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Hamilton-Jacobi (HJ) reachability analysis provides a formal method for guaranteeing safety in constrained control problems.
It synthesizes a value function to represent a long-term safe set called feasible region. Early synthesis methods based on
state space discretization cannot scale to high-dimensional problems, while recent methods that use neural networks to
approximate value functions result in unveri!able feasible regions. To achieve both scalability and veri!ability, we propose a
framework for synthesizing veri!ed neural value functions for HJ reachability analysis. Our framework consists of three stages:
pre-training, adversarial training, and veri!cation-guided training. We design three techniques to address three challenges to
improve scalability respectively: boundary-guided backtracking (BGB) to improve counterexample search e"ciency, entering
state regularization (ESR) to enlarge feasible region, and activation pattern alignment (APA) to accelerate neural network
veri!cation. We also provide a neural safety certi!cate synthesis and veri!cation benchmark called Cersyve-9, which includes
nine commonly used safe control tasks and supplements existing neural network veri!cation benchmarks. Our framework
successfully synthesizes veri!ed neural value functions on all tasks, and our proposed three techniques exhibit superior
scalability and e"ciency compared with existing methods.
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1 Introduction
Safety is a primary concern in controller design, especially for control systems interacting with the physical world,
such as autonomous driving and robot locomotion. In these systems, safety is usually speci!ed by inequality
constraints on system states. For example, safety constraints in a robot locomotion task require the distance
between the robot and surrounding obstacles to be always positive. Such safety constraints must be satis!ed not
only in a single time step but also in all time steps over an in!nite horizon. When designing a controller, it is
important to know from which states it can satisfy the in!nite-horizon safety constraints and from which states
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it cannot. The deployment of any controller should be restricted to a set of states where long-term constraint
satisfaction is ensured, which is called a feasible region.

Hamilton-Jacobi (HJ) reachability analysis provides a formal method for computing feasible regions of control
systems with safety constraints [5]. In HJ reachability analysis, a feasible region is represented by the zero-sublevel
set of a value function, which is de!ned as the maximum value of the constraint function over a trajectory. In
general nonlinear systems, exactly computing the value function is di"cult because it involves solving the HJ
partial di#erential equation, which does not have a closed-form solution in most cases [5]. Traditional methods
numerically solve the HJ equation on a grid representing a discretization of the state space [28, 29]. These
methods’ computational complexity grows exponentially with state dimension, making them intractable in
high-dimensional systems. Although some techniques, such as system decomposition [11], are proposed for
accelerating value function computation, they only apply to some special scenarios. Recent methods use neural
networks to approximate the solution to the HJ equation by minimizing the error between the two sides of
the equation [16, 6]. The error is computed on states randomly sampled in the state space and minimized by
gradient-based optimization algorithms. Although these methods scale well to high-dimensional systems, the
zero-sublevel sets of their value functions are no longer guaranteed to be valid feasible regions due to neural
network approximation errors. Speci!cally, their zero-sublevel sets may violate two basic properties of a feasible
region: constraint satisfaction and forward invariance. Constraint satisfaction means all states in a feasible region
satisfy the safety constraint themselves. Forward invariance means starting from any state in a feasible region,
its subsequent states can always be kept in this region by some control policy. Violating these two properties
may cause possible constraint violations, even starting from a state inside the zero-sublevel set, making the value
function unreliable for safe control.
The problem of invalid feasible regions necessitates veri!cation of neural HJ reachability value functions.

Recently, some researchers have begun to use neural network veri!cation tools to formally verify and synthesize
neural safety certi!cates, such as neural control barrier functions (CBFs) [37, 43] and neural control Lyapunov
functions (CLFs) [10, 2]. Similar to HJ reachability value function, these safety certi!cates also represent feasible
regions by their zero-sublevel sets. The di#erence is that these functions are not de!ned through equations but
through certain inequality conditions. For example, the time derivative of a CBF must be upper bounded by
an extended class K function, and a CLF must be a positive de!nite function with negative time derivatives.
Existing works try to verify whether these conditions are strictly satis!ed by the neural safety certi!cates in the
entire state space. Such problems can be transformed into standard neural network veri!cation problems, which
can be solved by existing veri!cation tools [25]. This veri!cation procedure can also be embedded into neural
safety certi!cate synthesis, resulting in veri!cation-guided training methods [37, 43]. If veri!cation fails on a
synthesized safety certi!cate, the found counterexamples are added to the dataset, and the safety certi!cate is
further trained on these counterexamples. This process is repeated until the neural safety certi!cate is successfully
veri!ed. However, these methods currently only work on low-dimensional or linear systems and are di"cult to
scale to high-dimensional nonlinear systems and real-world control tasks. Through our study, we discover three
main challenges that restrict the scalability of these methods:

• Di!culty of searching and eliminating counterexamples. Successful veri!cation requires strict
satisfaction of inequality conditions in all states, and not a single counterexample is allowed. However,
counterexamples become extremely sparse in high-dimensional spaces, making it di"cult to !nd and
eliminate all of them.

• Severe shrinkage of feasible region. When training neural safety certi!cates on counterexamples, their
zero-sublevel sets tend to shrink so that the inequality conditions can be more easily satis!ed. Although
slight shrinkage is sometimes acceptable, severe shrinkage can be a serious problem because it results in
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Fig. 1. Neural HJ reachability value function synthesis framework. Our framework consists of three stages: pre-training,
adversarial training, and verification-guided training. The circles of state space and dataset in pre-training and adversarial
training mean randomly sampling states from these sets, while in verification-guided training, the state space and output set
are in analytical form. Our three key techniques are highlighted in blue boxes, namely APA, BGB, and ESR. The three middle
figures show the synthesis results on a 2D task Double Integrator. The pre-trained feasible region is larger than the true
feasible region, indicating that it is invalid. A!er adversarial training and verification-guided training, the feasible region
becomes valid. Details of the experiment can be found in Section 5.

overly conservative control policies and poor control performance. We !nd in our experiments that, in
some cases, the feasible region shrinks so much that it even disappears.

• High computational complexity of veri"cation. The computational complexity of neural network
veri!cation algorithms typically grows exponentially with the input dimension, which equals the system’s
state dimension. As shown in our experiments, verifying a relatively small value network in a 4-dimensional
system can take more than 2 hours on a common computing platform.

The above analysis reveals a key challenge of synthesizing neural HJ reachability value functions: the trade-
o# between scalability and veri!ability. Traditional numerical methods based on state space discretization
ensure veri!ability but sacri!ce scalability. Neural HJ reachability methods scale well to high-dimensional
systems, but their synthesized networks are not veri!ed. Recent veri!cation-guided training methods provide a
promising way to synthesize veri!able neural safety certi!cates, but they again sacri!ce scalability because of the
aforementioned three challenges. To achieve both scalability and veri!ability, we propose a scalable framework
for synthesizing formally veri!ed neural HJ reachability value functions, as shown in Figure 1. Our framework
consists of three stages: pre-training, adversarial training, and veri!cation-guided training. Pre-training and
veri!cation-guided training are widely used in existing neural safety certi!cate synthesis methods [37, 10, 2]. The
former aims to obtain a reasonable approximation of the value function, while the latter aims to !ne-tune the
network on counterexamples until it becomes a valid safety certi!cate. However, directly performing veri!cation
on a pre-trained value network is ine"cient because a pre-trained network usually has a large number of
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counterexamples, while only a single one can be found in each veri!cation step. To improve !ne-tuning e"ciency,
we add an adversarial training stage between them, which searches and eliminates counterexamples in a batched
manner. Veri!cation-guided training does not start until adversarial training can hardly !nd any counterexamples.
Although there are many advanced methods for neural network veri!cation, e.g., 𝐿, 𝑀-CROWN [40, 36], we choose
a basic method: mixed integer linear programming (MILP) [34]. This is because most advanced methods are
designed for robust image classi!cation problems, while we consider safety certi!cate synthesis problems, which
have much lower input dimensions and smaller neural networks. In such small-scale problems, those advanced
methods perform even worse than the basic MILP [36]. Note that this does not mean that our problem is simpler
than robust image classi!cation; in some sense, our problem is even harder as we require certain properties to
hold in the entire input space instead of a small disturbance set. With our three-stage framework in place, the
next step is to !nd speci!c methods to solve the problem in each stage. Although there are many well-studied
methods for these three stages, we !nd that directly using state-of-the-art methods makes the framework quickly
fail as the problem dimension increases, because these methods cannot e#ectively solve the aforementioned
three challenges. To this end, we propose three techniques to improve the scalability of our framework, each
designed to address one of the three challenges. First, we !nd that counterexample search in adversarial training
is di"cult because existing gradient-based search methods are ine"cient in searching along the boundary of
feasible region. We propose a backtracking method that rotates the search direction towards the boundary to
accelerate counterexample search. Second, we exploit the fact that constraint-satisfying states that enter the
feasible region in one step are also feasible and penalize the value of these states in !ne-tuning to alleviate the
shrinkage of feasible region. Third, we discover that the number of linear segments of the neural network greatly
a#ects the computational complexity of solving MILP. We design a regularization term for network pre-training
to reduce the number of linear segments and thus accelerate veri!cation. Our main contributions are summarized
as follows.

• We propose a scalable framework for synthesizing formally veri!ed neural HJ reachability value functions.
Our framework synthesizes neural value functions from coarse to !ne with high e"ciency through three
stages: pre-training, adversarial training, and veri!cation-guided training. Pre-training approximates the
solution to an HJ equation by gradient descent on data samples and obtains a value network that is likely
to be invalid. Adversarial training searches counterexamples in a batched manner based on necessary and
su"cient conditions for feasible region and !ne-tunes the value network to eliminate counterexamples.
Veri!cation-guided training formulates the value network veri!cation problem as an MILP and further
!ne-tunes the network on counterexamples until it is veri!ed.

• To accelerate counterexample search in adversarial training, we propose an algorithm called boundary-
guided backtracking (BGB) that e"ciently searches along the boundary of feasible region. When approach-
ing the boundary, BGB rotates the search direction towards the tangent plane of the boundary so that
larger step sizes can be taken without stepping out of the feasible region.

• To alleviate feasible region shrinkage, we present entering state regularization (ESR) that adds a penalty
term to the loss function when !ne-tuning the value network. ESR !rst identi!es constraint-satisfying
states that enter the feasible region in one step and then encourages the values of these states to be negative
so that they are included in the feasible region.

• To accelerateMILP-based veri!cation, we design a regularizationmethod called activation pattern alignment
(APA) for pre-training of value network and dynamics network. APA reduces linear segments of a neural
network by penalizing the di#erence in the activation patterns of neighboring states while minimizing the
loss of network approximation ability.

• We provide a benchmark called Cersyve-9 for neural safety certi!cate synthesis and veri!cation in safe
control problems, which supplements existing neural network veri!cation benchmarks. Cersyve-9 contains
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nine commonly used control tasks with various dimensions, including linear and nonlinear system dynamics
and safety constraints. Extensive experiments on Cersyve-9 demonstrate the e#ectiveness, scalability, and
e"ciency of our synthesis framework. The code of our benchmark is available on GitHub1.

2 Related Works
In this section, we review existing works on the synthesis of neural HJ reachability value functions and the
veri!cation of neural safety certi!cates.

2.1 Synthesis of Neural HJ Reachability Value Function
Traditional HJ reachability analysis computes the value function by numerically solving the HJ PDE on a
discretized grid of the state space. The computational complexity of this method grows exponentially with
state dimension, making it inapplicable to high-dimensional problems. To deal with this issue, researchers have
explored using neural networks to approximate the value function.

A straightforward method for learning a neural value function is to minimize the error between the two sides
of the HJ equation by gradient descent on state samples [14, 6]. However, this method is hard to converge because
the HJ equation does not yield a contraction mapping and thus does not satisfy the convergence conditions of
!xed point iteration. In practice, this method typically requires speci!c initialization of the value function or relies
on certain neural network architectures to converge to the correct solution. Fisac et al. [16] solve this problem by
introducing a discount factor into the value function, modifying the original maximum constraint formulation
of HJ reachability to a maximum discounted constraint formulation. Under the discounted formulation, the HJ
equation also changes to a discounted version, which yields a contraction mapping and enables convergence
of !xed point iteration with an arbitrary initialization. This makes temporal di#erence learning methods in
reinforcement learning (RL) applicable to computing the value function. Since then, the discounted value function
has been extensively used for neural HJ reachability analysis in safe control tasks, especially when combined with
RL algorithms. For example, Hsu et al. [20] consider reach-avoid problems and add goal information to the value
function proposed by Fisac et al. [16]. They derive a discounted reach-avoid Bellman backup and prove that their
reach-avoid Q-learning algorithm converges to an arbitrarily tight conservative approximation of the reach-avoid
set. Yu et al. [41] establish a self-consistency condition for computing the value function of a speci!c policy. They
use the value function as the objective function and constraint for shield and main policies, respectively. The
value function is also used for policy switching during training and safety shield during evaluation. He et al.
[18] applies the method proposed by Hsu et al. [20] to train a reach-avoid value function in a quadrupedal robot
locomotion task. Their value function controls the switch between an agile policy and a recovery policy, and also
guides the recovery policy as an objective function.
Despite these advancements, there is an inherent problem in approximating value function with neural

networks: the zero-sublevel set of the value network may not be a valid feasible region due to approximation
errors. Speci!cally, the zero-sublevel set may violate the two basic properties of a feasible region: constraint
satisfaction and forward invariance. This can be problematic when using these value networks for constructing
constraints in policy optimization or monitoring unsafe actions in safety !lters. With these two properties
unsatis!ed, even if the current state is inside the zero-sublevel set, the system may still run into a constraint-
violating state sometime in the future. This problem necessitates additional veri!cation of the value network,
which is not addressed by existing works.

1https://github.com/intelligent-control-lab/Cersyve.jl
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2.2 Verification of Neural Safety Certificates
Safety certi!cates are real-valued functions of system state that are used to represent feasible regions and construct
constraints or safety !lters of control policy. HJ reachability value function is a kind of safety certi!cate, and two
other representative examples are CBF and CLF. CBF and CLF are de!ned through certain inequality conditions
which, when strictly satis!ed, ensure that the zero-sublevel sets of these safety certi!cates are feasible regions.
Similar to HJ reachability value function, CBF and CLF can also be represented by neural networks, and the
resulting neural CBF and CLF also face the problem of veri!cation.
With the development of neural network veri!cation tools [25], some recent studies have begun to formally

verify the inequality conditions of neural CBF and CLF. For example, Zhang et al. [43] !rst decompose a neural
CBF into piecewise linear segments and then solve a nonlinear program to verify the safety of each segment. To
deal with the non-di#erentiable ReLU activation function, they leverage a generalization of Nagumo’s theorem
to prove invariance of sets with non-smooth boundaries and derive necessary and su"cient conditions for
safety. While Zhang et al. [43] focus on verifying a given neural CBF, veri!cation of neural safety certi!cates can
also be combined with their training process. This yields a veri!cation-guided training scheme of neural safety
certi!cates, which iterates between a learner and a veri!er. The learner updates the certi!cate on data samples to
enforce the satisfaction of safety properties. The veri!er either veri!es the certi!cate’s validity in the entire state
space or generates counterexamples and adds them to the dataset for further training. This iterative procedure
terminates when no counterexample is found by the veri!er, in which case the neural safety certi!cate is formally
veri!ed. This training scheme is widely used for synthesizing formally veri!ed neural CBFs [32, 1, 12] and neural
CLFs [10, 2, 13]. To improve the e"ciency of the veri!er, Wang et al. [37] leverage the Branch-and-Bound scheme
to identify partitions of the state space that are not guaranteed to satisfy CBF conditions. Additional data from
these partitions are incorporated into the training dataset for further optimization. To accelerate neural CBF
training, some works exploit the Lipschitz continuity property of neural CBF and use robust training techniques
to ensure the satisfaction of CBF conditions [4, 33].
Despite these exploratory works, challenges remain in scaling veri!able neural safety certi!cate synthesis

methods to high-dimensional problems. Most existing methods only apply to control systems with less than
four state dimensions [2, 37, 33] or special systems with four to eight dimensions whose state consists of the
derivatives of the same variable, and the dynamics is described by a single scalar ordinary di#erential equation
[32, 1]. Chang et al. [10] and Dai et al. [13] synthesize veri!ed neural Lyapunov functions on six-dimensional
humanoid and quadrotor systems respectively, but their training takes hours, and the obtained feasible regions
are small, which may result in overly conservative control policies. Through our study, we discover three main
challenges that restrict the scalability of these methods: 1) di"culty of searching and eliminating counterexamples,
2) severe shrinkage of feasible region, and 3) high computational complexity of veri!cation. We propose three
techniques to mitigate these three challenges respectively, and they together signi!cantly improve the scalability
of our synthesis framework.

3 Preliminaries
This section introduces some basic concepts in safe control, HJ reachability analysis, and neural network veri!ca-
tion, and formalizes the neural HJ reachability synthesis problem.

3.1 State Constraint and Feasible Region
Consider a discrete-time deterministic control system:

𝑁𝐿+1 = 𝑂 (𝑁𝐿 ,𝑃𝐿 ), (1)
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where 𝑁 → X is the state, 𝑃 → U is the control input, 𝑂 is the system dynamics, and 𝑄 → N is the time step. A
control policy maps a state to a control input, i.e., 𝑅 : X ↑ U. The closed-loop dynamics under control policy 𝑅
is denoted as 𝑂𝑀 (𝑁) := 𝑂 (𝑁, 𝑅 (𝑁)). Safety constraint of the system is speci!ed by:

𝑆(𝑁𝐿 ) ↓ 0,↔𝑄 → N, (2)
where 𝑆 is the constraint function and the inequalities (2) are called state constraints. Before implementing
a control policy, it is necessary to identify the states where the closed-loop system always satis!es the state
constraints. Such states constitute the feasible region of the policy, which is de!ned as follows.

D&’#(#)#"( 1 (F&*+#,-& $&.#"(). A feasible region of policy 𝑅 , denoted as X𝑀 , is a subset of the state space X
such that ↔𝑁 → X𝑀 , 𝑆(𝑁𝐿 ) ↓ 0, 𝑄 → N, where 𝑁0 = 𝑁 and 𝑁𝐿+1 = 𝑂𝑀 (𝑁𝐿 ).
From the above de!nition, we can derive a set of necessary and su"cient conditions for feasible region:

constraint satisfaction and forward invariance.

T/&"$&0 1 ((&%&++*$1 *(! +2’’#%#&() %"(!#)#"(+ ’"$ ’&*+#,-& $&.#"(). X𝑀 is a feasible region of 𝑅 if and
only if
(1) (Constraint satisfaction) ↔𝑁 → X𝑀 ,𝑆(𝑁) ↓ 0.
(2) (Forward invariance) ↔𝑁 → X𝑀 , 𝑂𝑀 (𝑁) → X𝑀 .

The proof of Theorem 1 follows directly from De!nition 1 and is omitted here. Constraint satisfaction means
all states in a feasible region satisfy the state constraint at the current time step. Forward invariance means that
for any state in the feasible region, its next state under the closed-loop dynamics still lies in this region. These
two conditions are useful for determining and identifying feasible regions because they only involve a single-step
state transition instead of in!nite steps as De!nition 1. They are also used as the conditions for verifying neural
HJ reachability value functions in this paper.

3.2 Hamilton-Jacobi Reachability Analysis
Hamilton-Jacobi (HJ) reachability analysis identi!es the feasible region of a control system with state constraints
by computing a value function. In a closed-loop system under a given control policy, the value function is de!ned
as the maximum value of the constraint function in a trajectory sampled by the policy.

D&’#(#)#"( 2 (HJ $&*%/*,#-#)1 3*-2& ’2(%)#"(). The HJ reachability value function of control policy 𝑅 is
de!ned as

𝑇 𝑀 (𝑁) := max
𝐿 →N

𝑆(𝑁𝐿 ), (3)

where 𝑁0 = 𝑁 and 𝑁𝐿+1 = 𝑂𝑀 (𝑁𝐿 ).
A desirable property of the value function is that its zero-sublevel set is a feasible region.

T/&"$&0 2. The zero-sublevel set of 𝑇 𝑀 , denoted as X𝑁 𝐿 := {𝑁 → X|𝑇 𝑀 (𝑁) ↓ 0}, is a feasible region of 𝑅 .

P$""’. Weprove thatX𝑁 𝐿 satis!es the two conditions in Theorem 1.↔𝑁 → X𝑁 𝐿 , we have𝑆(𝑁) ↓ max𝐿 →N 𝑆(𝑁𝐿 ) =
𝑇 𝑀 (𝑁) ↓ 0. Thus, X𝑁 𝐿 satis!es constraint satisfaction. ↔𝑁 → X𝑁 𝐿 , we have 𝑇 𝑀 (𝑂𝑀 (𝑁)) = max𝐿↗1 𝑆(𝑁𝐿 ) ↓
max𝐿 →N 𝑆(𝑁𝐿 ) = 𝑇 𝑀 (𝑁) ↓ 0. Thus, X𝑁 𝐿 satis!es forward invariance. Therefore, X𝑁 𝐿 is a feasible region of 𝑅 . ⊋

Theorem 2 makes the value function useful for representing feasible regions and synthesizing safe controllers.
For example, with a possibly unsafe nominal policy and a safe backup policy 𝑅 , one can determine whether the
nominal policy will lead to a possibly unsafe state by checking if the next state is in X𝑁 𝐿 . Speci!cally, if the next
state is in X𝑁 𝐿 , it is safe as 𝑅 can keep the state always in X𝑁 𝐿 . If the next state is not in X𝑁 𝐿 , it is possibly unsafe
as 𝑅 has no safety guarantee outside X𝑁 𝐿 , and we should replace the nominal policy with 𝑅 to compute a safe

Journal of Arti!cial Intelligence Research, Vol. 83, Article 19. Publication date: July 2025.



19:8 • Yang, Hu, Wei, Li & Liu

action. This zero-sublevel set property is one of the most fundamental properties of safety certi!cates. In addition
to HJ reachability value function, other safety certi!cates, such as CBF and CLF, also have similar properties.
In a stochastic control system, the HJ reachability value function satis!es an HJ PDE [5]. In a deterministic

closed-loop system, the minimum and maximum operators on control inputs and disturbances in the HJ PDE can
be omitted, resulting in a simpli!ed equation called the risky self-consistency condition.

T/&"$&0 3 (R#+41 +&-’5%"(+#+)&(%1 %"(!#)#"(). Let 𝑇 𝑀 be the value function of 𝑅 , ↔𝑁 → X, we have

𝑇 𝑀 (𝑁) = max{𝑆(𝑁),𝑇 𝑀 (𝑂𝑀 (𝑁))}. (4)

The risky self-consistency condition is a recursive relationship between the values of the previous and
subsequent states. In RL, the value function of reward also has a similar self-consistency condition. Here, the
name “risky" distinguishes the HJ reachability value function from the reward value function, re$ecting the
former’s relationship to safety constraints. With the risky self-consistency condition, we can compute the value
function by solving Equation (4). However, this equation does not have an analytical solution in most cases, and
traditional numerical methods based on state space discretization cannot scale to high-dimensional systems. This
necessitates using a neural network to represent the value function and approximate the solution to Equation (4).

3.3 Synthesizing Neural HJ Reachability Value Function
A straightforward method for !tting a neural network to the solution to Equation (4) is to minimize the error
between the two sides of the equation. However, this method is hard to converge because Equation (4) does not
yield a contraction mapping. To create a contraction mapping, Fisac et al. [16] modify the risky self-consistency
condition to a discounted version:

𝑇 𝑀 (𝑁) = (1 ↘ 𝑈)𝑆(𝑁) + 𝑈 max{𝑆(𝑁),𝑇 𝑀 (𝑂𝑀 (𝑁))}, (5)

where 𝑈 → (0, 1) is a discounted factor. They prove that Equation (5) induces a contraction mapping on the value
function space under the in!nity norm [16]. This ensures that a !xed point iteration converges to the unique
solution to Equation (5), which is a discounted version of the value function. As the discount factor 𝑈 approaches
one, the solution to (5) approaches that of (4), which is the original value function.
Suppose we use a feedforward neural network 𝑇 𝑀

𝑂 to represent the value function, where 𝑉 is the network
parameters. To approximate the solution to Equation (5), we minimize the mean squared error (MSE) between
the two sides of the equation:

𝑊RSC (𝑉 ) =
1
𝑋

𝑃∑
𝑄=1

(𝑇 𝑀
𝑂 (𝑁 (𝑄 ) ) ↘ ((1 ↘ 𝑈)𝑆(𝑁 (𝑄 ) ) + 𝑈 max{𝑆(𝑁 (𝑄 ) ),𝑇 𝑀

𝑂 (𝑂𝑀 (𝑁 (𝑄 ) ))}))2, (6)

where the subscript “RSC" stands for risky self-consistency condition, 𝑋 is the number of state samples, and 𝑁 (𝑄 )

stands for the 𝑌-th state sample. In practice, the states are uniformly sampled from the state space. However, a
problem with this method is that the obtained value network may not be a valid safety certi!cate. Speci!cally,
the zero-sublevel set of 𝑇 𝑀

𝑂 , denoted as X𝑁 𝐿
𝑀
, may not strictly satisfy the necessary and su"cient conditions for

a feasible region given in Theorem 1. The cause for this invalidity is two-fold: 1) approximation errors of 𝑇 𝑀
𝑂

make it not exactly the solution to (5), and 2) when the discount factor 𝑈 is less than one, the zero-sublevel set
of the solution to the discounted self-consistency condition (5) is an over-approximation of that of the solution
to the original self-consistency condition (4) [3]. Since the zero-sublevel set of the solution to (4) is already the
maximum feasible region of 𝑅 , any of its over-approximations is not a valid feasible region. This invalidity may
lead to unsafe behaviors when using 𝑇 𝑀

𝑂 for synthesizing control policies. To address this issue, this paper aims
to synthesize neural HJ reachability value functions with veri!ed zero-sublevel sets.
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P$",-&0 1. Given a control system (1) and a control policy 𝑅 , synthesize a neural HJ reachability value function
𝑇 𝑀
𝑂 , such that its zero-sublevel set is a veri!ed feasible region of 𝑅 , i.e., it strictly satis!es the conditions of constraint
satisfaction

↔𝑁 → X,𝑇 𝑀
𝑂 (𝑁) ↓ 0 ≃ 𝑆(𝑁) ↓ 0, (7)

and forward invariance
↔𝑁 → X,𝑇 𝑀

𝑂 (𝑁) ↓ 0 ≃ 𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁)) ↓ 0. (8)

Note that the constraint satisfaction and forward invariance conditions only ensure that the zero-sublevel set
of 𝑇 𝑀

𝑂 is a feasible region but do not ensure that 𝑇 𝑀
𝑂 is an exact solution to (4). In fact, they are only necessary

conditions for 𝑇 𝑀
𝑂 to be an exact solution. We choose to verify these two conditions because exact veri!cation of

(4), which is an equation involving a neural network, is almost impossible due to neural network approximation
errors. In addition, since any safety certi!cate represents a feasible region by its level set, these two conditions
can also be used to verify other safety certi!cates, such as CBF and CLF, with minor modi!cations.

3.4 Verifying Neural Network via Mixed Integer Linear Programming
Veri!cation of a neural network is to check whether the network’s output lies in a speci!c output set for all
inputs in a given input set [25]. Mathematically, let X be the input set, Y be the output set, and NN(·) be the
neural network. A veri!cation problem requires to check whether the following assertion holds:

↔𝑁 → X,𝑍 = NN(𝑁) → Y . (9)

In this paper, we consider the case where NN(·) is a feedforward neural network with ReLU activation functions.
In this case, NN(·) is a piecewise linear function, and the equality 𝑍 = NN(𝑁) can be encoded as a set of linear and
integer constraints [34]. Moreover, if the input set X and the complement of the output set Y can be expressed
by a !nite number of linear constraints, e.g., X and the complement of Y are polytopes, assertion (9) can be
checked by solving a mixed integer linear programming (MILP):

!nd 𝑁, s.t. 𝑁 → X,𝑍 ω Y,𝑍 = NN(𝑁). (10)

Problem (10) tries to !nd a counterexample in the input set such that the corresponding output of the neural
network is not in the output set. If the problem is feasible, the property to verify is violated and a counterexample
is found. If the problem is infeasible, the property holds. Note that problem (10) is a feasibility problem, i.e., an
optimization problem without an objective function. It is also possible to include an objective function in (10),
with common examples like maximum violation and minimum disturbance [25]. In this paper, since we only
focus on whether the property holds or not and have no preference for counterexamples, we omit the objective
function to simplify the problem.

4 Method
This section formally introduces our neural HJ reachability value function synthesis framework. We !rst provide
an overview of our synthesis framework and then detail three key techniques that signi!cantly improve its
scalability.

4.1 Overview
Our framework consists of three stages: pre-training, adversarial training, and veri!cation-guided training.
Pre-training learns a value network without veri!cation, which probably violates the feasible region conditions.
Adversarial training e"ciently searches for counterexamples and eliminates most of them by !ne-tuning the
network. Veri!cation-guided training !nds remaining counterexamples by solving the MILP and further !ne-
tunes the network until the feasible region conditions are veri!ed. Pre-training is performed !rst and is separate
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from the other two stages. Adversarial training is performed next, and if no counterexamples are found in a
certain number of iterations, veri!cation-guided training starts. If a counterexample is found, we return to
adversarial training until the next time veri!cation-guided training is triggered. This process is repeated until
veri!cation succeeds, at which point we have synthesized a valid neural value function. Compared with most
existing neural safety certi!cate synthesis methods that include pre-training and veri!cation-guided training
[37, 10, 2], our framework adds an adversarial training stage between them. This is because a pre-trained value
network usually has a large number of counterexamples, while only a single one can be found in each veri!cation
step, making veri!cation-guided training ine"cient. In contrast, adversarial training searches counterexamples
in a batched manner, making the search much less expensive than that in veri!cation-guided training in terms of
computation. First using adversarial training to reduce counterexamples to a small number and then performing
veri!cation-guided training greatly improves !ne-tuning e"ciency.

In pre-training, we learn a value network by minimizing the following loss function.

𝑊pre (𝑉 ) = 𝑊RSC (𝑉 ) + 𝑊APA (𝑉 ), (11)

where 𝑊APA (𝑉 ) is a regularization term computed by activation pattern alignment (APA), which reduces the
number of linear segments of a neural network to accelerate veri!cation. This technique will be detailed in
Section 4.2. The pre-trained value network is not veri!ed and may violate the feasible region conditions. We
!ne-tune the network in the next two stages to make its zero-sublevel set a veri!ed feasible region.

In adversarial training, we !rst search for counterexamples, i.e., states that violate the feasible region conditions.
For simplicity of narration, we call the counterexamples of the constraint satisfaction condition the constraint
counterexamples and those of the forward invariance condition the invariance counterexamples. To !nd these two
kinds of counterexamples, we solve two corresponding optimization problems. The optimization problem for
!nding constraint counterexamples is

max
𝑅→X

𝑆(𝑁), s.t. 𝑇 𝑀
𝑂 (𝑁) ↓ 0, (12)

and that for !nding invariance counterexamples is

max
𝑅→X

𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁)), s.t. 𝑇 𝑀

𝑂 (𝑁) ↓ 0. (13)

If the optimal value of (12) is greater than zero, the solution is a constraint counterexample. Similarly, if the
optimal value of (13) is greater than zero, the solution is an invariance counterexample. Generally, problem
(12) and (13) are non-convex in both their objective functions and constraints and are thus di"cult to solve.
However, to !nd counterexamples, we do not need to solve them exactly but only need to !nd feasible points
with positive objective functions, i.e., 𝑆(𝑁) > 0 and𝑇 𝑀

𝑂 (𝑁) ↓ 0 for constraint counterexamples and𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁)) > 0

and 𝑇 𝑀
𝑂 (𝑁) ↓ 0 for invariance counterexamples. To achieve this goal e"ciently, we propose a gradient-based

search method called boundary-guided backtracking (BGB), which will be detailed in Section 4.3.
After obtaining counterexamples, we store them in a dataset for !ne-tuning the value network. In each iteration,

we randomly sample the two kinds of counterexamples from the dataset and minimize their corresponding loss
functions computed according to the feasible region conditions. The loss function for constraint counterexamples
is

𝑊con (𝑉 ) =
1

𝑋con

𝑃con∑
𝑄=1

↘𝑇 𝑀
𝑂 (𝑁 (𝑄 )

con), (14)

and that for invariance counterexamples is

𝑊inv (𝑉 ) =
1

𝑋inv

𝑃inv∑
𝑄=1

𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁 (𝑄 )

inv)) ↘𝑇 𝑀
𝑂 (𝑁 (𝑄 )

inv), (15)
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where 𝑋con and 𝑋inv are the numbers of constraint and invariance counterexamples respectively, and 𝑁 (𝑄 )
con and

𝑁 (𝑄 )
inv stands for the 𝑌-th constraint counterexample and invariance counterexample, respectively. We discover in
our experiments that directly minimizing these two loss functions will result in severe shrinkage of the value
network’s zero-sublevel set. A possible reason for the shrinkage is that minimizing (15) only decreases the
di#erence between the values of the next state and the current state, but their respective values may increase
instead. To mitigate this problem, we include an additional regularization term in the loss function of adversarial
training:

𝑊adv (𝑉 ) = 𝑊con (𝑉 ) + 𝑊inv (𝑉 ) + 𝑊ESR (𝑉 ), (16)

where 𝑊ESR (𝑉 ) is computed using entering state regularization (ESR), which will be detailed in Section 4.4.
In veri!cation-guided training, we use mixed integer linear programming (MILP) to verify the feasible region

conditions or !nd counterexamples. If the conditions are veri!ed, we obtain a valid neural value function, and
the algorithm ends. If counterexamples are found, we add them to the dataset for further !ne-tuning. The core
problem is how to formulate the veri!cation of the feasible region conditions as MILPs. In a standard veri!cation
problem (9), there is only one function NN(·), while in our problem, veri!cation of each condition involves two
functions, and their corresponding inequalities have an implication relationship. To deal with this problem, we
!rst concatenate the two functions into a single function with two outputs:

Mcon (𝑁) =
[
𝑇 𝑀
𝑂 (𝑁)
𝑆(𝑁)

]
, Minv (𝑁) =

[
𝑇 𝑀
𝑂 (𝑁)

𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁))

]
. (17)

With this concatenation, the feasible region conditions can be naturally expressed by restricting the output of the
concatenated function in the complement of the second quadrant in a two-dimensional space. Take the constraint
satisfaction condition as an example, “𝑇 𝑀

𝑂 (𝑁) ↓ 0 ≃ 𝑆(𝑁) ↓ 0" means the output of Mcon should not be in the
second quadrant. Thus, we can de!ne an output set whose complement is the second quadrant so that the output
constraint “𝑍 ω Y" can be expressed by linear inequality constraints. Therefore, veri!cation of the constraint
satisfaction condition can be formulated as

!nd 𝑁, s.t. 𝑁 → X,𝑍 = Mcon (𝑁),𝑍1 ↓ 0,𝑍2 ↗ 0, (18)

where 𝑍𝑄 stands for the 𝑌-th element of 𝑍. Here, we assume that the state space X is a hyperrectangle, which
is true in most cases. Then, constraint 𝑁 → X in problem (18) can be expressed by linear inequalities. Now, as
long as Mcon is piecewise linear, problem (18) is an MILP. Since 𝑇 𝑀

𝑂 is a piecewise linear neural network, Mcon is
piecewise linear when the constraint function 𝑆 is piecewise linear. Here, we assume that 𝑆 is piecewise linear,
and the nonlinear case will be left for future work2. Veri!cation of the forward invariance condition can be
similarly formulated as

!nd 𝑁, s.t. 𝑁 → X,𝑍 = Minv (𝑁),𝑍1 ↓ 0,𝑍2 ↗ 0. (19)

If the dynamics 𝑂 and the policy 𝑅 are both piecewise linear functions, Minv is piecewise linear. Similar to 𝑆,
we assume that 𝑂 and 𝑅 are piecewise linear, and the nonlinear case will be left for future work. To show how
problems (18) and (19) can be encoded as MILPs, we explicitly write them in a uni!ed standard form of MILP as

2One possible solution is to approximate a nonlinear 𝑆 using piecewise linear functions, e.g., Taylor model.
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follows. Here, we view Mcon and Minv as a single feedforward neural network with ReLU activation functions.
!nd 𝑁 (20a)
s.t. X𝑇 ↓ 𝑁 ↓ X𝑈, (20b)

𝑎0 = 𝑁, (20c)
𝑎 𝑉 =𝑏𝑉𝑎 𝑉↘1 + 𝑐 𝑉 , 𝑑 = 1, . . . , 𝑒, (20d)

if 𝑒 𝑉,𝑊 ↗ 0, 𝑎 𝑉,𝑊 = 𝑎 𝑉,𝑊 , 𝑑 = 1, . . . , 𝑒 ↘ 1, 𝑓 = 1, . . . ,𝑔 𝑉 , (20e)
if 𝑃 𝑉,𝑊 ↓ 0, 𝑎 𝑉,𝑊 = 0, (20f)
otherwise, 𝑎 𝑉,𝑊 ↓ 𝑎 𝑉,𝑊 , (20g)

𝑎 𝑉,𝑊 ↗ 0, (20h)

𝑎 𝑉,𝑊 ↓ 𝑎 𝑉,𝑊 ↘ 𝑒 𝑉,𝑊 (1 ↘ 𝑕 𝑉,𝑊 ), 𝑕 𝑉,𝑊 → {0, 1}, (20i)
𝑎 𝑉,𝑊 ↓ 𝑃 𝑉,𝑊𝑕 𝑉,𝑊 , (20j)

𝑎𝑇 = 𝑍, (20k)
𝑍1 ↓ 0, 𝑍2 ↗ 0, (20l)

where X𝑇 and X𝑈 are lower and upper bounds of X, the inequality signs in (20b) represent element-wise compar-
isons, 𝑎 𝑉 and 𝑎 𝑉 are the 𝑑-th layers of the neural networkMcon orMinv before and after activation, 𝑎 𝑉,𝑊 and 𝑎 𝑉,𝑊
are the 𝑓-th elements in the 𝑌-th layers, 𝑒 𝑉,𝑊 and 𝑃 𝑉,𝑊 are the lower and upper pre-activation bounds, 𝑕 𝑉,𝑊 is the
binary variable for activation status. Equations (20e) to (20j) are encodings of ReLU, which follow the method
proposed by Tjeng et al. [34]. The pre-activation bounds 𝑒 𝑉,𝑊 and 𝑃 𝑉,𝑊 can be computed by any reachability-based
veri!cation method [25], and we use CROWN [42] in this paper.

Precisely speaking, the output constraint 𝑍2 ↗ 0 in (18) and (19) should be a strict one, i.e., 𝑍2 > 0, according
to the feasible region conditions. However, this would make the two problems no longer standard MILPs and
thus di"cult to solve. Here, we relax the strict constraint to a non-strict one to maintain MILP formulations
at a slight expense of completeness: the solutions to (18) and (19) are not counterexamples when 𝑍1 ↓ 0 and
𝑍2 ↗ 0 simultaneously hold with equality. Fortunately, this problem is minor in practice because the situation
where these two equalities simultaneously hold is rare: it can only happen on the boundary of a feasible region.
In most cases, such a situation can be avoided by slightly shrinking the feasible region through !ne-tuning.
Moreover, when solving (18) and (19) with numerical optimizers, such as Gurobi, there are likely to be numerical
errors in the inequality constraints, i.e., the constraints are violated by a small amount within a certain tolerance.
Therefore, even without relaxation, 𝑍2 has to be strictly less than zero with some margin so that the optimizer
can consider the constraint 𝑍2 > 0 unsatis!able and conclude that the problem is infeasible.
In summary, our framework synthesizes a veri!ed neural HJ reachability value function in three stages by

solving four subproblems of problem (1), which are de!ned as follows.

S2,6$",-&0 1 (P$&5)$*#(#(.). Train a value network 𝑇 𝑀
𝑂 by minimizing loss function (11).

S2,6$",-&0 2 (C"2()&$&7*06-& +&*$%/). Find constraint counterexamples and invariance counterexamples of
a value network 𝑇 𝑀

𝑂 by solving problem (12) and (13), respectively.

S2,6$",-&0 3 (F#(&5)2(#(.). Fine-tune a value network𝑇 𝑀
𝑂 by minimizing loss function (16) on counterexamples

found by solving subproblems 2 or 4.

S2,6$",-&0 4 (V&$#’#%*)#"(). Verify constraint satisfaction condition and forward invariance condition of a
value network 𝑇 𝑀

𝑂 by solving problem (18) and (19), respectively. If both problems are infeasible, return the veri!ed
𝑇 𝑀
𝑂 . If either problem is feasible, return the found counterexamples.
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Subproblem 1 is !rst solved in the pre-training stage. Then, subproblem 2 and 3 are iteratively solved in the
adversarial training stage until no counterexample is found from subproblem 2. Next, subproblem 4 is solved in
the veri!cation-guided training stage. When counterexamples are found from subproblem 4, they will still be
used to solve subproblem 3, and the algorithm returns to the adversarial training stage. This process is repeated
until subproblem 4 returns a veri!ed value function.

As mentioned above, we propose three techniques to address the three challenges of improving the scalability
of neural value function synthesis and veri!cation. The three techniques correspond to solving subproblems 1, 2,
and 3, respectively. The following three subsections provide a detailed introduction to each technique.

4.2 Activation Pa"ern Alignment
A major di"culty in scaling our proposed framework is the high computational complexity of MILP-based
veri!cation. Our experiment shows that verifying a relatively small value network in a four-dimensional system
can take more than 2 hours on a common computing platform. To alleviate this problem, we !rst analyze the
reason for such a high computational complexity through the solving mechanism of MILPs. For a neural network
with ReLU activation functions, each ReLU unit can be either active or inactive. To handle a neural network
constraint, a binary variable is introduced for each ReLU unit to model its activation status, i.e., zero represents
an inactive unit, and one represents an active unit, as shown in (20i) and (20j). With these binary variables, MILP
problems are solved using a branch-and-bound algorithm. The branching step divides the problem into smaller
sub-problems by !xing the values of some binary variables. The bounding step estimates the lower and upper
bounds of the objective function in the sub-problems. The computational complexity of the branch-and-bound
algorithm is mainly determined by the number of branches to explore, which relies on the number of possible
combinations of the binary variable values. Since each binary variable corresponds to a ReLU unit, we can also
say that the computational complexity relies on the number of possible activation patterns of the neural network.
Each activation pattern corresponds to a linear segment of the neural network. These linear segments divide
the input set into di#erent regions, in each of which the neural network is a linear function. Since the number
of linear segments largely determines the computational complexity of solving MILPs, we aim to reduce it to
accelerate veri!cation.
For a neural network with a given structure, its number of linear segments can vary greatly depending on

the network parameter values. For a neural network with 𝑋 ReLU units, there is at least one linear segment
and at most 2𝑃 linear segments in a given input set. To reduce the number of linear segments, we introduce a
regularization method called activation pattern alignment (APA) when solving subproblem 1 in pre-training.
Suppose we are updating the value network on a batch of states {𝑁 (𝑄 ) }𝑃𝑄=1. APA !rst adds a Gaussian noise to
each state and obtains a disturbed counterpart of the state:

𝑁 (𝑄 ) = 𝑁 (𝑄 ) + 𝑖 (𝑄 ) , (21)

where 𝑖 (𝑄 ) ⇐ N(0,𝑗2). Then, APA computes the following regularization term and adds it to the pre-training loss
function (11).

𝑊APA (𝑉 ) = 𝐿APA
1
𝑋

𝑃∑
𝑄=1

𝑇↘1∑
𝑉=1

𝑋 𝑁∑
𝑊=1

min{𝑂 𝑉
𝑊 (𝑁

(𝑄 ) ) · 𝑂 𝑉
𝑊 (𝑁

(𝑄 ) ), 0}
min{dropgrad(𝑂 𝑉

𝑊 (𝑁 (𝑄 ) ) · 𝑂 𝑉
𝑊 (𝑁 (𝑄 ) )),↘𝑘}

, (22)

where 𝐿APA > 0 is a coe"cient, 𝑒 is the number of network layers, 𝑔 𝑉 is the number of neurons in the 𝑑-th layer, 𝑂 𝑉
𝑊

is the value of the 𝑓-th neuron in the 𝑑-th layer before activation, and 𝑘 is a small constant for numerical stability.
This regularization term encourages states that are close to each other to have similar activation patterns. It
takes e#ect when the activation patterns of 𝑁 (𝑄 ) and its disturbed counterpart 𝑁 (𝑄 ) are di#erent. In this case,
the multiplication of their pre-activation values in the numerator is penalized and driven towards a positive
value so that their activation patterns become the same. The last layer of the neural network is excluded when
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computing 𝑊APA because it does not have a ReLU activation function and thus does not in$uence the number of
linear segments. The denominator of 𝑊APA does not have a gradient with respect to network parameters 𝑉 and
only serves as a normalization term.
Reducing the number of linear segments essentially reduces the nonlinearity of a neural network. From this

perspective, other neural network regularization methods may also achieve this goal. A widely used regularization
method is weight decay, which incorporates an L2 regularization on the network parameters into the optimization
process. Another method is the signal-to-noise ratio (SNR) loss proposed by Wei et al. [38], which is designed to
reduce the variance and improve the stability of ReLU units to mitigate performance degradation in certi!ed
training. Compared with these methods, APA most e#ectively reduces linear segments while retaining the
network approximation ability to the greatest extent, as shown in Section 5.4.1. This is because APA only takes
e#ect when activation patterns of neighboring states are di#erent and does not a#ect the speci!c pre-activation
values when they have the same sign.

4.3 Boundary-Guided Backtracking
In subproblem 2, we solve two constrained optimization problems (12) and (13) to !nd counterexamples of the
feasible region conditions. Compared with a standard adversarial training problem [17], these two problems not
only have a boundary constraint on the optimization variable but also have a non-convex constraint given by
the zero-sublevel set of the value network. This zero-sublevel set constraint makes these two problems di"cult
to solve because most existing adversarial training methods, such as the fast gradient sign method [17] and
projected gradient descent (PGD) method [27], cannot directly handle such non-convex constraints.

A straightforward method for handling the zero-sublevel set constraint is to perform a backtracking line search
in each PGD iteration, resulting in PGD with backtracking (PGD-B). Speci!cally, we start the search from an
initial state 𝑁 (0) randomly sampled in the zero-sublevel set. In each iteration, we perform a backtracking line
search along the gradient of the objective function, followed by a projection operation until the resulting state is
in the zero-sublevel set:

𝑁 (𝑊+1) = ωX (𝑁 (𝑊 ) + 𝑙𝑌𝑚obj,(𝑊 ) ), (23)

where ωX is the projection operator on X, 𝑙 → (0, 1) is a constant, 𝑛 → N is the smallest number such that
𝑇 𝑀
𝑂 (𝑁 (𝑊+1) ) ↓ 0, and 𝑚obj,(𝑊 ) is the unit vector of the gradient of the objective function. Take problem (12) as an
example,

𝑚obj,(𝑊 ) =
⇒𝑅𝑆(𝑁)

⇑⇒𝑅𝑆(𝑁)⇑2

$$$
𝑅=𝑅 (𝑂 )

. (24)

The problem with PGD-B is that the search becomes very ine"cient when approaching the boundary of the
zero-sublevel set. This is because the gradient of the objective function becomes almost vertical to the boundary,
i.e., in the same direction as the gradient of the constraint function. This is obvious for problem (13) because the
gradients of 𝑇 𝑀

𝑂 (𝑂𝑀 (𝑁)) and 𝑇 𝑀
𝑂 (𝑁) are very similar as long as the time step of the system is not very large. For

problem (12), this phenomenon occurs when the boundary of the zero-sublevel set overlaps or is very close to
that of the constrained set. When the gradient becomes vertical to the boundary, the backtracking line search will
end up in very small step sizes or even stop to avoid stepping out of the zero-sublevel set, as shown in Figure 2(a).
It seems to be a minor problem since the counterexamples we are searching for are also located near the boundary
of the zero-sublevel set; otherwise, the state cannot leave the zero-sublevel set or violate the constraint in one
step unless it is already very close to the boundary. However, practically, PGD-B would get stuck somewhere
not exactly at a counterexample because the initial state is randomly chosen and counterexamples are sparsely
distributed. In this case, even if close to a counterexample, PGD-B may never !nd it because PGD-B can only
search towards the boundary but not along it.
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(a) PGD-B (b) BGB

Fig. 2. Search steps of PGD-B and BGB. The black dot represents the current position of the search, and the orange dots
represent possible counterexamples. (a) PGD-B always searches along the gradient of the objective function and gets stuck
near the boundary of the feasible region. (b) BGB rotates the search direction towards the tangent plane of the boundary
and e#ectively search along the boundary, thus finding counterexamples more e#iciently.

To solve the problem of PGD-B, we propose a boundary-guided backtracking (BGB) method that can e"ciently
search counterexamples along the boundary. This is achieved by rotating the line search direction towards the
tangent plane of the boundary when approaching it. Speci!cally, instead of performing the line search along
𝑚obj,(𝑊 ) , BGB computes the search direction as a weighted sum of 𝑚obj,(𝑊 ) and another unit vector 𝑐 (𝑊 ) , as shown
in Figure 2(b). 𝑐 (𝑊 ) is perpendicular to 𝑚obj,(𝑊 ) , coplanar with both 𝑚obj,(𝑊 ) and 𝑚con,(𝑊 ) and makes an obtuse angle
with 𝑚con,(𝑊 ) , where 𝑚con,(𝑊 ) is the unit vector of the gradient of the constraint function, i.e.,

𝑚con,(𝑊 ) =
⇒𝑅𝑇 𝑀

𝑂 (𝑁)
⇑⇒𝑅𝑇 𝑀

𝑂 (𝑁)⇑2

$$$
𝑅=𝑅 (𝑂 )

. (25)

Then, 𝑐 (𝑊 ) is computed as

𝑐 (𝑊 ) =
𝑐 (𝑊 )

⇑𝑐 (𝑊 ) ⇑2
, 𝑐 (𝑊 ) = (𝑚obj,(𝑊 ) · 𝑚con,(𝑊 ) )𝑚obj,(𝑊 ) ↘ 𝑚con,(𝑊 ) . (26)

BGB line search is performed as

𝑁 (𝑊+1) = ωX (𝑁 (𝑊 ) + 𝑙𝑌𝑇 (𝑙𝑌𝑍𝑚obj,(𝑊 ) + (1 ↘ 𝑙𝑌𝑍)𝑐 (𝑊 ) )), (27)

where 𝑙𝑇 ,𝑙𝑍 → (0, 1) are backtracking discounts for step size and search direction, respectively. The key of BGB is
the unit vector 𝑐 (𝑊 ) , which determines the changing range of search direction. We set 𝑐 (𝑊 ) vertical to 𝑚obj,(𝑊 ) to
ensure that the search direction always makes a sharp angle with 𝑚obj,(𝑊 ) so that the objective function is always
increased. The reason for setting 𝑐 (𝑊 ) coplanar with both 𝑚obj,(𝑊 ) and 𝑚con,(𝑊 ) is that this is the quickest way to
rotate the search direction from 𝑚obj,(𝑊 ) to the tangent plane of the boundary. Vector 𝑐 (𝑊 ) should make an obtuse
angle with𝑚con,(𝑊 ) because this is the direction where the constraint function decreases. Compared with a standard
backtracking line search, BGB not only decreases the step size but also rotates the search direction towards the
boundary in each iteration. Altering the search direction away from the gradient may seem counterintuitive
since it slows the convergence of objective function in an unconstrained case. However, it turns out to be more
e"cient when constraint exists because of a signi!cant reduction in the number of backtracking steps. While
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(a) RSR (b) ESR

Fig. 3. Regularized states of RSR and ESR. (a) The darker blue dots represent regularized states and the lighter ones are their
next states. The regularized states are randomly sampled in the state space and may be infeasible. (b) The darker red dots
represent regularized states and the lighter ones are their next states. The regularized states are entering states and must be
feasible.

the theoretical convergence speed of BGB requires further analysis, our experiments show that in practice, it
e#ectively avoids getting stuck near the boundary and enables e"cient search along the boundary. This ability
greatly improves the e"ciency of !nding counterexamples and accelerates adversarial training, as evident in
Section 5.4.2.

4.4 Entering State Regularization
We discover in our experiments that when !ne-tuning the value network in subproblem 3, directly minimizing
loss functions (14) and (15) on counterexamples will result in severe shrinkage of the zero-sublevel set. Similar
phenomena are also observed in other works on safety certi!cate synthesis [10, 26]. These works deal with this
problem by adding a regularization term that minimizes the output of the value network on randomly sampled
states, as shown in Figure 3(a). This method is called random state regularization (RSR), and the mathematical
formula of its regularization term is

𝑊RSR (𝑉 ) = 𝐿RSR
1

𝑋rnd

𝑃rnd∑
𝑄=1

𝑇 𝑀
𝑂 (𝑁 (𝑄 )

rnd), (28)

where 𝐿RSR is a coe"cient, 𝑁 (𝑄 )
rnd is the 𝑌-th state uniformly sampled from the state space, and 𝑋rnd is the number

of sampled states. The problem with RSR is that it may cause some infeasible states to be mistakenly included in
the zero-sublevel set, resulting in violations of the feasible region conditions. To avoid this problem, we only
regularize states that do not compromise the satisfaction of feasible region conditions when included in the
zero-sublevel set. According to the de!nition of a feasible region, we can derive the following theorem, which
provides a method for expanding a feasible region.

T/&"$&0 4 (F&*+#,-& $&.#"( &76*(+#"(). Let X𝑀 be a feasible region of 𝑅 . ↔𝑁 → X \ X𝑀 , if 𝑆(𝑁) ↓ 0 and
𝑂𝑀 (𝑁) → X𝑀 , X𝑀 ⇓ {𝑁} is also a feasible region of 𝑅 .

Theorem 4 tells us that if a state outside the feasible region satis!es the state constraint and enters the feasible
region in one step, it can be included in the feasible region. Such states are called entering states. The core idea
of our regularization method, called entering state regularization (ESR), is to include entering states into the
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zero-sublevel set of the value network, as shown in Figure 3(b). In model predictive control, there is a concept
similar to entering state called precursor set, which is de!ned as the set of all states whose next state is in
the current set [7]. The precursor set is used for computing the maximal control invariant set: start from the
whole state space as the initial set and iteratively intersect the current set with its precursor set, the resulting
set gradually shrinks and converges to the maximal control invariant set. Our entering states are those in the
precursor set but not in the current set, and they are used for enlarging a feasible region instead of shrinking it.
To perform ESR, we !rst randomly sample some states in the state space in each iteration and then !lter out
entering states that satisfy:

𝑆(𝑁) ↓ ↘𝑕, 𝑇 𝑀
𝑂 (𝑁) > 0, 𝑇 𝑀

𝑂 (𝑂𝑀 (𝑁)) ↓ ↘𝑕, (29)
where 𝑕 is a small positive constant. The purpose of introducing this constant is to avoid the undesirable in$uence
of the regularization on nearby states. Speci!cally, due to the generalization ability of neural networks, when
including an entering state into the zero-sublevel set, some of its nearby states may also be included. These nearby
states may not be entering states and may cause violation of the feasible region conditions. By introducing 𝑕 , we
set a margin of entering states to the boundary of the constrained set and the zero-sublevel set, thus decreasing
the probability of mistaken inclusion. Using the !ltered entering states, we compute the following regularization
term and add it to the value loss function.

𝑊ESR (𝑉 ) = 𝐿ESR
1

𝑋ent

𝑃ent∑
𝑄=1

𝑇 𝑀
𝑂 (𝑁 (𝑄 )

ent), (30)

where 𝐿ESR is a coe"cient, 𝑋ent is the number of entering states, and 𝑁 (𝑄 )
ent stands for the 𝑌-th entering state.

Minimizing (30) will decrease the values of entering states until they become negative, in which case they are
included in the zero-sublevel set and will no longer be identi!ed as entering states. It is worth mentioning that
the states !ltered out by (29) are not necessarily feasible because the value network has not been veri!ed yet. For
example, it is possible that the next state 𝑂𝑀 (𝑁), which is currently in the zero-sublevel set, is excluded from the
set in later iterations, making the current state 𝑁 also infeasible. Therefore, this regularization method may also
cause mistaken inclusion of infeasible states. However, our method is based on the fact that the value network
is pre-trained, which ensures that the zero-sublevel set does not deviate much from the feasible region. This
greatly decreases the probability of including infeasible states. Moreover, since the zero-sublevel set usually
shrinks during !ne-tuning and soon becomes smaller than the feasible region, the !ltered entering states are
feasible in most cases. Compared with ESR, existing regularization methods are more harmful to the feasible
region conditions because they use randomly sampled states for regularization, which are more likely to include
infeasible states.

4.5 Analysis of Proposed Framework
In this subsection, we analyze some important properties and assumptions of our proposed value function
synthesis framework. First, we study the soundness and completeness of the veri!cation in our framework. In
our problem, soundness means that when MILP (18) is infeasible, the constraint satisfaction condition (7) actually
holds, and when MILP (19) is infeasible, the forward invariance condition (8) actually holds. Completeness means
that when either of the two problems is feasible, its corresponding condition is actually violated. According to
the derivation of MILPs (18) and (19), except for the strictness of their output constraints, their infeasibilities are
equivalent to the satisfaction of conditions (7) and (8), respectively. Therefore, our method is sound and complete,
but its implementation is subject to $oating point error induced incompleteness, as discussed in Section 4.1.

Second, we discuss the assumptions made by our framework. We assume the availability of an accurate dynamic
model. Although the model can be represented by a neural network, we do not consider its approximation error.
However, it is worth mentioning that this paper focuses on establishing the !rst method to obtain veri!able
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neural value functions for HJ reachability analysis. We choose to use the perfect model to study the synthesis and
veri!cation approach. The model assumptions could be relaxed to account for uncertainties, disturbances, and
unmodeled dynamics. Speci!cally, we can introduce an additive term with bounded norm to the known dynamic
model:

𝑂 (𝑁,𝑃) = 𝑂 (𝑁,𝑃) + ε𝑂 , ⇑ε𝑂 ⇑ ↓ 𝑜 , (31)

where 𝑂 is the true dynamic model, 𝑂 is the known part, and ε𝑂 is the unmodeled part with norm bounded
by 𝑜 → R+. When formulating the forward invariance veri!cation problem, ε𝑂 can be encoded as a variable
optimized together with the state to !nd counterexamples:

!nd 𝑁,ε𝑂 (32a)
s.t. 𝑁 → X, ⇑ε𝑂 ⇑ ↓ 𝑜 , (32b)

𝑍 = Minv (𝑁) =
[

𝑇 𝑀
𝑂 (𝑁)

𝑇 𝑀
𝑂 (𝑂𝑀 (𝑁) + ε𝑂 )

]
, (32c)

𝑍1 ↓ 0,𝑍2 ↗ 0. (32d)

To keep the problem still an MILP, we can choose the L1 norm or in!nity norm, which can be expressed by
linear equalities. If this problem is infeasible, it is guaranteed that the forward invariance condition is satis!ed
under any possible uncertainty. This robust version problem formulation can also be used for verifying systems
with stochastic dynamics. However, detailed studies, e.g., how good the proposed framework will perform in
these situations with non-perfect models, will be left for future work. Besides a known deterministic model, our
framework also requires a !xed control policy, i.e., we only verify the feasible region under a !xed policy. For the
optimal policy, the veri!cation of the forward invariance condition becomes a max-min problem where the inner
minimization considers the best-case control input. The minimization can be approximated by a Taylor model
with bounded remainders as proposed by Hu et al. [21]. For time-varying or adaptive controllers, verifying a !xed
forward invariance condition is no longer su"cient since the state transition dynamics are changing. A possible
solution is to bound the controller’s output on each state and verify the condition under all possible outputs. In
addition, we only consider the ReLU activation function in this work because it is piecewise linear, allowing us to
formulate the veri!cation problem as an MILP. While other smooth activation functions or architectures might
improve network approximation ability, they introduce nonlinearities that break the MILP formulation. For such
cases, other veri!cation methods, e.g., 𝐿, 𝑀-CROWN, can also be employed and integrated into our framework,
although at the cost of increased computational overhead or loss of veri!cation completeness.

Third, we study the relationship between the zero-sublevel set of a veri!ed𝑇 𝑀
𝑂 , denoted as X𝑁 𝐿

𝑀
, and the feasible

region of 𝑅 . Since a veri!ed 𝑇 𝑀
𝑂 satis!es conditions (7) and (8), which are necessary and su"cient conditions for

a feasible region, X𝑁 𝐿
𝑀
is a feasible region of 𝑅 . Since the feasible region satisfying conditions (7) and (8) is not

unique, X𝑁 𝐿
𝑀
may not be the maximum feasible region of 𝑅 but only an under-approximation of it. Nevertheless,

being a feasible region of 𝑅 , X𝑁 𝐿
𝑀
already guarantees that trajectories starting from inside it and sampled under

𝑅 are safe in the long term. This enables us to use 𝑇 𝑀
𝑂 and 𝑅 to construct a safety !lter in which 𝑇 𝑀

𝑂 is a safety
monitor and 𝑅 is a backup policy [19]. Speci!cally, starting from inside X𝑁 𝐿

𝑀
, the safety !lter checks in each

step whether the next state after applying some nominal action is still in X𝑁 𝐿
𝑀
. If this is true, the nominal action

is applied. Otherwise, the nominal action is replaced by the action computed by 𝑅 , which ensures by forward
invariance condition that the next state is still in X𝑁 𝐿

𝑀
. This safety !lter can ensure strict long-term constraint

satisfaction for an arbitrary policy.
Last, we discuss the stability of our training loop, i.e., whether it is guaranteed to !nd a veri!ed value function

and under what conditions it will fail. Although our framework successfully synthesizes veri!ed value functions
on various tasks in our experiments (See Section 5), such success is not guaranteed. In some cases, the training
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loop may not be able to !nd a veri!ed value function with a non-trivial zero-sublevel set, even if such a true
value function exists. The reasons for the failure of synthesis are multiple, and we list four main potential failure
modes as follows.
(1) Instability of adversarial training. There are always counterexamples found in adversarial training, and

they cannot be eliminated. As a result, veri!cation cannot start before the maximum number of iterations
is exceeded. This may be because the counterexample search is too ine"cient, or catastrophic forgetting
happens in adversarial training.

(2) Instability of veri"cation-guided training. No counterexamples can be found in adversarial training,
but veri!cation always fails. This indicates that counterexamples exist and the search algorithm is not
e#ective enough to !nd them.

(3) Ine!cient veri"cation. Veri!cation takes so long that the time limit is exceeded. This is because the
computational complexity of solving the MILPs is too high.

(4) Converging to invalid local optima. The value function becomes all positive in the state space, and its
zero-sublevel set becomes empty. This is because too many feasible states are mistakenly excluded from
the zero-sublevel set during !ne-tuning, causing the set to shrink so much that it disappears.

In essence, these failure modes all stem from the three challenges to improve scalability mentioned in Section
1. While our proposed three techniques address these challenges to some extent, they persist as the problem’s
dimension increases.

5 Experiments
Through experiments, we aim to answer the following questions: 1) Can our proposed framework synthesize
veri!ed neural HJ reachability value functions on di#erent safe control tasks? 2) Can APA accelerate veri!cation,
and how does it perform compared with other neural network regularization methods? 3) Can BGB accelerate
counterexample search, and how does it perform compared with other search methods? 4) Can ESR enlarge
feasible region, and how does it perform compared with other feasible region regularization methods? We answer
the !rst question by testing our framework on nine commonly used safe control tasks. We answer the remaining
three questions by comparing our proposed three techniques with several existing methods. Before that, we !rst
introduce a neural safety certi!cate synthesis and veri!cation benchmark and some implementation details of
our framework.

5.1 Cersyve-9 Benchmark
There have been several benchmarks for neural network veri!cation [8], including image classi!cation datasets
such as MNIST [24] and CIFAR [23], vehicle collision prediction problem [15], and aircraft collision avoidance
system ACAS Xu [31]. However, these benchmarks are incompatible with the veri!cation of neural safety
certi!cates because of the underlying di#erences between their problems and safe control tasks. Speci!cally, safe
control tasks require neural networks to satisfy certain properties everywhere in the state space, i.e., the input set
of the veri!cation problem is the entire state space, while existing benchmarks only consider veri!cation in either
a small disturbance set around data samples [24, 23, 15] or part of the state space [31]. In addition, verifying
neural safety certi!cates involves system dynamics and control policies, which requires certain conversions
like (18) and (19) before it can be formulated as standard veri!cation problems while existing benchmarks only
consider veri!cation of a single neural network.
To bridge this gap, we provide a benchmark called Cersyve-9 for neural safety Certi!cate synthesis and

veri!cation in safe control tasks. Cersyve-9 contains: (1) Nine commonly used control tasks with state dimensions
ranging from two to six, as shown in Figure 4 and Table 1. These tasks include both linear and nonlinear dynamics
and safety constraints. (2) A set of neural safety certi!cate synthesis tools, including pre-training, adversarial
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(a) Double Integrator (b) Pendulum (c) Unicycle

(d) Lane Keep (e)$adrotor (f) Cart Pole

(g) Point Mass (h) Robot Arm (i) Robot Dog

Fig. 4. Snapshots of safe control tasks in Cersyve-9. The grey objects in Unicycle, Point Mass, Robot Arm, and Robot Dog are
obstacles. The green circle in Robot Dog is the goal.

training, and veri!cation-guided training modules, as well as evaluation tools for synthesized certi!cates. These
tools facilitate secondary development and performance comparison of di#erent synthesis algorithms. (3) An
MILP-based neural safety certi!cate veri!cation algorithm, as well as neural value functions synthesized and
veri!ed by our framework on all nine tasks for comparing di#erent veri!cation algorithms.

5.1.1 Task Descriptions. Each task in Cersyve-9 de!nes state space, control input space, dynamic model, and
safety constraints, which are detailed as follows.
Double Integrator requires stabilizing a second-order linear system to the origin under boundary constraints
on the position. The state of this task is 𝑁 = [𝑝, ⇔𝑝]↖ → R2, where 𝑝 is the position. The control input is 𝑃 → R. The
state space and control input space are hyperrectangles speci!ed by [𝑁min, 𝑁max] and [𝑃min,𝑃max], respectively.
All following tasks adopt the setting of hyperrectangular state and control input spaces. The dynamic model of
this task is

𝑝𝐿+1 = 𝑝𝐿 + ⇔𝑝𝐿ε𝑄,
⇔𝑝𝐿+1 = ⇔𝑝𝐿 + 𝑃𝐿ε𝑄,

(33)

where ε𝑄 is the time step. The safety constraint is 𝑝lb ↓ 𝑝 ↓ 𝑝ub, where 𝑝lb and 𝑝ub are lower and upper bounds
on the position, respectively.
Pendulum requires stabilizing a pendulum to the upright position under boundary constraints on its angle [9].
The state of this task is 𝑁 = [𝑉 , ⇔𝑉 ]↖ → R2, where 𝑉 is the angle of the pendulum. The control input 𝑃 → R is the
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Table 1. Information of safe control tasks in Cersyve-9. In Robot Dog, we directly fit the closed-loop dynamic model with a
neural network, and thus, the control dimension is irrelevant to value network synthesis and verification.

Task State dim Control dim Dynamics Constraint

Double Integrator 2 1 Linear Linear
Pendulum 2 1 Nonlinear Linear
Unicycle 3 2 Nonlinear Nonlinear
Lane Keep 4 1 Linear Linear
Quadrotor 4 2 Nonlinear Linear
Cart Pole 4 1 Nonlinear Linear
Point Mass 4 2 Nonlinear Nonlinear
Robot Arm 6 3 Linear Nonlinear
Robot Dog 5 / Nonlinear Nonlinear

torque applied to the pendulum. The dynamic model is

𝑉𝐿+1 = 𝑉𝐿 + ⇔𝑉𝐿+1ε𝑄,

⇔𝑉𝐿+1 = ⇔𝑉𝐿 +
(
3𝑚
2𝑒

sin𝑉𝐿 +
9𝑃
𝑞𝑒2

)
ε𝑄,

(34)

where𝑞 is the mass of the pendulum, 𝑒 is its length, and 𝑚 is the gravitational acceleration. The safety constraint
is 𝑉 lb ↓ 𝑉 ↓ 𝑉ub.
Unicycle requires controlling a unicycle model to avoid collision with a circular obstacle. The state of this task is
𝑁 = [𝑟, 𝑁o,𝑍o]↖ → R3, where 𝑟 is the velocity angle of the unicycle, and 𝑁o,𝑍o is the position of the obstacle in the
unicycle frame. The control input is 𝑃 = [𝑠,𝑡]↖ → R2, where 𝑠 is the acceleration of the unicycle, and 𝑡 is its
angular velocity. The dynamic model is

𝑟𝐿+1 = 𝑟𝐿 + 𝑠𝐿ε𝑄,

𝑁o(𝐿+1) = (𝑁o𝐿 ↘ 𝑟𝐿ε𝑄) cos(𝑡𝐿ε𝑄) + 𝑍o𝐿 sin(𝑡𝐿ε𝑄),
𝑍o(𝐿+1) = 𝑍o𝐿 cos(𝑡𝐿ε𝑄) ↘ (𝑁o𝐿 ↘ 𝑟𝐿ε𝑄) sin(𝑡𝐿ε𝑄).

(35)

The safety constraint is
√
𝑁2o + 𝑍2o ↗ 𝑢o, where 𝑢o is the radius of the obstacle.

Lane Keep requires keeping a 2DOF vehicle dynamics model in a straight line under boundary constraints on its
lateral position and heading angle. The state of this task is 𝑁 = [𝑍,𝑣, 𝑟𝑎,𝑡]↖ → R4, where 𝑍 is the lateral position
of the vehicle, 𝑣 is the heading angle, 𝑟𝑎 is the lateral velocity, and 𝑡 is the angular velocity. The control input
𝑃 = 𝑕 → R is the front wheel angle. The dynamic model is

𝑍𝐿+1 = 𝑍𝐿 + (𝑣𝐿𝑟𝑅 + 𝑟𝑎)ε𝑄,
𝑣𝐿+1 = 𝑣𝐿 + 𝑡𝐿ε𝑄,

𝑟𝑎 (𝐿+1) =
(
1 + 𝑓1 + 𝑓2

𝑞𝑟𝑅
ε𝑄

)
𝑟𝑎𝐿 +

(
𝑠𝑓1 ↘ 𝑐𝑓2

𝑞𝑟𝑅
↘ 𝑟𝑅

)
𝑡𝐿ε𝑄,

𝑡𝐿+1 =
𝑠𝑓1 ↘ 𝑐𝑓2

𝑤𝑏𝑟𝑅
𝑟𝑎𝐿ε𝑄 +

(
1 + 𝑓1𝑠2 + 𝑓2𝑐2

𝑤𝑏𝑟𝑅
ε𝑄

)
𝑡𝐿 ,

(36)

where 𝑓1 and 𝑓2 are the cornering sti#ness of the front and rear wheels, respectively, 𝑠 and 𝑐 are the distance
from the center of gravity to the front and rear axles, respectively,𝑞 is the mass of the vehicle, 𝑤𝑏 is the moment
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of inertia on the vertical axis, and 𝑟𝑅 is the longitudinal velocity, which is a constant value. The safety constraints
are 𝑍lb ↓ 𝑍 ↓ 𝑍ub and 𝑣lb ↓ 𝑣 ↓ 𝑣ub.
Quadrotor requires controlling a 2D quadrotor to a hover position under boundary constraints on its vertical
position and roll angle. The state of this task is 𝑁 = [𝑎, 𝑉 , ⇔𝑎, ⇔𝑉 ]↖ → R4, where 𝑎 is the vertical position of the
quadrotor, and 𝑉 is the roll angle. The control input 𝑃 = [𝑥1,𝑥2]↖ → R2 represents the thrust forces exerted by the
rotors. The dynamic model is

𝑎𝐿+1 = 𝑎𝐿 + ⇔𝑎𝐿ε𝑄,
𝑉𝐿+1 = 𝑉𝐿 + ⇔𝑉𝐿ε𝑄,

⇔𝑎𝐿+1 = ⇔𝑎𝐿 +
( (𝑥1𝐿 +𝑥2𝐿 ) cos𝑉𝐿

𝑞
↘ 𝑚

)
ε𝑄,

⇔𝑉𝐿+1 = ⇔𝑉𝐿 +
(𝑥2𝐿 ↘𝑥1𝐿 )𝑔

𝑤𝑎
ε𝑄,

(37)

where𝑞 is the mass of the quadrotor, 𝑔 is the diameter, and 𝑤𝑎 is the moment of inertia. The safety constraints
are 𝑎lb ↓ 𝑎 ↓ 𝑎ub and 𝑉 lb ↓ 𝑉 ↓ 𝑉ub.
Cart Pole requires balancing a pole on a moving cart to the upright position under boundary constraints on the
cart position and the pole angle [9]. The state of this task is 𝑁 = [𝑍, 𝑉 , ⇔𝑍, ⇔𝑉 ]↖ → R4, where 𝑍 is the cart position,
and 𝑉 is the pole angle. The control input 𝑃 = 𝑦 → R is the force applied to the cart. The dynamic model is

𝑍𝐿+1 = 𝑍𝐿 + ⇔𝑍𝐿ε𝑄,
𝑉𝐿+1 = 𝑉𝐿 + ⇔𝑉𝐿ε𝑄,

⇔𝑍𝐿+1 = ⇔𝑍𝐿 +
𝑦 +𝑞𝑒 ⇔𝑉 2𝐿 sin𝑉𝐿 ↘𝑞𝑒 ↙𝑉𝐿 cos𝑉𝐿

𝑧
ε𝑄,

⇔𝑉𝐿+1 = ⇔𝑉𝐿 + ↙𝑉𝐿ε𝑄,

(38)

where𝑞 is the mass of the pole,𝑧 is the total mass of the pole and the cart, 𝑒 is the length of the pole, and

↙𝑉𝐿 =
3𝑧𝑚 sin𝑉𝐿 ↘ 3(𝑦 +𝑞𝑒 ⇔𝑉 2𝐿 sin𝑉𝐿 ) cos𝑉𝐿

(4𝑧 ↘ 3𝑞 cos2 𝑉𝐿 )𝑒
.

The safety constraints are 𝑍lb ↓ 𝑍 ↓ 𝑍ub and 𝑉 lb ↓ 𝑉 ↓ 𝑉ub.
Point Mass has the same setting as Unicycle except that the model is changed to a 2D point mass. The state of
this task is 𝑁 = [𝑟𝑅 , 𝑟𝑎, 𝑁o,𝑍o]↖ → R4, where 𝑟𝑅 and 𝑟𝑎 are the velocities on the 𝑁 and 𝑍 axes, respectively. The
control input is 𝑃 = [𝑠,𝑡]↖ → R2. The dynamic model is

𝑟𝑅 (𝐿+1) = (𝑟𝑅𝐿 + 𝑠𝐿ε𝑄) cos(𝑡𝐿ε𝑄) + 𝑟𝑎𝐿 sin(𝑡𝐿ε𝑄),
𝑟𝑎 (𝐿+1) = 𝑟𝑎𝐿 cos(𝑡𝐿ε𝑄) ↘ (𝑟𝑅𝐿 + 𝑠𝐿ε𝑄) sin(𝑡𝐿ε𝑄),
𝑁o(𝐿+1) = (𝑁o𝐿 ↘ 𝑟𝐿ε𝑄) cos(𝑡𝐿ε𝑄) + 𝑍o𝐿 sin(𝑡𝐿ε𝑄),
𝑍o(𝐿+1) = 𝑍o𝐿 cos(𝑡𝐿ε𝑄) ↘ (𝑁o𝐿 ↘ 𝑟𝐿ε𝑄) sin(𝑡𝐿ε𝑄).

(39)

The safety constraint is
√
𝑁2o + 𝑍2o ↗ 𝑢o.

Robot Arm requires controlling a robot arm with three joints to a target position while avoiding collision with a
wall in the front. The state of this task is 𝑁 = [𝑉1, 𝑉2, 𝑉3, ⇔𝑉1, ⇔𝑉2, ⇔𝑉3]↖ → R6, where 𝑉1 is the angle of the !rst joint,
and 𝑉2 and 𝑉3 are the incremental angles of the second and third joints relative to their previous joints. The
control input 𝑃 = [ ↙𝑉1, ↙𝑉2, ↙𝑉3]↖ → R3 represents the angular accelerations of the three joints. The dynamic model
is obtained through forward Euler discretization and is omitted here. The safety constraint is that the length of
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the robot arm’s projection on the horizontal axis must not exceed a speci!c threshold:
3∑

𝑄=1
cos

(
𝑄∑
𝑉=1

𝑉 𝑉

)
↓ 1.5. (40)

Robot Dog is a robot locomotion task designed by He et al. [18], which requires controlling a robot dog to reach
a goal while avoiding obstacles on its way. The state of this task is 𝑁 = [𝑟, 𝑁g,𝑍g, 𝑁o,𝑍o]↖ → R5, where 𝑟 is the
velocity of the robot dog, 𝑁g,𝑍g is the position of the goal, and 𝑁o,𝑍o is the position of the obstacle. In this task,
we directly !t a closed-loop dynamic model with a neural network on data collected by an RL policy, and thus,
the control input is irrelevant to value function synthesis and veri!cation. The safety constraint is

√
𝑁2o + 𝑍2o ↗ 𝑢o.

He et al. [18] propose a method called Agile But Safe (ABS) that learns a neural HJ reachability value function
and a safe policy without veri!cation. While our experiments are only performed in simulation, ABS itself is
evaluated in the real world.

5.1.2 Implementation Details. For tasks with linear dynamic models and constraint functions, we directly use
their analytical forms for value network synthesis. For tasks with nonlinear dynamics or constraints, we !t the
nonlinear dynamics or constraints with neural networks for synthesis. We design linear control policies with
control limits for all tasks except Robot Dog, where we use the neural network policy trained by ABS. In Robot
Dog, we directly !t the closed-loop dynamic model with a neural network, and thus, the control dimension is
irrelevant to value network synthesis. In other tasks with nonlinear dynamics, we !t the open-loop dynamic
models with neural networks and substitute linear control policies to obtain closed-loop dynamics. In this way, all
functions involved in veri!cation are piecewise linear, so the veri!cation problems can be formulated as MILPs.
In theory, we could use the original nonlinear versions of the dynamics and constraints by calling some veri!ers
for nonlinear cyber-physical systems [22, 35]. The reason why we approximate these functions with piecewise
linear neural networks is to better integrate with existing veri!cation tools. Our neural network approximation
of dynamics and constraints did introduce model mismatch to real-world robot dynamics, but that does not a#ect
the validity of our benchmark because we can think of synthesis and veri!cation as inherently performed on
systems with approximated dynamics and constraints. It will be our future work to investigate exact synthesis
and veri!cation with respect to nonlinear dynamics and constraints.
We follow the practice of Nagabandi et al. [30] to train neural network dynamic models. We use a neural

network 𝑂𝑐 (𝑁,𝑃) to parameterize the change of state in a time step, i.e., the predicted next state is 𝑁𝐿+1 =
𝑁𝐿 + 𝑂𝑐 (𝑁𝐿 ,𝑃𝐿 ). Training data is collected by uniformly sampling initial states in the state space and executing
random control inputs at every time step. The collected data is recorded in the form of state transition pairs, i.e.,
D = {(𝑁 (𝑄 ) ,𝑃 (𝑄 ) , 𝑁 ∝(𝑄 ) )}𝑃𝑄=1, where 𝑋 is the number of data. To ensure the loss function weights di#erent state
elements equally, we subtract the mean and divide by the standard deviation of the data. We then add zero-mean
Gaussian noise with a standard deviation of 0.01 to all data. We train the dynamic model by minimizing the
following loss function.

𝑊dyn (𝑣) =
1
𝑋

𝑃∑
𝑄=1

⇑ (𝑁 ∝(𝑄 ) ↘ 𝑁 (𝑄 ) ) ↘ 𝑂𝑐 (𝑁 (𝑄 ) ,𝑃 (𝑄 ) )⇑22. (41)

For Robot Dog, we directly train a closed-loop dynamic model 𝑂𝑐 (𝑁) with training data collected by a neural
network policy. Data preprocessing and loss function of Robot Dog are similar to those of other tasks.
We use the same neural network structure in all tasks. Both the dynamics and value networks have two

hidden layers with 32 neurons each. The constraint network has two hidden layers with 16 neurons each. All
experiments are performed on an AMD Ryzen 7 5800 8-Core CPU. Other hyperparameters are listed in Table
2. The hyperparameters introduced by our algorithm include those related to APA, BGB, and ESR. The APA
coe"cients are chosen to balance the neural network’s linearity and performance, with its sensitivity analysis
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Table 2. Detailed hyperparameters.

Stage Hyperparameter Value

Pre-training

Learning rate for dynamics network 1e-3
Learning rate for value network 3e-4
Batch size 256
Training epochs for dynamics network 100
Iterations for value network 100000
Discount factor for value network 0.9
Weight decay 1e-3
APA coe"cient for dynamics network 0.01
APA coe"cient for value network 1e-4
APA constant 𝑘 1e-4
SNR coe"cients for dynamics network (0, 1e-3)
SNR coe"cients for value network (0, 0.1)
APA & SNR noise scale 0.1

Adversarial training

Learning rate 1e-4
Max iteration 100000
Batch size for counterexample search 1000
PGD steps per iteration 10
PGD step size 0.1
Backtracking steps 20
BGB search direction discount 0.5
BGB step length discount 0.8
ESR coe"cient 0.1
ESR sample batch size 1000
ESR margin 𝑕 0.01

performed in Section 5.4.1. The APA noise scale also controls the regularization strength—a larger noise scale
results in stronger regularization. Analysis of how the noise scale in$uences performance can be found in the SNR
paper [38]. The BGB search direction and step length discounts a#ect the counterexample search e"ciency. Larger
discounts result in !ner but slower backtracking, while smaller discounts result in faster and sparser backtracking.
The choice of the step length discount follows that in standard backtracking algorithms. For the search direction
discount, we !nd that a relatively small value is more e"cient because the direction of counterexamples usually
deviates a lot from the gradient near the boundary. The ESR coe"cient balances the e"ciency of counterexample
elimination and the severity of feasible region shrinkage. However, since we only regularize entering states and
avoid counterexamples, a relatively large coe"cient works well in practice. The ESR batch size simply follows
the batch size of adversarial training. The ESR margin is set to avoid false identi!cation of entering states. A
larger margin is safer but reduces the regularization strength. Its value is chosen to balance region shrinkage and
training e"ciency.

5.2 Evaluation Procedure and Metrics
To evaluate synthesis results, we consider three aspects: 1) counterexample search e"ciency, 2) veri!cation
e"ciency, and 3) size of feasible region.
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Table 3. Neural HJ reachability value function synthesis results of our proposed framework.

Task FT iter (k) FT time (s) # Verify Verify time (s) TFR

Double Integrator 1.2 28.5 1 0.5 0.940
Pendulum 1.1 31.4 1 3.9 0.962
Unicycle 6.9 175.0 1 11.6 0.911
Lane Keep 5.9 184.7 4 1.4 0.750
Quadrotor 1.6 55.3 1 2.9 0.906
Cart Pole 2.4 83.3 1 171.5 0.404
Point Mass 8.6 321.7 4 48.2 0.594
Robot Arm 25.2 853.8 15 5.5 0.403
Robot Dog 6.3 333.7 2 311.9 0.872

For counterexample search e"ciency, we count the number of !ne-tuning iterations, total !ne-tuning time,
and the number of veri!cations. A smaller number of !ne-tuning iterations means more counterexamples are
found and eliminated in each iteration, thus indicating a higher search e"ciency. Fine-tuning time is an overall
evaluation of the number of !ne-tuning iterations and time consumption of each iteration, the latter of which
largely depends on the time consumption of counterexample search. Fine-tuning time also counts the time of all
failed veri!cations, i.e., all veri!cations except the last one. When the number of veri!cations exceeds one, all
veri!cation fails except the last one. A failed veri!cation means that counterexamples still exist, but adversarial
training can no longer !nd them. Therefore, more veri!cations also mean that counterexample search is less
ine"cient. Note that calling veri!cation does not increase !ne-tuning iterations because it is a required step of
each iteration to check whether veri!cation should be called and call it when necessary.

For veri!cation e"ciency, we count the time of the !nal veri!cation that proves the feasible region conditions
hold. This time plus the !ne-tuning time equals the total synthesis time of the value function.

For the size of feasible region, we compute a metric called the true feasible rate (TFR), which is de!ned as the
proportion of states identi!ed as feasible in all feasible states. In practice, TFR is approximately computed on a
certain number of states randomly sampled in the state space. To determine whether a state is feasible, we check
a !nite-length trajectory starting from it. The state is considered feasible if there is no constraint violation in the
trajectory. The trajectory length is set to 100 for all tasks, which is enough to give correct feasibility results in
most cases. For Robot Dog, He et al. [18] synthesized a neural value function without veri!cation and used it as a
safety !lter in a real-world robot dog locomotion task. We compare the neural value functions synthesized using
their method and our framework to demonstrate the necessity and e#ectiveness of our framework.

5.3 Synthesis Results
Our proposed framework successfully synthesized neural HJ reachability value functions on all nine tasks in
Cersyve-9, and the results are shown in Table 3. TFRs on most tasks are greater than 0.8, and the lowest TFR
is above 0.4, indicating that the synthesized value networks represent non-trivial feasible regions. As state
dimension increases, it generally requires more !ne-tuning iterations and time to synthesize a veri!ed value
network. This is because searching for counterexamples becomes more di"cult in higher-dimensional spaces.
The number of veri!cations also shows a similar increase with state dimension. Another observation is that
systems with nonlinear dynamics generally require more veri!cation time. This is because nonlinear dynamics
results in more linear segments of Minv de!ned in (17) for forward invariance veri!cation.
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(a) TFR. (b) Cumulative counterexamples.

Fig. 5. TFR and cumulative number of found counterexamples during fine-tuning in Robot Arm. The dashed gray lines stand
for the iterations at which verification is called.

To understand the e#ect of !ne-tuning on the value network, we plot the changing curves of TFR and the
cumulative number of found counterexamples during !ne-tuning in Robot Arm in Figure 5. At an early stage of
!ne-tuning, TFR decreases quickly, and counterexamples increase quickly. In each iteration, the value network is
updated on a large number of counterexamples, excluding many of them from the zero-sublevel set. Veri!cation
cannot be called at this stage because there are many counterexamples found in every iteration. After 10K
iterations, counterexamples can hardly be found in each iteration, and therefore, veri!cation starts to be called
frequently. At this stage, the value network is updated on only a few counterexamples, mostly found by veri!cation,
in each iteration. As a result, the change in TFR is very small. This stage continues until the last veri!cation
proves the feasible region conditions hold and returns a valid value network.
To demonstrate how counterexamples are eliminated through !ne-tuning, we visualize the boundary of the

zero-sublevel set and counterexamples before !ne-tuning and the boundary after !ne-tuning in Double Integrator
in Figure 6. Before !ne-tuning, there are many counterexamples near the boundary of the zero-sublevel set. These
counterexamples leave the zero-sublevel set in one step, violating the forward invariance condition and making
the set not a valid feasible region. This invalidity is also con!rmed by the fact that the pre-trained region is larger
than the true region, which is impossible for a valid feasible region. After !ne-tuning, all counterexamples are
eliminated, and the zero-sublevel set shrinks into a valid feasible region slightly smaller than the true region.

To demonstrate the necessity and e#ectiveness of our method, we visualize the value trajectories and heatmaps
of the value networks synthesized by ABS and our method in Robot Dog, as shown in Figure 7. We choose an
initial state that leads to a constraint violation and compare the values of the two networks on the trajectory.
The value network of ABS is negative in the initial state, and gradually increases to positive values along the
trajectory. This means that the state starts from inside the zero-sublevel set but goes out eventually, indicating
that the zero-sublevel set of their value network is not a valid feasible region because it violates the forward
invariance condition. In contrast, our value network consistently outputs positive values on the whole trajectory,
indicating that it correctly excludes the states from its zero-sublevel set. Comparing the heatmaps of the two value
networks, we can see that our network moves the infeasible region to the upper left. This excludes infeasible
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Fig. 6. Regions and counterexamples in Double Integrator. The pre-trained and verified regions are zero-sublevel sets of
the value networks before and a!er fine-tuning, respectively. The heatmap shows the contours of the value network a!er
fine-tuning. The lighter red dots are counterexamples before fine-tuning, and the darker red dots are their next states.

states in the upper left from the zero-sublevel set and includes more feasible states in the lower right into the set.
As a result, the zero-sublevel set becomes a valid feasible region without a signi!cant reduction in its size.

5.4 Comparison Studies
In this subsection, we demonstrate the e#ectiveness of the three proposed techniques, i.e., APA, BGB, and ESR,
by comparing them with several existing methods that aim to solve similar problems.

5.4.1 Neural Network Regularization. We compare APA with two existing neural network regularization methods,
weight decay (WD) and SNR [38], to study its e#ectiveness in reducing veri!cation time. We compare these
methods from three aspects: number of linear segments, network performance, and veri!cation time. First, we
show the relationship between the number of linear segments and veri!cation time. Then, we compare the
number of linear segments and network performance of the three regularization methods. Finally, we compare
the veri!cation times of the three methods on all tasks in Cersyve-9.
Due to the branch-and-bound solving mechanism of MILP, veri!cation time is closely related to the number

of linear segments of neural networks [39]. We use a sampling-based method to estimate the number of linear
segments of a neural network. Speci!cally, we uniformly sample a certain number of states in the state space,
compute the neural network’s activation pattern on each state, and count the number of unique activation
patterns. This gives us an underestimate of the number of linear segments, and this estimate becomes more
accurate as the number of samples increases. Figure 8(a) shows the relationship between the estimated number
of linear segments and the number of samples. The two have a linear relationship when the number of samples is
small. As the number of samples increases, the growth rate of linear segments decreases. Theoretically, an in!nite
number of samples will give an accurate number of linear segments. We use 106 samples in our experiments to
balance estimation accuracy and computational complexity. Although this results in an underestimate, it re$ects
the relative number of linear segments of di#erent methods, which is informative for comparing their veri!cation
times. We visualize the relationship between the number of linear segments and veri!cation time in Figure 8(b).
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Fig. 7. Value trajectories and heatmaps of value networks synthesized by ABS (upper) and our method (lower) in Robot Dog.
In the le! two figures, the red circle in the middle is an obstacle, and the green circle in the bo"om right corner (a quarter
shown) is the goal. The two trajectories start from the same initial state (marked with a red circle) and are sampled by the
same policy. They are both truncated at a constraint-violating state.

It shows that the two are approximately linearly related, which is consistent with the branch-and-bound MILP
solving mechanism. This allows us to approximately compare the veri!cation times of di#erent networks by
comparing their number of linear segments without actually solving veri!cation problems.

We compare the number of linear segments of dynamics networks and value networks trained with di#erent
regularization methods, as shown in Figure 9. Since regularization usually sacri!ces the performance of neural
networks, we also compare the performance of di#erent regularization methods. For dynamics networks, we
compute the MSE on a test dataset for performance metrics. For value networks, we compute TFR after !ne-tuning
(after the network is successfully veri!ed) for performance metrics. For a fair comparison, we use the same
dynamics network trained with APA to train value networks in each task. Figure 9(a) shows that APA reduces
linear segments of dynamics networks by about !ve times compared with no regularization, while WD and
SNR both increase linear segments instead. Moreover, APA has a much lower MSE compared with WD and
SNR. Figure 9(b) shows that both APA and WD signi!cantly reduce linear segments of value networks, and APA
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(a) Linear segment estimate. (b) Linear segments vs. verification time.

Fig. 8. Estimated number of linear segments and its relationship with verification time. In Figure (b), dots with the same
color represent the same method in di#erent tasks. For a thorough comparison of verification times of di#erent regularization
methods on each task, see Table 4.

brings a greater reduction of about four times. SNR still results in increased linear segments of value networks.
In addition, APA has a higher TFR compared with WD and SNR, indicating larger feasible regions. These results
indicate that APA is the most e#ective in reducing linear segments with minimum performance sacri!ce. This is
attributed to the appropriate design of the APA penalty, which only takes e#ect when the signs of pre-activation
values of neighboring states are di#erent. In contrast, WD and SNR are not directly targeted at making activation
patterns consistent. They penalize the network parameters at all times, resulting in large performance sacri!ces
and ine"ciency in reducing linear segments.

The regularization strength of APA depends on the coe"cient 𝐿APA, which trades o# between the number of
linear segments and neural network performance. We train dynamics and value networks under di#erent values
of 𝐿APA and visualize the results in Figure 10. Figure 10(a) shows that the number of linear segments of dynamics
network quickly decreases as 𝐿APA increases from 0 to 10↘3 and continues to decrease steadily as 𝐿APA increases
from 10↘3 to 10↘1. On the other hand, MSE also increases as 𝐿APA increases, and its increasing rate becomes faster.
An appropriate choice of 𝐿APA for dynamics network should be around 10↘3 to 10↘2, which balances the number
of linear segments and MSE. Figure 10(b) shows that both the number of linear segments of value network and
TFR decreases as 𝐿APA increases. The decrease rate of linear segments is relatively stable under di#erent values of
𝐿APA. The decrease rate of TFR is small at !rst and gradually increases as 𝐿APA increases. An appropriate choice
of 𝐿APA for value network should be around 10↘4.
We compare the veri!cation time of di#erent regularization methods in Table 4. It shows that APA has the

shortest veri!cation time overall, especially in high-dimensional tasks. In some tasks, such as Unicycle, Lane Keep,
and Quadrotor, APA reduces the veri!cation times by more than 100 times compared with no regularization. Note
that without regularization, veri!cation may take much longer than the time limit (2 hours) in high-dimensional
tasks. The acceleration of veri!cation brought about by APA greatly improves the scalability of our synthesis
framework, enabling it to solve higher-dimensional tasks. The superiority of APA is due to its e#ectiveness in
reducing linear segments of both dynamics and value networks. WD also signi!cantly reduces the veri!cation
time compared with no regularization because it reduces linear segments of value networks. However, the
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(a) Dynamics networks. (b) Value networks.

Fig. 9. Number of linear segments and performance of dynamics networks and value networks trained with di#erent
regularization methods. The results of dynamics networks are averaged over five tasks with nonlinear dynamics. For each
task, all scores are normalized by dividing by those without regularization. The results of value networks are averaged on all
tasks except Cart Pole and Robot Dog, where synthesis failed without regularization.

(a) Dynamics networks. (b) Value networks.

Fig. 10. Number of linear segments and performance of dynamics networks and value networks trained under di#erent
APA coe#icients. The results are averaged on the same tasks as in Figure 9. All scores are normalized by dividing by those of
𝐿APA=0.

acceleration of WD is not so signi!cant as that of APA in most nonlinear tasks because it cannot reduce linear
segments of dynamics networks. In contrast, SNR has longer veri!cation times than no regularization, which is
consistent with the fact that it increases linear segments of both dynamics networks and value networks. SNR
performs poorly because it is designed to increase the robustness of a neural network under disturbances, and
the results show that this robustness-oriented objective does not always align with the objective of reducing the
number of linear segments.

5.4.2 Counterexample Search. We compare our counterexample search method, BGB, with two existing search
methods: projected boundary search (PBS) proposed by Liu et al. [26] and PGD with standard backtracking
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Table 4. Verification time (in seconds) of di#erent regularization methods. The dynamics networks (for nonlinear tasks) and
value networks in each column are trained with the same regularization method. “Timeout" means that fine-tuning exceeds
the time limit (2 hours). “MaxIter" means that fine-tuning exceeds the iteration limit (100k).

Task w/o reg WD SNR APA

Double Integrator 2.1 0.2 0.5 0.5
Pendulum 30.0 0.91 13.58 3.9
Unicycle 2597.5 12.42 393.3 11.6
Lane Keep 202.4 8.0 1540.9 1.4
Quadrotor Timeout 141.01 Timeout 2.9
Cart Pole Timeout 133.18 1009.1 171.5
Point Mass 1216.6 61.2 Timeout 48.2
Robot Arm 178.3 7.0 1071.8 5.5
Robot Dog Timeout 1043.9 MaxIter 311.9

Table 5. Number of fine-tuning iterations and fine-tuning time of di#erent counterexample search methods.

Task FT iter (k) FT time (s)

PBS PGD-B BGB PBS PGD-B BGB

Double Integrator 1.6 1.2 1.2 25.3 50.1 28.5
Pendulum 1.5 1.1 1.1 31.3 55.4 31.4
Unicycle MaxIter 54.1 6.9 MaxIter 3963.6 175.0
Lane Keep 41.0 33.1 5.9 916.2 2370.0 184.7
Quadrotor 21.8 3.1 1.6 578.3 223.7 55.3
Cart Pole 43.8 62.6 2.4 1276.8 4590.0 83.3
Point Mass MaxIter 35.1 8.6 MaxIter 3199.2 321.7
Robot Arm MaxIter MaxIter 25.2 MaxIter MaxIter 853.8
Robot Dog MaxIter 51.5 6.3 MaxIter 3436.2 333.7

(PGD-B), to study its search e"ciency. We count the number of !ne-tuning iterations and !ne-tuning times of
the three search methods, as shown in Table 5. Results show that BGB has the smallest number of !ne-tuning
iterations and !ne-tuning time among the three methods, indicating that it has the highest counterexample
search e"ciency. PBS has the lowest search e"ciency, exceeding the iteration limit on most high-dimensional
tasks. This is because projecting the state to the boundary of feasible region in every step is unnecessary and
signi!cantly harms search e"ciency3. We need the state to be close to the boundary only at the !nal step, not at
all intermediate steps. PGD-B also has lower search e"ciency than BGB because standard backtracking can only
search toward but not along the boundary, making it easy to get stuck near the boundary.

5.4.3 Feasible Region Regularization. We compare our feasible region regularization method, ESR, with RSR [10,
26] and no regularization to study its e#ectiveness in enlarging feasible regions. Any feasible region regularization
method will make !ne-tuning harder because it inevitably includes some infeasible states into the zero-sublevel
3Projecting the state to the boundary of feasible region in every step is unnecessary not only for HJ reachability but also for other safety
certi!cates such as CBF and CLF, at least in discrete-time systems, because the feasible region conditions are the same for all safety certi!cates.
The projection may become necessary in continuous-time systems where counterexamples must be exactly on the boundary.
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Table 6. TFR and number of fine-tuning iterations of di#erent feasible region regularization methods.

Task TFR FT iter (k)

w/o reg RSR ESR w/o reg RSR ESR

Double Integrator 0.897 0.960 0.940 1.1 1.2 1.2
Pendulum 0.856 0.952 0.962 1.0 1.0 1.0
Unicycle 0.671 0.907 0.911 1.2 3.9 6.9
Lane Keep 0.651 0.693 0.750 3.5 1.6 5.9
Quadrotor 0.872 0.901 0.906 2.2 2.3 1.6
Cart Pole 0.014 0.207 0.404 4.1 14.5 2.4
Point Mass 0.180 0.549 0.594 1.6 7.5 8.6
Robot Arm 0.000 0.405 0.403 3.5 79.3 25.2
Robot Dog 0.659 0.865 0.872 4.0 12.2 6.3

set. To evaluate the negative impact on !ne-tuning, we not only compute the TFR of the value networks but also
count the number of !ne-tuning iterations of each regularization method, as shown in Table 6. It shows that ESR
has the highest TFR on almost all tasks, signi!cantly increasing TFR compared with no regularization, especially
on high-dimensional tasks. TFR of no regularization becomes smaller as the state dimension increases, indicating
that !ne-tuning tends to mistakenly exclude feasible states from the zero-sublevel set, resulting in feasible region
shrinkage. RSR also increases TFR compared with no regularization, but it is not so e#ective as ESR, and its
number of !ne-tuning iterations is not less than ESR. This is because RSR randomly pushes all states into the
zero-sublevel set, which will mistakenly include more infeasible states than ESR, resulting in lower regularization
e"ciency and a greater negative impact on !ne-tuning.

5.4.4 Ablation Study. We perform ablation studies to show how the proposed three techniques contribute to the
reduction of overall synthesis time and the increase of TFR, and the results are shown in Figure 11.
First, we test a baseline algorithm called Vanilla that directly minimizes MSE without neural network regu-

larization in pre-training, uses PGD-B to search counterexamples, and performs !ne-tuning without feasible
region regularization. Results show that Vanilla fails to synthesize value functions on three higher-dimensional
nonlinear tasks, i.e., Cart Pole, Point Mass, and Robot Dog. Moreover, it also fails on Robot Arm because the TFR
is zero, i.e., the zero-sublevel set of the value function shrinks to an empty set.
Next, we add APA in pre-training and keep the adversarial training part unchanged. Results show that APA

signi!cantly reduces synthesis time on almost all tasks, especially higher-dimensional ones. The comparison of
synthesis time on Robot Arm is meaningless because all algorithms fail to synthesize a non-trivial value function
except the last one that uses all three techniques. APA’s reduction of synthesis time is mainly attributed to its
acceleration of veri!cation, not only the last veri!cation that proves hold but also intermediate failed veri!cations.

Then, we add BGB for counterexample search and keep the !ne-tuning loss unchanged. Results show that BGB
further reduces synthesis time on all tasks and does not cause signi!cant changes in TFR. BGB’s reduction of
synthesis time is mainly attributed to its acceleration of counterexample search, which results in fewer !ne-tuning
iterations.

Finally, we add ESR to !ne-tuning loss, obtaining the complete version of our algorithm. Results show that ESR
substantially increases TFR on almost all tasks, especially Cart Pole and Robot Arm, where other algorithms fail
or almost fail to synthesize non-trivial value functions. Although the synthesis times of the complete algorithm
increase compared with APA+BGB on some tasks, it still achieves a large acceleration compared with Vanilla.
Except for the !rst two lower-dimensional tasks, the acceleration compared with Vanilla is close to or more than
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Fig. 11. Ablation study of three techniques with respect to synthesis time and TFR. The normalized synthesis time is the
synthesis time, i.e., fine-tuning time plus verification time, of each algorithm divided by that of Vanilla. The “Timeout"
annotation on top of the bars means the corresponding experiments exceed the time limit (2 hours), and we use the time
limit for normalization in these tasks.

10 times on all tasks, and the acceleration on Quadrotor reaches about 100 times. Note that Vanilla exceeds the
time limit on three tasks, where the acceleration of our techniques could be much greater than that shown in the
!gure. These results indicate that APA and BGB signi!cantly reduce synthesis time, ESR substantially increases
TFR, and these three techniques together signi!cantly improve the scalability of our framework.

6 Conclusion
This paper proposes a scalable framework for formally synthesizing veri!ed neural HJ reachability value functions.
The framework consists of three stages: pre-training, adversarial training, and veri!cation-guided training.
We propose three techniques that signi!cantly improve the scalability of our framework: boundary-guided
backtracking (BGB) to accelerate counterexample search, entering state regularization (ESR) to enlarge feasible
regions, and activation pattern alignment (APA) to accelerate MILP-based veri!cation. We also provide a neural
safety certi!cate synthesis and veri!cation benchmark called Cersyve-9, including nine commonly used safe
control tasks. Our framework successfully synthesizes veri!ed neural value functions on all tasks in our benchmark.
Extensive experiments show that the three proposed techniques exhibit superior scalability and e"ciency
compared with existing methods. While our experiments mainly focus on the synthesis side, the proposed
benchmark could also foster additional study in the veri!cation community on scaling up veri!cation algorithms
with respect to these unique types of problems.
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While our proposed framework improves scalability for reachability analysis, it is still limited to state dimensions
up to 6. Future directions for extending to higher-dimensional systems include using more advanced veri!cation
algorithms with parallel computation and exploring more e"cient adversarial training or certi!ed training
methods to eliminate counterexamples. In addition, our framework is only evaluated in simulation in this work.
To bring this framework to the real world, we will need to !rst solve the robust veri!cation problem that accounts
for model uncertainty as discussed in Section 4.5, which will be left for future work.
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