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Abstract

The physical world dynamics are generally governed by underlying partial differential equations
(PDESs) with unknown analytical forms in science and engineering problems. Neural network based
data-driven approaches have been heavily studied in simulating and solving PDE problems in recent
years, but it is still challenging to move forward from understanding to controlling the unknown
PDE dynamics. PDE boundary control instantiates a simplified but important problem by only
focusing on PDE boundary conditions as the control input and output. However, current model-
free PDE controllers cannot ensure the boundary output satisfies some given user-specified safety
constraint. To this end, we propose a safety filtering framework to guarantee the boundary output
stays within the safe set for current model-free controllers. Specifically, we first introduce a neural
boundary control barrier function (BCBF) to ensure the feasibility of the trajectory-wise constraint
satisfaction of boundary output. Based on the neural operator modeling the transfer function from
boundary control input to output trajectories, we show that the change in the BCBF depends linearly
on the change in input boundary, so quadratic programming-based safety filtering can be done for
pre-trained model-free controllers. Extensive experiments under challenging hyperbolic, parabolic
and Navier-Stokes PDE dynamics environments validate the plug-and-play effectiveness of the
proposed method by achieving better general performance and boundary constraint satisfaction
compared to the vanilla and constrained model-free controller baselines. The code is available at
https://github.com/intelligent-control-lab/safe-pde-control.
Keywords: PDE control, safety filter, learning for control

1. Introduction

Partial differential equations (PDEs) characterize the most fundamental laws of the continuous dy-
namical systems in the physical world (Evans, 1998; Perko, 1996). Non-analytical PDE dynamics
are often involved in complicated science and engineering problems of computational fluid dynam-
ics (Kochkov et al., 2021), computational mechanics (Samaniego et al., 2020), robotics (Heiden
et al., 2021), etc. Recently, neural networks have largely boosted the study of numerical PDE
solvers using data-driven methods, simulating and characterizing the dynamics (Raissi et al., 2019;
Brunton and Kutz, 2024; Kovachki et al., 2023). However, the PDE control problem remains chal-
lenging without any prior knowledge about underlying PDE equations, serving as a huge gap from
understanding science to solving engineering problems (Yu and Wang, 2024).

Recent pioneer works (Bhan et al., 2024; Zhang et al., 2024a) provide various formulations
of PDE control problems and multiple benchmark settings, either in-domain control (Zhang et al.,
2024b) or boundary control (Bhan et al., 2023). Since it is easier to control the PDE boundary
in the real world, following Bhan et al. (2024), we focus on the PDE boundary control setting
where the control signal essentially serves as the boundary condition and the unknown PDE dynam-
ics itself remains unchanged. Model-based PDE boundary control has been studied for years, and
backstepping-based methods have been applied to different PDE dynamics (Krstic and Smyshlyaev,
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Figure 1: Overview of our safety filtering method for PDE boundary control with neural BCBF. Solid line
arrows denote the safety filtering, while dashed ones denote the model training.

2008). Nevertheless, the model-based methods cannot work well under the unknown PDE dynam-
ics, suffering from significant model mismatch. Model-free reinforcement learning (RL) controllers
(Schulman et al., 2017; Haarnoja et al., 2018) have shown impressive results in the benchmark
(Bhan et al., 2024) compared to the model-based control methods (Pyta et al., 2015).

Besides, constraint satisfaction is of great importance for the PDE boundary control problems,
but current safe PDE control methods are typically backstepping-based and require knowledge about
the PDE dynamics (Krstic and Bement, 2006; Li and Krstic, 2020; Koga and Krstic, 2023; Wang
and Krstic, 2023). The constraint considered in this paper is called boundary feasibility, which char-
acterizes whether the boundary output falls into and stays within the safe set at the end of the finite-
time trajectory, and can be understood as the constraint of finite-time convergence. Under ordi-
nary differential equations (ODEs) setting, neural network parameterized control Lyapunov/barrier
functions (CLF/CBFs) have been adopted to ensure the convergence and safety of learning-based
controllers (Boffi et al., 2021; Dawson et al., 2023; Chang et al., 2019; Mazouz et al., 2022), based
on the Markov property of the dynamics at each step , i.e., the change of state only depends on
the current state and control input. However, the Markov assumption does not generally hold for
PDE boundary control due to infinite-dimensional unobserved states along the spatial axis. It is also
challenging to bypass the unknown PDE dynamics to to find the boundary control input at each step
for trajectory-wise convergence over boundary output constraint.

To this end, we introduce a new framework to achieve boundary feasibility within a given safe
set for the PDE boundary control problem, as shown in Figure 1. More specifically, we propose
neural boundary control barrier functions (BCBFs) over the boundary output to enable the incorpo-
ration of the time variable with a finite-time convergence guarantee. Then, we adopt a neural oper-
ator to directly learn the mapping from boundary input to output as a transfer function. Combining
well-trained neural BCBF and neural operator, we show a linear dependence between boundary fea-
sibility condition and the derivative of boundary control input, making the safety filtering possible
by projecting the actions from the nominal RL controller to the safe boundary control input set us-
ing quadratic programming (QP). We conduct experiments on multiple PDE benchmarks and show
our plug-and-play filtering superiority over vanilla and constrained RL controllers regarding general
performance and constraint satisfaction. To the best of our knowledge, we are the first to study safe
boundary control with unknown PDE dynamics. More related work is discussed in Section A in Hu
and Liu (2025). We summarize our contributions below.
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* We propose a new PDE safe control framework with a neural boundary control barrier function
to guarantee the boundary feasibility of the boundary output within a given safe set.

* We model the control input and output mapping through a neural operator as a transfer function
and prove that it can be used for safety filtering by solving quadratic programming.

* We show that the add-on performance after safety filtering is better than both vanilla and con-
strained RL controllers in boundary feasibility rate and time steps on multiple PDE environments.

2. Problem Formulation

Following the PDE boundary control setting (Bhan et al., 2024), we consider the state u(z,t) : X' x
T — S C R from the continuous function space C(X x T;R) governed by underlying closed-loop
partial differential equation (PDE) dynamics defined on normalized n-dimensional spatial domain
X =[0,1] :=[0,1]" C R™ and temporal domain 7 = [0,7] C R* as follows,
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where D is the PDE system dynamics and U (t) is the control signal as the boundary condition.
Without loss of generality, we focus on the Dirichlet boundary control input as U(t) := u(1,t)
with constant initial condition u(x,0) = U(0) € S. Instead of optimizing boundary input U (¢) to
track or stabilize full-state observation trajectory u(z,t) (Bhan et al., 2024), we aim to find U (t)
that guarantees the boundary feasibility of boundary output Y (¢) := u(0, ¢) within the given user-
specified safe set Sy C S over T, i.e., Ity € T,Vt > to, Y (t) € Sp. Note that the boundary states
can be generalized to any spatially marginalized state-related trajectories. More formally, we define
boundary feasibility as follows in PDE dynamics.

JU@),reX,teT,ues, (D

Definition 1 (Boundary Feasibility for Finite-time Constraint Satisfaction) With state u(x,t)
subjected to closed-loop PDE dynamics in Equation (1) with the boundary control input U (t), the
boundary control output Y (t) is defined to be feasible over T within the given user-specified safe
set Sy € S if the following holds,

dtg € T,Vto <t <T,Y(t) :=u(0,t) € Sy, where u(1,t) = U(t),u(z,0) =U(0). (2)

With boundary input and output trajectory pairs {[Ux(t), Y% (¢)],k = 1,2,..., K} from the un-
known PDE dynamics,we formulate the problem for this paper as follows.

Problem 1 Given K collected boundary input and output trajectory pairs {[Ukm,Yim|, k =
1,2,...,K,m=1,2,..., M} with M-point temporal discretization, under consistent initial con-
dition ug(x,0) = Ug(0) from unknown but time-invariant PDE dynamics in Equation (1), we aim
to find boundary control input U(x) that guarantees boundary feasibility of boundary output Y (t)
with user-specified safe set Sy in Definition 1.

3. Methodology

3.1. Neural Barrier Function for PDE Boundary Control

Boundary feasibility aims to find control input U (¢) for the constraint satisfaction of the marginal-
ized output boundary Y (¢) := (0, t) from the underlying PDE dynamics with spatially-continuous
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unobservable state u(z, t), which is challenging for conventional state-dependent-only CBFs. Hence,
inspired by Garg and Panagou (2021b), we propose the neural boundary control barrier func-
tion (neural BCBF), explicitly incorporating time ¢ into neural network parameterized function
#(t,Y) : T x S — R for the time-dependent zero-sublevel set Sy, := {Y'(t) | ¢(¢,Y (¢)) < 0}.
Note that the conventional CBF ¢(Y") can be viewed as a specially case of BCBF ¢(¢,Y") where
t remains constant. Another challenge is that the boundary feasibility in Equation (2) for PDE
boundary control is defined on finite time domain 7" = [0, T'], which requires a higher convergence
rate to the safe set than the original asymptotic CBF (Ames et al., 2014) like fixed-time stability
in Polyakov (2011); Garg and Panagou (2021a). The following theorem shows the feasibility of
boundary control output Y (¢) within the user-specified safe set Sy under control signal U (¢).

Theorem 2 (Boundary Feasibility with Boundary Control Barrier Function) For the state u(x,t)
from the closed-loop PDE dynamics with boundary control input U (t) = u(1,t),u(x,0) = Uy, the
boundary feasibility of boundary output Y (t) = u(0,t) over T = [0, T] within user-specified safe
set Sy is guaranteed with neural BCBF ¢(t,Y') if the following holds V't € T

(Spe == {Y | $(t,Y) < 0} € So) )\ <8y¢ : % + 06+ ag(t,Y) + Cord(0,Tp) < o) . 3)

where Co, 1 := —7— > 0 is a constant for finite-time convergence.

Proof With the sublevel set Sy ; being the subset of Sp, i.e., Sp :={Y | ¢(¢,Y) < 0} C S, itis
sufficient to prove 3ty € [0, 77, s.t.¥t € [to, T], (¢, Y (t)) < 0. Now denote 1 (t) := ¢(t,Y (t)),
by initial constant boundary condition Y (0) = Uy, the following equivalent inequalities hold,

at Ca1¥(0) ,at
8Y¢ . % + (9t¢ + aff’(t, Y) + Ca,T¢(07 Y(O)) <0+ d(e w(t) +dt ; : )

So the function e®*4)(t) + C"%w(o)eat is non-increasing over t € [0,7]. By T > 0, we have
Ca,T (O) Ca,Tw(O) eat”
a

<0

et(t) + =252 g < [eu(t) +

So at least at tg = T, ¢(to,Y (tp)) < 0, which concludes the proof of boundary feasibility of
boundary output Y (¢) = u(0,t) over 7 = [0, T'] in Definition 1. [ |

=0 <= Y(T) = ¢(T,Y(T)) <0

The full proof can be found in Section B.2 in Hu and Liu (2025). Note that if ¢(0,U) < 0, the
forward invariance (Ames et al., 2019) can be obtained via T' — oo. With the M -point temporal
discretization of collected boundary input and output trajectory {[Uk m, Yim|,k =1,..., K,m =
1,...,M}, 841 € Sp in Equation (3) induces the loss below following Dawson et al. (2022)

K K
Ls = Z Z [¢(tmv Yk,m)]-i- + Z Z [_¢(tM7Yk,m)]+v with H-‘r = maX{O? } 4

k=1Y m€So k=1Yk m&So

However, it is challenging to find 4Y (*)/dt involved in Equation (3) over the discrete time samples
since the boundary output Y (¢) = (0, t) is governed by the unknown closed-loop PDE dynamics
with the boundary condition U (t) = u(1,t). Besides, it is also non-trivial to find the boundary fea-
sibility condition over boundary control input U (¢) for safety filtering due to non-Markov property.
Therefore, we adopt the neural operator to learn the boundary input-output mapping as a neural
transfer function to further mitigate the non-Markov issue in PDE boundary control problems with
unknown PDE dynamics.



SAFE NEURAL PDE CONTROL

3.2. Learning Neural Operator for Input-output Boundary Mapping

Different from current applications of neural operators in learning PDE solutions by temporal map-
ping (Li et al., 2020a,b, 2022), we propose to adopt neural operator Gy : {U : T — S} —
{Y : T — S} to model the spatial boundary mapping from input to output of the unknown
closed-loop PDE dynamics in Equation (1), i.e., Y (t) = u(1,t) = Gop(U)(t) = Gp(u(0,1))(t).
Following Kovachki et al. (2023) under the setting of same Lebesgue-measurable domain 7~ for
hidden layers, the neural operator is defined as Gy = Q o Zy_1 o --- o Zy o P, including point-
wise lifting mapping P : {U : T — S} — {wo : T — R%0}, iterative kernel integration layers
T {o T = R s {og 0 T — Rd“l+1},l =0,...,L — 1, and the pointwise projection
mapping Q : {vy : T — R%r} — {Y : T — S}. Specifically, the I-th kernel integration layer
follows the following form with commonly-used integral kernel operator (Li et al., 2020a,b, 2022),

o1 () = T(v)(t) = o141 (lel(t) + /TH(l)(t, s)u(s)ds + bl(t)> 1=0,1,...,.L—1, (5

where 0741 : R%i+1 — R%i41 s the activation function, W; € R%1+1 %% ig the local linear opera-

tor, k& € C(T x T; R%™w+1*%1) is the kernel function for integration, and b; € C/(T; R%+1) is the
bias function. Besides, since lifting and projection operators P, Q are pointwise local maps as spe-
cial Nemitskiy operators (Dudley et al., 2011; Kovachki et al., 2023), i.e. there exist equivalent func-
tions P : S — R%o, Q : R%. — S such that P(U)(t) = P(U(t)), Q(vr)(t) = Q(vr(t)),Vt € T.
Therefore, combining Equation (5), we explicitly show the boundary mapping from control input
U (t) to output Y (¢) below, making them possible to be directly connected as Y (t) = Go(U)(¢),

Y(t) = Go(U)(t) = Q(ur(t)), vig1(t) = Zy(wr)(t) in Equation (5),vo(t) = P(U(t)),  (6)

where P,Q, W;, ¥ b;,1 =0,1,..., L — 1 parameterized with neural networks # and compose the
neural operator Y (¢) = G¢(U)(t). Given boundary input and output M -step temporally discretized
K trajectory pairs {[{Uk m, Yim], k= 1,2,...,K,m =1,2,..., M}, Gy and neural BCBF ¢ can
be optimized together based on empirical-risk minimization using the following loss function,

K M

nenq? AGLg + AsLs + AprLpr, where Lg =Y > ||[Yium — Go(Us) (tm)||*, Ls in eq. (4),
’ k=1m=1

K M
dGy (U
Lor =33 [0y, 0 GO0 dt’“)(t) li=tn 000 & + At Vi) + Card(0, Uk o)+, (7)
k=1m=1

and [-]+ := max{0,-},, Ag, As, ApF are weight hyperparameters for Lg, Ls, LpF, respectively.
The loss for neural operator learning Lg is based on Equation (6), and the boundary feasibility (BF)
loss of Lpr is based on Equation (3) with the replacement of @Y (t)/a¢ with d9¢(U)(¢)/dt, which will
be detailed in the next section.

3.3. Safety Filtering with Quadratic Programming

Once the boundary input-output mapping is modeled by neural operator Gy, the boundary output
Y'(t) is directly related to boundary input U(¢) from trajectory to trajectory, bypassing the non-
Markov property and the unknown closed-loop dynamics in Equation (1). We first find the derivative
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of boundary output Y (¢) w.r.t ¢ based on neural operator Y (t) = Gy(U)(t). Applying chain rule to
Equation (6), the following derivatives hold,

) _ Gordelt) donl) _ g dvrygy gy g 0l gprdU) g

dt dt  dt dt dt dt ’

where the derivative of kernel integration layer [, : {3 : 7 — R} s {%L T — R%™i+1},1 =

0,1,...,L — 1 can be found through the derivative of Equation (5) in a recursive form below,
dvy g1 (t) duy . duy(t) / ok (t, s) dby (t)
=7 (=(t) =D %% d . 9
= aGhin = Diag(of,) (WEEE + [ FE (s S 9)

By combining Equation (8) and Equation (9), we have the following theorem to show how the
boundary control input U (¢) can be chosen to guarantee the boundary feasibility of boundary output
Y (t) modeled by neural operator Gy.

Theorem 3 (Boundary Feasibility with Neural Operator) Assuming the neural operator Gy as
an exact map from boundary input U (t) to output Y (t) for an unknown closed-loop PDE dynam-
ics without model mismatch, the boundary control input U(t) is guaranteed to induce boundary
feasibility of output Y (t) over T = [0, T'] within the sublevel set of neural BCBF ¢ if U (t) satisfies

dGe(U
Oy ¢(t, Qg(U))ge(dt)(t) + 0 p(t,Go(U)) + ap(t,Go(U)) + Corp(0,U(0)) <0,Vt € T (10)
where Co,1 = —7—, and dgg(dl{)(t) can be found below with T[°(-) := 1,
WGo )1 _ oo™ T (iae(o U | oo piaeton S (1T
— = vQ ll}) (Dlag(aL_l)WL,l,l) VP T + VQ  Diag(o}) ; [Jl;[l Wri—;
o (L—1—1) dbp_1—_; .
Diag(c), )] < [ e s+ dt“”)) = As(OU() + polt). (1)

The proof of Equation (10) is based on Theorem 3 and Equation (11) can be derived by recursively
applying Equation (9) to Equation (8). Please check Section B.3 of Hu and Liu (2025) for full proof.

Remark 4 We remark that if the sublevel set of neural BCBF ¢ is a subset of user-specified safe
set Sy, and there is no model mismatch between neural operator Y (t) = Go(U)(t) and unknown
closed-loop PDE dynamics, Theorem 3 is equivalent to Theorem 2. Then the boundary control input
U (t) satisfying Equation (10) is guaranteed to induce the boundary feasibility of boundary output
Y (t) within the user-specified safe set S.

Based on the affine property of U (t) in Equation (11), we formulate the following quadratic pro-
gramming with neural BCBF ¢ and neural operator Gy as a safety filter for Unominal (t), Vt € T,

Usafe(t) = arg min HU - Unominal(t)H (12)
UeR
s.t. ayqb(t, Y) (Ag(t)U + Mg(t)) + 8t¢(t, Y) + Oéd)(t, Y) + Ca,T¢(Oa Unominal(o)) < 07 (13)
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Algorithm 1 Safety Filtering Procedure for Discrete-time Implementation

Input: Initial and nominal control input U(r)‘f}\‘?mal, neural operator G, neural BCBF ¢
Output: Filtered safe control input U fa]f\}
Initialize AUMS = Appominal  gynominal _ gynominal Yﬁrej\jm + G(Unominal)
form=1:M do
Find AU through QP in Equation (12) based on AUzOmnal yPEC G g gypominal
Update U « Y7L, AU 4 ggomina!
Update YPTH  G(Us2fe )
end for
return U3¢

R A O T o e

where Co, 7 = —z7— and Ay(t), 119(t) can be found in Equation (11). Based on Usate(t) at each step

t, we update the potential boundary control input Usgyfe (t) as Usafe () = fot Usafe(T)dT + Unominat (0),
so that the predicted boundary output Ypredict(t) = Go(Usate) (t) can be found by the neural operator
Gy. Therefore, the next QP update can be solved for Ugafe at the next time by Equation (12). Note
that we let Usafe = Unominal for the unfiltered time steps during the QP iteration. The discrete-time
implementation of the safety filtering procedure is shown in Algorithm 1. To accommodate the
advection-dominated problems like the 1D hyperbolic problem or Navier Stokes, where the propa-
gation speed from input to output boundary is not infinite, we predict the whole input and potentially
delayed output trajectory through the neural operator at each step during the safety filtering. We
adopt the predicted Y (¢) from the neural operator after each filtering step, and the filtering thresh-
old is detailed as a workaround for the model mismatch in Section C of Hu and Liu (2025), along
with a discussion on how approximation errors affect safety filtering.

4. Experiment

In this section, we aim to answer the following two questions: How does the proposed plug-and-
play safety filtering perform based on the vanilla and constrained RL controllers in unknown PDE
dynamics? How do different types of barrier functions, convergence criteria, and neural operator
modeling influence the performance of the proposed safety filtering? We answer the first question in
Section 4.2 and the second one in Section 4.3, following the setup of model training and evaluation
metrics. Section C in Hu and Liu (2025) gives more details and results.

4.1. Experimental Setup

Environments and model-free controllers. We adopt the challenging PDE boundary control en-
vironments and the model-free reinforcement learning (RL) models from Bhan et al. (2024) to con-
duct our experiment. More specifically, the three environments include the unstable 1D hyperbolic
(transport) equation, 1D parabolic (reaction-diffusion) equation and 2D nonlinear Navier-Stokes
equation, where the last one is for tracking task and others are for stabilization task. Since our
setting in Problem 1 does not have prior to the PDE equations, we choose the vanilla PPO (Schul-
man et al., 2017) and SAC (Haarnoja et al., 2018), and constrained RL models CPO (Achiam et al.,
2017) and SAC-Lag (Ha et al., 2020) as the baselines in each environment for fair comparisons. The
boundary control inputs are consistent with Bhan et al. (2024). For 1D environments, the boundary
output for the hyperbolic PDE is Y (¢) = u(0,t) and the boundary output for the parabolic PDE
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Table 1: Comparison of vanilla models w/o and w/ safety filtering under multiple environments.

Reward (mean+std) Feasible Rate  Average Feasible Steps

ID hyperbolic equation (starting at ~-300) (100 episodes) (/50 control steps)
PPO in Bhan et al. (2024) 157.9+37.5 0.63 7.6
PPO with filtering 165.0+£43.7 0.71 9.8
SAC in Bhan et al. (2024) 106.2+98.7 0.78 12.4
SAC with filtering 103.4+96.4 0.85 13.9

Reward (mean+std) Feasible Rate ~ Average Feasible Steps

ID parabolic equation (starting at ~0) (100 episodes) (1000 control steps)

PPO in Bhan et al. (2024) 164.5+20.7 0.60 155.0
PPO with filtering 168.2+23.5 0.81 507.0
SAC in Bhan et al. (2024) 156.5+6.2 0.72 118.4
SAC with filtering 157.5+£6.8 0.87 449.8

Reward (mean+tstd) Feasible Rate ~ Average Feasible Steps

2D Navier-Stokes equation (starting at ~-100) (100 episodes) (200 control steps)

PPO in Bhan et al. (2024) -5.37£0.01 0.86 2.0
PPO with filtering -5.724+0.17 0.99 32.0
SAC in Bhan et al. (2024) -18.05£1.13 0.80 17.5
SAC with filtering -18.36£1.25 0.85 21.3

Table 2: Comparison of constrained RL models w/o and w/ safety filtering for 1D hyperbolic PDE.

Reward (mean+std) Feasible Rate under Y constraints Average Feasible Steps

Constrained RL. Models (starting at ~-300) (100 episodes) (50 control steps)
CPO (Achiam et al., 2017) 168.7+£28.8 0.88 (Y<1) 0.52(Y<0) 11.2(Y<1) 42((Y<0)
CPO with filtering 168.8+28.6 0.89 (Y<1) 0.56 (Y<0) 148 (Y<1) 4.7 (Y<0)
SAC-Lag (Ha et al., 2020) 110.9+92.1 0.84 (Y<0) 0.50 (Y<-0.5) 20.8 (Y<0) 3.1(¥<-0.5)
SAC-Lag with filtering 107.6+90.3 0.90 (Y<0) 0.67 (Y<-0.5) 18.9 (Y<0) 2.9 (¥Y<-0.5)

Y (t) = u(0.5,t). For the 2D environment, the boundary output is Y (¢) = «(0.5,0.95,¢), which
has the maximum speed over 2D plane. The boundary feasibility constraints are detailed in Section
3.1 of Hu and Liu (2025). With the PDE controllers in Bhan et al. (2024), we collect 50k pairs of
boundary input U(¢) and output Y (¢) trajectory with safety labels based on safety constraints. The
resolution of collected trajectories is consistent with the control frequency of each environment.

Model training and evaluation metrics. With the collected dataset from vanilla RL models, we
adopt the Fourier neural operator (FNO) (Li et al., 2020a) as the default neural operator model and
train it with Markov neural operator (MNO) (Li et al., 2022) using the default hyper-parameters. For
the neural BCBF training, following Zhang et al. (2023); Hu et al. (2024), we use a 4-layer feedfor-
ward neural network with ReLU activations to parameterize BCBFs and incorporate Equation (4)
and Equation (7) with default o« = 10~ into the regular model training pipeline (Zhao et al., 2020;
Dawson et al., 2022) to train time-dependent BCBF ¢(¢, Y") as default. With the well-trained neural
operator and neural BCBF, we solve the QP of Equation (12) though CPLEX (IBM) For the evalu-
ation of safety filtering for RL controllers, we keep the original RL rewards from Bhan et al. (2024)
as a metric to show if the performance is compromised by the enhancement of safety constraints.
Besides, we introduce two new metrics regarding boundary feasibility, Feasible Rate and Average
Feasible Steps. Feasible Rate is the ratio of trajectories that boundary feasibility in Definition 1 is
achieved, i.e., the boundary output falls into the safe set and will not go out of it by the end of a
single trajectory with finite steps. Average Feasible Steps is the mean steps among boundary feasi-
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Table 3: Comparison of time-independent and time-dependent safety filtering in hyperbolic equations.

Reward (mean+std) Feasible Rate  Average Feasible Steps

Different safety filtering (starting at ~-300) (100 episodes) (50 control steps)

PPO with filtering of ¢(Y) 162.3+44.5 0.63 8.3
PPO with filtering of ¢(¢,Y") 165.0+43.7 0.71 9.8
SAC with filtering of ¢(Y) 103.3+98.4 0.57 15.7
SAC with filtering of ¢(¢,Y) 103.4+£96.4 0.85 13.9

Table 4: Filtering with BCBF ¢ (¢, Y") under different neural operators for 1D hyperbolic equation.

Reward (mean+std) Feasible Rate  Average Feasible Steps

Different neural operators (starting at ~-300) (100 episodes) (50 control steps)

PPO w. MNO (Li et al., 2022) 163.8+47.2 0.78 9.0
PPO w. FNO (Li et al., 2020a) 165.0+43.7 0.71 9.8
SAC w. MNO (Li et al., 2022) 103.3+96.4 0.84 14.7
SAC w. FNO (Li et al., 2020a) 103.4+96.4 0.85 13.9

ble trajectories in which the boundary output is consistently kept in the safe set until the end of the
trajectory, characterizing how long the boundary feasibility is achieved and maintained.

4.2. Results Comparison

Comparison of vanilla models with safety filtering. From all three PDE environments in Ta-
ble 1, vanilla PPO and SAC with safety filtering outperform vanilla PPO and SAC in feasible rate
and average feasible steps, demonstrating the effectiveness of safety filtering for boundary constraint
satisfiability. Besides, the rewards in parabolic and hyperbolic equations can also be improved
through filtering due to the alignment of boundary constraints and the stabilization goal. The re-
ward of the filtered SAC model in the hyperbolic equation is compromised because the constraint
Y < 0 conflicts with the stabilization task of Y — 0. In the 2D Navier-Stokes PDE, due to the
inconsistency between the specific high-speed point boundary for constraint and the full 2D plane
for reward, boundary feasibility is enhanced by safety filtering while rewards are compromised.

Safety filtering performance based on constrained RL models. To further show the plug-and-
play efficacy of our safety filtering method, we present the filtering performance over the constrained
RL models in Table 2 using the pre-trained BCBF, which is trained over data collected from vanilla
RL models. We can see that compared to CPO (Achiam et al., 2017), the filtered controller tends to
improve the boundary feasibility, especially for the stronger constraint Y < 0. Safety filtering over
SAC-Lag (Ha et al., 2020) will give higher feasibility rates over the boundary, while the average
feasible steps slightly decrease because feasible steps along trajectories become more concentrated
and less divergent after filtering. Besides, despite the potential conflict between boundary constraint
and stabilization, the reward will not be hurt significantly via safety filtering.

4.3. Ablation Study

Comparison of safety filtering using ¢(Y) vs. ¢(¢,Y’). With different boundary control barrier
functions in Table 3, with the PPO model, safety filtering with ¢(¢,Y") outperforms filtering with
#(Y) in reward and boundary feasibility metrics, showing that time-dependent BCBF can distin-
guish the feasibility of the PDE boundary state more effectively by explicitly taking time as an
input compared to the time-independent one. Based on the vanilla SAC model, reward and feasible
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PPO controller before and aftering filtering for hyperbolic equation
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Figure 2: Visualization of three state trajectories u(x,t) (left, mid, right) for hyperbolic equation under PPO
controller with and without safety filtering. Boundary control inputs U (¢) are in dashed lines, and boundary

outputs Y'(¢) are in solid lines. The boundary constraint Y (¢) < 1 is in green.

Time

rate with ¢(¢,Y") filtering is higher but the average feasible step is lower than ¢(Y) filtering, be-
cause time-independent BCBF ¢(Y") tends to have divergent performance with more non-feasible
trajectories and more feasible steps for feasible trajectories.

Boundary mapping with different neural operators. Here we compare two neural operators,
FNO (Li et al., 2020a) and MNO (Li et al., 2022), for learning the boundary mapping from control
input U (¢) to output Y (¢) for 1D hyperbolic equation in Table 4. With the same time-dependent
BCBF ¢(t,Y), the safety filtering with FNO presents higher rewards under both PPO and SAC
base models, showing that FNO is more suitable for learning low-resolution trajectories with 50
sampled points. Besides, MNO shows a better feasible rate and average feasible steps performance,
especially with SAC as the base model, since the MNO model has a larger model complexity.

Qualitative visualization. In this section, we visualize and compare multiple trajectories under
the 1D hyperbolic equation using the PPO controller without and with safety filtering of ¢(¢,Y), as
shown in Figure 2. We can see that for each trajectory, the state value u(x,t) after filtering is lower
than that before filtering. More specifically, as time goes by, the filtered control input U (¢)s,fe in
blue dashed lines deviates more away from nominal control input U (¢)nominai in red dashed lines,
causing the filtered boundary output Y ()safe in blue solid lines to satisfy the constraint Y (¢) < 1
compared to the nominal boundary output Y (¢)nominal in red solid lines.

5. Conclusion

In this work, we introduce a novel safe PDE boundary control framework using safety filtering with
neural certification. A neural operator and a boundary control barrier function are learned from col-
lected PDE boundary input and output trajectories within a given safe set. We show that the change
in the BCBF depends linearly on the change in the input boundary. Hence, safety filtering can be
done by solving a quadratic programming problem to ensure the boundary feasibility. Experiments
on three challenging PDE control environments validate the effectiveness of the proposed method
in terms of both general performance and constraint satisfaction.
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