness of U𝑊

𝑃 (𝐿) in (7) is equivalent to the following condition

∈𝐿 s.t. 𝑅 (𝐿) ≃ 𝑎,△𝑂, s.t. ∋𝑃 ≃ 𝑎/𝑃𝑀 ↘ 𝑁𝑃𝑀↘1 ⇐𝑃
𝑌

. (8)

Note that in the 2D problem, ∋𝑃 = ↘𝑊 cos(𝑗) + 𝑉 sin (𝑗)𝑋 and ⇐𝑃 = ↘𝑉 cos(𝑗). According to Assumption 1, there
is a surjection from 𝑂 to (𝑊,𝑋) →𝑘 := {(𝑊,𝑋) | 𝑊𝑅𝑄𝑀 ↗ 𝑊 ↗ 𝑊𝑅𝑆𝑁 ,𝑋𝑅𝑄𝑀 ↗ 𝑋 ↗ 𝑋𝑅𝑆𝑁 }. Moreover, according to
(3), 𝑅 for the 2D problem only depends on 𝑗 , 𝑉 , and 𝑃 . Hence condition ∈𝐿 s.t. 𝑅 (𝐿) ≃ 𝑎 can be translated to
∈(𝑗, 𝑉,𝑃) s.t. 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀 ↘ 𝑌𝑉 cos(𝑗) ≃ 𝑎. Denote the later set as

ϑ := {(𝑗, 𝑉,𝑃) | 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀 ↘ 𝑌𝑉 cos(𝑗) ≃ 𝑎, 𝑉 → [0, 𝑉𝑅𝑆𝑁 ],𝑃 ≃ 0,𝑗 → [0, 2𝑙)}. (9)
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Consequently, condition (8) is equivalent to the following condition

∈(𝑗, 𝑉,𝑃) → ϑ, △(𝑊,𝑋) →𝑘 , s.t. ↘ 𝑊 cos(𝑗) + 𝑉 sin(𝑗)𝑋 ≃ 𝑎/𝑃𝑀 + 𝑁𝑃𝑀↘1𝑉 cos(𝑗)
𝑌

. (10)

According to the safety index design rule, we have 𝑎 = 0. Then we show (10) holds in di$erent cases.
Case 1: 𝑉 = 0. In this case, we can simply choose 𝑊 = 0, then the inequality in (10) holds.
Case 2: 𝑉 ε 0 and cos(𝑗) ↗ 0. Note that velocity 𝑉 is always non-negative. Hence 𝑉 > 0. In this case, we just

need to choose 𝑊 =𝑋 = 0, then the inequality in (10) holds, where the LHS becomes zero and the RHS becomes
𝑀𝑑𝑁↘1𝑏 cos(𝑈 )

𝑋 which is non-positive.
Case 3: 𝑉 ε 0 and cos(𝑗) > 0. Dividing 𝑉 cos(𝑗) on both sides of the inequality and rearranging the inequality,

(10) is equivalent to

∈(𝑗, 𝑉,𝑃) → ϑ, △(𝑊,𝑋) →𝑘 , s.t. ↘ 𝑊

𝑉
+ tan(𝑗)𝑋 ↘ 𝑁𝑃𝑀↘1

𝑌
≃ 0, (11)

and (11) can be veri!ed by showing:

min
(𝑈,𝑏,𝑑 )→ϑ

max
(𝑆,𝑇 )→𝑒

(↘𝑊
𝑉
+ tan(𝑗)𝑋 ↘ 𝑁𝑃𝑀↘1

𝑌
) ≃ 0. (12)

Now let us expand the LHS of (12):

min
(𝑈,𝑏,𝑑 )→ϑ

max
(𝑆,𝑇 )→𝑒

(↘𝑊
𝑉
+ tan(𝑗)𝑋 ↘ 𝑁𝑃𝑀↘1

𝑌
) (13)

= min
(𝑈,𝑏,𝑑 )→ϑ

(↘𝑊𝑅𝑄𝑀

𝑉
+ [tan(𝑗)]+𝑋𝑅𝑆𝑁 + [tan(𝑗)]↘𝑋𝑅𝑄𝑀 ↘ 𝑁𝑃𝑀↘1

𝑌
) (14)

= min
𝑈→ [0,2𝑓 ),𝑏→ (0,𝑏𝑆𝑅𝐿 ]

(↘𝑊𝑅𝑄𝑀

𝑉
+ [tan(𝑗)]+𝑋𝑅𝑆𝑁 + [tan(𝑗)]↘𝑋𝑅𝑄𝑀 ↘

𝑁(𝑐 + 𝑃𝑀𝑅𝑄𝑀 + 𝑌𝑉 cos(𝑗)) 𝑁↘1
𝑁

𝑌
) (15)

=↘ 𝑊𝑅𝑄𝑀

𝑉𝑅𝑆𝑁
↘
𝑁(𝑐 + 𝑃𝑀𝑅𝑄𝑀 + 𝑌𝑉𝑅𝑆𝑁 )

𝑁↘1
𝑁

𝑌
. (16)

The !rst equality eliminates the inner maximization where [tan(𝑗)]+ := max{tan(𝑗), 0} and [tan(𝑗)]↘ :=
min{tan(𝑗), 0}. The second equality eliminates 𝑃 according to the constraint in ϑ. The third equality is achieved
when 𝑗 = 0 and 𝑉 = 𝑉𝑅𝑆𝑁 . According to the safety index design rule in Section 4.1, (16) is greater than or equal to
zero. Hence (12) holds, which then implies that the inequality in (10) holds.
The three cases cover all possible situations. Hence (10) always hold and the claim in the lemma is veri!ed. ⊋

L-((, 2. If the dynamic system satis!es the contidions in Assumption 1 and Assumption 2 and there is only one
obstacle in the environment, then the safety index design rule in Section 4.1 ensures that U𝑊

𝑃 (𝐿) =U for any 𝐿 that
𝑅 (𝐿) ↘ 𝑎 < 0.

P$""3. For 𝐿 such that 𝑅 (𝐿) ↘ 𝑎 < 0, the set of safe control becomes

U𝑊
𝑃 (𝐿) = {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ 0} (17)

According to the !rst assumption in Assumption 2, we have 𝑃𝑀 ↔ 0. Therefore, the discrete-time approximation
error approaches zero, i.e., 𝑅 (𝑄 (𝐿,𝑂)) = 𝑅 (𝐿) + 𝑃𝑀 · ⇐𝑅 (𝐿,𝑂) + ε, where ε ↔ 0. Then we can rewrite (17) as:

U𝑊
𝑃 (𝐿) = {𝑂 → U | ⇐𝑅 ↗ ↘𝑅/𝑃𝑀} (18)

Note that 𝑎 = 0 according to the safety index design rule, then 𝑅 (𝐿) ↘ 𝑎 < 0 implies that 𝑅 (𝐿) < 0. Hence
↘𝑅/𝑃𝑀 ↔ ⇔ since 𝑃𝑀 ↔ 0. Then as long as ⇐𝑅 is bounded,U𝑊

𝑃 (𝐿) =U.
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Now we show that ⇐𝑅 is bounded. According to (3), ⇐𝑅 = ↘𝑁𝑃𝑀↘1 ⇐𝑃 ↘ 𝑌 ∋𝑃 . We ignored the subscript 𝑈 since it is
assumed that there is only one obstacle. According to Assumption 1, we have the state space is bounded, thus
both 𝑃 and ⇐𝑃 are bounded, which implies that 𝑁𝑃𝑀↘1 ⇐𝑃 is bounded. Moreover, we have for all possible values of
𝑊 and 𝑋 , there always exists a control 𝑂 to realize such 𝑊 and 𝑋 according to Assumption 1, which indicates
the mapping from 𝑂 to (𝑊,𝑋) is surjective. Since 𝑊 and𝑋 are bounded and both can achieve zeros according to
Assumption 1, we have ∈𝑂, the corresponding (𝑊,𝑋) are bounded. Since ∋𝑃 = ↘𝑊 cos(𝑗) + 𝑉 sin(𝑗)𝑋 , then ∋𝑃 is
bounded. HenceU𝑊

𝑃 (𝐿) =U any 𝐿 that 𝑅 (𝐿) ↘ 𝑎 < 0 and the claim is true. ⊋

5.1.2 Proof of Proposition 1. In this section, we will prove the Proposition 1.

P$""3. If there is one obstacle, then lemma 1 and lemma 2 have proved that U𝑊
𝑃 (𝐿) ε ′ for all 𝐿 . Now we

need to consider the case where there are more than one obstacle but the environment is sparse in the sense
that at any time step, there is at most one obstacle which is safety critical, i.e. 𝑅𝑄 ≃ 0. To show nonemptiness of
U𝑊

𝑃 (𝐿), we consider the following two cases. In the following discussion, we set 𝑎 = 0 according to the safety
index design rule.
Case 1: 𝑅 (𝐿) =max𝑄 𝑅𝑄 (𝐿) ≃ 0. Denote 𝑚 := argmax𝑄 𝑅𝑄 (𝐿). Since there is at most one obstacle that is safety

critical, then 𝑅 𝑔 (𝐿) ≃ 0 and 𝑅𝑋 (𝐿) < 0 for all 𝑌 ε 𝑚 . Denote U𝑊
𝑃 𝑔 (𝐿) := {𝑂 → U | 𝑅 𝑔 (𝑄 (𝐿,𝑂)) ↗ 𝑅 𝑔 (𝐿)}. Lemma 1

ensures thatU𝑊
𝑃 𝑔 (𝐿) is nonempty. DenoteU𝑊

𝑃 𝑋 (𝐿) := {𝑂 → U | 𝑅𝑋 (𝑄 (𝐿,𝑂)) ↗ 0} where 𝑌 ε 𝑚 . Since 𝑅𝑋 (𝐿) < 0,
lemma 2 ensures that U𝑊

𝑃 𝑋 (𝐿) =U.
Note that the set of safe control can be written as:

U𝑊
𝑃 (𝐿) := {𝑂 → U | max

𝑄
𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ max

𝑄
𝑅𝑄 (𝐿)} (19a)

= {𝑂 → U | max
𝑄

𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 𝑅 𝑔 (𝐿)} (19b)

= ⇑𝑄 {𝑂 → U | 𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 𝑅 𝑔 (𝐿)} (19c)

=U𝑊
𝑃 𝑔 (𝐿) ε ′ (19d)

Note that the last equality is due to the fact that {𝑂 → U | 𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 𝑅 𝑔 (𝐿)} ▽ {𝑂 → U | 𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 0} =
U ▽ U𝑊

𝑃 𝑔 (𝐿) for 𝑈 ε 𝑚 .
Case 2: 𝑅 (𝐿) = max𝑄 𝑅𝑄 (𝐿) < 0. Therefore, we have 𝑅𝑄 (𝐿) < 0 for all 𝑈 . According to Lemma 2, {𝑂 → U |

𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 0} =U. Hence the set of safe control satis!es the following relationship

U𝑊
𝑃 (𝐿) := {𝑂 → U | max

𝑄
𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 0} (20a)

= ⇑𝑄 {𝑂 → U | 𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 0} (20b)
=U ε ′ (20c)

In summary,U𝑊
𝑃 (𝐿) ε ′,∈𝐿 and the claim holds. ⊋

5.2 Feasibility of ISSA
P$")"&#*#"+ 2 (F-,&#/#0#*1 "3 A06"$#*.( 2). If the set of safe control is non-empty, Algorithm 2 can always

!nd a sub-optimal solution of (5) with a !nite number of iterations.

Algorithm 2 executes two phases consecutively where the second phase will be executed if no solution of (5)
is returned in the !rst phase. Hence, Algorithm 2 can always !nd a sub-optimal solution of (5) (safe control on
the boundary ofU𝑊

𝑃 ) if the solution of (5) can always be found in phase 2.
Note that Phase 2 !rst !nds an anchor safe control 𝑂𝑆 , then use it with AdamBA (Algorithm 1) to !nd the

solution of (5). In the following discussion, we !rst show that the safety index design rule guarantees 𝑂𝑆 can
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Fig. 4. Illustration of the grid sampling to find an anchor control point.

be found with !nite iterations (Lemma 3). Then we show that AdamBA will return a solution if it enters the
exponential decay phase (Lemma 4). Subsequently, we show that the evoked AdamBA procedures in phase 2
will de!nitely enter exponential decay phase (Lemma 5). Finally, we provide a upper bound of the computation
iterations for Algorithm 2 at Section 5.2.2.

5.2.1 Preliminary Results. In this section, we will introduce some preliminary results.

L-((, 3 (E7#&*-+%-). If the synthesized safety index can guarantee a non-empty set of safe control, then we can
!nd an anchor point in phase 2 of Algorithm 2 with !nite iterations (line 11 in algorithm 2).

P$""3. If the synthesized safety index guarantees a non-empty set of safe control U𝑊
𝑃 , then there exists a

hypercube inside ofU𝑊
𝑃 , i.e. △Q ↑ U𝑊

𝑃 , whereQ is a𝑁𝑂-dimensional hypercube with the same side length of 𝑍𝑎 > 0.
Denote 𝑛 [𝑄 ] =max𝑔,𝑋 ⇓𝑂 𝑔

[𝑄 ] ↘ 𝑂𝑋[𝑄 ] ⇓, where 𝑂 [𝑄 ] denotes the 𝑈-th dimension of control 𝑂, and 𝑂 𝑔 → U𝑊
𝑃 ,𝑂

𝑋 → U𝑊
𝑃 .

By directly applying grid sampling in U𝑊
𝑕 with sample interval 𝑍⇒𝑎 at each control dimension, such that

0 < 𝑍⇒𝑎 < 𝑍𝑎 , the maximum sampling iteration 𝑜𝑆 for !nding an anchor point in phase 2 satis!es the following
condition:

𝑜𝑆 <
𝑀𝑀∏
𝑄=1

̸
𝑛 [𝑄 ]
𝑍⇒𝑎

↦ , (21)

where 𝑜𝑆 is a !nite number since 𝑍⇒𝑎 > 0. Then we have proved that we can !nd an anchor point in phase 2 of
Algorithm 2 with !nite iteration (i.e., !nite sampling time). The grid sampling to !nd an anchor control point is
illustrated in Figure 4.

⊋

L-((, 4 (C"+2-$6-+%-). If AdamBA enters the exponential decay phase (line 16 in algorithm 1), then it can
always return a boundary point approximation (with desired safety status) where the approximation error is upper
bounded by 𝑒 .

P$""3. According to Algorithm 1, exponential decay phase applies Bisection method to locate the boundary
point 𝑖𝑖 until ⇓𝑖𝑐𝑃 ↘ 𝑖𝑃 ⇓ < 𝑒 . Denote the returned approximated boundary point as 𝑖𝑉𝑗𝐿𝑂𝑉𝑀 , according to line 21,
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𝑖𝑉𝑗𝐿𝑂𝑉𝑀 is either 𝑖𝑐𝑃 or 𝑖𝑃 , thus the approximation error satis!es:

⇓𝑖𝑉𝑗𝐿𝑂𝑉𝑀 ↘ 𝑖𝑖 ⇓ ↗ max{⇓𝑖𝑐𝑃 ↘ 𝑖𝑖 ⇓, ⇓𝑖𝑃 ↘ 𝑖𝑖 ⇓} (22)
↗ ⇓𝑖𝑐𝑃 ↘ 𝑖𝑃 ⇓
< 𝑒 .

⊋

L-((, 5 (F-,&#/#0#*1). If we enter the phase 2 of Algorithm 2 with an anchor safe control being sampled, we can
always !nd a local optimal solution of (5).

P$""3. According to line 12-14, after an anchor safe control is being sampled, phase 2 of Algorithm 2 will
evoke at most two AdamBA processes. Hence, Lemma 5 can be proved by showing one of the two AdamBA will
return a local optimal solution for (5). Next we show Lemma 5 holds in two cases.

Case 1: line 12 of Algorithm 2 !nds a solution.
In this case, the !rst AdamBA process !nds a safe control 𝑂⇒ solution (the return of AdamBA is a set, whereas

the set here has at most one element). According to Algorithm 1, a solution will be returned only if AdamBA
enters exponential decay stage. Hence, according to Lemma 4, 𝑂⇒ is close to the boundary of the set of safe control
with approximation error upper bounded by 𝑒 .

! "D
S (x)

Control Space "

ua

ur

∥ua − ur∥
4

u1
s

u2
s

Fig. 5. Illustration of the case when it is unable to find 𝑂⇒.

Case 2: line 12 of Algorithm 2 fails to !nd a solution.
In this case, the second AdamBA process is evoked (line 14 of Algorithm 2). Since no solution is returned from

the !rst AdamBA process (12 of Algorithm 2), where we start from 𝑂𝑉 and exponentially outreach along the
direction ↖𝑉𝑆 = 𝑂𝑅↘𝑂𝑃

| |𝑂𝑅↘𝑂𝑃 | | , then all the searched control point along ↖𝑉𝑆 is UNSAFE.
Speci!cally, we summarize the aforementioned scenario in Figure 5, the searched control points are represented

as red dots along ↖𝑉𝑆 (red arrow direction). Note that the exponential outreach starts with step size 𝑓 = ⇓𝑂𝑅↘𝑂𝑃 ⇓
4 ,

indicating two points {𝑂1
𝑕 , 𝑂2

𝑕 } are sampled between 𝑂𝑉 and 𝑂𝑆 such that{
𝑂1
𝑕 = 𝑂𝑉 + ⇓𝑂𝑅↘𝑂𝑃 ⇓

4 ↖𝑉𝑆 = 3𝑂𝑃

4 + 𝑂𝑅

4
𝑂2
𝑕 = 𝑂𝑉 + 3⇓𝑂𝑅↘𝑂𝑃 ⇓

4 ↖𝑉𝑆 = 𝑂𝑃

4 + 3𝑂𝑅

4
(23)

where the safety statuses of both 𝑂1
𝑕 and 𝑂2

𝑕 are UNSAFE.
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During the second AdamBA process (line 14 of Algorithm 2), we start from 𝑂𝑆 and exponentially outreach
along the direction ↖𝑉𝑉 = 𝑂𝑃 ↘𝑂𝑅

| |𝑂𝑃 ↘𝑂𝑅 | | with initial step size 𝑓 = ⇓𝑂𝑃 ↘𝑂𝑅 ⇓
4 . Hence, denote 𝑂1

𝑕 as the !rst sample point
along ↖𝑉𝑉 , and 𝑂1

𝑕 satis!es

𝑂1
𝑕 = 𝑂𝑆 + ⇓𝑂𝑉 ↘ 𝑂𝑆 ⇓

4
↖𝑉𝑉 =

𝑂𝑉

4
+ 3𝑂𝑆

4
, (24)

which indicates 𝑂1
𝑕 = 𝑂2

𝑕 , and the safety status of𝑂1
𝑕 is UNSAFE. Since the safe status of 𝑂𝑆 is SAFE and a UNSAFE

point can be sampled during the exponential outreach stage, the second AdamBA process (line 14 of Algorithm 2)
will enter exponential decay stage. Therefore, according to Lemma 4, 𝑂𝑆⇒ will always be returned and 𝑂𝑆⇒ is close
to the boundary of the set of safe control with approximation error upper bounded by 𝑒 .
The two cases cover all possible situations. Hence, after an anchor safe control 𝑂𝑆 is sampled, phase 2 of

Algorithm 2 can always !nd a local optima of (5).
⊋

5.2.2 Proof of Proposition 2. In this section, we will prove the Proposition 2.

P$""3. According to Lemma 3 and Lemma 5, Algorithm 2 is able to !nd local optimal solution of (5). Next, we
will prove Algorithm 2 can be !nished within !nite iterations.

According to Algorithm 2, ISSA include (i) one procedure to !nd anchor safe control 𝑂𝑆 , and (ii) at most three
AdamBA procedures. Firstly, based on Lemma 3, 𝑂𝑆 can be found within !nite iterations. Secondly, each AdamBA
procedure can be !nished within !nite iterations due to:

• exponential outreach can be !nished within !nite iterations since the control space is bounded.
• exponential decay can be !nished within !nite iterations since Bisection method will exit within !nite
iterations.

Therefore, ISSA can be !nished within !nite iterations.
⊋

5.3 Proof of Theorem 1
Before we prove Theorem 1, we start with a preliminary result regarding L that is useful for proving the main
theorem:

L-((, 6 (F"$5,$! I+2,$#,+%- "3 L). If the control system satis!es Assumption 1 and Assumption 2, and the
safety index design follows the rule described Section 4.1, the implicit safe set algorithm guarantees the forward
invariance to the set L.

P$""3. If the control system satis!es the assumptions in Assumption 1 and Assumption 2, and the safety index
design follows the rule described Section 4.1, then we can ensure the system has a nonempty set of safe control
at any state by Proposition 1. By Proposition 2, the implicit safe set algorithm can always !nd a local optima
solution of (5). The local optima solution always satis!es the constraint 𝑅 (𝑄 (𝐿𝐿 ,𝑂𝐿 )) ↗ max{𝑅 (𝐿𝐿 ) ↘ 𝑎, 0}, which
indicates that 1) if 𝑅 (𝐿𝐿0 ) ↗ 0, then 𝑅 (𝐿𝐿 ) ↗ 0,∈𝑀 ≃ 𝑀0. Note that 𝑅 (𝐿) ↗ 0 demonstrates that 𝐿 → L. ⊋

Now the proof the Theorem 1 is detailed below.

P$""3. Leveraging Lemma 6, we then proceed to prove that the forward invariance to the set L guarantees
the forward invariance to the set 𝑔 ∞ X𝑃 . Recall that S = X𝑃 ⇑ L. Depending on the relationship between L and
X𝑃 , there are two cases in the proof which we will discuss below.

Case 1: L(𝑅) = {𝐿 |𝑅 (𝐿) ↗ 0} is a subset of X𝑃 = {𝐿 |𝑅0 (𝐿) ↗ 0}.
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In this case, S = L. According to Lemma 6, If the control system satis!es the assumptions in Assumption 1 and
Assumption 2, and the safety index design follows the rule described Section 4.1, the implicit safe set algorithm
guarantees the forward invariance to the set L and hence S.

Case 2: L(𝑅) = {𝐿 |𝑅 (𝐿) ↗ 0} is NOT a subset of X𝑃 = {𝐿 |𝑅0 (𝐿) ↗ 0}.
In this case, if 𝐿𝐿 → S, we have 𝑅0 (𝐿𝐿 ) =max𝑄 𝑅0𝑄 (𝐿𝐿 ) ↗ 0, which indicates ∈𝑈,𝑅0𝑄 ↗ 0.
Firstly, we consider the case where 𝑅0𝑄 (𝐿𝐿 ) < 0. Note that 𝑅0𝑄 (𝐿𝐿+1) = 𝑅0𝑄 (𝐿𝐿 ) + ⇐𝑅0𝑄 (𝐿𝐿 )𝑃𝑀 +

∋𝑘0𝑄 (𝑁𝑂 )𝑑𝐿2
2! + · · · ,

since the state space and control space are both bounded, and 𝑃𝑀 ↔ 0 according to Assumption 1, we have
𝑅0𝑄 (𝐿𝐿+1) ↔ 𝑅0𝑄 (𝐿𝐿 ) ↗ 0.

Secondly, we consider the case where 𝑅0𝑄 (𝐿𝐿 ) = 0. Since 𝐿𝐿 → S, we have max𝑄 𝑅𝑄 (𝐿𝐿 ) ↗ 0, which indicates
∈𝑈,𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝑄 ↘ 𝑌 ⇐𝑃𝑄 ↗ 0. Since 𝑅0𝑄 (𝐿𝐿 ) = 0, we also have 𝑃𝑄 = 𝑃𝑅𝑄𝑀 . Therefore, the following condition holds:

𝑐 ↘ 𝑌 ⇐𝑃𝑄 ↗ 0 (25)

⇐𝑃𝑄 ≃
𝑐

𝑌

According to the safety index design rule, we have 𝑌,𝑐 → R+, which indicates ⇐𝑃𝑄 > 0. Therefore, we have
𝑅0𝑄 (𝐿𝐿+1) < 0.

Summarizing the above two cases, we have shown that if 𝑅0𝑄 (𝐿𝐿 ) ↗ 0 then 𝑅0𝑄 (𝐿𝐿+1) ↗ 0, which indicates if
∈𝑈,𝑅0𝑄 (𝐿𝐿 ) ↗ 0 then ∈𝑈,𝑅0𝑄 (𝐿𝐿+1) ↗ 0. Note that ∈𝑈,𝑅0𝑄 (𝐿𝐿+1) ↗ 0 indicates that 𝑅0 (𝐿𝐿+1) = max𝑄 𝑅0𝑄 (𝐿𝐿+1) ↗ 0.
Therefore, we have that if 𝐿𝐿 → S then 𝐿𝐿+1 → X𝑃 . Thus, we also have 𝐿𝐿+1 → S by Lemma 6. By induction, we
have if 𝐿𝐿0 → S, 𝐿𝐿 → S,∈𝑀 > 𝑀0.

In summary, by discussing the two cases of whether L is the subset of X𝑃 , we have proven that if the control
system satis!es the assumptions in Assumption 1 and Assumption 2, and the safety index design follows the rule
described in Section 4.1, the implicit safe set algorithm guarantees the forward invariance to the set S ∞ X𝑃 .

⊋

6 Implicit Safe Set Algorithm for Systems with Non-Negligible Sampling Time
The implicit safe set algorithm discussed in Section 4 is for systems with negligible sampling time (𝑃𝑀 ↔ 0).
However, in reality, many systems are implemented in a discrete-time manner with non-negligible sampling time
(e.g., digital twins, physical simulators), which means that the controller may not be able to respond immediately
to potential violations of safety. What is even worse is that the safe control of continuous-time systems may
lead to safety violations in discrete-time systems. We demonstrate a toy problem in Section 8.1 showing that the
safe control of continuous-time systems (safe control from (2)) actually violates the safety constraints when it is
applied in discrete-time systems (conditions in (5)). That is mainly because the higher order terms 𝑝 (𝑃𝑀2) is not
negligible in the transition from 𝑅 (𝐿𝐿 ) to 𝑅 (𝐿𝐿+1) when 𝑃𝑀 is not su"ciently small:

𝑅 (𝐿𝐿+1) = 𝑅 (𝐿𝐿 ) + ⇐𝑅 (𝐿𝐿 )𝑃𝑀 +𝑝 (𝑃𝑀2), ⇐𝑅 (𝐿𝐿 ) = lim
𝑙↔0+

𝑅 (𝐿𝐿+𝑙/𝑑𝐿 ) ↘ 𝑅 (𝐿𝐿 )
𝑞

. (26)

Therefore, the assumptions concerning sparse obstacle environment in Assumption 2 should also be justi!ed.
When 𝑃𝑀 ↔ 0, 𝑅𝐿+1 ↔ 𝑅𝐿 according to (26), thus the safety-critical condition should be 𝑅 ≃ 0. However, when
𝑃𝑀 is non-negligible, there will be a gap between 𝑅𝐿+1 and 𝑅𝐿 which can be represented as ε𝑘𝑆𝑅𝐿 . Then the
safety-critical condition should be 𝑅 + ε𝑘𝑆𝑅𝐿 ≃ 0, where ε𝑘𝑆𝑅𝐿 is the maximum possible 𝑅 change magnitude at
one time step, i.e. ε𝑘𝑆𝑅𝐿 =max𝑁,𝑂,𝐿 |𝑅𝐿+1 ↘ 𝑅𝐿 |.
In fact, the continuous-time system can be seen as a special case of discrete-time systems where 𝑃𝑀 ↔ 0.

To that end, studying the method of safe control in discrete-time systems is essential towards the real-world
application of DRL.
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This section introduces the implicit safe set algorithm (ISSA) for discrete-time systems, which extends the
ISSA introduced in Section 4 to be applicable for systems with non-negligible sampling time. Speci!cally, ISSA
for discrete-time systems shares the similar pipeline as introduced in Section 4:

• O"line: design a safety index that ensures U𝑊
𝑃 (𝐿) is nonempty for all 𝐿 for discrete-time system.

• Online: project the nominal control toU𝑊
𝑃 (𝐿) via a sample-e"cient black-box optimization method during

online robot maneuvers.

6.1 Safety Index Design Rule for Discrete-Time System
We start our discussion by highlighting two critical restrictions of the safety index design rule for the continuous-
time system from Section 4.1 as follows:

• the safety index design rule from Section 4.1 sets 𝑎 = 0, hence the robot is unable to converge to the safe
set (!nite time convergence) via solving (5) if the robot starts from the unsafe state, i.e. 𝑅 (𝐿𝐿0 ) > 0.

• the safety index design rule from Section 4.1 relies on the negligible sampling time assumption to guarantee
the non-emptiness of the set of safe control, which doesn’t hold in discrete-time system.

In the following discussions, we will introduce the safety index design rule for the general discrete-time system
that addresses the aforementioned restrictions.

6.1.1 Assumption. The discrete-time system safety index for collision avoidance in 2D will be synthesized
without referring to the speci!c dynamic model, but under the following assumptions.

A&&’()*#"+ 3 (2D C"00#&#"+ A2"#!,+%- 3"$ D#&%$-*-4T#(- S1&*-(). 1) The discrete-time system time
step satis!es the condition: 𝑆𝑆𝑄𝑁

2 + 𝑏𝑆𝑅𝐿
4𝑑𝐿 > (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (↘ 𝑆𝑆𝑄𝑁

𝑏𝑆𝑅𝐿
+𝑋𝑅)𝑃𝑀 , where 𝑊𝑅 = max{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 } and

𝑋𝑅 = max{↘𝑋𝑅𝑄𝑀,𝑋𝑅𝑆𝑁 }; 2) The acceleration and angular velocity keep constant between two consecutive time
steps, i.e. 𝑊 [𝐿 :𝐿+1) = 𝑊𝐿 . 3) At any given time, there can at most be one obstacle becoming safety-critical, such that
𝑅 ≃ ↘ε𝑘𝑆𝑅𝐿 where ε𝑘𝑆𝑅𝐿 = max𝑁,𝑂,𝐿 |𝑅𝐿+1 ↘ 𝑅𝐿 | is the maximum possible 𝑅 change magnitude at one time step
(Sparse Obstacle Environment).

These assumptions are easy to meet in practice. The !rst assumption ensures a bounded sampling time for
discrete-time systems, which will be leveraged for the theoretical proofs in Section 7. The second assumption
assumes zero-order hold (ZOH) for discrete-time control signals. The third assumption enables safety index
design rule applicable with multiple moving obstacles in discrete-time system. ε𝑘𝑆𝑅𝐿 is bounded mainly because
the system dynamics are bounded and the sampling time is also bounded.

6.1.2 Safety Index Design Rule. Following the rules in (C. Liu and Tomizuka 2014), we parameterize the safety
index as 𝑅 = max𝑄 𝑅𝑄 , and 𝑅𝑄 = 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝑄 ↘ 𝑌 ⇐𝑃𝑄 , where all 𝑅𝑄 share the same set of tunable parameters
𝑐,𝑁,𝑌,𝑎 → R+. Our goal is to choose these parameters such thatU𝑊

𝑃 (𝐿) is always nonempty for all possible states
in the discrete-time system. Although similar to the safety index design rule in continuous-time systems, the
safety index design rule for discrete-time systems is updated mainly from three aspects.

• We use nontrivial positive 𝑐 as an safety margin to enable the forward invariance to the invariantly safe set
S for discrete-time systems.

• We speci!cally pick 𝑁 = 1 to simplify the analysis for the higher order terms of (26) (approximation error).
• We use nontrivial positive 𝑎 to enable the !nite time convergence to the invariantly safe set S when the
discrete-time system starts from initially unsafe states or initially safe but inevitably unsafe states in X𝑃 .
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Safety Index Design Rule for Discrete-Time System: By setting 𝑁 = 1 and introducing an auxiliary
parameter 𝑎0 → R+, the parameters 𝑐,𝑎0,𝑌 should be chosen such that

𝑐 > ↘ ⇐𝑃⇒𝑅𝑄𝑀𝑃𝑀 (27a)
𝑚0
𝑑𝐿 + 𝑉max

𝑌
↗ min{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 } , (27b)

where ⇐𝑃⇒𝐿 = 𝑑𝑂+1↘𝑑𝑂
𝑑𝐿 , and ⇐𝑃⇒𝑅𝑄𝑀 denotes the minimum achievable ⇐𝑃⇒𝐿 in the system. Then the parameter 𝑎 is set as

𝑎 = 𝑎0 |𝑟𝑠𝑍 (𝑗) | . (28)

For the discrete-time system, we will !rst synthesize the 𝑎0,𝑁,𝑐,𝑌 o#ine !rst. During the online execution, 𝑎
is assigned on-the-%y based on 𝑗 using (28). We will show that the safety index design rule is valid to guarantee
non-empty U𝑊

𝑃 (𝐿) for discrete-time systems in Proposition 3.

6.2 Implicit Safe Set Algorithm for Discrete-Time System
The ultimate goal of the implicit safe set algorithm for discrete-time systems is to ensure (i) forward invariance in
S = X𝑃 ⇑ L when systems start from safe states, and (ii) !nite time convergence to S when systems start from
unsafe states. The discrete-time implicit safe set algorithm starts by applying ISSA (Algorithm 2), then applies an
additional convergence trigger (CTrigger) algorithm to !lter ISSA solution when | cos(𝑗) | is small and 𝑅 (𝐿) > 0.

The main body of CTrigger algorithm is summarized in Algorithm 3. The inputs for CTrigger algorithm include:
(1) system state (𝐿 ),
(2) the safe control from ISSA (𝑂),
(3) the angle between the robot’s heading vector and the vector from the robot to the obstacle (𝑗),
(4) the minimum relative acceleration (𝑊𝑅𝑄𝑀),
(5) the maximum relative acceleration (𝑊𝑅𝑆𝑁 ),
(6) the triggering angular velocity (𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 ), where𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 = inf𝑏≃ 𝑇𝑆𝑅𝐿

2
sup𝑂 |𝑋 |, and

(7) the triggering angle (εmin), where εmin = inf
| cos(𝑈 ) |↗

∀
3
2 , |𝑇 |≃ |𝑈𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |

2
|ε cos(𝑗) |, and ε cos(𝑗) denotes the

change magnitude of cos(𝑗) between two consecutive time steps.
Note that 𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 ,𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 and εmin are fundamental system properties, which can be evaluated o#ine.

Algorithm 3 Convergence Trigger
1: procedure CT$#66-$(𝐿,𝑂,𝑗,𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 ,𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 ,εmin)
2: if | cos(𝑗) | < min{

∀
3
2 ,

εmin
2 } and 𝑅 (𝐿) > 0 then

3: if 𝑉 < 𝑏𝑆𝑅𝐿
2 then

4: Use uniform sampling to !nd a safe control 𝑂𝑛𝑉𝑄𝑌, s.t. (i) 𝑊 ≃ min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }
2 when cos(𝑗) < 0,

and (ii) 𝑊 ↗ ↘min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }
2 when cos(𝑗) ≃ 0.

5: else
6: Use uniform sampling to !nd a safe control 𝑂𝑛𝑉𝑄𝑌, s.t. |𝑋 | ≃ |𝑇𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |

2

7: Return 𝑂𝑛𝑉𝑄𝑌
8: else
9: Return 𝑂

The core idea of CTrigger algorithm is to enable !nite time convergence via preventing | cos(𝑗) | from ap-
proaching zero (according to (28)). Intuitively, this is preventing the robot from moving in a circle around the
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obstacle at a constant distance, and thus preventing non-convergence. Speci!cally, CTrigger !lters the safe
control solution from ISSA when | cos(𝑗) | is less than a threshold, i.e. min{

∀
3
2 ,

εmin
2 }, which is accomplished via

two main steps. I. Generate safe control with non-trivial acceleration to enable the system to gain enough speed
(Line 4 of Algorithm 3); II. Generate safe control with non-trivial angular velocity to push | cos(𝑗) | away from
zero (Line 6 of Algorithm 3). And we show in Theorem 2 that ISSA with CTrigger algorithm ensures forward
invariance and !nite time convergence to the set S = X𝑃 ⇑ L for discrete-time systems.

R-(,$8 1. Note that there are three heuristic based hyper-parameters in Algorithm 3, including ε𝑆𝑄𝑁
2 , min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }

2 ,
and |𝑇𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |

2 , and the selection heuristics are summarized as following: 1) ε𝑆𝑄𝑁
2 ensures that the triggering control

will only be activated when | cos(𝑗) | is su#ciently small ; 2) min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }
2 ensures that the candidate safe trig-

gering control set for acceleration (Line 4 in Algorithm 3) is non-trivial; 3) |𝑇𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |
2 ensures that the candidate safe

triggering control set for rotation (Line 6 in Algorithm 3) is non-trivial. Although 𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 ,𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 and εmin are
the fundamental system properties, it is possible to change the denominators of the hyper-parameters, e.g. |𝑇𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |

3 , or
min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }

5 . However, there are trade-o"s when we change the denominators of the hyper-parameters. Speci!cally,
system will get out of Singularity State faster if the denominator decreases, whereas it may take longer sampling
time for !nding a valid triggering control. In practice, we !nd setting the denominator as 2 works well for balancing
the aforementioned trade-o"s.

7 Theoretical Results for ISSA When the Sampling Time is Non-Negligible
T.-"$-( 2 (F"$5,$! I+2,$#,+%- ,+! F#+#*- T#(- C"+2-$6-+%- 3"$ D#&%$-*-4T#(- S1&*-(). If the control

system satis!es the assumptions in Assumption 1 and Assumption 3, and the safety index design follows the rule
described in Section 6.1, the discrete-time implicit safe set algorithm described in Section 6.2 guarantees the forward
invariance and !nite time convergence to the set S ∞ X𝑃 .

To prove the main theorem, we introduce two important propositions to show that 1) the set of safe control
for discrete-time systemsU𝑊

𝑃 (𝐿) is always nonempty if we choose a safety index that satis!es the design rule
in section 6.1; and 2) the proposed ISSA for Discrete-Time System is guaranteed to !nd a safe control in !nite
time, i.e. either 𝑂𝑛𝑉𝑄𝑌 or 𝑂. With these two propositions, it is then straightforward to prove the forward invariance
and !nite time convergence to the set S ∞ X𝑃 . In the following discussion, we discuss the two propositions in
Section 7.1 and Section 7.2, respectively. Then, we prove Theorem 2 in Section 7.3.

7.1 Feasibility of Safety Index for Discrete-Time System
P$")"&#*#"+ 3 (N"+-()*1 &-* "3 &,3- %"+*$"0 3"$ D#&%$-*-4T#(- S1&*-(). If the dynamic system satis!es

the assumptions in and Assumption 1 and Assumption 3, then the discrete-time safety index design rule in Section 6.1
ensures that the robot system in 2D plane has nonempty set of safe control at any state, i.e.,U𝑊

𝑃 (𝐿) ε ′,∈𝐿 .

Note that the set of safe control U𝑊
𝑃 (𝐿) := {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 (𝐿) ↘ 𝑎, 0}} is non-empty if the

following condition holds:

∈𝐿, △𝑂, s.t. 𝑅 (𝑄 (𝐿,𝑂)) ↗ 𝑅 (𝐿) ↘ 𝑎 , (29)

where

𝑅 (𝑄 (𝐿,𝑂)) = 𝑅 (𝐿) + 𝑃𝑀 · ⇐𝑅 (𝐿,𝑂) + 𝑃𝑀2 ·
∋𝑅 (𝐿,𝑂)
2

+ ε, (30)

and ε is the non-negligible discrete-time approximation error.
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In the following discussion, we !rst analysis the upper bound of ε if there’s only one obstacle (Lemma 7). Then
we leverage Lemma 7 show that the safety index design rule in Section 6.1 guarantees (29) hold if there’s only one
obstacle (Lemma 8). Finally, we leverage Lemma 8 to showU𝑊

𝑃 (𝐿) is non-empty if there’re multiple obstacles.

7.1.1 Preliminary Results. In this section, we will introduce some preliminary results.

L-((, 7. If the dynamic system satis!es the assumptions in Assumption 1 and Assumption 3, and there’s only
one obstacle in the environment, then the safety index design rule for discrete-time systems in Section 6.1 ensures the
approximation error ε for discrete-time systems is upper bounded by ε𝑅𝑆𝑁𝑃𝑀2 (𝑡 |𝑇 |𝑑𝐿 ↘ 1), where ε𝑅𝑆𝑁 is a positive
constant, 𝑃𝑀 is the discrete time step, and𝑋 is the applied angular velocity.

P$""3. First, we will discuss the derivatives of 𝑃 , which is the relative distance between the robot and the
obstacle. According to the zero-order hold assumption for acceleration and angular velocity from Assumption 3,
we have ⇐𝑊 = 0, and ⇐𝑋 = 0. And we already have ⇐𝑃 = ↘𝑉 cos(𝑗), then following condition holds:

𝑃 (𝑄 ) = (𝑈 ↘ 1)𝑊(± cos(𝑗) | ± sin(𝑗))𝑋 𝑄↘2 + 𝑉 (± sin(𝑗) | ± cos(𝑗))𝑋 𝑄↘1 (31)

where ± cos(𝑗) | ± sin(𝑗) denotes one of the terms from set
{cos(𝑗),↘ cos(𝑗), sin(𝑗),↘ sin(𝑗)}. 𝑃 (𝑄 ) denotes the 𝑈-th order derivatives of 𝑃 .
According to the discrete-time system safety index design rule in Section 6.1, we have 𝑁 = 1, thus the derivatives

of safety index satisfy the following conditions:

𝑅 (𝑄 ) = ↘𝑃 (𝑄 ) ↘ 𝑌𝑃 (𝑄+1) (32)

Without loss of generality, suppose 𝑃 (𝑄 ) = ↘(𝑈 ↘ 1)𝑊 cos(𝑗)𝑋 𝑄↘2 + 𝑉 sin(𝑗)𝑋 𝑄↘1, and 𝑃 (𝑄+1) = 𝑈𝑊 sin(𝑗)𝑋 𝑄↘1 +
𝑉 cos(𝑗)𝑋 𝑄 , we have:

𝑅 (𝑄 ) = ↘𝑃 (𝑄 ) ↘ 𝑌𝑃 (𝑄+1) (33)

= ↘(↘(𝑈 ↘ 1)𝑊 cos(𝑗)𝑋 𝑄↘2 + 𝑉 sin(𝑗)𝑋 𝑄↘1) ↘ 𝑌 (𝑈𝑊 sin(𝑗)𝑋 𝑄↘1 + 𝑉 cos(𝑗)𝑋 𝑄 )

=𝑋 𝑄↘2
(
(𝑈 ↘ 1)𝑊 cos(𝑗) ↘ (𝑉 + 𝑌𝑈𝑊) sin(𝑗)𝑋 ↘ 𝑌𝑉 cos(𝑗)𝑋2

)

Next, we use the Taylor expansion to represent the safety index at next time step as following:

𝑅𝐿+1 = 𝑅𝐿 +
⇐𝑅𝐿
1!
𝑃𝑀 +

∋𝑅𝐿
2!
𝑃𝑀2 +

∃𝑅𝐿
3!
𝑃𝑀3 + · · · (34)

where each term from (34) except 𝑅𝐿 can be represented in the form of 𝑘 (𝑄 )
𝑂
𝑄! 𝑃𝑀

𝑄 , 𝑈 = 1, 2, · · · . When 𝑈 ≃ 2, we have

an important property for 𝑘 (𝑄 )
𝑂
𝑄! 𝑃𝑀

𝑄 as following:

𝑅 (𝑄 )
𝐿

𝑈!
𝑃𝑀𝑄 = 𝑃𝑀2

(𝑈 ↘ 1)𝑊 cos(𝑗) ↘ (𝑉 + 𝑌𝑈𝑊) sin(𝑗)𝑋 ↘ 𝑌𝑉 cos(𝑗)𝑋2

𝑈!
(𝑋𝑃𝑀)𝑄↘2 (35)
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Next, we can !nd the upper bound of one part of the RHS as following:

(𝑈 ↘ 1)𝑊 cos(𝑗) ↘ (𝑉 + 𝑌𝑈𝑊) sin(𝑗)𝑋 ↘ 𝑌𝑉 cos(𝑗)𝑋2

𝑈!
(36)

↗
''''𝑊 cos(𝑗)(𝑈 ↘ 1)!

'''' +
'''' (𝑉 + 𝑌 |𝑊 |) sin(𝑗)𝑋

(𝑈 ↘ 1)!

'''' +
''''𝑌𝑉 cos(𝑗)𝑋

2

(𝑈 ↘ 1)!

''''
↗ 𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅 + 𝑌𝑊𝑅𝑋𝑅 + 𝑌𝑉𝑅𝑆𝑁𝑋2

𝑅

(𝑈 ↘ 1)!

=
(𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (1 + 𝑌𝑋𝑅)

(𝑈 ↘ 1)!
where 𝑊𝑅 =max{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 } and𝑋𝑅 =max{↘𝑋𝑅𝑄𝑀,𝑋𝑅𝑆𝑁 }. Let’s de!ne ε𝑅𝑆𝑁 = (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (1 + 𝑌𝑋𝑅),

and ε𝑅𝑆𝑁 is a constant given a speci!c 𝑌 value. Based on (36) and (34), the upper bound of 𝑘 (𝑄 )
𝑂
𝑄! 𝑃𝑀

𝑄 is de!ned as
following:

𝑅 (𝑄 )
𝐿

𝑈!
𝑃𝑀𝑄 (37)

↗ 𝑃𝑀2
ε𝑅𝑆𝑁

(𝑈 ↘ 1)! (𝑋𝑃𝑀)
𝑄↘2

↗ 𝑃𝑀2
ε𝑅𝑆𝑁

(𝑈 ↘ 1)! ( |𝑋 |𝑃𝑀)𝑄↘2

↗ ε𝑅𝑆𝑁𝑃𝑀
2 ( |𝑋 |𝑃𝑀)𝑄↘2

(𝑈 ↘ 2)!

Recall that 𝑅 (𝐿𝐿+1) = 𝑅 (𝐿𝐿 ) +𝑃𝑀 · ⇐𝑅 (𝐿𝐿 ) +𝑃𝑀2 ·
∋𝑘 (𝑁𝑂 )
2 +ε, where ε is the approximation error due to discrete-time

systems, andε =
∃𝑘𝑂

3! 𝑃𝑀
3+ ¬𝑘𝑂

4! 𝑃𝑀
4+· · · . According to the Taylor series of exponential function 𝑡𝑁 = 1+𝐿+ 𝑁2

2! + 𝑁3

3! +· · · ,
and leverage the result from (37), the upper bound of ε can be derived as following:

ε =
∃𝑅𝐿
3!
𝑃𝑀3 +

¬𝑅𝐿
4!
𝑃𝑀4 + · · · (38)

↗
⇔∑
𝑄=1

ε𝑅𝑆𝑁𝑃𝑀
2 ( |𝑋 |𝑃𝑀)𝑄

𝑈!

= ε𝑅𝑆𝑁𝑃𝑀
2 (𝑡 |𝑇 |𝑑𝐿 ↘ 1)

⊋

L-((, 8. If the dynamic system satis!es the assumptions in Assumption 1 and Assumption 3, and there’s only
one obstacle in the environment, then the safety index design rule for discrete-time systems in Section 6.1 ensures that
the robot system in 2D plane has nonempty set of safe control at any state.

P$""3. According to (3), ⇐𝑅 = ↘𝑁𝑃𝑀↘1 ⇐𝑃 ↘ 𝑌 ∋𝑃 . We ignored the subscript 𝑈 since it is assumed that there is only
one obstacle. Therefore, according to (30), condition (29) is equivalent to the following condition

∈𝐿,△𝑂, s.t. ∋𝑃 ≃
𝑚+𝑑𝐿2 · ∋𝑋 (𝐿 ,𝑀)

2 +ε
𝑑𝐿 ↘ 𝑁𝑃𝑀↘1 ⇐𝑃

𝑌
. (39)
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To prove the non-empty set of safe control for all system state, we will prove that there always exists a safe
control such that (39) holds. According to the safety index design rule for discrete-time systems in Section 6.1, we
have the parameter 𝑁 is chosen to be 1. Then combined with (31) and (32), the condition for (39) can be rewrote
as:

∈(𝑗, 𝑉),△(𝑊,𝑋), s.t. (40)

↘𝑊 cos(𝑗) + 𝑉 sin(𝑗)𝑋 ≃
𝑚
𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )↘ (𝑏+2𝑋𝑆) sin(𝑈 )𝑇↘𝑋𝑏 cos(𝑈 )𝑇2

2 + ε
𝑑𝐿 + 𝑉 cos(𝑗)

𝑌

According to Lemma 7, we have ε ↗ ε𝑅𝑆𝑁𝑃𝑀2 (𝑡 |𝑇 |𝑑𝐿 ↘ 1) and (40) can be veri!ed by showing:
∈(𝑗, 𝑉),△(𝑊,𝑋), s.t. (41)

↘𝑊 cos(𝑗) + 𝑉 sin(𝑗)𝑋 ≃
𝑚
𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )↘ (𝑏+2𝑋𝑆) sin(𝑈 )𝑇↘𝑋𝑏 cos(𝑈 )𝑇2

2
𝑌

+

ε𝑅𝑆𝑁𝑃𝑀 (𝑡 |𝑇 |𝑑𝐿 ↘ 1) + 𝑉 cos(𝑗)
𝑌

By selecting𝑋 ↔ 0, the condition for (41) becomes:

∈(𝑗, 𝑉),△(𝑊), s.t. ↘ 𝑊 cos(𝑗) ≃
𝑚
𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )2 + 𝑉 cos(𝑗)

𝑌
(42)

There are only two scenarios cos(𝑗) < 0 and cos(𝑗) ≃ 0.
Case 1: cos(𝑗) < 0. According to safety index design rule described in Section 6.1, we have 𝑎 = 𝑎0 | cos(𝑗) |

and 𝑊𝑅𝑆𝑁 ≃ min{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 } ≃
𝑌0
𝑍𝑂 +𝑏𝑆𝑅𝐿

𝑋 ≃ 𝑚0
𝑋𝑑𝐿 . Thus, the following condition holds:

∈(𝑗, 𝑉),△(𝑊 > 0), s.t. ↘ 𝑊 cos(𝑗) = 𝑊 | cos(𝑗) | (43)

≃ 𝑎0 | cos(𝑗) |
𝑌𝑃𝑀

≃
𝑚0 | cos(𝑈 ) |

𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )2 + 𝑉 cos(𝑗)
𝑌

which indicates (42) holds when cos(𝑗) < 0.
Case 2: cos(𝑗) ≃ 0. According to the safety index design rule, we have

𝑌0
𝑍𝑂 +𝑏max

𝑋 ↗ min{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 }. Thus, by
selecting 𝑊 < 0, the following inequality holds:

max
𝑆

↘𝑊 = ↘𝑊𝑅𝑄𝑀 ≃
𝑚0
𝑑𝐿 + 𝑉max

𝑌
≃

𝑚0
𝑑𝐿 + 𝑃𝑀 · 𝑆2 + 𝑉max

𝑌
≃

𝑚0
𝑑𝐿 + 𝑃𝑀 · 𝑆2 + 𝑉

𝑌
(44)

Note that cos(𝑗) = | cos(𝑗) |, when cos(𝑗) ≃ 0. Therefore, (44) indicates the following condition holds:

∈(𝑗, 𝑉),△(𝑊 < 0), s.t. ↘ 𝑊 cos(𝑗) ≃
𝑚0
𝑑𝐿 + 𝑃𝑀 · 𝑆2 + 𝑉

𝑌
cos(𝑗) (45)

=
𝑚0 | cos(𝑈 ) |

𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )2 + 𝑉 cos(𝑗)
𝑌

which further indicates (42) holds when cos(𝑗) ≃ 0.
Combine these two cases, we have proved that if the control system satis!es the assumptions in Assumption 1

and Assumption 3, then the safety index design rule in Section 6.1 ensures that the robot system in 2D plane has
nonempty set of safe control at any state.

⊋
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7.1.2 Proof of Proposition 3. In this section, we will prove the Proposition 3.

P$""3. Note that the set of safe control U𝑊
𝑃 (𝐿𝐿 ) := {𝑂 → U | 𝑅 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 (𝐿) ↘ 𝑎, 0}} is non-empty if

it is non-empty in the following two cases: 𝑅 (𝐿) ≃ ↘ε𝑘𝑆𝑅𝐿 and 𝑅 (𝐿) < ↘ε𝑘𝑆𝑅𝐿 .
Case 1: Firstly, we consider the case where 𝑅 (𝐿) ≃ ↘ε𝑘𝑆𝑅𝐿 . We have 𝑅 (𝐿) =max𝑄 𝑅𝑄 (𝐿) ≃ ↘ε𝑘𝑆𝑅𝐿 , where 𝑅𝑄

is the safety index with respect to the 𝑈-th obstacle. According to assumption 3, we have that at any given time,
there can at most be one obstacle becoming safety critical, such that 𝑅 ≃ ↘ε𝑘𝑆𝑅𝐿 (Sparse Obstacle Environment).
Therefore, max𝑄 𝑅𝑄 (𝐿) > 0 indicates there’s only one obstacle ( 𝑚-th obstacle) in the environment that 𝑅 𝑔 (𝐿) ≃
↘ε𝑘𝑆𝑅𝐿 . Whereas for the rest of the obstacles, we have 𝑅𝑋 (𝐿) < ↘ε𝑘𝑆𝑅𝐿 ,𝑌 ε 𝑚 .

DenoteU𝑊
𝑃 𝑔 (𝐿) := {𝑂 → U | 𝑅 𝑔 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 𝑔 (𝐿)↘𝑎, 0}} . According to Lemma 8, we have if the dynamic

system satis!es the assumptions in Assumption 3, then the safety index design rule in Section 6.1 ensuresU𝑊
𝑃 𝑔 (𝐿)

is nonempty. Since ε𝑘𝑆𝑅𝐿 is the maximum possible 𝑅 change magnitude at one time step, we also have that
𝑅𝑋 (𝑄 (𝐿,𝑂)) ↗ 0 ↗ max{𝑅 𝑔 (𝐿) ↘ 𝑎, 0}, for 𝑂 → U𝑊

𝑃 𝑔 (𝐿).
Therefore, we further have that if 𝑅 (𝐿) > 0, by applying 𝑂 → U𝑊

𝑃 𝑔 (𝐿), the following condition holds:

𝑅 (𝑄 (𝐿,𝑂)) =max
𝑄

𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ max{𝑅 𝑔 (𝐿) ↘ 𝑎, 0} =max{𝑅 (𝐿) ↘ 𝑎, 0} (46)

Case 2: Secondly, we consider the case where 𝑅 (𝐿) < ↘ε𝑘𝑆𝑅𝐿 . We have 𝑅 (𝐿) =max𝑄 𝑅𝑄 (𝐿) < ↘ε𝑘𝑆𝑅𝐿 , where
𝑅𝑄 is the safety index with respect to the 𝑈-th obstacle. Therefore, we have ∈𝑈,𝑅𝑄 (𝐿) < ↘ε𝑘𝑆𝑅𝐿 . Since ε𝑘𝑆𝑅𝐿 is
the maximum possible 𝑅 change magnitude at one time step, we have that by applying 𝑂 → U, the following
condition holds:

𝑅 (𝑄 (𝐿,𝑂)) =max
𝑄

𝑅𝑄 (𝑄 (𝐿,𝑂)) ↗ 0 =max{𝑅 (𝐿) ↘ 𝑎, 0} (47)

In summary, if the dynamic system satis!es the assumptions in Assumption 1 and Assumption 3, then the
discrete-time safety index design rule in Section 6.1 ensures that the robot system in 2D plane has nonempty set
of safe control at any state, i.e., U𝑊

𝑃 (𝐿) ε ′,∈𝐿 .
⊋

7.2 Feasibility of Implicit Safe Set Algorithm for Discrete-Time System
Here we de!ne set L(𝑅) := {𝐿 |𝑅 (𝐿) ↗ 0}.

P$")"&#*#"+ 4 (F#+#*- T#(- C"+2-$6-+%- *" L 5#*. O+- O/&*,%0-). If the control system satis!es the
assumptions in Assumption 1 and Assumption 3, and there’s only one obstacle in the environment, the safety index
design follows the rule described in Section 6.1, the implicit safe set algorithm with convergence trigger algorithm
together guarantee the !nite time convergence to the set L.

In the following discussion, we !rst proof that one important branch in Algorithm 3 (Line 6) can always !nd
solution 𝑂𝑛𝑉𝑄𝑌. And then we can prove the !nite time convergence described in Proposition 4.

7.2.1 Preliminary Results. In this section, we will introduce some preliminary results.

L-((, 9 (P-$&#&*-+* E7#&*-+%- "3 S,3- A+6’0,$ V-0"%#*1). If the dynamic system satis!es the assumptions
in Assumption 1 and Assumption 3, and there’s only one obstacle in the environment, then the safety index design
rule in Section 6.1 ensures that the robot system in 2D plane can always generate safe control such that angular
velocity is non-zero for states where | sin(𝑗) | ≃ 1

2 , 𝑉 ≃ 𝑏𝑆𝑅𝐿
2 .
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P$""3. According to (41), the non-empty set of safe control for discrete-time systems can be veri!ed by
showing the following condition:

∈(𝑗, 𝑉),△(𝑊,𝑋), s.t.

↘𝑊 cos(𝑗) + 𝑉 sin(𝑗)𝑋 ≃
𝑚
𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )↘ (𝑏+2𝑋𝑆) sin(𝑈 )𝑇↘𝑋𝑏 cos(𝑈 )𝑇2

2
𝑌

+

ε𝑅𝑆𝑁𝑃𝑀 (𝑡 |𝑇 |𝑑𝐿 ↘ 1) + 𝑉 cos(𝑗)
𝑌

The proof of Lemma 8 has shown that by setting𝑋 ↔ 0, the condition (42) holds:

∈(𝑗, 𝑉),△(𝑊), s.t. ↘ 𝑊 cos(𝑗) ≃
𝑚
𝑑𝐿 + 𝑃𝑀 · 𝑆 cos(𝑈 )2 + 𝑉 cos(𝑗)

𝑌

Thus, by subtracting the components of (42) from (41), we can verify there exists non-empty set of safe control
where angular velocity is non-zero at states where | sin(𝑗) | ≃ 1

2 , 𝑉 ≃ 𝑏𝑆𝑅𝐿
2 , by showing the following condition

holds:

∈( | sin(𝑗) | ≃ 1
2
,𝑉 ≃ 𝑉𝑅𝑆𝑁

2
,𝑊),△( |𝑋 | > 0), s.t. , (48)

𝑉 sin(𝑗)𝑋 ≃
𝑃𝑀 · ↘ (𝑏+2𝑋𝑆) sin(𝑈 )𝑇↘𝑋𝑏 cos(𝑈 )𝑇2

2 + ε𝑅𝑆𝑁𝑃𝑀 (𝑡 |𝑇 |𝑑𝐿 ↘ 1)
𝑌

Note that𝑋 can either be positive or negative, by selecting𝑋 such that sin(𝑗)𝑋 > 0, showing (48) is equivalent
to show the following condition holds:

∈( | sin(𝑗) | ≃ 1
2
,𝑉 ≃ 𝑉𝑅𝑆𝑁

2
,𝑊),△( |𝑋 | > 0), s.t. , (49)

(𝑌𝑉
𝑃𝑀

+ 𝑉 + 2𝑌𝑊
2

) | sin(𝑗) | |𝑋 | + 𝑌𝑉 cos(𝑗) |𝑋 |2
2

↘ ε𝑅𝑆𝑁 (𝑡 |𝑇 |𝑑𝐿 ↘ 1) ≃ 0

Denote 𝑢 ( |𝑋 |) = ( 𝑋𝑏𝑑𝐿 + 𝑏+2𝑋𝑆
2 ) | sin(𝑗) | |𝑋 | + 𝑋𝑏 cos(𝑈 ) |𝑇 |2

2 ↘ ε𝑅𝑆𝑁 (𝑡 |𝑇 |𝑑𝐿 ↘ 1), we have ∅ |𝑇 |𝑢 ( |𝑋 |) = ( 𝑋𝑏𝑑𝐿 +
𝑏+2𝑋𝑆

2 ) | sin(𝑗) | + 𝑌𝑉 cos(𝑗) |𝑋 | ↘ 𝑃𝑀ε𝑅𝑆𝑁𝑡 |𝑇 |𝑑𝐿 . Since ε𝑅𝑆𝑁 = (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (1 + 𝑌𝑋𝑅), We have the following
condition hold:

∅ |𝑇 |𝑢 (0) = (𝑌𝑉
𝑃𝑀

+ 𝑉 + 2𝑌𝑊
2

) | sin(𝑗) | ↘ 𝑃𝑀ε𝑅𝑆𝑁 (50)

> 𝑌 (
𝑏
𝑑𝐿 + 𝑊

2
↘ 𝑃𝑀 (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (

1
𝑌
+𝑋𝑅))

According to the safety index design rule in Section 6.1, we have 𝑏max
𝑋 ↗

𝑌0
𝑍𝑂 +𝑏max

𝑋 ↗ min{↘𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 } ↗ ↘𝑊𝑅𝑄𝑀 ,
which indicates 0 < 1

𝑋 ↗ ↘𝑆𝑆𝑄𝑁
𝑏𝑆𝑅𝐿

. We also have 𝑆𝑆𝑄𝑁
2 + 𝑏𝑆𝑅𝐿

4𝑑𝐿 > (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (↘ 𝑆𝑆𝑄𝑁
𝑏𝑆𝑅𝐿

+ 𝑋𝑅)𝑃𝑀 according to
Assumption 3. Therefore, when 𝑉 > 𝑏𝑆𝑅𝐿

2 , the lower bound for (50) is summarized as following:
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∅ |𝑇 |𝑢 (0) > 𝑌 (
𝑏
𝑑𝐿 + 𝑊

2
↘ 𝑃𝑀 (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (

1
𝑌
+𝑋𝑅)) (51)

> 𝑌 (
𝑏
𝑑𝐿 + 𝑊

2
↘ 𝑃𝑀 (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (

↘𝑊𝑅𝑄𝑀

𝑉𝑅𝑆𝑁
+𝑋𝑅))

> 𝑌 (
𝑏𝑆𝑅𝐿
2𝑑𝐿 + 𝑊𝑅𝑄𝑀

2
↘ 𝑃𝑀 (𝑊𝑅 + 𝑉𝑅𝑆𝑁𝑋𝑅) (

↘𝑊𝑅𝑄𝑀

𝑉𝑅𝑆𝑁
+𝑋𝑅))

> 0

Since 𝑢 (0) = 0, ∅ |𝑇 |𝑢 (0) > 0, and ∅ |𝑇 |𝑢 ( |𝑋 |) is di$erentiable everywhere, there exists |𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 | > 0, such that
∈|𝑋 | → [0, |𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 |], (49) holds.

⊋

7.2.2 Proof of Proposition 4. In this section, we will prove the Proposition 4.

P$""3. According to the safety index design rule, we have that 𝑎 = 𝑎0 |𝑟𝑠𝑍 (𝑗) |. Next, we will discuss the only
two situations for | cos(𝑗) |:
Case 1: | cos(𝑗) | ≃ min{

∀
3
2 ,

εmin
2 }. In this case, Algorithm 3 won’t be triggered, thus the properties of !nite

iterations convergence follows Algorithm 2.
Case 2.1: | cos(𝑗) | < min{

∀
3
2 ,

εmin
2 } and 𝑉 < 𝑏𝑆𝑅𝐿

2 . In this case, CTrigger algorithm is activated to !lter the
control solution from ISSA, which seeks to !nd a safe control𝑂𝑛𝑉𝑄𝑌 such that 𝑊𝐿 ≃ min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }

2 when cos(𝑗) < 0
and 𝑊𝐿 ↗ ↘min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }

2 when cos(𝑗) ≃ 0 and 𝑋 ↔ 0. The existence of 𝑂𝑛𝑉𝑄𝑌 is guaranteed by the (43), (45)
from the proof of Lemma 8, and can be found through uniform sampling within !nite iterations by Lemma 3.
Case 2.2: | cos(𝑗) | < min{

∀
3
2 ,

εmin
2 } and 𝑉 ≃ 𝑏𝑆𝑅𝐿

2 . According to Assumption 3, we have that |𝑊𝐿 | is constant
between two consecutive time steps, which indicates the following property holds:

(P1) When | cos(𝑗) | < min{
∀
3
2 ,

εmin
2 }, CTrigger algorithm ensures 𝑉 ≃ 𝑏𝑆𝑅𝐿

2 within at most 𝑏𝑆𝑅𝐿
min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 }

iterations

In this case, we have CTrigger algorithm seeks to !nd a safe control 𝑂𝑛𝑉𝑄𝑌 such that |𝑋𝐿 | ≃ |𝑇𝑂𝑃𝑄𝑉𝑉𝑊𝑃 |
2 . Note that

| cos(𝑗) | <
∀
3
2 indicates | sin(𝑗) | > 1

2 , thus the existence of 𝑂
𝑛𝑉𝑄𝑌 is guaranteed by the lemma 9, and can be found

through uniform sampling within !nite iterations by Lemma 3.
Suppose at time step 𝑀 , | cos(𝑗𝐿 ) | < min{

∀
3
2 ,

εmin
2 } and 𝑉𝐿 ≃ 𝑏𝑆𝑅𝐿

2 . Denote ε𝐿 cos(𝑗) as the change of cos(𝑗) at
time step 𝑀 after applying 𝑂𝑛𝑉𝑄𝑌, we have |ε𝐿 cos(𝑗) | ≃ εmin > εmin

2 > | cos(𝑗𝐿 ) |, which indicates:

| cos(𝑗𝐿+1) | = | cos(𝑗𝐿 ) + ε𝐿 cos(𝑗) | (52)

≃
'''|ε𝐿 cos(𝑗) | ↘ | cos(𝑗𝐿 ) |

'''
≃
'''εmin ↘ | cos(𝑗𝐿 ) |

'''
> min{

∀
3
2
,
εmin

2
}

which further shows that 𝑎𝐿+1 > 𝑎0 min{
∀
3
2 ,

εmin
2 }.
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Therefore, according to property item (P1), ISSA with CTrigger ensures
𝑎 ≃ 𝑎0 min{

∀
3
2 ,

εmin
2 } in at most every 𝑏𝑆𝑅𝐿

min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 } + 1 time steps. Thus, if 𝑅 (𝐿𝐿0 ) > 0, then 𝑅 (𝐿𝐿1 ) ↗ 0 for !nite

time 𝑀1 > 𝑀0, where 𝑀1 ↘ 𝑀0 <
𝑘 (𝑁𝑂0 )

𝑚0 min{
∀
3
2 ,

εmin
2 }

( 𝑏𝑆𝑅𝐿
min{↘𝑆𝑆𝑄𝑁,𝑆𝑆𝑅𝐿 } + 1).

⊋

7.3 Proof of Theorem 2
7.3.1 Preliminary Results. In this section, we will introduce some preliminary results before proo!ng the
Theorem 2.

L-((, 10 (F"$5,$! I+2,$#,+%- ,+! F#+#*- T#(- C"+2-$6-+%- "3 L). If the control system satis!es the
assumptions in Assumption 1 and Assumption 3, and the safety index design follows the rule described in Section 6.1,
the implicit safe set algorithm with convergence trigger algorithm together guarantee the forward invariance and
!nite time convergence to the set L.

P$""3. Firstly, we will prove the forward invariance of set L. If the control system satis!es the assumptions in
Assumption 1 and Assumption 3, and the safety index design follows the rule described Section 6.1, then we
can ensure the system has nonempty set of safe control at any state by Proposition 3. By Proposition 2, implicit
safe set algorithm can always !nd local optima solution of (5). The local optima solution always satis!es the
constraint 𝑅 (𝑄 (𝐿𝐿 ,𝑂𝐿 )) ↗ max{𝑅 (𝐿𝐿 ) ↘ 𝑎, 0}, which indicates that if 𝑅 (𝐿𝐿0 ) ↗ 0, then 𝑅 (𝐿𝐿 ) ↗ 0,∈𝑀 ≃ 𝑀0 since
𝑎 ≃ 0. Note that 𝑅 (𝐿) ↗ 0 demonstrates that 𝐿 → L. Thus the forward invariance of L is proved.

Secondly, wewill prove the !nite time convergence toL. Suppose at time step 𝑀0, we have𝑅 (𝐿𝐿0 ) =max𝑄 𝑅𝑄 (𝐿𝐿0 ) >
0. According to Sparse Obstacle Environment assumption from Assumption 3, there’s only one obstacle ( 𝑚-th
obstacle) in the environment that𝑅 𝑔 (𝐿𝐿0 ) > 0. Whereas for the rest of the obstacles, we have𝑅𝑋 (𝐿𝐿0 ) < ↘ε𝑘𝑆𝑅𝐿 ,𝑌 ε
𝑚 .
According to Proposition 4, we have implicit safe set algorithm together with convergence trigger algorithm

guarantee that 𝑅 𝑔 (𝐿𝐿1 ) ↗ 0 for a !nite time 𝑀1 > 𝑀0 while 𝑅 𝑔 (𝐿𝐿1↘1) > 0. By Sparse Obstacle Environment assump-
tion, we also have ∈𝑌 ε 𝑚,𝑅𝑋 (𝐿𝐿1↘1) < ↘ε𝑘𝑆𝑅𝐿 , hence ∈𝑌 ε 𝑚,𝑅𝑋 (𝐿𝐿1 ) ↗ 0. Therefore, 𝑅 (𝐿𝐿1 ) = max𝑄 𝑅𝑄 (𝐿𝐿1 ) ↗ 0
and it demonstrates that 𝐿𝐿1 → L.

⊋

7.3.2 Proof the Theorem 2. In this section, we will prove the Theorem 2.

P$""3. Leveraging Lemma 10, we then proceed to prove that the forward invariance and !nite time convergence
to the setL guarantees the forward invariance and !nite time convergence to the set 𝑔 ∞ X𝑃 . Recall thatS = X𝑃⇑L.
Depending on the relationship between L and X𝑃 , there are two cases in the proof which we will discuss below.

Case 1: L(𝑅) = {𝐿 |𝑅 (𝐿) ↗ 0} is a subset of X𝑃 = {𝐿 |𝑅0 (𝐿) ↗ 0}.
In this case, S = L. According to Proposition 1 and Lemma 10, if the safety index design follows the rule de-

scribed in Section 4.1, the implicit safe set algorithm guarantees the forward invariance and !nite time convergence
to the set L and hence S.

Case 2: L(𝑅) = {𝐿 |𝑅 (𝐿) ↗ 0} is NOT a subset of X𝑃 = {𝐿 |𝑅0 (𝐿) ↗ 0}.
1) To prove !nite time convergence in this case, recall the forms of safety index are 𝑅𝑄 = 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝑄 ↘ 𝑌 ⇐𝑃𝑄

and 𝑅0𝑄 = 𝑃𝑅𝑄𝑀 ↘ 𝑃𝑄 . Since the !nite time convergence to L is proved in Lemma 10, we then discuss the !nite
time convergence of X𝑃 based on the fact that 𝑅 (𝐿) ↗ 0. Note that the set L can be divided into two subsets
L \ S = {𝐿 | 𝑅 (𝐿) ↗ 0,𝑅0 (𝐿) > 0} and S = {𝐿 | 𝑅 (𝐿) ↗ 0,𝑅0 (𝐿) ↗ 0}. If 𝐿𝐿0 → L \ S, meaning the following two
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conditions hold:
max
𝑄

𝑃𝑅𝑄𝑀 ↘ 𝑃𝑄 > 0 (53)

∈𝑈,𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝑄 ↘ 𝑌 ⇐𝑃𝑄 ↗ 0 (54)
Thus, the following condition hold:

∈𝑈𝑘0𝑄>0,𝑐 ↘ 𝑌 ⇐𝑃𝑄 ↗ 𝑃𝑀𝑄 ↘ 𝑃𝑀𝑅𝑄𝑀 < 0 (55)

⇐𝑃𝑄 >
𝑐

𝑌
(55) indicates that ∈𝑈,𝑅0𝑄 (𝐿𝐿 ) ↗ 0 for some !nite time 𝑀 > 𝑀0, which shows 𝑅0 (𝐿𝐿 ) ↗ 0 for some !nite time

𝑀 > 𝑀0. Therefore, we have proved !nite time convergence to the set S ∞ X𝑃 .

!!

!̇!

! = $

! = −&∗

Boundary layer

Forward invariance set &∗

Fig. 6. The illustration of forward invariance under the constraint of 𝑅 (𝐿𝐿+1) ↗ max{𝑅 (𝐿𝐿 ) ↘ 𝑎, 0}) ↘ 𝑐⇒.

2) To prove the forward invariance in this case, we !rst need to prove that if 𝐿𝐿 → S, then 𝐿𝐿+1 → XS .
we !rst de!ne 𝑐⇒ such that (𝑐 +𝑃𝑀𝑅𝑄𝑀)

1
𝑁 > 𝑃𝑅𝑄𝑀 +𝑐⇒. For 𝐿𝐿0 → S and for each 𝑃𝐿0𝑄 , there are only two situations

for 𝑃𝐿0𝑄 :
2.1) 𝑃𝑅𝑄𝑀 + 𝑐⇒ ≃ 𝑃𝐿0𝑄 ≃ 𝑃𝑅𝑄𝑀 . And we have 𝐿𝐿 → S, thus the following condition holds:

𝑅 (𝐿𝐿 ) ↗ 0 ℜ 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝐿𝑄 ↘ 𝑌 ⇐𝑃𝐿𝑄 ↗ 0 (56)
𝑃𝐿𝑄 ↗ 𝑃𝑅𝑄𝑀 + 𝑐⇒ ℜ ↘𝑃𝑀𝐿𝑄 ≃ ↘(𝑃𝑅𝑄𝑀 + 𝑐⇒)𝑀 = ↘(𝑐 + 𝑃𝑀𝑅𝑄𝑀) + 𝑣

where 𝑣 = 𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ (𝑃𝑅𝑄𝑀 + 𝑐⇒)𝑀 is a positive constant. Thus, the following condition holds:

⇐𝑃𝐿𝑄 ≃
𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝐿𝑄

𝑌
(57)

≃
𝑐 + 𝑃𝑀𝑅𝑄𝑀 ↘ (𝑐 + 𝑃𝑀𝑅𝑄𝑀) + 𝑣

𝑌

≃ 𝑣

𝑌
> 0

which indicates the 𝑃𝑄 will increase at next time step, then 𝑅0𝑄 (𝐿𝐿+1) ↗ 𝑅0𝑄 (𝐿𝐿 ) ↗ 0. Thus in this case, if 𝐿𝐿 → S,
then 𝐿𝐿+1 → XS .

2.2) 𝑃𝐿0𝑄 > 𝑃𝑅𝑄𝑀 + 𝑐⇒. Note that 𝐿𝐿 → S and 𝑃𝐿𝑄 > 𝑃𝑅𝑄𝑀 + 𝑐⇒ indicate 𝑐 +𝑃𝑀𝑅𝑄𝑀 ↘ 𝑃𝑀𝐿𝑄 ↘ 𝑌 ⇐𝑃𝐿𝑄 ↗ 0 and 𝑃𝑅𝑄𝑀 ↘ 𝑃𝐿𝑄 < 0,
whereas ⇐𝑃 can either < 0 or ≃ 0.
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If ⇐𝑃𝐿𝑄 ≃ 0, 𝑅0𝑄 keeps decreasing, then 𝑅0𝑄 (𝐿𝐿+1) ↗ 𝑅0𝑄 (𝐿𝐿 ) ↗ 0.
If ⇐𝑃𝐿𝑄 < 0, 𝑅0𝑄 (𝐿𝐿+1) ↗ 0 can be guaranteed if 𝑃𝐿+1𝑄 = 𝑃𝐿𝑄 + ⇐𝑃𝑄

⇒
𝑃𝑀 ≃ 𝑃𝑅𝑄𝑀 , where ⇐𝑃𝑄

⇒
ε ⇐𝑃𝑄 due to discrete-time

systems. Denote ⇐𝑃⇒𝑅𝑄𝑀 as the minimum ⇐𝑃⇒ can be achieved in the system, the following condition holds:

𝑃𝐿+1𝑄 = 𝑃𝐿𝑄 + ⇐𝑃𝑄
⇒
𝑃𝑀 (58)

≃ 𝑃𝐿𝑄 + ⇐𝑃⇒𝑅𝑄𝑀𝑃𝑀

According to (27a) from the safety index design rule for discrete-time system in Section 6.1, we have ⇐𝑃⇒𝑅𝑄𝑀𝑃𝑀 >
↘𝑐⇒, then:

𝑃𝐿+1𝑄 ≃ 𝑃𝐿𝑄 + ⇐𝑃⇒𝑅𝑄𝑀𝑃𝑀 (59)
> 𝑃𝐿𝑄 ↘ 𝑐⇒

> 𝑃𝑅𝑄𝑀 + 𝑐⇒ ↘ 𝑐⇒

> 𝑃𝑅𝑄𝑀

which also indicates 𝑅0𝑄 (𝐿𝐿+1) ↗ 0. Thus in this case, if 𝐿𝐿 → S, then 𝐿𝐿+1 → XS .
Summarizing the above content, we have shown that if 𝐿𝐿 → S, then ∈𝑈,𝑅0𝑄 (𝐿𝐿+1) ↗ 0, which indicates

𝑅0 (𝐿𝐿+1) = max𝑄 𝑅0𝑄 (𝐿𝐿+1) ↗ 0, hence 𝐿𝐿+1 → X𝑃 . We also have if 𝐿𝐿 → S, 𝐿𝐿+1 → L by Lemma 10. Therefore, if
𝐿𝐿 → S, 𝐿𝐿+1 → S. By induction, we have shown if 𝐿𝐿0 → S, 𝐿𝐿 → S,∈𝑀 > 𝑀0. Thus the forward invariance of S is
proved.

Leveraging the results introduced above, in practice, we can ensure the forward invariance of S = {𝐿 | 𝑅 (𝐿) ↗
0,𝑅0 (𝐿) ↗ 0} by using the safe control generation constraint 𝑅 (𝐿𝐿+1) ↗ max{𝑅 (𝐿𝐿 ) ↘ 𝑎, 0}) ↘ 𝑐⇒ through adding
an extra safety boundary 𝑐⇒. The resulting forward invariance set and newly added boundary layer are illustrated
in Figure 6, where the forward invariance set is the green area and the boundary layer is the blue area.
In summary, by discussing the two cases of whether L is the subset of X𝑃 , we have proved that if the safety

index design follows the rule described in Section 4.1, the implicit safe set algorithm guarantees the forward
invariance and !nite time convergence to the set 𝑔 ∞ X𝑃 .

⊋

8 Experimental Results
In our experiments, we aim to answer the following questions:
Q1: How does the discrepancy between continuous-time safe control and discrete-time safe control a$ect the

evolution of the safety index in discrete-time systems? (Answered in Section 8.1)
Q2: How does ISSA compare with other state-of-the-art methods for safe RL? Can ISSA achieve zero-violation

of the safety constraint? (Answered in Section 8.3)
Q3: How does the design of the safety index a$ect the set of safe control? (Answered in Section 8.4)
Q4: How do the hyper-parameters of ISSA and the dimensionality of the system impact its performance?

(Answered in Section 8.5)

8.1 Toy Problem Experiment Details
To demonstrate the discrepancy between continuous-time systems and discrete-time systems, we build a toy
problem environment to show that directly applying the result from (2) in discrete-time systems will lead to
safety violations. The toy robot is a 3-state unicycle model with state 𝐿 = [𝑤𝑁 , 𝑤𝑜, 𝑥 ], where 𝑤𝑁 , 𝑤𝑜 denote the
coordinates on the x-axis and y-axis, respectively, and 𝑥 is the heading direction. The control inputs of the toy
environment are [𝑉,𝑋], where 𝑉 denotes the velocity of the robot, and𝑋 denotes the angular velocity of the robot.
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Next, we de!ne the underlying dynamics of the robot for the toy environment in control a"ne form as follows:

𝐿𝐿+1 = 𝐿𝐿 + ⇐𝐿𝐿𝑃𝑀 = 𝐿𝐿 +

cos (𝑥 )𝑃𝑀 0
sin (𝑥 )𝑃𝑀 0

0 𝑃𝑀


𝑂 (60)
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Fig. 7. The toy experimental platform. The blue circle is a
static obstacle, and red circle is the robot, whose heading
direction is illustrated as the black arrow.
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Fig. 8. Safety Index evolution curves comparison.

8.1.1 Experimental Setup: Toy Problem. The toy environment is illustrated in ??. Note that the environment
may contain multiple obstacles, and the robot is required to be collision-free with all the obstacles. However,
we can always consider the safety constraint between the robot and its closest obstacle at each time step. The
justi!cation is summarized in the following remark.

R-(,$8 2. If the robot is collision-free with its closest obstacle at each time step, then the robot is collision-free
with environmental obstacles at each time step.

Therefore, in ?? we only consider one obstacle. For simplicity, we currently assume the obstacle is static, which
can be easily extended to moving obstacles.

Next, we de!ne the safety index 𝑅 (𝐿) by constraining the perpendicular line from the center of the obstacle to
the robot heading direction to be larger than (𝑦 + 𝑇 ), which is shown as follows:

𝑅 (𝐿) = (𝑇 + 𝑦)2 ↘ ((𝑤𝑁 0 ↘ 𝑤𝑁 ) sin(𝑥 ) ↘ (𝑤𝑜0 ↘ 𝑤𝑜) cos(𝑥 ))2 (61)

where 𝑇 ,𝑦 are the radii of the robot and obstacle, respectively. [𝑤𝑁 0, 𝑤𝑜0] is the location of the obstacle. It can
be easily shown that 𝑅 (𝐿) < 0 will ensure the robot is collision-free with environmental obstacles. Finally, we
design a dummy nominal policy to control the point robot to move forward with constant velocity, which has no
safety guarantee. Therefore, if the initial system state is unsafe, our proposed methods are expected to generate
the safe control to gradually drive the system state to the safe set where 𝑅 (𝐿) < 0, and remain in the safe set.

8.1.2 Results: Toy Problem. For toy problem, we simulate the system for 100 time steps, and system 𝑃𝑀𝑕𝑜𝑕𝐿𝑗𝑅 =
0.01. We compare the safety index evolution for the safe control generated by: 1) solving (5) with ISSA (i.e.,
𝑃𝑀𝑝𝑃𝑃𝑞 = 0.01 = 𝑃𝑀𝑕𝑜𝑕𝐿𝑗𝑅 for ISSA simulation) and 2) sloving (2) with ISSA (i.e., 𝑃𝑀𝑝𝑃𝑃𝑞 = 0.00001 ℑ 𝑃𝑀𝑕𝑜𝑕𝐿𝑗𝑅 for
ISSA simulation). The comparison result is demonstrated in ??.
We can see that the safe control generated by solving continuous-time system problem (2) fails to ensure

the safety index is monotonically decreasing due to (26), where the safety index suddenly increased to a large
positive value at the time step between 50 and 60. However, the safe control generated by solving discrete-time
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(a) Point robot: a simple
2D robot that can turn
and move.

(b) Goal: navigating the
robot inside the green
goal area.

(c) Push: pushing the
yellow box inside the
green goal area.

(d) Hazards: non-
physical dangerous
areas.

(e) Pillars: fixed danger-
ous obstacles

Fig. 9. The environmental se!ings for benchmark problems in Safety Gym.

system problem (5) ensures the safety index is monotonically decreasing until below zero. Therefore, ?? strongly
supports the discrepancy between the discrete-time system and the continuous-time system.

8.2 Safety Gym Experiment Details
In recent years, numerous benchmark environments for safe control have emerged (Ji et al. 2024; Ray et al. 2019;
Sun et al. 2025; Zhao, Chen, Sun, R. Liu, et al. 2024). We adopt Safety Gym (Ray et al. 2019) as our testing platform
to evaluate the e$ectiveness of the proposed implicit safe set algorithms. Our experiments adopt the Point robot
(U ∞ R2) as shown in Figure 9a and the Doggo robot (U ∞ R12) as shown in Figure 1. We design 8 experimental
environments with di$erent task types, constraint types, constraint numbers and constraint sizes. We name
these environments as {Task}-{Constraint Type}{Constraint Number}-{Constraint Size}. Note that
Constraint Size equals 𝑃𝑅𝑄𝑀 in the safety index design. Two tasks are considered:

• Goal: The robot must navigate to a goal as shown in Figure 9b.
• Push: The robot must push a box to a goal as shown in Figure 9c.

And two di$erent types of constraints are considered:

• Hazard: Dangerous (but admissible) areas as shown in Figure 9d. Hazards are circles on the ground. The
agent is penalized for entering them.

• Pillar: Fixed obstacles as shown in Figure 9e. The agent is penalized for hitting them.

The methods in the comparison group include: unconstrained RL algorithm PPO (Schulman et al. 2017) and
constrained safe RL algorithms PPO-Lagrangian, CPO (Achiam et al. 2017) and PPO-SL (PPO-Safety Layer) (Dalal
et al. 2018). We select PPO as our baseline method since it is state-of-the-art and already has safety-constrained
derivatives that can be tested o$-the-shelf. We set the limit of cost to 0 for both PPO-Lagrangian and CPO since
we aim to avoid any violation of the constraints. To make sure ISSA can complete tasks while guaranteeing
safety, we use a PPO agent as the nominal policy and ISSA as a safety layer to solve (5), we call this structure as
PPO-ISSA, and it is illustrated in Figure 10. Such safety layer structure has also been used in PPO-SL (Dalal et al.
2018) which leverages o#ine dataset to learn a linear safety-signal model and then construct a safety layer via
analytical optimization.

For all experiments, we use neural network policies with separate feedforward MLP policy and value networks
of size (256, 256) with tanh activations. More details are as follows.

8.2.1 Environment Se!ings. In this section, we will introduce our environment settings.
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Fig. 10. The structural safe agent architecture.

Goal Task. In the Goal task environments, the reward function is:

𝑇 (𝐿𝐿 ) = 𝑃𝑌𝐿↘1 ↘ 𝑃𝑌𝐿 + [𝑃𝑌𝐿 < 𝑦𝑌] ,

where 𝑃𝑌𝐿 is the distance from the robot to its closest goal and 𝑦𝑌 is the size (radius) of the goal. When a goal is
achieved, the goal location is randomly reset to someplace new while keeping the rest of the layout the same.

Push Task. In the Push task environments, the reward function is:

𝑇 (𝐿𝐿 ) = 𝑃𝑉𝐿↘1 ↘ 𝑃𝑉𝐿 + 𝑃𝑖𝐿↘1 ↘ 𝑃𝑖𝐿 + [𝑃𝑖𝐿 < 𝑦𝑌] ,

where 𝑃𝑉 and 𝑃𝑖 are the distance from the robot to its closest goal and the distance from the box to its closest
goal, and 𝑦𝑌 is the size (radius) of the goal. The box size is 0.2 for all the Push task environments. Like the goal
task, a new goal location is drawn each time a goal is achieved.

Hazard Constraint. In the Hazard constraint environments, the cost function is:

𝑟 (𝐿𝐿 ) =max(0,𝑦𝑟 ↘ 𝑃𝑟𝐿 ) ,

where 𝑃𝑟𝐿 is the distance to the closest hazard and 𝑦𝑟 is the size (radius) of the hazard.

Pillar Constraint. In the Pillar constraint environments, the cost 𝑟𝐿 = 1 if the robot contacts with the pillar
otherwise 𝑟𝐿 = 0.

Black-box Dynamics. The underlying dynamics of Safety Gym is directly handled by MuJoCo physics simu-
lator (Todorov et al. 2012). This indicates the dynamics is not explicitly accessible but rather can be implicitly
evaluated, which is suitable for our proposed implicit safe set algorithm. The implementation of block-box
dynamics for ISSA is through simulation in the MuJoCo physics simulator and recovering to the pre-simulated
state.

State Space. The state space is composed of various physical quantities from standard robot sensors (accelerom-
eter, gyroscope, magnetometer, and velocimeter) and lidar (where each lidar sensor perceives objects of a single
kind). The state spaces of all the test suites are summarized in Table 1. Note that Vase is another type of constraint
in Safety Gym (Ray et al. 2019) and all the returns of vase lidar are zero vectors (i.e., [0, 0, · · · , 0] → R16) in our
experiments since none of our eight test suites environments have vases.

Control Space. For all the experiments, the control space U ↑ R2. The !rst dimension 𝑂1 → [↘10, 10] is the
control space of moving actuator, and second dimension 𝑂2 → [↘10, 10] is the control space of turning actuator.
For each actuator the maximum torque corresponds to 𝑊max = 2.5m/s2 and 𝑧max = 4.0 rad/s; within these limits
the inner-loop PID reaches the desired (𝑊,𝑋) in ↗ 6ms, satisfying Assumption 1.
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Table 1. The state space components of di"erent test suites environments.

State Space Option Goal-Hazard Goal-Pillar Push-Hazard
Accelerometer (R3) ! ! !
Gyroscope (R3) ! ! !

Magnetometer (R3) ! ! !
Velocimeter (R3) ! ! !
Goal Lidar (R16) ! ! !

Hazard Lidar (R16) ! " !
Pillar Lidar (R16) " ! "
Vase Lidar (R16) ! ! !
Box Lidar (R16) " " !

8.2.2 Policy Se!ings. Detailed parameter settings are shown in Table 2. All the policies in our experiments use
the default hyper-parameter settings hand-tuned by Safety Gym (Ray et al. 2019) except the cost limit = 0 for
PPO-Lagrangian and CPO.

Table 2. Important hyper-parameters of PPO, PPO-Lagrangian, CPO, PPO-SL and PPO-ISSA

Policy Parameter PPO PPO-Lagrangian CPO PPO-SL & PPO-ISSA
Timesteps per iteration 30000 30000 30000 30000

Policy network hidden layers (256, 256) (256, 256) (256, 256) (256, 256)
Value network hidden layers (256, 256) (256, 256) (256, 256) (256, 256)

Policy learning rate 0.0004 0.0004 (N/A) 0.0004
Value learning rate 0.001 0.001 0.001 0.001

Target KL 0.01 0.01 0.01 0.01
Discounted factor 𝑆 0.99 0.99 0.99 0.99

Advantage discounted factor 𝑏 0.97 0.97 0.97 0.97
PPO Clipping 𝑒 0.2 0.2 (N/A) 0.2

TRPO Conjugate gradient damping (N/A) (N/A) 0.1 (N/A)
TRPO Backtracking steps (N/A) (N/A) 10 (N/A)

Cost limit (N/A) 0 0 (N/A)

8.2.3 Safety Index Se!ings. The parameters of safety index design are summarized in Table 3, where we adopt
𝑌 = 0.375 for test suites with constraint size of 0.05 and 𝑌 = 0.5 for test suites with constraint size of 0.15.

8.2.4 Algorithm 3 Parameter Se!ings. In the simulation environment, the parameters 𝑊𝑅𝑄𝑀,𝑊𝑅𝑆𝑁 ,𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 , and
εmin are computed o#ine based on the system dynamics and sampled trajectories. Speci!cally, 𝑊𝑅𝑄𝑀 and 𝑊𝑅𝑆𝑁 are
obtained by applying extreme control inputs and recording the resulting relative accelerations. The triggering
angular velocity 𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 is evaluated by sampling feasible angular velocities under di$erent control inputs at
high-speed regimes (𝑉 ≃ 𝑉𝑅𝑆𝑁/2) and taking the in!mum of the corresponding suprema. Finally, εmin is estimated
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Table 3. Experiment-specific parameters of safety index design for PPO-ISSA.

Safety Index Parameter Constraint size = 0.05 Constraint size = 0.15
n 1 1
k 0.375 0.5
𝑎 0 0

Fig. 11. Cost changes over 100 time steps of PPO and PPO-ISSA-CTrigger starting from the same unsafe state over 20 trails.

by simulating trajectories with various approach angles that satisfy | cos(𝑗) | ↗
∀
3/2 and |𝑋 | ≃ |𝑋𝐿𝑉𝑄𝑌𝑌𝑗𝑉 |/2, and

then measuring the change in cos(𝑗) between consecutive time steps; the minimum recorded value is selected as
εmin.

8.3 Evaluating PPO-ISSA and Comparison Analysis
To compare the reward and safety performance of PPO-ISSA to the baseline methods in di$erent tasks, constraint
types, and constraint sizes, we design 4 test suites with 4 constraints which are summarized in Figure 12. The
comparison results reported in Figure 12 demonstrate that PPO-ISSA is able to achieve zero average episode cost
and zero cost rate across all experiments while slightly sacri!cing the reward performance. The baseline soft safe
RL methods (PPO-Lagrangian and CPO) fail to achieve zero-violation safety even when the cost limit is set to be
0. Moreover, the safety advantage of safe RL baseline methods over unconstrained RL method (PPO) becomes
trivial as the constraint number and constraint size decrease as shown in Figure 13a, where the cost rate and
average episode cost of PPO-Lagrangian, CPO and PPO are nearly the same when there is only one constraint
with size 0.05.

PPO-Lagrangian and CPO fail since both methods rely on trial-and-error to enforce constraints while ISSA is
able to guarantee forward invariance by Theorem 1. We also observe that PPO-SL fails to lower the violation
during training, due to the fact that the linear approximation of cost function 𝑟 (𝐿𝐿+1) ⊤ 𝑟 (𝐿𝐿 ) + 𝛥(𝐿𝐿 ,𝑋)𝑛𝑂 (Dalal
et al. 2018) becomes inaccurate when the dynamics are highly nonlinear like the ones we used in MuJoCo (Todorov
et al. 2012). More importantly, PPO-SL cannot guarantee that these always exist a feasible safe control to lower
the cost, since they directly use the user de!ned cost function which cannot always ensure feasibility. More
detailed metrics for comparison and experimental results on test suites with 1 constraint are summarized in
Section 8.3.1.
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(a) Goal-Hazard4-0.05 (b) Goal-Hazard4-0.15 (c) Goal-Pillar4-0.15 (d) Push-Hazard4-0.15

Fig. 12. Average episodic return, episodic cost and overall cost rate of constraints of PPO-ISSA and baseline methods on
4-constraint environments over five seeds.

8.3.1 Metrics Comparison. In this section, we report all the results of eight test suites by three metrics de!ned in
Safety Gym (Ray et al. 2019):

• The average episode return 𝛩𝑉 .
• The average episodic sum of costs𝛬𝑠 .
• The average cost over the entirety of training 𝛯𝑠 .

The average episode return 𝛩𝑉 and the average episodic sum of costs𝛬𝑠 were obtained by averaging over the last
!ve epochs of training to reduce noise. Cost rate 𝛯𝑠 was just taken from the !nal epoch. We report the results of
these three metrics in Table 4 normalized by PPO results. We calculate the converged reward 𝛩𝑉 percentage of
PPO-ISSA compared to other three safe RL baseline methods (PPO-Lagrangian, CPO and PPO-SL) over eight
control suites. The computed mean reward percentage is 95%, and the standard deviation is 9%. Therefore we
conclude that PPO-ISSA is able to gain 95% ± 9% cumulative reward compared to state-of-the-art safe DRL
methods.
Note that in safety-critical environments, there is always a tradeo$ between reward performance and safety,

where safety guarantees prevent aggressive strategies for seeking high reward. On the other hand, the provable
safety is prominently weighted in the tradeo$, since any safety violation may lead to property loss, life danger in
the real robotics applications. Therefore, PPO-ISSA does a better job in terms of balancing the tradeo$ between
provable safety and task performance.

To validate the !nite time convergence of Theorem 2 that ISSA combined with CTrigger algorithm (PPO-ISSA-
CTrigger) can ensure the !nite time convergence to X𝑃 for discrete-time system, we further compare the cost
evolution of PPO and PPO-ISSA-CTrigger agents when starting from the same unsafe state (i.e., cost > 0). The
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Table 4. Normalized metrics obtained from the policies at the end of the training process, which is averaged over eight test
suits environments and five random seeds.

(a) Goal-Hazard1-0.05

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.00 1.00 1.00

PPO-Lagrangian 1.003 1.587 0.859
CPO 1.012 1.052 0.944

PPO-SL [18’ Dalal] 1.038 1.031 1.110
PPO-ISSA (Ours) 1.077 0.000 0.000

(b) Goal-Hazard4-0.05

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.983 0.702 0.797
CPO 1.022 0.549 0.676

PPO-SL [18’ Dalal] 1.014 0.923 0.963
PPO-ISSA (Ours) 0.961 0.000 0.000

(c) Goal-Hazard1-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.086 0.338 0.760
CPO 1.011 0.553 0.398

PPO-SL [18’ Dalal] 1.018 0.898 1.048
PPO-ISSA (Ours) 1.008 0.000 0.000

(d) Goal-Hazard4-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.948 0.581 0.645
CPO 0.932 0.328 0.303

PPO-SL [18’ Dalal] 1.038 0.948 1.063
PPO-ISSA (Ours) 0.895 0.000 0.000

(e) Goal-Pillar1-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.968 0.196 0.239
CPO 0.976 0.328 0.494

PPO-SL [18’ Dalal] 1.017 0.948 1.063
PPO-ISSA (Ours) 1.056 0.000 0.000

(f) Goal-Pillar4-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.035 0.105 0.159
CPO 1.060 0.304 0.221

PPO-SL [18’ Dalal] 1.094 1.055 0.780
PPO-ISSA (Ours) 0.965 0.000 0.000

(g) Push-Hazard1-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 1.124 0.356 0.384
CPO 0.872 0.231 0.228

PPO-SL [18’ Dalal] 1.107 0.685 0.610
PPO-ISSA (Ours) 0.841 0.000 0.000

(h) Push-Hazard4-0.15

Algorithm 𝛩𝑉 𝛬̄𝑠 𝛯𝑠
PPO 1.000 1.000 1.000

PPO-Lagrangian 0.72 0.631 0.748
CPO 0.758 0.328 0.385

PPO-SL [18’ Dalal] 0.914 1.084 1.212
PPO-ISSA (Ours) 0.727 0.000 0.000

comparison results are shown in Figure 11, which shows that PPO-ISSA-CTrigger can converge to X𝑃 within
100 time steps across all experiments while cost evolution of PPO agents %uctuates wildly without preference to
converge to safe set. The cost changes of PPO-ISSA-CTrigger aligns with ours theory of !nite time convergence.

8.4 Feasibility of Safety Index Synthesis
To demonstrate how the set of safe control is impacted by di$erent safety index de!nition, we randomly pick an
unsafe state 𝐿⇒ such that 𝑅 (𝐿⇒) > 0, and visualize the corresponding set of safe controlU𝑊

𝑃 under di$erent safety
index de!nitions, which are shown in Figure 15. Red area means ε𝑅 > 0 (i.e. unsafe control) and blue area means
ε𝑅 < 0 (i.e. safe control). Figure 15a shows the set of safe control of distance safety index 𝑅𝑑 = 𝑐 +𝑃𝑅𝑄𝑀 ↘𝑃 , which
is the default cost de!nition of Safety Gym. The heatmap is all red in Figure 15a, which means that the set of safe
control under the default 𝑅𝑑 is empty. Figure 15b shows the set of safe control of the synthesized safety index
𝑅 = 𝑐 + 𝑃2𝑅𝑄𝑀 ↘ 𝑃2 ↘ 𝑌 ⇐𝑃 with di$erent value of 𝑌 . With the synthesized safety index, Figure 15b demonstrates that
the size of the set of safe control grows as 𝑌 increases, which aligns with the safety index synthesis rule discussed
in Section 4.1 as larger 𝑌 is easier to satisfy (4). To demonstrate the reward performance of PPO-ISSA under
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(a) Goal-Hazard1-0.05 (b) Goal-Hazard1-0.15 (c) Goal-Pillar1-0.15 (d) Push-Hazard1-0.15

Fig. 13. Average performance of PPO-ISSA and baseline methods on 1-constraint environments over five random seeds. The
three rows represent average episodic return, average episodic cost and overall cost rate of constraints. The safety advantage
of safe RL baseline methods over unconstrained RL method (PPO) becomes trivial as the constraint number and constraint
size decrease, where the cost rate and average episode cost of PPO-Lagrangian, CPO and PPO are nearly the same when
there is only one constraint with size 0.05.

Fig. 14. Average return of PPO-ISSA with di"erent safety index design on Goal-Hazard4-0.15.

di$erent safety index designs, we select Goal-Hazard4-0.15 test suite. Figure 14 demonstrates the average return
of PPO-ISSA under di$erent value of 𝑌 , which shows that the reward performance of PPO-ISSA deteriorates as 𝑌
value increases (since larger 𝑌 makes the control more conservative). Note that the set of safe control increases as
the 𝑌 value increases, thus the optimal 𝑌 should be the smallest 𝑌 that makes the set of safe control nonempty for
all states. Our safety index synthesis rule in (4) provides the condition to pick the optimal 𝑌 .
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(a) Distance Safety Index

K=0.25 K=0.75 K=2.00 K=5.00

(b) Synthesized Safety Index

Fig. 15. Heat maps of the di"erence of safety index ε𝑅 = 𝑅 (𝑄 (𝐿,𝑂)) ↘ 𝑅 (𝐿). The x-axis 𝑂1 represents the control space of
moving actuator, and the y-axis 𝑂2 represents the control space of turning actuator.

Table 5. Normalized computation time and return under di"erent number of vectors in ISSA. These results are average on
100 ISSA runs over five random seeds on Goal-Hazard4-0.15.

Number of vectors Simulation Time 𝑜𝑕𝑄𝑅 Overall ISSA Time 𝑜𝑆𝑎𝑎 Return 𝛩𝑉
𝑁 = 3 0.297 0.301 0.738
𝑁 = 5 0.504 0.511 0.826
𝑁 = 10 0.987 1.000 1.000

8.5 Ablation Study
8.5.1 Sensitivity Analysis. To demonstrate the scalability and the performance of PPO-ISSA when ISSA chooses
di$erent parameters, we conduct additional tests using the test suite Goal-Hazard4-0.15. Among all input
parameters of ISSA, the gradient vector number 𝑁 is critical to impact the quality of the solution of (5). Note
in the limit when 𝑁 ↔ ⇔, ISSA is able to traverse all boundary points of the set of safe control, hence able to
!nd the global optima of (5). We pick three di$erent 𝑁 values: 3, 5, 10; and report the average episode reward
of PPO-ISSA, and the computation time of ISSA when solving (5), which includes the normalized average ISSA
computation time and the normalized average simulation time for each run. The results are summarized in
Table 5, which demonstrates that the reward performance of PPO-ISSA would improve as 𝑁 gets bigger since we
get better optima of Equation (5). In practice, we !nd that the reward performance will stop improving when
𝑁 is big enough (𝑁 > 10). The computation time scales linearly with respect to 𝑁 while the majority (98%) of
computation cost is used for environment simulation, which can be improved in the future by replacing the
simulator with a more computationally e"cient surrogate model.

8.5.2 Scalability Analysis. The safe control algorithm ISSA is based on the sampling method algorithm 1 AdamBA.
In this section, we demonstrate the scalability of AdamBA and ISSA in systems with higher dimensions of state
and control.

8.5.3 ISSA in Higher Dimensional Control Systems. We test ISSA with a doggo robot as shown in Figure 17 with
12 dimensional control space and 80 dimensional state space. We evaluate ISSA with the doggo robot in the
Goal-Hazard1-0.15 suite. As shown in Figure 18, ISSA is able to guarantee zero-violation in higher dimensional
control systems. We notice that in system with higher control dimensions, safe RL methods like PPO-Lagrangian
and CPO perform poorly compared to PPO, which demonstrates the constrained RL algorithms struggle to learn
good reward performance for complex locomotion behavior. Similar comparison results are also reported in Safety
Gym benchmarks (Ray et al. 2019). In contrast, PPO-ISSA is able to achieve the best reward performance while
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(a) Average reward (b) Average cost

Fig. 16. Average episodic return and episodic cost of PPO-ISSA and baseline methods on Goal-hazard1-0.15 environment of a
doggo robot over five seeds.

Fig. 17. doggo robot: a quadrupedal robot with bilateral symmetry with 12-dimensional control space.

(a) Average episode reward (b) Average episode cost (c) Average episode costrate

Fig. 18. Average performance of PPO-ISSA and baseline methods on Goal-hazard1-0.15 environment of doggo robot over five
seeds. The three columns represent average episode return, average episode cost and overallcost rate of constraints.

guaranteeing zero safety violation, showing the scalability of ISSA to achieve satisfying reward performance in
systems with higher control dimensions.
To illustrate the computation cost of searching for a safe control using ISSA in systems with higher control

dimensions, we apply ISSA to !nd safe controls for both Point robot and doggo robot in the Goal-Hazard1-0.15

Journal of Arti!cial Intelligence Research, Vol. 84, Article 25. Publication date: December 2025.



Implicit Safe Set Algorithm • 25:41

Table 6. Average Computation time, succuss ratio of ISSA phase 1 and number of safe control candidates of 200 ISSA runs on
Goal-Hazard1-0.15.

Number of vectors Overall (non-parallel) ISSA Time 𝑜𝑆𝑎𝑎 (s) ISSA phase 1 success rate Number of safe control
𝑁 = 3 0.023 0.962 1.193
𝑁 = 5 0.038 1.000 2.258

Point robot 𝑁 = 10 (used) 0.076 1.000 4.576
Control dimension = 2 𝑁 = 20 0.160 1.000 9.838

𝑁 = 40 0.302 1.000 18.055
𝑁 = 100 0.737 1.000 25.740
𝑁 = 3 0.068 0.802 2.041
𝑁 = 5 0.116 0.903 3.051

Doggo robot 𝑁 = 10 0.228 0.925 5.127
Control dimension = 12 𝑁 = 20 (used) 0.461 0.981 10.673

𝑁 = 40 0.910 0.990 19.373
𝑁 = 100 2.190 1.000 33.910

suite with di$erent number of unit gradient vectors generated by guassian distribution. Note that we desire to
encourage ISSA phase 1 to !nd safe control, while the functionality of ISSA phase 2 is the fail-safe strategy for
ISSA phase 1 to ensure feasibility of ISSA since 1) ISSA phase 2 is relatively more computational expensive than
ISSA phase 1 due to random sampling, and 2) ISSA phase 2 can only return one safe control candidate. Thus, we
are especially interested in analyzing the performance of ISSA phase 1.
We report the average computation time, ISSA phase 1 success rate and number of safe control candidates

found by ISSA phase 1 under di$erent robot types and number of unit gradient vectorss in Table 6, where the
success of ISSA phase 1 is de!ned as it returns at least 1 safe control which may lead to a large deviation from the
original nominal control. As demonstrated in Table 6, we only need 20 unit gradient vectors for 12 dimensional
control space doggo robot to achieve satisfying success rate in ISSA phase 1 and number of safe control candidates.
On the other hand, we need 10 unit gradient vectors for 2 dimensional control space Point robot. Therefore,
higher control dimensionality will not necessarily increase the computation cost exponentially for ISSA to !nd
safe control. We also notice that, even with the same number of vectors, the computaion time of doggo robot is 3
times longer than that of Point robot due to the doggo robot simulation takes longer than point robot simulaton
per step in MuJoCo simulator. Here we also highlight a fact that the process of AdamBA outreach/decay for each
unit gradient vector is independent from each other, thus we can always accelerate ISSA by parallel computation,
which is then discussed in Section 8.5.4.

8.5.4 AdamBA in higher dimensional space. As reported in Section 8.5.3, in MuJoCo environment, the sampling
cost of AdamBA is not exponentially increasing as the control dimensions increase, where we only need 10
vectors for point robot (2-dimensional control space) and only need 20 vectors for doggo robot (12-dimensional
control space). However, let’s consider a worse case for AdamBA, where the relative size of safe control space
in the entire control space is exponentially decreasing with dimension linearly increases, which could result in
the computation cost of AdamBA to !nd the boundary exponentially increasing. We synthesis a simple control
problem, where only half of the control space is safe for each dimension, which means the portion of safe control
space to the entire control space is 1

2𝑁 where 𝑁 is the number of control space dimensions. Note that for every unit
gradient vector, the process of AdamBA outraech/decay is independent of the other unit gradient vectors, which
means we could utilize parallel computation in practice when applying real-time robots. We report the average
computation time of AdamBA on the prescribed toy control problem in Figure 19, where we can see that the
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computation cost of parallel AdamBA remains nearly the same as the number of vectors exponentially increases,
which shows the potential capability of AdamBA scaling to higher dimensional real-time control systems.

Fig. 19. The average computation time of non-parallel AdamBA and parallel AdamBA on toy problem with di"erent control
dimensions and number of vectors.

9 Conclusion and Future Work
Safety guarantee is critical for robotic applications in real world, such that robots can persistently satisfy safety
constraints. This paper presents a model-free safe control strategy to synthesize safeguards for DRL agents,
which will ensure zero safety violation during training. In particular, we present an implicit safe set algorithm
as a safeguard, which synthesizes the safety index (also called the barrier certi!cate) and the subsequent safe
control law only by querying a black-box dynamics function (e.g., a digital twin simulator). The theoretical results
indicate that the synthesized safety index guarantees nonempty set of safe control for all system states, and
ISSA guarantees !nite time convergence and forward invariance to the safe set for both continuous-time and
discrete-time system. We further validate the proposed safeguard with DRL on state-of-the-art safety benchmark
Safety Gym. Our proposed method achieves zero safety violation and 95% ± 9% reward performance compared to
state-of-the-art safe DRL methods.

There are three major directions for future work. Firstly, we will further generalize the safety index synthesis
rule to cover a wider range of applications other than collision avoidance in 2D. Secondly, we will further speed
up the implicit model evaluation step by replacing the physical engine based simulator with a learned surrogate
model while taking the learned dynamics error into account. Third, obstacle avoidance tasks in densely cluttered
environments — where multiple safety-critical constraints may be active simultaneously — still require further
theoretical advancements and algorithmic exploration.
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