Scalable Synthesis of Formally Verified Neural Value Function for
Hamilton-Jacobi Reachability Analysis

YUJIE YANG, Tsinghua University, China and Carnegie Mellon University, USA
HANJIANG HU, Carnegie Mellon University, USA

TIANHAO WEI, Carnegie Mellon University, USA

SHENGBO EBEN LI, Tsinghua University, China

CHANGLIU LIU", Carnegie Mellon University, USA

Hamilton-Jacobi (HJ) reachability analysis provides a formal method for guaranteeing safety in constrained control problems.
It synthesizes a value function to represent a long-term safe set called feasible region. Early synthesis methods based on
state space discretization cannot scale to high-dimensional problems, while recent methods that use neural networks to
approximate value functions result in unverifiable feasible regions. To achieve both scalability and verifiability, we propose a
framework for synthesizing verified neural value functions for HJ reachability analysis. Our framework consists of three stages:
pre-training, adversarial training, and verification-guided training. We design three techniques to address three challenges to
improve scalability respectively: boundary-guided backtracking (BGB) to improve counterexample search efficiency, entering
state regularization (ESR) to enlarge feasible region, and activation pattern alignment (APA) to accelerate neural network
verification. We also provide a neural safety certificate synthesis and verification benchmark called Cersyve-9, which includes
nine commonly used safe control tasks and supplements existing neural network verification benchmarks. Our framework
successfully synthesizes verified neural value functions on all tasks, and our proposed three techniques exhibit superior
scalability and efficiency compared with existing methods.

JAIR Associate Editor: Quanquan Gu

JAIR Reference Format:

Yujie Yang, Hanjiang Hu, Tianhao Wei, Shengbo Eben Li, and Changliu Liu. 2025. Scalable Synthesis of Formally Verified
Neural Value Function for Hamilton-Jacobi Reachability Analysis. Journal of Artificial Intelligence Research 83, Article 19
(July 2025), 36 pages. DoI: 10.1613/jair.1.16946

1 Introduction

Safety is a primary concern in controller design, especially for control systems interacting with the physical world,
such as autonomous driving and robot locomotion. In these systems, safety is usually specified by inequality
constraints on system states. For example, safety constraints in a robot locomotion task require the distance
between the robot and surrounding obstacles to be always positive. Such safety constraints must be satisfied not
only in a single time step but also in all time steps over an infinite horizon. When designing a controller, it is
important to know from which states it can satisfy the infinite-horizon safety constraints and from which states

*Corresponding Author.

Authors’ Contact Information: Yujie Yang, orcIp: 0000-0001-7222-0019, yangyj21@mails.tsinghua.edu.cn, Tsinghua University, Beijing, China
and Carnegie Mellon University, Pittsburgh, PA, USA; Hanjiang Hu, orcID: 0000-0002-5698-5887, hanjianh@andrew.cmu.edu, Carnegie
Mellon University, Pittsburgh, PA, USA; Tianhao Wei, orcID: 0000-0003-2505-4585, twei2@andrew.cmu.edu, Carnegie Mellon University,
Pittsburgh, PA, USA; Shengbo Eben Li, orcID: 0000-0003-4923-3633, lishbo@tsinghua.edu.cn, Tsinghua University, Beijing, China; Changliu
Liu, orcID: 0000-0002-3767-5517, cliu6@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, PA, USA.

@ @ \ This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).
DOI: 10.1613/jair.1.16946

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

https://doi.org/10.1613/jair.1.16946
https://orcid.org/0000-0001-7222-0019
https://orcid.org/0000-0002-5698-5887
https://orcid.org/0000-0003-2505-4585
https://orcid.org/0000-0003-4923-3633
https://orcid.org/0000-0002-3767-5517
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1613/jair.1.16946

19:2 « Yang, Hu, Wei, Li & Liu

it cannot. The deployment of any controller should be restricted to a set of states where long-term constraint
satisfaction is ensured, which is called a feasible region.

Hamilton-Jacobi (HJ) reachability analysis provides a formal method for computing feasible regions of control
systems with safety constraints [5]. In HJ reachability analysis, a feasible region is represented by the zero-sublevel
set of a value function, which is defined as the maximum value of the constraint function over a trajectory. In
general nonlinear systems, exactly computing the value function is difficult because it involves solving the HJ
partial differential equation, which does not have a closed-form solution in most cases [5]. Traditional methods
numerically solve the H] equation on a grid representing a discretization of the state space [28, 29]. These
methods’ computational complexity grows exponentially with state dimension, making them intractable in
high-dimensional systems. Although some techniques, such as system decomposition [11], are proposed for
accelerating value function computation, they only apply to some special scenarios. Recent methods use neural
networks to approximate the solution to the HJ equation by minimizing the error between the two sides of
the equation [16, 6]. The error is computed on states randomly sampled in the state space and minimized by
gradient-based optimization algorithms. Although these methods scale well to high-dimensional systems, the
zero-sublevel sets of their value functions are no longer guaranteed to be valid feasible regions due to neural
network approximation errors. Specifically, their zero-sublevel sets may violate two basic properties of a feasible
region: constraint satisfaction and forward invariance. Constraint satisfaction means all states in a feasible region
satisfy the safety constraint themselves. Forward invariance means starting from any state in a feasible region,
its subsequent states can always be kept in this region by some control policy. Violating these two properties
may cause possible constraint violations, even starting from a state inside the zero-sublevel set, making the value
function unreliable for safe control.

The problem of invalid feasible regions necessitates verification of neural HJ reachability value functions.
Recently, some researchers have begun to use neural network verification tools to formally verify and synthesize
neural safety certificates, such as neural control barrier functions (CBFs) [37, 43] and neural control Lyapunov
functions (CLFs) [10, 2]. Similar to HJ reachability value function, these safety certificates also represent feasible
regions by their zero-sublevel sets. The difference is that these functions are not defined through equations but
through certain inequality conditions. For example, the time derivative of a CBF must be upper bounded by
an extended class K function, and a CLF must be a positive definite function with negative time derivatives.
Existing works try to verify whether these conditions are strictly satisfied by the neural safety certificates in the
entire state space. Such problems can be transformed into standard neural network verification problems, which
can be solved by existing verification tools [25]. This verification procedure can also be embedded into neural
safety certificate synthesis, resulting in verification-guided training methods [37, 43]. If verification fails on a
synthesized safety certificate, the found counterexamples are added to the dataset, and the safety certificate is
further trained on these counterexamples. This process is repeated until the neural safety certificate is successfully
verified. However, these methods currently only work on low-dimensional or linear systems and are difficult to
scale to high-dimensional nonlinear systems and real-world control tasks. Through our study, we discover three
main challenges that restrict the scalability of these methods:

¢ Difficulty of searching and eliminating counterexamples. Successful verification requires strict
satisfaction of inequality conditions in all states, and not a single counterexample is allowed. However,
counterexamples become extremely sparse in high-dimensional spaces, making it difficult to find and
eliminate all of them.

o Severe shrinkage of feasible region. When training neural safety certificates on counterexamples, their
zero-sublevel sets tend to shrink so that the inequality conditions can be more easily satisfied. Although
slight shrinkage is sometimes acceptable, severe shrinkage can be a serious problem because it results in

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:3

Fig. 1. Neural HJ reachability value function synthesis framework. Our framework consists of three stages: pre-training,
adversarial training, and verification-guided training. The circles of state space and dataset in pre-training and adversarial
training mean randomly sampling states from these sets, while in verification-guided training, the state space and output set
are in analytical form. Our three key techniques are highlighted in blue boxes, namely APA, BGB, and ESR. The three middle
figures show the synthesis results on a 2D task Double Integrator. The pre-trained feasible region is larger than the true
feasible region, indicating that it is invalid. After adversarial training and verification-guided training, the feasible region
becomes valid. Details of the experiment can be found in Section 5.

overly conservative control policies and poor control performance. We find in our experiments that, in
some cases, the feasible region shrinks so much that it even disappears.

e High computational complexity of verification. The computational complexity of neural network
verification algorithms typically grows exponentially with the input dimension, which equals the system’s
state dimension. As shown in our experiments, verifying a relatively small value network in a 4-dimensional
system can take more than 2 hours on a common computing platform.

The above analysis reveals a key challenge of synthesizing neural HJ reachability value functions: the trade-
off between scalability and verifiability. Traditional numerical methods based on state space discretization
ensure verifiability but sacrifice scalability. Neural HJ reachability methods scale well to high-dimensional
systems, but their synthesized networks are not verified. Recent verification-guided training methods provide a
promising way to synthesize verifiable neural safety certificates, but they again sacrifice scalability because of the
aforementioned three challenges. To achieve both scalability and verifiability, we propose a scalable framework
for synthesizing formally verified neural HJ reachability value functions, as shown in Figure 1. Our framework
consists of three stages: pre-training, adversarial training, and verification-guided training. Pre-training and
verification-guided training are widely used in existing neural safety certificate synthesis methods [37, 10, 2]. The
former aims to obtain a reasonable approximation of the value function, while the latter aims to fine-tune the
network on counterexamples until it becomes a valid safety certificate. However, directly performing verification
on a pre-trained value network is inefficient because a pre-trained network usually has a large number of

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:4 « Yang, Hu, Wei, Li & Liu

counterexamples, while only a single one can be found in each verification step. To improve fine-tuning efficiency,
we add an adversarial training stage between them, which searches and eliminates counterexamples in a batched
manner. Verification-guided training does not start until adversarial training can hardly find any counterexamples.
Although there are many advanced methods for neural network verification, e.g., &, S-CROWN [40, 36], we choose
a basic method: mixed integer linear programming (MILP) [34]. This is because most advanced methods are
designed for robust image classification problems, while we consider safety certificate synthesis problems, which
have much lower input dimensions and smaller neural networks. In such small-scale problems, those advanced
methods perform even worse than the basic MILP [36]. Note that this does not mean that our problem is simpler
than robust image classification; in some sense, our problem is even harder as we require certain properties to
hold in the entire input space instead of a small disturbance set. With our three-stage framework in place, the
next step is to find specific methods to solve the problem in each stage. Although there are many well-studied
methods for these three stages, we find that directly using state-of-the-art methods makes the framework quickly
fail as the problem dimension increases, because these methods cannot effectively solve the aforementioned
three challenges. To this end, we propose three techniques to improve the scalability of our framework, each
designed to address one of the three challenges. First, we find that counterexample search in adversarial training
is difficult because existing gradient-based search methods are inefficient in searching along the boundary of
feasible region. We propose a backtracking method that rotates the search direction towards the boundary to
accelerate counterexample search. Second, we exploit the fact that constraint-satisfying states that enter the
feasible region in one step are also feasible and penalize the value of these states in fine-tuning to alleviate the
shrinkage of feasible region. Third, we discover that the number of linear segments of the neural network greatly
affects the computational complexity of solving MILP. We design a regularization term for network pre-training
to reduce the number of linear segments and thus accelerate verification. Our main contributions are summarized
as follows.

e We propose a scalable framework for synthesizing formally verified neural HJ reachability value functions.
Our framework synthesizes neural value functions from coarse to fine with high efficiency through three
stages: pre-training, adversarial training, and verification-guided training. Pre-training approximates the
solution to an HJ equation by gradient descent on data samples and obtains a value network that is likely
to be invalid. Adversarial training searches counterexamples in a batched manner based on necessary and
sufficient conditions for feasible region and fine-tunes the value network to eliminate counterexamples.
Verification-guided training formulates the value network verification problem as an MILP and further
fine-tunes the network on counterexamples until it is verified.

o To accelerate counterexample search in adversarial training, we propose an algorithm called boundary-
guided backtracking (BGB) that efficiently searches along the boundary of feasible region. When approach-
ing the boundary, BGB rotates the search direction towards the tangent plane of the boundary so that
larger step sizes can be taken without stepping out of the feasible region.

o To alleviate feasible region shrinkage, we present entering state regularization (ESR) that adds a penalty
term to the loss function when fine-tuning the value network. ESR first identifies constraint-satisfying
states that enter the feasible region in one step and then encourages the values of these states to be negative
so that they are included in the feasible region.

o To accelerate MILP-based verification, we design a regularization method called activation pattern alignment
(APA) for pre-training of value network and dynamics network. APA reduces linear segments of a neural
network by penalizing the difference in the activation patterns of neighboring states while minimizing the
loss of network approximation ability.

e We provide a benchmark called Cersyve-9 for neural safety certificate synthesis and verification in safe
control problems, which supplements existing neural network verification benchmarks. Cersyve-9 contains

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:5

nine commonly used control tasks with various dimensions, including linear and nonlinear system dynamics
and safety constraints. Extensive experiments on Cersyve-9 demonstrate the effectiveness, scalability, and
efficiency of our synthesis framework. The code of our benchmark is available on GitHub!.

2 Related Works

In this section, we review existing works on the synthesis of neural HJ reachability value functions and the
verification of neural safety certificates.

2.1 Synthesis of Neural HJ Reachability Value Function

Traditional HJ reachability analysis computes the value function by numerically solving the HJ PDE on a
discretized grid of the state space. The computational complexity of this method grows exponentially with
state dimension, making it inapplicable to high-dimensional problems. To deal with this issue, researchers have
explored using neural networks to approximate the value function.

A straightforward method for learning a neural value function is to minimize the error between the two sides
of the HJ equation by gradient descent on state samples [14, 6]. However, this method is hard to converge because
the HJ equation does not yield a contraction mapping and thus does not satisfy the convergence conditions of
fixed point iteration. In practice, this method typically requires specific initialization of the value function or relies
on certain neural network architectures to converge to the correct solution. Fisac et al. [16] solve this problem by
introducing a discount factor into the value function, modifying the original maximum constraint formulation
of H]J reachability to a maximum discounted constraint formulation. Under the discounted formulation, the HJ
equation also changes to a discounted version, which yields a contraction mapping and enables convergence
of fixed point iteration with an arbitrary initialization. This makes temporal difference learning methods in
reinforcement learning (RL) applicable to computing the value function. Since then, the discounted value function
has been extensively used for neural HJ reachability analysis in safe control tasks, especially when combined with
RL algorithms. For example, Hsu et al. [20] consider reach-avoid problems and add goal information to the value
function proposed by Fisac et al. [16]. They derive a discounted reach-avoid Bellman backup and prove that their
reach-avoid Q-learning algorithm converges to an arbitrarily tight conservative approximation of the reach-avoid
set. Yu et al. [41] establish a self-consistency condition for computing the value function of a specific policy. They
use the value function as the objective function and constraint for shield and main policies, respectively. The
value function is also used for policy switching during training and safety shield during evaluation. He et al.
[18] applies the method proposed by Hsu et al. [20] to train a reach-avoid value function in a quadrupedal robot
locomotion task. Their value function controls the switch between an agile policy and a recovery policy, and also
guides the recovery policy as an objective function.

Despite these advancements, there is an inherent problem in approximating value function with neural
networks: the zero-sublevel set of the value network may not be a valid feasible region due to approximation
errors. Specifically, the zero-sublevel set may violate the two basic properties of a feasible region: constraint
satisfaction and forward invariance. This can be problematic when using these value networks for constructing
constraints in policy optimization or monitoring unsafe actions in safety filters. With these two properties
unsatisfied, even if the current state is inside the zero-sublevel set, the system may still run into a constraint-
violating state sometime in the future. This problem necessitates additional verification of the value network,
which is not addressed by existing works.

https://github.com/intelligent-control-lab/Cersyve.jl

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:6 « Yang, Hu, Wei, Li & Liu

2.2 Verification of Neural Safety Certificates

Safety certificates are real-valued functions of system state that are used to represent feasible regions and construct
constraints or safety filters of control policy. HJ reachability value function is a kind of safety certificate, and two
other representative examples are CBF and CLF. CBF and CLF are defined through certain inequality conditions
which, when strictly satisfied, ensure that the zero-sublevel sets of these safety certificates are feasible regions.
Similar to HJ reachability value function, CBF and CLF can also be represented by neural networks, and the
resulting neural CBF and CLF also face the problem of verification.

With the development of neural network verification tools [25], some recent studies have begun to formally
verify the inequality conditions of neural CBF and CLF. For example, Zhang et al. [43] first decompose a neural
CBF into piecewise linear segments and then solve a nonlinear program to verify the safety of each segment. To
deal with the non-differentiable ReLU activation function, they leverage a generalization of Nagumo’s theorem
to prove invariance of sets with non-smooth boundaries and derive necessary and sufficient conditions for
safety. While Zhang et al. [43] focus on verifying a given neural CBF, verification of neural safety certificates can
also be combined with their training process. This yields a verification-guided training scheme of neural safety
certificates, which iterates between a learner and a verifier. The learner updates the certificate on data samples to
enforce the satisfaction of safety properties. The verifier either verifies the certificate’s validity in the entire state
space or generates counterexamples and adds them to the dataset for further training. This iterative procedure
terminates when no counterexample is found by the verifier, in which case the neural safety certificate is formally
verified. This training scheme is widely used for synthesizing formally verified neural CBFs [32, 1, 12] and neural
CLFs [10, 2, 13]. To improve the efficiency of the verifier, Wang et al. [37] leverage the Branch-and-Bound scheme
to identify partitions of the state space that are not guaranteed to satisfy CBF conditions. Additional data from
these partitions are incorporated into the training dataset for further optimization. To accelerate neural CBF
training, some works exploit the Lipschitz continuity property of neural CBF and use robust training techniques
to ensure the satisfaction of CBF conditions [4, 33].

Despite these exploratory works, challenges remain in scaling verifiable neural safety certificate synthesis
methods to high-dimensional problems. Most existing methods only apply to control systems with less than
four state dimensions [2, 37, 33] or special systems with four to eight dimensions whose state consists of the
derivatives of the same variable, and the dynamics is described by a single scalar ordinary differential equation
[32, 1]. Chang et al. [10] and Dai et al. [13] synthesize verified neural Lyapunov functions on six-dimensional
humanoid and quadrotor systems respectively, but their training takes hours, and the obtained feasible regions
are small, which may result in overly conservative control policies. Through our study, we discover three main
challenges that restrict the scalability of these methods: 1) difficulty of searching and eliminating counterexamples,
2) severe shrinkage of feasible region, and 3) high computational complexity of verification. We propose three
techniques to mitigate these three challenges respectively, and they together significantly improve the scalability
of our synthesis framework.

3 Preliminaries
This section introduces some basic concepts in safe control, H] reachability analysis, and neural network verifica-

tion, and formalizes the neural HJ reachability synthesis problem.

3.1 State Constraint and Feasible Region

Consider a discrete-time deterministic control system:

Xt+1 = f(xn u), (1)

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:7

where x € X is the state, u € U is the control input, f is the system dynamics, and t € N is the time step. A
control policy maps a state to a control input, i.e., 7 : X — U. The closed-loop dynamics under control policy
is denoted as f;(x) = f(x, m(x)). Safety constraint of the system is specified by:

h(x;) < 0,Vt € N, (2

where h is the constraint function and the inequalities (2) are called state constraints. Before implementing
a control policy, it is necessary to identify the states where the closed-loop system always satisfies the state
constraints. Such states constitute the feasible region of the policy, which is defined as follows.

DEFINITION 1 (FEASIBLE REGION). A feasible region of policy n, denoted as X™, is a subset of the state space X
such thatVx € X7, h(x;) < 0,t € N, where xog = x and X411 = fr(x;).

From the above definition, we can derive a set of necessary and sufficient conditions for feasible region:
constraint satisfaction and forward invariance.

THEOREM 1 (NECESSARY AND SUFFICIENT CONDITIONS FOR FEASIBLE REGION). X” is a feasible region of & if and
only if

(1) (Constraint satisfaction) Vx € X", h(x) < 0.

(2) (Forward invariance) Vx € X", f;(x) € X”".

The proof of Theorem 1 follows directly from Definition 1 and is omitted here. Constraint satisfaction means
all states in a feasible region satisfy the state constraint at the current time step. Forward invariance means that
for any state in the feasible region, its next state under the closed-loop dynamics still lies in this region. These
two conditions are useful for determining and identifying feasible regions because they only involve a single-step
state transition instead of infinite steps as Definition 1. They are also used as the conditions for verifying neural
HJ reachability value functions in this paper.

3.2 Hamilton-Jacobi Reachability Analysis

Hamilton-Jacobi (H]J) reachability analysis identifies the feasible region of a control system with state constraints
by computing a value function. In a closed-loop system under a given control policy, the value function is defined
as the maximum value of the constraint function in a trajectory sampled by the policy.

DEFINITION 2 (H] REACHABILITY VALUE FUNCTION). The HY reachability value function of control policy r is
defined as
V7*(x) = maxh(x;), ®3)
teN

where xg = x and x;11 = fr(x;).
A desirable property of the value function is that its zero-sublevel set is a feasible region.
THEOREM 2. The zero-sublevel set of V™, denoted as Xy~ = {x € X|V”"(x) < 0}, is a feasible region of 7.

ProOF. We prove that Xy satisfies the two conditions in Theorem 1. Vx € Xy, we have h(x) < max;en h(x;) =
V7(x) < 0. Thus, Xy~ satisfies constraint satisfaction. Vx € Xyr, we have V7 (f;(x)) = max;>1 h(x;) <
max;en h(x;) = V7(x) < 0. Thus, Xy~ satisfies forward invariance. Therefore, Xy is a feasible region of 7. O

Theorem 2 makes the value function useful for representing feasible regions and synthesizing safe controllers.
For example, with a possibly unsafe nominal policy and a safe backup policy 7, one can determine whether the
nominal policy will lead to a possibly unsafe state by checking if the next state is in Xy~. Specifically, if the next
state is in Xy, it is safe as 7 can keep the state always in Xy~ If the next state is not in Xy, it is possibly unsafe
as 7 has no safety guarantee outside Xy, and we should replace the nominal policy with 7 to compute a safe

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:8 « Yang, Hu, Wei, Li & Liu

action. This zero-sublevel set property is one of the most fundamental properties of safety certificates. In addition
to HJ reachability value function, other safety certificates, such as CBF and CLF, also have similar properties.

In a stochastic control system, the HJ reachability value function satisfies an HJ PDE [5]. In a deterministic
closed-loop system, the minimum and maximum operators on control inputs and disturbances in the HJ PDE can
be omitted, resulting in a simplified equation called the risky self-consistency condition.

THEOREM 3 (RISKY SELF-CONSISTENCY CONDITION). Let V™ be the value function of &, Vx € X, we have
V7 (x) = max{h(x), V" (fz(x))}. (4)

The risky self-consistency condition is a recursive relationship between the values of the previous and
subsequent states. In RL, the value function of reward also has a similar self-consistency condition. Here, the
name “risky” distinguishes the HJ reachability value function from the reward value function, reflecting the
former’s relationship to safety constraints. With the risky self-consistency condition, we can compute the value
function by solving Equation (4). However, this equation does not have an analytical solution in most cases, and
traditional numerical methods based on state space discretization cannot scale to high-dimensional systems. This
necessitates using a neural network to represent the value function and approximate the solution to Equation (4).

3.3 Synthesizing Neural HJ Reachability Value Function

A straightforward method for fitting a neural network to the solution to Equation (4) is to minimize the error
between the two sides of the equation. However, this method is hard to converge because Equation (4) does not
yield a contraction mapping. To create a contraction mapping, Fisac et al. [16] modify the risky self-consistency
condition to a discounted version:

V7(x) = (1 = y)h(x) +y max{h(x), V7 (fz (x))}, ®)

where y € (0, 1) is a discounted factor. They prove that Equation (5) induces a contraction mapping on the value
function space under the infinity norm [16]. This ensures that a fixed point iteration converges to the unique
solution to Equation (5), which is a discounted version of the value function. As the discount factor y approaches
one, the solution to (5) approaches that of (4), which is the original value function.

Suppose we use a feedforward neural network V' to represent the value function, where 6 is the network
parameters. To approximate the solution to Equation (5), we minimize the mean squared error (MSE) between
the two sides of the equation:

N
Lrsc(6) = % D VFED) = (1= (D) + y max{h(x D), V(£ (D)D), (©)
i=1

where the subscript “RSC" stands for risky self-consistency condition, N is the number of state samples, and x(*)
stands for the i-th state sample. In practice, the states are uniformly sampled from the state space. However, a
problem with this method is that the obtained value network may not be a valid safety certificate. Specifically,
the zero-sublevel set of V', denoted as Xy, may not strictly satisfy the necessary and sufficient conditions for
a feasible region given in Theorem 1. The cause for this invalidity is two-fold: 1) approximation errors of V'
make it not exactly the solution to (5), and 2) when the discount factor y is less than one, the zero-sublevel set
of the solution to the discounted self-consistency condition (5) is an over-approximation of that of the solution
to the original self-consistency condition (4) [3]. Since the zero-sublevel set of the solution to (4) is already the
maximum feasible region of 7, any of its over-approximations is not a valid feasible region. This invalidity may
lead to unsafe behaviors when using V' for synthesizing control policies. To address this issue, this paper aims
to synthesize neural HJ reachability value functions with verified zero-sublevel sets.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:9

PrROBLEM 1. Given a control system (1) and a control policy r, synthesize a neural HJ reachability value function
V', such that its zero-sublevel set is a verified feasible region of , i.e., it strictly satisfies the conditions of constraint
satisfaction

Vx € X,V (x) 0= h(x) <0, (7)
and forward invariance
Vx € X, V] (x) 0= V] (fr(x)) 0. (8)

Note that the constraint satisfaction and forward invariance conditions only ensure that the zero-sublevel set
of VT is a feasible region but do not ensure that V7 is an exact solution to (4). In fact, they are only necessary
conditions for V7 to be an exact solution. We choose to verify these two conditions because exact verification of
(4), which is an equation involving a neural network, is almost impossible due to neural network approximation
errors. In addition, since any safety certificate represents a feasible region by its level set, these two conditions
can also be used to verify other safety certificates, such as CBF and CLF, with minor modifications.

3.4 Verifying Neural Network via Mixed Integer Linear Programming

Verification of a neural network is to check whether the network’s output lies in a specific output set for all
inputs in a given input set [25]. Mathematically, let X be the input set, Y be the output set, and NN(-) be the
neural network. A verification problem requires to check whether the following assertion holds:

Vx € X,y =NN(x) € Y. 9)

In this paper, we consider the case where NN(+) is a feedforward neural network with ReLU activation functions.
In this case, NN(+) is a piecewise linear function, and the equality y = NN(x) can be encoded as a set of linear and
integer constraints [34]. Moreover, if the input set X and the complement of the output set M/ can be expressed
by a finite number of linear constraints, e.g., X and the complement of Y are polytopes, assertion (9) can be
checked by solving a mixed integer linear programming (MILP):

findx, stxeX,y¢V,y=NN(x). (10)

Problem (10) tries to find a counterexample in the input set such that the corresponding output of the neural
network is not in the output set. If the problem is feasible, the property to verify is violated and a counterexample
is found. If the problem is infeasible, the property holds. Note that problem (10) is a feasibility problem, i.e., an
optimization problem without an objective function. It is also possible to include an objective function in (10),
with common examples like maximum violation and minimum disturbance [25]. In this paper, since we only
focus on whether the property holds or not and have no preference for counterexamples, we omit the objective
function to simplify the problem.

4 Method

This section formally introduces our neural HJ reachability value function synthesis framework. We first provide
an overview of our synthesis framework and then detail three key techniques that significantly improve its
scalability.

4.1 Overview

Our framework consists of three stages: pre-training, adversarial training, and verification-guided training.
Pre-training learns a value network without verification, which probably violates the feasible region conditions.
Adversarial training efficiently searches for counterexamples and eliminates most of them by fine-tuning the
network. Verification-guided training finds remaining counterexamples by solving the MILP and further fine-
tunes the network until the feasible region conditions are verified. Pre-training is performed first and is separate

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:10 « Yang, Hu, Wei, Li & Liu

from the other two stages. Adversarial training is performed next, and if no counterexamples are found in a
certain number of iterations, verification-guided training starts. If a counterexample is found, we return to
adversarial training until the next time verification-guided training is triggered. This process is repeated until
verification succeeds, at which point we have synthesized a valid neural value function. Compared with most
existing neural safety certificate synthesis methods that include pre-training and verification-guided training
[37, 10, 2], our framework adds an adversarial training stage between them. This is because a pre-trained value
network usually has a large number of counterexamples, while only a single one can be found in each verification
step, making verification-guided training inefficient. In contrast, adversarial training searches counterexamples
in a batched manner, making the search much less expensive than that in verification-guided training in terms of
computation. First using adversarial training to reduce counterexamples to a small number and then performing
verification-guided training greatly improves fine-tuning efficiency.
In pre-training, we learn a value network by minimizing the following loss function.

Lpre(8) = Lrsc(6) + Lapa(0), (11)

where Lapa (0) is a regularization term computed by activation pattern alignment (APA), which reduces the
number of linear segments of a neural network to accelerate verification. This technique will be detailed in
Section 4.2. The pre-trained value network is not verified and may violate the feasible region conditions. We
fine-tune the network in the next two stages to make its zero-sublevel set a verified feasible region.

In adversarial training, we first search for counterexamples, i.e., states that violate the feasible region conditions.
For simplicity of narration, we call the counterexamples of the constraint satisfaction condition the constraint
counterexamples and those of the forward invariance condition the invariance counterexamples. To find these two
kinds of counterexamples, we solve two corresponding optimization problems. The optimization problem for
finding constraint counterexamples is

max h(x), st V] (x) <0, (12)
xeX

and that for finding invariance counterexamples is

max Vi (fr(x), st Vj(x)<0. (13)

If the optimal value of (12) is greater than zero, the solution is a constraint counterexample. Similarly, if the
optimal value of (13) is greater than zero, the solution is an invariance counterexample. Generally, problem
(12) and (13) are non-convex in both their objective functions and constraints and are thus difficult to solve.
However, to find counterexamples, we do not need to solve them exactly but only need to find feasible points
with positive objective functions, i.e., h(x) > 0 and V7 (x) < 0 for constraint counterexamples and V7 (fz(x)) > 0
and V' (x) < 0 for invariance counterexamples. To achieve this goal efficiently, we propose a gradient-based
search method called boundary-guided backtracking (BGB), which will be detailed in Section 4.3.

After obtaining counterexamples, we store them in a dataset for fine-tuning the value network. In each iteration,
we randomly sample the two kinds of counterexamples from the dataset and minimize their corresponding loss
functions computed according to the feasible region conditions. The loss function for constraint counterexamples

1S

1 Neon

Leon(0) = ~VF (xiah). (14)
con on ; 2] CO.
and that for invariance counterexamples is
1 MHV
- (1) (@)
Line(6) = 57— Z V7 (i) = Vi (i) (15)

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H] Reachability « 19:11

where Non and Njy are the numbers of constraint and invariance counterexamples respectively, and xc(:,i1 and
xi(;\)] stands for the i-th constraint counterexample and invariance counterexample, respectively. We discover in
our experiments that directly minimizing these two loss functions will result in severe shrinkage of the value
network’s zero-sublevel set. A possible reason for the shrinkage is that minimizing (15) only decreases the
difference between the values of the next state and the current state, but their respective values may increase
instead. To mitigate this problem, we include an additional regularization term in the loss function of adversarial

training:
Ladv(g) = Lcon(g) + Linv(g) + LESR(G)’ (16)

where Lggr(0) is computed using entering state regularization (ESR), which will be detailed in Section 4.4.

In verification-guided training, we use mixed integer linear programming (MILP) to verify the feasible region
conditions or find counterexamples. If the conditions are verified, we obtain a valid neural value function, and
the algorithm ends. If counterexamples are found, we add them to the dataset for further fine-tuning. The core
problem is how to formulate the verification of the feasible region conditions as MILPs. In a standard verification
problem (9), there is only one function NN(+), while in our problem, verification of each condition involves two
functions, and their corresponding inequalities have an implication relationship. To deal with this problem, we
first concatenate the two functions into a single function with two outputs:

Vr ()

Mcon(x) = [h(x) (17)

5 Minv(x) = [VHH(X) } .

VE(fr())

With this concatenation, the feasible region conditions can be naturally expressed by restricting the output of the
concatenated function in the complement of the second quadrant in a two-dimensional space. Take the constraint
satisfaction condition as an example, “V,7(x) < 0 = h(x) < 0" means the output of Mco, should not be in the
second quadrant. Thus, we can define an output set whose complement is the second quadrant so that the output
constraint “y ¢ Y" can be expressed by linear inequality constraints. Therefore, verification of the constraint
satisfaction condition can be formulated as

findx, s.t.xeX,y=Mcn(x),y1 <0,y2 >0, (18)

where y; stands for the i-th element of y. Here, we assume that the state space X is a hyperrectangle, which
is true in most cases. Then, constraint x € X in problem (18) can be expressed by linear inequalities. Now, as
long as Mcon is piecewise linear, problem (18) is an MILP. Since Vér is a piecewise linear neural network, Mcop is
piecewise linear when the constraint function h is piecewise linear. Here, we assume that h is piecewise linear,
and the nonlinear case will be left for future work®. Verification of the forward invariance condition can be
similarly formulated as

findx, s.t.xeX,y=M(x),y; <0,y >0. (19)
If the dynamics f and the policy 7 are both piecewise linear functions, Mi,y is piecewise linear. Similar to h,

we assume that f and 7 are piecewise linear, and the nonlinear case will be left for future work. To show how
problems (18) and (19) can be encoded as MILPs, we explicitly write them in a unified standard form of MILP as

20ne possible solution is to approximate a nonlinear k using piecewise linear functions, e.g., Taylor model.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:12 « Yang, Hu, Wei, Li & Liu

follows. Here, we view Mo, and My,y as a single feedforward neural network with ReLU activation functions.

find x (20a)
st. X <x <X (20b)
Zy = X, (20c)

2 =Wizj_1+bj, j=1,...,1, (20d)

if [p>02z0=20 j=1..,0-1, k=1,...,d, (20e)

if 4 <0, zjx =0, (20f)
otherwise, zjx < Zj, (20g)

Zjk 20, (20h)

Zik < 2jg = L1 = 8j0). 8y, € {0.1}, (20i)

Zjk < ﬁj,k5j,k, (20j)

zZ1=y, (20k)

y; <0, yp >0, (201)

where X; and X,, are lower and upper bounds of X, the inequality signs in (20b) represent element-wise compar-
isons, Z; and z; are the j-th layers of the neural network Mo, or My, before and after activation, Z;; and z; x
are the k-th elements in the i-th layers, I ik and di; ;. are the lower and upper pre-activation bounds, §;x is the
binary variable for activation status. Equations (20e) to (20j) are encodings of ReLU, which follow the method
proposed by Tjeng et al. [34]. The pre-activation bounds [ik and 4, can be computed by any reachability-based
verification method [25], and we use CROWN [42] in this paper.

Precisely speaking, the output constraint y, > 0 in (18) and (19) should be a strict one, i.e., y; > 0, according
to the feasible region conditions. However, this would make the two problems no longer standard MILPs and
thus difficult to solve. Here, we relax the strict constraint to a non-strict one to maintain MILP formulations
at a slight expense of completeness: the solutions to (18) and (19) are not counterexamples when y; < 0 and
y2 > 0 simultaneously hold with equality. Fortunately, this problem is minor in practice because the situation
where these two equalities simultaneously hold is rare: it can only happen on the boundary of a feasible region.
In most cases, such a situation can be avoided by slightly shrinking the feasible region through fine-tuning.
Moreover, when solving (18) and (19) with numerical optimizers, such as Gurobi, there are likely to be numerical
errors in the inequality constraints, i.e., the constraints are violated by a small amount within a certain tolerance.
Therefore, even without relaxation, y, has to be strictly less than zero with some margin so that the optimizer
can consider the constraint y, > 0 unsatisfiable and conclude that the problem is infeasible.

In summary, our framework synthesizes a verified neural HJ reachability value function in three stages by
solving four subproblems of problem (1), which are defined as follows.

SuBPROBLEM 1 (PRE-TRAINING). Train a value network V¥ by minimizing loss function (11).

SuBPROBLEM 2 (COUNTEREXAMPLE SEARCH). Find constraint counterexamples and invariance counterexamples of
a value network V[by solving problem (12) and (13), respectively.

SuBPROBLEM 3 (FINE-TUNING). Fine-tune a value network V' by minimizing loss function (16) on counterexamples
found by solving subproblems 2 or 4.

SUBPROBLEM 4 (VERIFICATION). Verify constraint satisfaction condition and forward invariance condition of a
value network Vi© by solving problem (18) and (19), respectively. If both problems are infeasible, return the verified
V,r. If either problem is feasible, return the found counterexamples.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H) Reachability « 19:13

Subproblem 1 is first solved in the pre-training stage. Then, subproblem 2 and 3 are iteratively solved in the
adversarial training stage until no counterexample is found from subproblem 2. Next, subproblem 4 is solved in
the verification-guided training stage. When counterexamples are found from subproblem 4, they will still be
used to solve subproblem 3, and the algorithm returns to the adversarial training stage. This process is repeated
until subproblem 4 returns a verified value function.

As mentioned above, we propose three techniques to address the three challenges of improving the scalability
of neural value function synthesis and verification. The three techniques correspond to solving subproblems 1, 2,
and 3, respectively. The following three subsections provide a detailed introduction to each technique.

4.2 Activation Pattern Alignment

A major difficulty in scaling our proposed framework is the high computational complexity of MILP-based
verification. Our experiment shows that verifying a relatively small value network in a four-dimensional system
can take more than 2 hours on a common computing platform. To alleviate this problem, we first analyze the
reason for such a high computational complexity through the solving mechanism of MILPs. For a neural network
with ReLU activation functions, each ReLU unit can be either active or inactive. To handle a neural network
constraint, a binary variable is introduced for each ReLU unit to model its activation status, i.e., zero represents
an inactive unit, and one represents an active unit, as shown in (20i) and (20j). With these binary variables, MILP
problems are solved using a branch-and-bound algorithm. The branching step divides the problem into smaller
sub-problems by fixing the values of some binary variables. The bounding step estimates the lower and upper
bounds of the objective function in the sub-problems. The computational complexity of the branch-and-bound
algorithm is mainly determined by the number of branches to explore, which relies on the number of possible
combinations of the binary variable values. Since each binary variable corresponds to a ReLU unit, we can also
say that the computational complexity relies on the number of possible activation patterns of the neural network.
Each activation pattern corresponds to a linear segment of the neural network. These linear segments divide
the input set into different regions, in each of which the neural network is a linear function. Since the number
of linear segments largely determines the computational complexity of solving MILPs, we aim to reduce it to
accelerate verification.

For a neural network with a given structure, its number of linear segments can vary greatly depending on
the network parameter values. For a neural network with N ReLU units, there is at least one linear segment
and at most 2V linear segments in a given input set. To reduce the number of linear segments, we introduce a
regularization method called activation pattern alignment (APA) when solving subproblem 1 in pre-training.
Suppose we are updating the value network on a batch of states {x(?) }fi ,- APA first adds a Gaussian noise to
each state and obtains a disturbed counterpart of the state:

£ = x4 g0 (21)
where £ ~ N (0, 5%). Then, APA computes the following regularization term and adds it to the pre-training loss
function (11).

N I-1 4, ind £ (x®DY . £ (50
1 min{f (x'") - f/(x'"),0}
Lapa(0) = aAPA Y Z Z Z : k VT k YPTr , (22)
min{dropgrad(f/(x®) - f/ (1)), -}

i=1 j=1 k=1

where aapa > 0 is a coefficient, [is the number of network layers, d; is the number of neurons in the j-th layer, ﬁcj
is the value of the k-th neuron in the j-th layer before activation, and € is a small constant for numerical stability.
This regularization term encourages states that are close to each other to have similar activation patterns. It
takes effect when the activation patterns of x(?) and its disturbed counterpart ¥(*) are different. In this case,
the multiplication of their pre-activation values in the numerator is penalized and driven towards a positive
value so that their activation patterns become the same. The last layer of the neural network is excluded when

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:14 « Yang, Hu, Wei, Li & Liu

computing Lapa because it does not have a ReLU activation function and thus does not influence the number of
linear segments. The denominator of Lypa does not have a gradient with respect to network parameters 6 and
only serves as a normalization term.

Reducing the number of linear segments essentially reduces the nonlinearity of a neural network. From this
perspective, other neural network regularization methods may also achieve this goal. A widely used regularization
method is weight decay, which incorporates an L2 regularization on the network parameters into the optimization
process. Another method is the signal-to-noise ratio (SNR) loss proposed by Wei et al. [38], which is designed to
reduce the variance and improve the stability of ReLU units to mitigate performance degradation in certified
training. Compared with these methods, APA most effectively reduces linear segments while retaining the
network approximation ability to the greatest extent, as shown in Section 5.4.1. This is because APA only takes
effect when activation patterns of neighboring states are different and does not affect the specific pre-activation
values when they have the same sign.

4.3 Boundary-Guided Backtracking

In subproblem 2, we solve two constrained optimization problems (12) and (13) to find counterexamples of the
feasible region conditions. Compared with a standard adversarial training problem [17], these two problems not
only have a boundary constraint on the optimization variable but also have a non-convex constraint given by
the zero-sublevel set of the value network. This zero-sublevel set constraint makes these two problems difficult
to solve because most existing adversarial training methods, such as the fast gradient sign method [17] and
projected gradient descent (PGD) method [27], cannot directly handle such non-convex constraints.

A straightforward method for handling the zero-sublevel set constraint is to perform a backtracking line search
in each PGD iteration, resulting in PGD with backtracking (PGD-B). Specifically, we start the search from an
initial state x(o) randomly sampled in the zero-sublevel set. In each iteration, we perform a backtracking line
search along the gradient of the objective function, followed by a projection operation until the resulting state is
in the zero-sublevel set:

X(k+1) = Ix (X(k) + 177 Gobj, (k) (23)

where IIx is the projection operator on X, n € (0,1) is a constant, s € N is the smallest number such that
vy (x(k+1)) < 0, and gopj,(x) is the unit vector of the gradient of the objective function. Take problem (12) as an
example,

V.h(x)

(k) = 20| 24
9ob3.0) = G R Tz bevce @

The problem with PGD-B is that the search becomes very inefficient when approaching the boundary of the
zero-sublevel set. This is because the gradient of the objective function becomes almost vertical to the boundary,
i.e., in the same direction as the gradient of the constraint function. This is obvious for problem (13) because the
gradients of V,J(fz(x)) and V;J (x) are very similar as long as the time step of the system is not very large. For
problem (12), this phenomenon occurs when the boundary of the zero-sublevel set overlaps or is very close to
that of the constrained set. When the gradient becomes vertical to the boundary, the backtracking line search will
end up in very small step sizes or even stop to avoid stepping out of the zero-sublevel set, as shown in Figure 2(a).
It seems to be a minor problem since the counterexamples we are searching for are also located near the boundary
of the zero-sublevel set; otherwise, the state cannot leave the zero-sublevel set or violate the constraint in one
step unless it is already very close to the boundary. However, practically, PGD-B would get stuck somewhere
not exactly at a counterexample because the initial state is randomly chosen and counterexamples are sparsely
distributed. In this case, even if close to a counterexample, PGD-B may never find it because PGD-B can only
search towards the boundary but not along it.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:15

(a) PGD-B (b) BGB

Fig. 2. Search steps of PGD-B and BGB. The black dot represents the current position of the search, and the orange dots
represent possible counterexamples. (a) PGD-B always searches along the gradient of the objective function and gets stuck
near the boundary of the feasible region. (b) BGB rotates the search direction towards the tangent plane of the boundary
and effectively search along the boundary, thus finding counterexamples more efficiently.

To solve the problem of PGD-B, we propose a boundary-guided backtracking (BGB) method that can efficiently
search counterexamples along the boundary. This is achieved by rotating the line search direction towards the
tangent plane of the boundary when approaching it. Specifically, instead of performing the line search along
Jobj,(k)» BGB computes the search direction as a weighted sum of gqj, () and another unit vector b(), as shown
in Figure 2(b). b is perpendicular to gop; (), coplanar with both ggp; (k) and geon, (k) and makes an obtuse angle
with geon, (k), Where geon (k) is the unit vector of the gradient of the constraint function, i.e.,

V.V (x)

YGRRT Tz 7N . (25)
Feon () =W,V Gl b=
Then, b(x) is computed as
I;(k) A
by = — s by = (Gobj,(k) * eon, (k))obj, (k) — Geon, (k) - (26)
15k ll2

BGB line search is performed as

X(k+1) = Ox (x k) + 17 (MaGobi, (k) + (1 = 12)b(x))), (27)

where n;, 5, € (0, 1) are backtracking discounts for step size and search direction, respectively. The key of BGB is
the unit vector b(x), which determines the changing range of search direction. We set b(x) vertical to gqp; (k) to
ensure that the search direction always makes a sharp angle with gop; (x) so that the objective function is always
increased. The reason for setting bx) coplanar with both g, (x) and geon, (k) is that this is the quickest way to
rotate the search direction from gop; (1) to the tangent plane of the boundary. Vector b(x) should make an obtuse
angle with gcon, (k) because this is the direction where the constraint function decreases. Compared with a standard
backtracking line search, BGB not only decreases the step size but also rotates the search direction towards the
boundary in each iteration. Altering the search direction away from the gradient may seem counterintuitive
since it slows the convergence of objective function in an unconstrained case. However, it turns out to be more
efficient when constraint exists because of a significant reduction in the number of backtracking steps. While

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:16 + Yang, Hu, Wei, Li & Liu

(@) RSR (b) ESR

Fig. 3. Regularized states of RSR and ESR. (a) The darker blue dots represent regularized states and the lighter ones are their
next states. The regularized states are randomly sampled in the state space and may be infeasible. (b) The darker red dots
represent regularized states and the lighter ones are their next states. The regularized states are entering states and must be
feasible.

the theoretical convergence speed of BGB requires further analysis, our experiments show that in practice, it
effectively avoids getting stuck near the boundary and enables efficient search along the boundary. This ability
greatly improves the efficiency of finding counterexamples and accelerates adversarial training, as evident in
Section 5.4.2.

4.4 Entering State Regularization

We discover in our experiments that when fine-tuning the value network in subproblem 3, directly minimizing
loss functions (14) and (15) on counterexamples will result in severe shrinkage of the zero-sublevel set. Similar
phenomena are also observed in other works on safety certificate synthesis [10, 26]. These works deal with this
problem by adding a regularization term that minimizes the output of the value network on randomly sampled
states, as shown in Figure 3(a). This method is called random state regularization (RSR), and the mathematical
formula of its regularization term is
1 Nind)
Lrsr(0) = arsr N Z vy (xr(:lzi), (28)

i=1

where agsg is a coefficient, xr(‘ifi is the i-th state uniformly sampled from the state space, and Nyq is the number
of sampled states. The problem with RSR is that it may cause some infeasible states to be mistakenly included in
the zero-sublevel set, resulting in violations of the feasible region conditions. To avoid this problem, we only
regularize states that do not compromise the satisfaction of feasible region conditions when included in the
zero-sublevel set. According to the definition of a feasible region, we can derive the following theorem, which

provides a method for expanding a feasible region.

THEOREM 4 (FEASIBLE REGION EXPANSION). Let X" be a feasible region of m. Vx € X \ X", if h(x) < 0 and
fr(x) € X7, X" U {x} is also a feasible region of r.

Theorem 4 tells us that if a state outside the feasible region satisfies the state constraint and enters the feasible
region in one step, it can be included in the feasible region. Such states are called entering states. The core idea
of our regularization method, called entering state regularization (ESR), is to include entering states into the

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:17

zero-sublevel set of the value network, as shown in Figure 3(b). In model predictive control, there is a concept
similar to entering state called precursor set, which is defined as the set of all states whose next state is in
the current set [7]. The precursor set is used for computing the maximal control invariant set: start from the
whole state space as the initial set and iteratively intersect the current set with its precursor set, the resulting
set gradually shrinks and converges to the maximal control invariant set. Our entering states are those in the
precursor set but not in the current set, and they are used for enlarging a feasible region instead of shrinking it.
To perform ESR, we first randomly sample some states in the state space in each iteration and then filter out
entering states that satisfy:

h(x) < =6, V' (x) > 0, VJ'(fz(x)) < =6, (29)

where § is a small positive constant. The purpose of introducing this constant is to avoid the undesirable influence
of the regularization on nearby states. Specifically, due to the generalization ability of neural networks, when
including an entering state into the zero-sublevel set, some of its nearby states may also be included. These nearby
states may not be entering states and may cause violation of the feasible region conditions. By introducing &, we
set a margin of entering states to the boundary of the constrained set and the zero-sublevel set, thus decreasing
the probability of mistaken inclusion. Using the filtered entering states, we compute the following regularization
term and add it to the value loss function.
| New .
Lesr (0) = agsr N Z 74 (xe(;l , (30)

i=1

where agsg is a coefficient, Nyt is the number of entering states, and xe(rll)t stands for the i-th entering state.
Minimizing (30) will decrease the values of entering states until they become negative, in which case they are
included in the zero-sublevel set and will no longer be identified as entering states. It is worth mentioning that
the states filtered out by (29) are not necessarily feasible because the value network has not been verified yet. For
example, it is possible that the next state f;(x), which is currently in the zero-sublevel set, is excluded from the
set in later iterations, making the current state x also infeasible. Therefore, this regularization method may also
cause mistaken inclusion of infeasible states. However, our method is based on the fact that the value network
is pre-trained, which ensures that the zero-sublevel set does not deviate much from the feasible region. This
greatly decreases the probability of including infeasible states. Moreover, since the zero-sublevel set usually
shrinks during fine-tuning and soon becomes smaller than the feasible region, the filtered entering states are
feasible in most cases. Compared with ESR, existing regularization methods are more harmful to the feasible
region conditions because they use randomly sampled states for regularization, which are more likely to include
infeasible states.

4.5 Analysis of Proposed Framework

In this subsection, we analyze some important properties and assumptions of our proposed value function
synthesis framework. First, we study the soundness and completeness of the verification in our framework. In
our problem, soundness means that when MILP (18) is infeasible, the constraint satisfaction condition (7) actually
holds, and when MILP (19) is infeasible, the forward invariance condition (8) actually holds. Completeness means
that when either of the two problems is feasible, its corresponding condition is actually violated. According to
the derivation of MILPs (18) and (19), except for the strictness of their output constraints, their infeasibilities are
equivalent to the satisfaction of conditions (7) and (8), respectively. Therefore, our method is sound and complete,
but its implementation is subject to floating point error induced incompleteness, as discussed in Section 4.1.
Second, we discuss the assumptions made by our framework. We assume the availability of an accurate dynamic
model. Although the model can be represented by a neural network, we do not consider its approximation error.
However, it is worth mentioning that this paper focuses on establishing the first method to obtain verifiable

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:18 « Yang, Hu, Wei, Li & Liu

neural value functions for HJ reachability analysis. We choose to use the perfect model to study the synthesis and
verification approach. The model assumptions could be relaxed to account for uncertainties, disturbances, and
unmodeled dynamics. Specifically, we can introduce an additive term with bounded norm to the known dynamic
model:

feouw) = feeu) + Af, IAfII ST, (31)
where f is the true dynamic model, f is the known part, and Af is the unmodeled part with norm bounded
by { € R*. When formulating the forward invariance verification problem, Af can be encoded as a variable
optimized together with the state to find counterexamples:

find x,Af (32a)

st. xe X, |Af]l <¢, (32b)
Vg (x)

=M () = [v; (o) + Af)] ’ (320

Y1 <0,z > 0. (32d)

To keep the problem still an MILP, we can choose the L1 norm or infinity norm, which can be expressed by
linear equalities. If this problem is infeasible, it is guaranteed that the forward invariance condition is satisfied
under any possible uncertainty. This robust version problem formulation can also be used for verifying systems
with stochastic dynamics. However, detailed studies, e.g., how good the proposed framework will perform in
these situations with non-perfect models, will be left for future work. Besides a known deterministic model, our
framework also requires a fixed control policy, i.e., we only verify the feasible region under a fixed policy. For the
optimal policy, the verification of the forward invariance condition becomes a max-min problem where the inner
minimization considers the best-case control input. The minimization can be approximated by a Taylor model
with bounded remainders as proposed by Hu et al. [21]. For time-varying or adaptive controllers, verifying a fixed
forward invariance condition is no longer sufficient since the state transition dynamics are changing. A possible
solution is to bound the controller’s output on each state and verify the condition under all possible outputs. In
addition, we only consider the ReLU activation function in this work because it is piecewise linear, allowing us to
formulate the verification problem as an MILP. While other smooth activation functions or architectures might
improve network approximation ability, they introduce nonlinearities that break the MILP formulation. For such
cases, other verification methods, e.g., @, f~-CROWN, can also be employed and integrated into our framework,
although at the cost of increased computational overhead or loss of verification completeness.

Third, we study the relationship between the zero-sublevel set of a verified V', denoted as XVér, and the feasible
region of 7. Since a verified V] satisfies conditions (7) and (8), which are necessary and sufficient conditions for
a feasible region, Xy is a feasible region of 7. Since the feasible region satisfying conditions (7) and (8) is not
unique, Xy may not be the maximum feasible region of 7 but only an under-approximation of it. Nevertheless,
being a feasible region of 7, Xy already guarantees that trajectories starting from inside it and sampled under
m are safe in the long term. This enables us to use V' and r to construct a safety filter in which V[is a safety
monitor and 7 is a backup policy [19]. Specifically, starting from inside Xy, the safety filter checks in each
step whether the next state after applying some nominal action is still in Xy . If this is true, the nominal action
is applied. Otherwise, the nominal action is replaced by the action computed by 7, which ensures by forward
invariance condition that the next state is still in Xyr. This safety filter can ensure strict long-term constraint
satisfaction for an arbitrary policy.

Last, we discuss the stability of our training loop, i.e., whether it is guaranteed to find a verified value function
and under what conditions it will fail. Although our framework successfully synthesizes verified value functions
on various tasks in our experiments (See Section 5), such success is not guaranteed. In some cases, the training

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H) Reachability « 19:19

loop may not be able to find a verified value function with a non-trivial zero-sublevel set, even if such a true
value function exists. The reasons for the failure of synthesis are multiple, and we list four main potential failure
modes as follows.

(1) Instability of adversarial training. There are always counterexamples found in adversarial training, and
they cannot be eliminated. As a result, verification cannot start before the maximum number of iterations
is exceeded. This may be because the counterexample search is too inefficient, or catastrophic forgetting
happens in adversarial training.

(2) Instability of verification-guided training. No counterexamples can be found in adversarial training,
but verification always fails. This indicates that counterexamples exist and the search algorithm is not
effective enough to find them.

(3) Inefficient verification. Verification takes so long that the time limit is exceeded. This is because the
computational complexity of solving the MILPs is too high.

(4) Converging to invalid local optima. The value function becomes all positive in the state space, and its
zero-sublevel set becomes empty. This is because too many feasible states are mistakenly excluded from
the zero-sublevel set during fine-tuning, causing the set to shrink so much that it disappears.

In essence, these failure modes all stem from the three challenges to improve scalability mentioned in Section
1. While our proposed three techniques address these challenges to some extent, they persist as the problem’s
dimension increases.

5 Experiments

Through experiments, we aim to answer the following questions: 1) Can our proposed framework synthesize
verified neural HJ reachability value functions on different safe control tasks? 2) Can APA accelerate verification,
and how does it perform compared with other neural network regularization methods? 3) Can BGB accelerate
counterexample search, and how does it perform compared with other search methods? 4) Can ESR enlarge
feasible region, and how does it perform compared with other feasible region regularization methods? We answer
the first question by testing our framework on nine commonly used safe control tasks. We answer the remaining
three questions by comparing our proposed three techniques with several existing methods. Before that, we first
introduce a neural safety certificate synthesis and verification benchmark and some implementation details of
our framework.

5.1 Cersyve-9 Benchmark

There have been several benchmarks for neural network verification [8], including image classification datasets
such as MNIST [24] and CIFAR [23], vehicle collision prediction problem [15], and aircraft collision avoidance
system ACAS Xu [31]. However, these benchmarks are incompatible with the verification of neural safety
certificates because of the underlying differences between their problems and safe control tasks. Specifically, safe
control tasks require neural networks to satisfy certain properties everywhere in the state space, i.e., the input set
of the verification problem is the entire state space, while existing benchmarks only consider verification in either
a small disturbance set around data samples [24, 23, 15] or part of the state space [31]. In addition, verifying
neural safety certificates involves system dynamics and control policies, which requires certain conversions
like (18) and (19) before it can be formulated as standard verification problems while existing benchmarks only
consider verification of a single neural network.

To bridge this gap, we provide a benchmark called Cersyve-9 for neural safety Certificate synthesis and
verification in safe control tasks. Cersyve-9 contains: (1) Nine commonly used control tasks with state dimensions
ranging from two to six, as shown in Figure 4 and Table 1. These tasks include both linear and nonlinear dynamics
and safety constraints. (2) A set of neural safety certificate synthesis tools, including pre-training, adversarial

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:20 + Yang, Hu, Wei, Li & Liu

|
Bup, | O,
_____ I—.—L____

Xib Xub ¥
(a) Double Integrator (b) Pendulum (c) Unicycle
Z 1 /
Yub ub Tz Hub."'-_\ : _,." 6”3
Oub
: N
Vb 21, 4 b X1 Xub
(d) Lane Keep (e) Quadrotor (f) Cart Pole
b3 Zab
e S o
L. 7 -
j_ !
(g) Point Mass (h) Robot Arm (i) Robot Dog

Fig. 4. Snapshots of safe control tasks in Cersyve-9. The grey objects in Unicycle, Point Mass, Robot Arm, and Robot Dog are
obstacles. The green circle in Robot Dog is the goal.

training, and verification-guided training modules, as well as evaluation tools for synthesized certificates. These
tools facilitate secondary development and performance comparison of different synthesis algorithms. (3) An
MILP-based neural safety certificate verification algorithm, as well as neural value functions synthesized and
verified by our framework on all nine tasks for comparing different verification algorithms.

5.1.1 Task Descriptions. Each task in Cersyve-9 defines state space, control input space, dynamic model, and
safety constraints, which are detailed as follows.
Double Integrator requires stabilizing a second-order linear system to the origin under boundary constraints
on the position. The state of this task is x = [p, p]T € R?, where p is the position. The control input is u € R. The
state space and control input space are hyperrectangles specified by [Xmin, Xmax] and [Umin, Umax |, respectively.
All following tasks adopt the setting of hyperrectangular state and control input spaces. The dynamic model of
this task is

Pre1 = Pr + PrAL,

Pre1 = Pr +uAt,
where At is the time step. The safety constraint is py, < p < py,, where py, and pyp, are lower and upper bounds
on the position, respectively.
Pendulum requires stabilizing a pendulum to the upright position under boundary constraints on its angle [9].
The state of this task is x = [#,] T € R?, where @ is the angle of the pendulum. The control input u € R is the

(33)

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H] Reachability « 19:21

Table 1. Information of safe control tasks in Cersyve-9. In Robot Dog, we directly fit the closed-loop dynamic model with a
neural network, and thus, the control dimension is irrelevant to value network synthesis and verification.

Task State dim Control dim Dynamics Constraint
Double Integrator 2 1 Linear Linear
Pendulum 2 1 Nonlinear Linear
Unicycle 3 2 Nonlinear Nonlinear
Lane Keep 4 1 Linear Linear
Quadrotor 4 2 Nonlinear Linear
Cart Pole 4 1 Nonlinear Linear
Point Mass 4 2 Nonlinear Nonlinear
Robot Arm 6 3 Linear Nonlinear
Robot Dog 5 / Nonlinear Nonlinear
torque applied to the pendulum. The dynamic model is
01 = 0; + Opii A,
: . (39 9u (34)
041 =0r+ | = sinb, + — | At,
t+1 t (2l s Uy 2)

where m is the mass of the pendulum, [is its length, and g is the gravitational acceleration. The safety constraint
is O < 0 < Oy

Unicycle requires controlling a unicycle model to avoid collision with a circular obstacle. The state of this task is
x = [0,%,1,] " € R, where o is the velocity angle of the unicycle, and x,, y, is the position of the obstacle in the
unicycle frame. The control input is u = [a,®] " € R?, where a is the acceleration of the unicycle, and w is its
angular velocity. The dynamic model is

Upr1 = Uy + a;At,

Xo(t+1) = (Xor — v:At) cos(w;At) + Yo, sin(w,At), (35)

Yo(t+1) = Yor COS(wAt) — (xor — 0,At) sin(w,At).
The safety constraint is yx2 + y2 > r,, where r, is the radius of the obstacle.
Lane Keep requires keeping a 2DOF vehicle dynamics model in a straight line under boundary constraints on its
lateral position and heading angle. The state of this task is x = [y, ¢,0,, w]" € R*, where y is the lateral position
of the vehicle, ¢ is the heading angle, v, is the lateral velocity, and w is the angular velocity. The control input
u = § € Ris the front wheel angle. The dynamic model is

Yre1 = Yr + (Prox + Uy)At>

Pre1 = P + WAL,

ki +k ki — bk
Vy(t+1) = (l + -t ZAt) Oyt + (u - Ux) AL, (36)
moy moy
ki — bk kia® + kyb?
W1 = iz on 2z)y,At + (1 e TRy At) Wi,
Loy 20x

where k; and k; are the cornering stiffness of the front and rear wheels, respectively, a and b are the distance
from the center of gravity to the front and rear axles, respectively, m is the mass of the vehicle, I, is the moment

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:22 « Yang, Hu, Wei, Li & Liu

of inertia on the vertical axis, and v, is the longitudinal velocity, which is a constant value. The safety constraints
are ypp, < Y < yyp and ¢ < @ < Pyp.

Quadrotor requires controlling a 2D quadrotor to a hover position under boundary constraints on its vertical
position and roll angle. The state of this task is x = [z, 6, %, Q]T € R*, where z is the vertical position of the
quadrotor, and @ is the roll angle. The control input u = [T, T;] T € R? represents the thrust forces exerted by the
rotors. The dynamic model is

Zir1 = 2¢ + 2 AL,
0141 = 0; + 0, AL,

T + T 0
P =2+ %—g At, (37)

(To . Tlt)dAt
y

where m is the mass of the quadrotor, d is the diameter, and I, is the moment of inertia. The safety constraints

are zjp < z < zgp and O, < 0 < Oyp.

Cart Pole requires balancing a pole on a moving cart to the upright position under boundary constraints on the

cart position and the pole angle [9]. The state of this task is x = [y, 6, 7, Q]T € R, where y is the cart position,

and 0 is the pole angle. The control input u = F € R is the force applied to the cart. The dynamic model is

9t+1 = ét +

5

Y1 = Yr + Ui AL

0141 = 0, + 0,AL,

F+ ml@t2 sin 0, — mld, cos 0, As (38)
M)

Yre1 = U +
9t+1 = 91‘ + étAt,
where m is the mass of the pole, M is the total mass of the pole and the cart, [is the length of the pole, and

b - 3Mg sin 0, — 3(F + ml6? sin 6,) cos 0,
te (4M — 3m cos? 6,)1

The safety constraints are yp, < y < yu, and O, < 0 < Oy,
Point Mass has the same setting as Unicycle except that the model is changed to a 2D point mass. The state of
this task is x = [oy, Oy, Xos yo]" € R*, where v, and vy are the velocities on the x and y axes, respectively. The
control input is u = [a, w]T € R% The dynamic model is

Ox(t41) = (Uxr + arAt) cos(w; At) + vy, sin(w,At),

Vy(s+1) = Oy c08(w;At) — (vx; + a;At) sin(w, At), (39)
. 39
Xo(rs1) = (Xor — 0 At) COS (@, AL) + Yor sin(w,Ab),

Yo(t+1) = Yor COs(w;At) — (xor — v:At) sin(w,At).

The safety constraint is yx2 + y2 > r,.

Robot Arm requires controlling a robot arm with three joints to a target position while avoiding collision with a
wall in the front. The state of this task is x = [0, 05, 05, 61, O, 93]T € R®, where 0; is the angle of the first joint,
and 0, and 05 are the incremental angles of the second and third joints relative to their previous joints. The
control input u = [0}, 65, 65]T € R represents the angular accelerations of the three joints. The dynamic model
is obtained through forward Euler discretization and is omitted here. The safety constraint is that the length of

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H) Reachability « 19:23

the robot arm’s projection on the horizontal axis must not exceed a specific threshold:

Zcos Zi:ej) < 1.5. (40)

i=1 Jj=1

Robot Dog is a robot locomotion task designed by He et al. [18], which requires controlling a robot dog to reach
a goal while avoiding obstacles on its way. The state of this task is x = [0, xg, Yg, X, Yol € R’, where v is the
velocity of the robot dog, x;, y, is the position of the goal, and x,, y, is the position of the obstacle. In this task,
we directly fit a closed-loop dynamic model with a neural network on data collected by an RL policy, and thus,
the control input is irrelevant to value function synthesis and verification. The safety constraint is v/x2 + y2 > r,.
He et al. [18] propose a method called Agile But Safe (ABS) that learns a neural HJ reachability value function
and a safe policy without verification. While our experiments are only performed in simulation, ABS itself is
evaluated in the real world.

5.1.2 Implementation Details. For tasks with linear dynamic models and constraint functions, we directly use
their analytical forms for value network synthesis. For tasks with nonlinear dynamics or constraints, we fit the
nonlinear dynamics or constraints with neural networks for synthesis. We design linear control policies with
control limits for all tasks except Robot Dog, where we use the neural network policy trained by ABS. In Robot
Dog, we directly fit the closed-loop dynamic model with a neural network, and thus, the control dimension is
irrelevant to value network synthesis. In other tasks with nonlinear dynamics, we fit the open-loop dynamic
models with neural networks and substitute linear control policies to obtain closed-loop dynamics. In this way, all
functions involved in verification are piecewise linear, so the verification problems can be formulated as MILPs.
In theory, we could use the original nonlinear versions of the dynamics and constraints by calling some verifiers
for nonlinear cyber-physical systems [22, 35]. The reason why we approximate these functions with piecewise
linear neural networks is to better integrate with existing verification tools. Our neural network approximation
of dynamics and constraints did introduce model mismatch to real-world robot dynamics, but that does not affect
the validity of our benchmark because we can think of synthesis and verification as inherently performed on
systems with approximated dynamics and constraints. It will be our future work to investigate exact synthesis
and verification with respect to nonlinear dynamics and constraints.

We follow the practice of Nagabandi et al. [30] to train neural network dynamic models. We use a neural
network f3(x,u) to parameterize the change of state in a time step, i.e., the predicted next state is %41 =
x; + f3 (x4, uy). Training data is collected by uniformly sampling initial states in the state space and executing
random control inputs at every time step. The collected data is recorded in the form of state transition pairs, i.e.,
D = {(x, u(i),x’(i))}f\i 1» Where N is the number of data. To ensure the loss function weights different state
elements equally, we subtract the mean and divide by the standard deviation of the data. We then add zero-mean
Gaussian noise with a standard deviation of 0.01 to all data. We train the dynamic model by minimizing the
following loss function.

N
Lign(@) = 5 2D = x0) = fG O, u) (@)
i=1

For Robot Dog, we directly train a closed-loop dynamic model fs(x) with training data collected by a neural
network policy. Data preprocessing and loss function of Robot Dog are similar to those of other tasks.

We use the same neural network structure in all tasks. Both the dynamics and value networks have two
hidden layers with 32 neurons each. The constraint network has two hidden layers with 16 neurons each. All
experiments are performed on an AMD Ryzen 7 5800 8-Core CPU. Other hyperparameters are listed in Table
2. The hyperparameters introduced by our algorithm include those related to APA, BGB, and ESR. The APA
coeflicients are chosen to balance the neural network’s linearity and performance, with its sensitivity analysis

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:24 « Yang, Hu, Wei, Li & Liu

Table 2. Detailed hyperparameters.

Stage Hyperparameter Value
Learning rate for dynamics network le-3
Learning rate for value network 3e-4
Batch size 256

Pre-training Training epochs for dynamics network 100
Iterations for value network 100000
Discount factor for value network 0.9
Weight decay le-3
APA coefficient for dynamics network 0.01
APA coefficient for value network le-4
APA constant € le-4
SNR coefficients for dynamics network (0, 1le-3)
SNR coefficients for value network (0,0.1)
APA & SNR noise scale 0.1
Learning rate le-4
Max iteration 100000
Batch size for counterexample search 1000
PGD steps per iteration 10

. .. PGD step size 0.1

Adversarial training Backtracking steps 20
BGB search direction discount 0.5
BGB step length discount 0.8
ESR coefficient 0.1
ESR sample batch size 1000
ESR margin 0.01

performed in Section 5.4.1. The APA noise scale also controls the regularization strength—a larger noise scale
results in stronger regularization. Analysis of how the noise scale influences performance can be found in the SNR
paper [38]. The BGB search direction and step length discounts affect the counterexample search efficiency. Larger
discounts result in finer but slower backtracking, while smaller discounts result in faster and sparser backtracking.
The choice of the step length discount follows that in standard backtracking algorithms. For the search direction
discount, we find that a relatively small value is more efficient because the direction of counterexamples usually
deviates a lot from the gradient near the boundary. The ESR coefficient balances the efficiency of counterexample
elimination and the severity of feasible region shrinkage. However, since we only regularize entering states and
avoid counterexamples, a relatively large coefficient works well in practice. The ESR batch size simply follows
the batch size of adversarial training. The ESR margin is set to avoid false identification of entering states. A
larger margin is safer but reduces the regularization strength. Its value is chosen to balance region shrinkage and
training efficiency.

5.2 Evaluation Procedure and Metrics

To evaluate synthesis results, we consider three aspects: 1) counterexample search efficiency, 2) verification
efficiency, and 3) size of feasible region.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:25

Table 3. Neural HJ reachability value function synthesis results of our proposed framework.

Task FTiter (k) FT time (s) # Verify Verify time (s) TFR
Double Integrator 1.2 28.5 1 0.5 0.940
Pendulum 1.1 314 1 3.9 0.962
Unicycle 6.9 175.0 1 11.6 0.911
Lane Keep 5.9 184.7 4 1.4 0.750
Quadrotor 1.6 55.3 1 2.9 0.906
Cart Pole 24 83.3 1 171.5 0.404
Point Mass 8.6 321.7 4 48.2 0.594
Robot Arm 25.2 853.8 15 5.5 0.403
Robot Dog 6.3 333.7 2 311.9 0.872

For counterexample search efficiency, we count the number of fine-tuning iterations, total fine-tuning time,
and the number of verifications. A smaller number of fine-tuning iterations means more counterexamples are
found and eliminated in each iteration, thus indicating a higher search efficiency. Fine-tuning time is an overall
evaluation of the number of fine-tuning iterations and time consumption of each iteration, the latter of which
largely depends on the time consumption of counterexample search. Fine-tuning time also counts the time of all
failed verifications, i.e., all verifications except the last one. When the number of verifications exceeds one, all
verification fails except the last one. A failed verification means that counterexamples still exist, but adversarial
training can no longer find them. Therefore, more verifications also mean that counterexample search is less
inefficient. Note that calling verification does not increase fine-tuning iterations because it is a required step of
each iteration to check whether verification should be called and call it when necessary.

For verification efficiency, we count the time of the final verification that proves the feasible region conditions
hold. This time plus the fine-tuning time equals the total synthesis time of the value function.

For the size of feasible region, we compute a metric called the true feasible rate (TFR), which is defined as the
proportion of states identified as feasible in all feasible states. In practice, TFR is approximately computed on a
certain number of states randomly sampled in the state space. To determine whether a state is feasible, we check
a finite-length trajectory starting from it. The state is considered feasible if there is no constraint violation in the
trajectory. The trajectory length is set to 100 for all tasks, which is enough to give correct feasibility results in
most cases. For Robot Dog, He et al. [18] synthesized a neural value function without verification and used it as a
safety filter in a real-world robot dog locomotion task. We compare the neural value functions synthesized using
their method and our framework to demonstrate the necessity and effectiveness of our framework.

5.3 Synthesis Results

Our proposed framework successfully synthesized neural HJ reachability value functions on all nine tasks in
Cersyve-9, and the results are shown in Table 3. TFRs on most tasks are greater than 0.8, and the lowest TFR
is above 0.4, indicating that the synthesized value networks represent non-trivial feasible regions. As state
dimension increases, it generally requires more fine-tuning iterations and time to synthesize a verified value
network. This is because searching for counterexamples becomes more difficult in higher-dimensional spaces.
The number of verifications also shows a similar increase with state dimension. Another observation is that
systems with nonlinear dynamics generally require more verification time. This is because nonlinear dynamics
results in more linear segments of Miy, defined in (17) for forward invariance verification.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:26 + Yang, Hu, Wei, Li & Liu

1.0 led
6 -
3
0.8 A 9
Q.
€37
©
)
0.6 1 £ 4
« €
(= § 3 4
0.4 - o
2
© 2
=]
0.2 1 g
S 17
0.0 T T T T T T 0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Fine-tuning iteration le4 Fine-tuning iteration le4
(a) TFR. (b) Cumulative counterexamples.

Fig. 5. TFR and cumulative number of found counterexamples during fine-tuning in Robot Arm. The dashed gray lines stand
for the iterations at which verification is called.

To understand the effect of fine-tuning on the value network, we plot the changing curves of TFR and the
cumulative number of found counterexamples during fine-tuning in Robot Arm in Figure 5. At an early stage of
fine-tuning, TFR decreases quickly, and counterexamples increase quickly. In each iteration, the value network is
updated on a large number of counterexamples, excluding many of them from the zero-sublevel set. Verification
cannot be called at this stage because there are many counterexamples found in every iteration. After 10K
iterations, counterexamples can hardly be found in each iteration, and therefore, verification starts to be called
frequently. At this stage, the value network is updated on only a few counterexamples, mostly found by verification,
in each iteration. As a result, the change in TFR is very small. This stage continues until the last verification
proves the feasible region conditions hold and returns a valid value network.

To demonstrate how counterexamples are eliminated through fine-tuning, we visualize the boundary of the
zero-sublevel set and counterexamples before fine-tuning and the boundary after fine-tuning in Double Integrator
in Figure 6. Before fine-tuning, there are many counterexamples near the boundary of the zero-sublevel set. These
counterexamples leave the zero-sublevel set in one step, violating the forward invariance condition and making
the set not a valid feasible region. This invalidity is also confirmed by the fact that the pre-trained region is larger
than the true region, which is impossible for a valid feasible region. After fine-tuning, all counterexamples are
eliminated, and the zero-sublevel set shrinks into a valid feasible region slightly smaller than the true region.

To demonstrate the necessity and effectiveness of our method, we visualize the value trajectories and heatmaps
of the value networks synthesized by ABS and our method in Robot Dog, as shown in Figure 7. We choose an
initial state that leads to a constraint violation and compare the values of the two networks on the trajectory.
The value network of ABS is negative in the initial state, and gradually increases to positive values along the
trajectory. This means that the state starts from inside the zero-sublevel set but goes out eventually, indicating
that the zero-sublevel set of their value network is not a valid feasible region because it violates the forward
invariance condition. In contrast, our value network consistently outputs positive values on the whole trajectory,
indicating that it correctly excludes the states from its zero-sublevel set. Comparing the heatmaps of the two value
networks, we can see that our network moves the infeasible region to the upper left. This excludes infeasible

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H) Reachability « 19:27

L0 0.25
0.5 0
~ -0.25
200
8
-0.50
-0.5
-0.75
-1.0 .
~1.0 -0.5 0.0 0.5 1.0 0.70 0.75 0.80 0.85

True region Pre-trained region @ Counterexample Verified region

Fig. 6. Regions and counterexamples in Double Integrator. The pre-trained and verified regions are zero-sublevel sets of
the value networks before and after fine-tuning, respectively. The heatmap shows the contours of the value network after
fine-tuning. The lighter red dots are counterexamples before fine-tuning, and the darker red dots are their next states.

states in the upper left from the zero-sublevel set and includes more feasible states in the lower right into the set.
As a result, the zero-sublevel set becomes a valid feasible region without a significant reduction in its size.

5.4 Comparison Studies

In this subsection, we demonstrate the effectiveness of the three proposed techniques, i.e., APA, BGB, and ESR,
by comparing them with several existing methods that aim to solve similar problems.

5.4.1 Neural Network Regularization. We compare APA with two existing neural network regularization methods,
weight decay (WD) and SNR [38], to study its effectiveness in reducing verification time. We compare these
methods from three aspects: number of linear segments, network performance, and verification time. First, we
show the relationship between the number of linear segments and verification time. Then, we compare the
number of linear segments and network performance of the three regularization methods. Finally, we compare
the verification times of the three methods on all tasks in Cersyve-9.

Due to the branch-and-bound solving mechanism of MILP, verification time is closely related to the number
of linear segments of neural networks [39]. We use a sampling-based method to estimate the number of linear
segments of a neural network. Specifically, we uniformly sample a certain number of states in the state space,
compute the neural network’s activation pattern on each state, and count the number of unique activation
patterns. This gives us an underestimate of the number of linear segments, and this estimate becomes more
accurate as the number of samples increases. Figure 8(a) shows the relationship between the estimated number
of linear segments and the number of samples. The two have a linear relationship when the number of samples is
small. As the number of samples increases, the growth rate of linear segments decreases. Theoretically, an infinite
number of samples will give an accurate number of linear segments. We use 10° samples in our experiments to
balance estimation accuracy and computational complexity. Although this results in an underestimate, it reflects
the relative number of linear segments of different methods, which is informative for comparing their verification
times. We visualize the relationship between the number of linear segments and verification time in Figure 8(b).

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:28 « Yang, Hu, Wei, Li & Liu

1.00 1.5 1.00 15
0754 1.2 0.75 12
0.50 0.9 0.50 0.9
0.6 0.6
0.25 0.25
0.3 0.3
> 0.00 > 0.00
0.0 0.0
~0.25 -0.25 -
-0.3 -0.3
~0.50 06 ~0.50 - 06
~0.75 _0.9 -0.75 - 0.9
-1.00 : : : -12 -1.00 : : : -1.2
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
X X
1.00 0.30 1.00 0.30
0.75 - 0.15 0.75 0.15
0.50 4 0.00 0.50 0.00
-0.15 -0.15
0.25 0.25
-0.30 -0.30
> 0.00 > 0.00
-0.45 -0.45
~0.25 -0.25
-0.60 -0.60
~0.50 —0.75 -0.50 —0.75
—0.751 -0.90 —0.75 -0.90
-1.00 . : : -1.05 -1.00 4 : ; : -1.05
-1.0 -05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0
X X

Fig. 7. Value trajectories and heatmaps of value networks synthesized by ABS (upper) and our method (lower) in Robot Dog.
In the left two figures, the red circle in the middle is an obstacle, and the green circle in the bottom right corner (a quarter
shown) is the goal. The two trajectories start from the same initial state (marked with a red circle) and are sampled by the
same policy. They are both truncated at a constraint-violating state.

It shows that the two are approximately linearly related, which is consistent with the branch-and-bound MILP
solving mechanism. This allows us to approximately compare the verification times of different networks by
comparing their number of linear segments without actually solving verification problems.

We compare the number of linear segments of dynamics networks and value networks trained with different
regularization methods, as shown in Figure 9. Since regularization usually sacrifices the performance of neural
networks, we also compare the performance of different regularization methods. For dynamics networks, we
compute the MSE on a test dataset for performance metrics. For value networks, we compute TFR after fine-tuning
(after the network is successfully verified) for performance metrics. For a fair comparison, we use the same
dynamics network trained with APA to train value networks in each task. Figure 9(a) shows that APA reduces
linear segments of dynamics networks by about five times compared with no regularization, while WD and
SNR both increase linear segments instead. Moreover, APA has a much lower MSE compared with WD and
SNR. Figure 9(b) shows that both APA and WD significantly reduce linear segments of value networks, and APA

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural HJ Reachability « 19:29

w/oreg —e— Pendulum w/o reg

w1054 — WD -+ Quadrotor ¢ 10°4 e WD °
€ SNR -&- Robot Arm e SNR
£ APA SPioa 0 APA ¢

— 2 0 °
8 104 4 g 102 4 . ®

c
é) 103 4 'S 1 []
3 819 ° e
= - []
£ g °
£ 1024 > °
7] 10° 4 [J
. °
10 4 ™
10! 10?2 103 104 10° 10 103 104 10°
Samples Estimated linear segments
(a) Linear segment estimate. (b) Linear segments vs. verification time.

Fig. 8. Estimated number of linear segments and its relationship with verification time. In Figure (b), dots with the same
color represent the same method in different tasks. For a thorough comparison of verification times of different regularization
methods on each task, see Table 4.

brings a greater reduction of about four times. SNR still results in increased linear segments of value networks.
In addition, APA has a higher TFR compared with WD and SNR, indicating larger feasible regions. These results
indicate that APA is the most effective in reducing linear segments with minimum performance sacrifice. This is
attributed to the appropriate design of the APA penalty, which only takes effect when the signs of pre-activation
values of neighboring states are different. In contrast, WD and SNR are not directly targeted at making activation
patterns consistent. They penalize the network parameters at all times, resulting in large performance sacrifices
and inefficiency in reducing linear segments.

The regularization strength of APA depends on the coefficient aapa, which trades off between the number of
linear segments and neural network performance. We train dynamics and value networks under different values
of aapa and visualize the results in Figure 10. Figure 10(a) shows that the number of linear segments of dynamics
network quickly decreases as aapa increases from 0 to 1073 and continues to decrease steadily as aapa increases
from 1073 to 1071, On the other hand, MSE also increases as aapa increases, and its increasing rate becomes faster.
An appropriate choice of @apa for dynamics network should be around 1073 to 1072, which balances the number
of linear segments and MSE. Figure 10(b) shows that both the number of linear segments of value network and
TFR decreases as aapa increases. The decrease rate of linear segments is relatively stable under different values of
aapa. The decrease rate of TFR is small at first and gradually increases as aaps increases. An appropriate choice
of aapa for value network should be around 1074,

We compare the verification time of different regularization methods in Table 4. It shows that APA has the
shortest verification time overall, especially in high-dimensional tasks. In some tasks, such as Unicycle, Lane Keep,
and Quadrotor, APA reduces the verification times by more than 100 times compared with no regularization. Note
that without regularization, verification may take much longer than the time limit (2 hours) in high-dimensional
tasks. The acceleration of verification brought about by APA greatly improves the scalability of our synthesis
framework, enabling it to solve higher-dimensional tasks. The superiority of APA is due to its effectiveness in
reducing linear segments of both dynamics and value networks. WD also significantly reduces the verification
time compared with no regularization because it reduces linear segments of value networks. However, the

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:30 « Yang, Hu, Wei, Li & Liu

| 103
1.50 - L4
1.2 A
¥ 1.25 5 2
é F10 é 1.0 A
1.00
g t‘zf) g 0.8 E
577) 5 06
£ £ 10 £
Z 0.50 A = 0.4
0.25 A 0.2
- 100
0.00 - 0.0 -
w/o reg WD SNR APA w/o reg WD SNR APA
(a) Dynamics networks. (b) Value networks.

Fig. 9. Number of linear segments and performance of dynamics networks and value networks trained with different
regularization methods. The results of dynamics networks are averaged over five tasks with nonlinear dynamics. For each
task, all scores are normalized by dividing by those without regularization. The results of value networks are averaged on all
tasks except Cart Pole and Robot Dog, where synthesis failed without regularization.

1.0 1 1.0 A 1.0
E 102
n 0.8 1 «n 0.8 0.8
c c
[J] (]
€ 0.6 w € 0.6 0.6
() (%] (] [T
Z’ 101 = 2 =
0.4 S 0.4 0.4
= £
- -
0.2 A 0.2 A 0.2
L 100
0.0 T T T 0.0 T T —- 0.0
0 1073 1072 1071 0 1073 1074 1073
Qppa QpPA
(a) Dynamics networks. (b) Value networks.

Fig. 10. Number of linear segments and performance of dynamics networks and value networks trained under different
APA coefficients. The results are averaged on the same tasks as in Figure 9. All scores are normalized by dividing by those of

aapa=0.

acceleration of WD is not so significant as that of APA in most nonlinear tasks because it cannot reduce linear
segments of dynamics networks. In contrast, SNR has longer verification times than no regularization, which is
consistent with the fact that it increases linear segments of both dynamics networks and value networks. SNR
performs poorly because it is designed to increase the robustness of a neural network under disturbances, and
the results show that this robustness-oriented objective does not always align with the objective of reducing the
number of linear segments.

5.4.2 Counterexample Search. We compare our counterexample search method, BGB, with two existing search
methods: projected boundary search (PBS) proposed by Liu et al. [26] and PGD with standard backtracking

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H] Reachability « 19:31

Table 4. Verification time (in seconds) of different regularization methods. The dynamics networks (for nonlinear tasks) and
value networks in each column are trained with the same regularization method. “Timeout" means that fine-tuning exceeds
the time limit (2 hours). “MaxlIter" means that fine-tuning exceeds the iteration limit (100k).

Task w/oreg WD SNR APA
Double Integrator 2.1 0.2 0.5 0.5
Pendulum 30.0 0.91 13.58 3.9
Unicycle 2597.5 12.42 393.3 11.6
Lane Keep 202.4 8.0 1540.9 14
Quadrotor Timeout 141.01 Timeout 2.9
Cart Pole Timeout 133.18 1009.1 171.5
Point Mass 1216.6 61.2 Timeout 48.2
Robot Arm 178.3 7.0 1071.8 5.5

Robot Dog Timeout 1043.9 MaxIter 311.9

Table 5. Number of fine-tuning iterations and fine-tuning time of different counterexample search methods.

Task FT iter (k) FT time (s)

PBS PGD-B BGB PBS PGD-B BGB

Double Integrator 1.6 1.2 1.2 25.3 50.1 28.5
Pendulum 1.5 1.1 1.1 31.3 55.4 31.4
Unicycle MaxlIter 54.1 6.9 MaxIter 3963.6 175.0
Lane Keep 41.0 33.1 5.9 916.2 2370.0 184.7
Quadrotor 21.8 3.1 1.6 578.3 2237 55.3
Cart Pole 43.8 62.6 24 1276.8 4590.0 83.3
Point Mass MaxIter 35.1 8.6 MaxIter 3199.2 321.7

Robot Arm MaxIter Maxlter 25.2 Maxlter MaxIter 853.8
Robot Dog MaxlIter 51.5 6.3 MaxIter 3436.2 333.7

(PGD-B), to study its search efficiency. We count the number of fine-tuning iterations and fine-tuning times of
the three search methods, as shown in Table 5. Results show that BGB has the smallest number of fine-tuning
iterations and fine-tuning time among the three methods, indicating that it has the highest counterexample
search efficiency. PBS has the lowest search efficiency, exceeding the iteration limit on most high-dimensional
tasks. This is because projecting the state to the boundary of feasible region in every step is unnecessary and
significantly harms search efficiency®. We need the state to be close to the boundary only at the final step, not at
all intermediate steps. PGD-B also has lower search efficiency than BGB because standard backtracking can only
search toward but not along the boundary, making it easy to get stuck near the boundary.

5.4.3 Feasible Region Regularization. We compare our feasible region regularization method, ESR, with RSR [10,
26] and no regularization to study its effectiveness in enlarging feasible regions. Any feasible region regularization
method will make fine-tuning harder because it inevitably includes some infeasible states into the zero-sublevel

3Projecting the state to the boundary of feasible region in every step is unnecessary not only for HJ reachability but also for other safety
certificates such as CBF and CLF, at least in discrete-time systems, because the feasible region conditions are the same for all safety certificates.
The projection may become necessary in continuous-time systems where counterexamples must be exactly on the boundary.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:32 « Yang, Hu, Wei, Li & Liu

Table 6. TFR and number of fine-tuning iterations of different feasible region regularization methods.

TFR FT iter (k)
w/oreg RSR ESR w/oreg RSR ESR
Double Integrator ~ 0.897 0.960 0.940 1.1 1.2 1.2

Task

Pendulum 0.856 0.952 0.962 1.0 1.0 1.0

Unicycle 0.671 0.907 0.911 1.2 39 69
Lane Keep 0.651 0.693 0.750 3.5 1.6 59
Quadrotor 0.872 0.901 0.906 2.2 23 1.6
Cart Pole 0.014 0.207 0.404 4.1 145 24
Point Mass 0.180 0.549 0.594 1.6 75 8.6
Robot Arm 0.000 0.405 0.403 3.5 79.3 252
Robot Dog 0.659 0.865 0.872 4.0 122 6.3

set. To evaluate the negative impact on fine-tuning, we not only compute the TFR of the value networks but also
count the number of fine-tuning iterations of each regularization method, as shown in Table 6. It shows that ESR
has the highest TFR on almost all tasks, significantly increasing TFR compared with no regularization, especially
on high-dimensional tasks. TFR of no regularization becomes smaller as the state dimension increases, indicating
that fine-tuning tends to mistakenly exclude feasible states from the zero-sublevel set, resulting in feasible region
shrinkage. RSR also increases TFR compared with no regularization, but it is not so effective as ESR, and its
number of fine-tuning iterations is not less than ESR. This is because RSR randomly pushes all states into the
zero-sublevel set, which will mistakenly include more infeasible states than ESR, resulting in lower regularization
efficiency and a greater negative impact on fine-tuning.

5.4.4 Ablation Study. We perform ablation studies to show how the proposed three techniques contribute to the
reduction of overall synthesis time and the increase of TFR, and the results are shown in Figure 11.

First, we test a baseline algorithm called Vanilla that directly minimizes MSE without neural network regu-
larization in pre-training, uses PGD-B to search counterexamples, and performs fine-tuning without feasible
region regularization. Results show that Vanilla fails to synthesize value functions on three higher-dimensional
nonlinear tasks, i.e., Cart Pole, Point Mass, and Robot Dog. Moreover, it also fails on Robot Arm because the TFR
is zero, i.e., the zero-sublevel set of the value function shrinks to an empty set.

Next, we add APA in pre-training and keep the adversarial training part unchanged. Results show that APA
significantly reduces synthesis time on almost all tasks, especially higher-dimensional ones. The comparison of
synthesis time on Robot Arm is meaningless because all algorithms fail to synthesize a non-trivial value function
except the last one that uses all three techniques. APA’s reduction of synthesis time is mainly attributed to its
acceleration of verification, not only the last verification that proves hold but also intermediate failed verifications.

Then, we add BGB for counterexample search and keep the fine-tuning loss unchanged. Results show that BGB
further reduces synthesis time on all tasks and does not cause significant changes in TFR. BGB’s reduction of
synthesis time is mainly attributed to its acceleration of counterexample search, which results in fewer fine-tuning
iterations.

Finally, we add ESR to fine-tuning loss, obtaining the complete version of our algorithm. Results show that ESR
substantially increases TFR on almost all tasks, especially Cart Pole and Robot Arm, where other algorithms fail
or almost fail to synthesize non-trivial value functions. Although the synthesis times of the complete algorithm
increase compared with APA+BGB on some tasks, it still achieves a large acceleration compared with Vanilla.
Except for the first two lower-dimensional tasks, the acceleration compared with Vanilla is close to or more than

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

Verified Neural H) Reachability « 19:33

10t

[}
E B Vanilla N APA I APA+BGB I APA+BGB+ESR
=1
K Tim\;eout Tim\;sout
ﬁ 10° 4
=}
s,
w0
? 1071 4
N
‘©
€
£
§ 10-2 4
X
& \e@‘ S QW \dc\e . \(\669 6‘0‘0 ?o\e &“\666 N N«‘ O&OOQ
026 (@ e N o o o o o o
A

s Vanilla m APA+BGB
EEE APA I APA+BGB+ESR

o

X e]
e o (QQO\ 0‘\39 o w 0‘009
?e® N aw® o Qo oo od

o
G
A

Fig. 11. Ablation study of three techniques with respect to synthesis time and TFR. The normalized synthesis time is the
synthesis time, i.e., fine-tuning time plus verification time, of each algorithm divided by that of Vanilla. The “Timeout"
annotation on top of the bars means the corresponding experiments exceed the time limit (2 hours), and we use the time
limit for normalization in these tasks.

10 times on all tasks, and the acceleration on Quadrotor reaches about 100 times. Note that Vanilla exceeds the
time limit on three tasks, where the acceleration of our techniques could be much greater than that shown in the
figure. These results indicate that APA and BGB significantly reduce synthesis time, ESR substantially increases
TFR, and these three techniques together significantly improve the scalability of our framework.

6 Conclusion

This paper proposes a scalable framework for formally synthesizing verified neural HJ reachability value functions.
The framework consists of three stages: pre-training, adversarial training, and verification-guided training.
We propose three techniques that significantly improve the scalability of our framework: boundary-guided
backtracking (BGB) to accelerate counterexample search, entering state regularization (ESR) to enlarge feasible
regions, and activation pattern alignment (APA) to accelerate MILP-based verification. We also provide a neural
safety certificate synthesis and verification benchmark called Cersyve-9, including nine commonly used safe
control tasks. Our framework successfully synthesizes verified neural value functions on all tasks in our benchmark.
Extensive experiments show that the three proposed techniques exhibit superior scalability and efficiency
compared with existing methods. While our experiments mainly focus on the synthesis side, the proposed
benchmark could also foster additional study in the verification community on scaling up verification algorithms
with respect to these unique types of problems.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:34 « Yang, Hu, Wei, Li & Liu

While our proposed framework improves scalability for reachability analysis, it is still limited to state dimensions
up to 6. Future directions for extending to higher-dimensional systems include using more advanced verification
algorithms with parallel computation and exploring more efficient adversarial training or certified training
methods to eliminate counterexamples. In addition, our framework is only evaluated in simulation in this work.
To bring this framework to the real world, we will need to first solve the robust verification problem that accounts
for model uncertainty as discussed in Section 4.5, which will be left for future work.

Acknowledgments

This work is in part supported by the National Science Foundation under Grant No. 2144489. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] Alessandro Abate, Daniele Ahmed, Alec Edwards, Mirco Giacobbe, and Andrea Peruffo. 2021. FOSSIL: a
software tool for the formal synthesis of lyapunov functions and barrier certificates using neural networks.
In Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control. 1-11.

[2] Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo. 2020. Formal synthesis of Lyapunov
neural networks. IEEE Control Systems Letters 5, 3 (2020), 773-778.

[3] Anayo K. Akametalu, Shromona Ghosh, Jaime F. Fisac, Vicenc Rubies-Royo, and Claire J. Tomlin. 2024. A
Minimum Discounted Reward Hamilton—Jacobi Formulation for Computing Reachable Sets. IEEE Trans.
Automat. Control 69, 2 (2024), 1097-1103. https://doi.org/10.1109/TAC.2023.3327159

[4] Mahathi Anand and Majid Zamani. 2023. Formally verified neural network control barrier certificates for
unknown systems. IFAC-PapersOnLine 56, 2 (2023), 2431-2436.

[5] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2017. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,
2242-2253.

[6] Somil Bansal and Claire J Tomlin. 2021. Deepreach: A deep learning approach to high-dimensional reacha-
bility. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 1817-1824.

[7] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. 2017. Predictive control for linear and hybrid
systems. Cambridge University Press.

[8] Christopher Brix, Mark Niklas Miiller, Stanley Bak, Taylor T Johnson, and Changliu Liu. 2023. First three
years of the international verification of neural networks competition (VNN-COMP). International Journal
on Software Tools for Technology Transfer 25, 3 (2023), 329-339.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. 2016. Openai gym.

[10] Ya-Chien Chang, Nima Roohi, and Sicun Gao. 2019. Neural lyapunov control. Advances in neural information
processing systems 32 (2019).

[11] Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2016. Fast reachable set approximations via state decoupling
disturbances. In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 191-196.

[12] Shaoru Chen, Lekan Molu, and Mahyar Fazlyab. 2024. Verification-Aided Learning of Neural Network
Barrier Functions with Termination Guarantees.

[13] Hongkai Dai, Benoit Landry, Lujie Yang, Marco Pavone, and Russ Tedrake. 2021. Lyapunov-stable neural-
network control.

[14] Jérome Darbon, Gabriel P Langlois, and Tingwei Meng. 2020. Overcoming the curse of dimensionality
for some Hamilton—Jacobi partial differential equations via neural network architectures. Research in the

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

https://doi.org/10.1109/TAC.2023.3327159

Verified Neural HJ Reachability « 19:35

Mathematical Sciences 7, 3 (2020), 20.

[15] Ruediger Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In Automated
Technology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings 15. Springer, 269-286.

[16] Jaime F Fisac, Neil F Lugovoy, Vicen¢ Rubies-Royo, Shromona Ghosh, and Claire] Tomlin. 2019. Bridging
hamilton-jacobi safety analysis and reinforcement learning. In 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 8550-8556.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial
examples.

[18] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He, Changliu Liu, and Guanya Shi. 2024. Agile But Safe:
Learning Collision-Free High-Speed Legged Locomotion.

[19] Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. 2023. The safety filter: A unified view of safety-critical control
in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems 7 (2023).

[20] Kai Chieh Hsu, Vicen¢ Rubies-Royo, Claire] Tomlin, and Jaime F Fisac. 2021. Safety and Liveness Guarantees
through Reach-Avoid Reinforcement Learning. In 17th Robotics: Science and Systems, RSS 2021. MIT Press
Journals.

[21] Hanjiang Hu, Yujie Yang, Tianhao Wei, and Changliu Liu. 2025. Verification of Neural Control Barrier
Functions with Symbolic Derivative Bounds Propagation. In Proceedings of The 8th Conference on Robot
Learning (Proceedings of Machine Learning Research, Vol. 270). PMLR, 1797-1814.

[22] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee. 2019. Verisig: verifying safety
properties of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control. 169-178.

[23] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.

[24] Yann LeCun, Corinna Cortes, Chris Burges, et al. 2010. MNIST handwritten digit database.

[25] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel] Kochenderfer,
et al. 2021. Algorithms for verifying deep neural networks. Foundations and Trends® in Optimization 4, 3-4
(2021), 244-404.

[26] Simin Liu, Changliu Liu, and John Dolan. 2023. Safe control under input limits with neural control barrier
functions. In Conference on Robot Learning. PMLR, 1970-1980.

[27] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards
deep learning models resistant to adversarial attacks.

[28] Ian M Mitchell. 2007. Comparing forward and backward reachability as tools for safety analysis. In
International Workshop on Hybrid Systems: Computation and Control. Springer, 428-443.

[29] Tan M Mitchell. 2008. The flexible, extensible and efficient toolbox of level set methods. Journal of Scientific
Computing 35 (2008), 300-329.

[30] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. 2018. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE international conference
on robotics and automation (ICRA). IEEE, 7559-7566.

[31] Michael P Owen, Adam Panken, Robert Moss, Luis Alvarez, and Charles Leeper. 2019. ACAS Xu: Integrated
collision avoidance and detect and avoid capability for UAS. In 2019 IEEE/AIAA 38th Digital Avionics Systems
Conference (DASC). IEEE, 1-10.

[32] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. 2021. Automated and formal synthesis of neural
barrier certificates for dynamical models. In International conference on tools and algorithms for the construction
and analysis of systems. Springer, 370-388.

[33] Manan Tayal, Hongchao Zhang, Pushpak Jagtap, Andrew Clark, and Shishir Kolathaya. 2024. Learning a
Formally Verified Control Barrier Function in Stochastic Environment.

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

19:36 + Yang, Hu, Wei, Li & Liu

[34] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2017. Evaluating robustness of neural networks with mixed
integer programming.

[35] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming
Xiang, Stanley Bak, and Taylor T Johnson. 2020. NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In International Conference on Computer Aided
Verification. Springer, 3-17.

[36] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. 2021. Beta-crown:
Efficient bound propagation with per-neuron split constraints for neural network robustness verification.
Advances in Neural Information Processing Systems 34 (2021), 29909-29921.

[37] Xinyu Wang, Luzia Knoedler, Frederik Baymler Mathiesen, and Javier Alonso-Mora. 2023. Simultaneous
synthesis and verification of neural control barrier functions through branch-and-bound verification-in-the-
loop training.

[38] Tianhao Wei, Ziwei Wang, Peizhi Niu, Abulikemu Abuduweili, Weiye Zhao, Casidhe Hutchison, Eric Sample,
and Changliu Liu. 2024. Improve Certified Training with Signal-to-Noise Ratio Loss to Decrease Neuron
Variance and Increase Neuron Stability.

[39] Laurence A Wolsey. 2020. Integer programming. John Wiley & Sons.

[40] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. 2020. Fast and
complete: Enabling complete neural network verification with rapid and massively parallel incomplete
verifiers.

[41] Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Yuming Yin, Jianyu Chen, and Jingliang
Duan. 2023. Safe model-based reinforcement learning with an uncertainty-aware reachability certificate.

[42] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. 2018. Efficient neural network
robustness certification with general activation functions. In Advances in neural information processing
systems, Vol. 31.

[43] Hongchao Zhang, Junlin Wu, Yevgeniy Vorobeychik, and Andrew Clark. 2024. Exact verification of relu
neural control barrier functions. Advances in Neural Information Processing Systems 36 (2024).

Received 31 July 2024; revised 27 May 2025; accepted 18 June 2025

Journal of Artificial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Synthesis of Neural HJ Reachability Value Function
	2.2 Verification of Neural Safety Certificates

	3 Preliminaries
	3.1 State Constraint and Feasible Region
	3.2 Hamilton-Jacobi Reachability Analysis
	3.3 Synthesizing Neural HJ Reachability Value Function
	3.4 Verifying Neural Network via Mixed Integer Linear Programming

	4 Method
	4.1 Overview
	4.2 Activation Pattern Alignment
	4.3 Boundary-Guided Backtracking
	4.4 Entering State Regularization
	4.5 Analysis of Proposed Framework

	5 Experiments
	5.1 Cersyve-9 Benchmark
	5.2 Evaluation Procedure and Metrics
	5.3 Synthesis Results
	5.4 Comparison Studies

	6 Conclusion
	Acknowledgments

