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Adaptive gradient optimization methods, such as Adam, are prevalent in training
deep neural networks across diverse machine learning tasks due to their ability to
achieve faster convergence. However, these methods often su!er from suboptimal
generalization compared to stochastic gradient descent (SGD) and exhibit insta-
bility, particularly when training Transformer models. In this work, we show the
standard initialization of the second-order moment estimation (v0 = 0) as a sig-
nificant factor contributing to these limitations. We introduce simple yet e!ective
solutions: initializing the second-order moment estimation with non-zero values,
using either data-driven or random initialization strategies. Empirical evaluations
demonstrate that our approach not only stabilizes convergence but also enhances
the final performance of adaptive gradient optimizers. Furthermore, by adopting
the proposed initialization strategies, Adam achieves performance comparable to
many recently proposed variants of adaptive gradient optimization methods. Our
code is available at https://github.com/Walleclipse/Adam_Initialization.

1. Introduction

First-order optimization methods, such as stochastic gradient descent (SGD), have been founda-
tional in training deep neural networks due to their robust convergence properties across various
applications [1]. However, as deep learning architectures have grownmore complex, there has been
increasing interest in adaptive gradient optimizers, which dynamically adjust learning rates based
on the gradients of individual parameters [2]. Thesemethods often lead to faster convergence in cer-
tain tasks [3]. Among them, Adam has emerged as one of the most widely used adaptive gradient
methods, successfully applied to fields such as computer vision, natural language processing, and
reinforcement learning [4]. By combining the benefits of momentum and adaptive learning rates,
Adamhas proven particularly e!ective in training generativemodels and large languagemodels [5].
Its success is particularly evident in transformer-based architectures, where careful hyperparame-
ter tuning or the use of a learning rate warmup strategy has enabled state-of-the-art performance
[6–8]. Additionally, theoretical studies have provided insights into Adam’s convergence properties
in non-convex settings, further solidifying its utility [9].
At the same time, Adam’s e!ectiveness is not without limitations. While it is known for its fast con-
vergence and adaptability, it can exhibit instability and poor generalization in specific non-convex
optimization. For example, in training transformers for language models, the omission of learning
rate warmup strategies has been linked to instability and suboptimal generalization [10, 11]. These
instabilities often lead the optimizer to converge to suboptimal local minima, undermining model
performance. To address these challenges, several modifications to Adam have been proposed. For
instance, AdaBound [12] improves generalization by bounding the step size with a smooth param-
eter update, while RAdam [11] rectifies the variance of the second-order moment to stabilize the
learning rate during early iterations. AdaBelief [13] adapts the step size based on the "belief" in the
observed gradients, enhancing generalization. A broader range of studies has introduced further
refinements to stabilize convergence and improve generalization performance [14–16]. Addition-
ally, the warmup heuristic, which employs a small learning rate during the initial training epochs,
has been adopted to improve stability and generalization in Adam [17].
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The update rule of Adam can be understood as a combination of update direction, determined by
the sign of the stochastic gradients, and update magnitude [18]. Recent works have explored the
role of Sign Gradient Descent (SignGD) as a surrogate for understanding Adam’s behavior [19, 20].
We identify a critical factor contributing toAdam’s instability: its default initialization of the second-
ordermoment estimation (v0 = 0), which causes Adam to exhibit sign-descent behavior in its initial
steps. This default setting introduces high variance in the second-moment estimation and update
step size, resulting in unstable convergence, particularly during the early stages of training. This in-
stability often prevents the optimizer from reaching well-generalized optima. To address this issue,
we propose a simple yet e!ective modification: initializing the second-order moment estimation
with non-zero values. These initial values can be derived from data-driven statistics of squared
gradient, or even assigned as random positive numbers. This modification reduces the variance
of the second moment and stabilizes the optimization process. Our empirical evaluations across a
wide range of tasks demonstrate that the proposed initialization of the second-ordermoment signif-
icantly improves the stability and overall performance of adaptive gradient optimizers, particularly
in non-convex settings. The contributions of this paper are as follows:
• We show that the zero initialization of the second-order moment is a significant factor contribut-
ing to Adam’s instability.

• We propose a simple yet e!ective modification: initializing the second-order moment estimation
with data-driven or randomnon-zero values to enhance the stability and performance of adaptive
gradient methods.

• Through extensive experiments, we demonstrate that the proposed initialization strategy of v0
improves the performance of several adaptive gradient methods.

2. Second-order Moment Initialization of Adam

This section focuses on the instability in the Adam optimizer caused by the standard zero-
initialization of the second-order moment. Unlike the non-convergence issues discussed in prior
works [10], the instability we address primarily a!ects the early stages of optimization in non-
convex problems, particularly in deep neural networks. While this issue has minimal impact on
convex problems, it can significantly hinder optimization in more complex, non-convex landscapes.

2.1. Revisiting the Adam Optimizer

Update rule of Adam. The update rule for Adam is given by the following equations [4]:

mt = ω1mt→1 + (1→ ω1)gt = ωt
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where mt and vt represent the first and second moments, gt is a gradient of objective function.
ω1,ω2 are the decay rates for the first and second-moment estimates, ϑ is the learning rate, and ϖ is
a small constant preventing division by zero. We rewrite the above term to illustrate the sign, and
magnitude of the Adam [18]. Ignoring ϖ, since it is very small in practice, we have the step size:

!εt = εt → εt→1 = →ϑ
m̂t
↑
v̂t

= →ϑ
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1

1 + v̂t→m̂2
t
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First step of Adam as sign descent. In Adam’s standard implementation, the first- and second-
order momentum terms are initialized to zero, m0 = 0, v0 = 0. As a result, the first step of the
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optimization process degenerates into sign descent, where the magnitude of the step size depends
solely on the learning rate ϑ rather than the full gradient. This behavior is illustrated as follows:

!ε1 = →ϑ
g1√

g21 +
ω2

1→ω2
v0

= →ϑ · sign(g1). (5)

In this first step, Adam performs a pure sign-descent update due to the zero initialization of
m0 = 0, v0 = 0. However, from the second step onward, the moving averages begin to incorpo-
rate gradient information, and the updates evolve into a combination of sign descent and adaptive
gradient descent. Over subsequent iterations, as more gradient information is accumulated, the in-
fluence of the initial sign descent diminishes, and the optimizer transitions into its adaptive behavior
wheremt ↓= vt , as shown in Equations (1), (2) and (4).

2.2. Instability of Adam optimizer

Instability of Adam on training Transformer network. Training Transformer models for various
NLP tasks often relies on a learning rate warmup strategy [21], which has also been shown to en-
hance accuracy in Vision Transformers [22, 23]. Removing the warmup phase, however, has been
observed to increase training loss, underscoring its role in stabilizing the optimization process [11].
To explore this phenomenon, we conducted experiments training a Transformer model on the
IWSLT’14 DE-EN dataset for a neural machine translation task. We evaluated three approaches:
vanilla Adam without warmup (denoted as v0,0), vanilla Adam with warmup, and our proposed
data-driven initialization of Adam without warmup (denoted as v0,data, described in the next sec-
tion). As illustrated in Figure 1(a), vanilla Adam without warmup exhibits increased training loss
during the early stages. We attribute this instability to Adam’s initial sign-descent behavior, which
is exacerbated by the standard zero-initialization of the second-order moment (v0 = 0). While
the learning rate warmup strategy e!ectively addresses this issue, it requires using a very small
learning rate during the initial stages, limiting parameter updates and slowing down convergence.
In this work, we propose a non-zero initialization strategy to directly stabilize the optimizer. Un-
like warmup, our approach avoids restrictive learning rate constraints, enabling faster convergence
while maintaining training stability.

(a) Training loss curve (b) Update step vs. iterations (c) Initial loss landscape

Figure 1: Training Transformers on the IWSLT’14 De-En dataset.
Impact of sign descent and shrinking gradients. In this section, we analyze the non-convergence
behavior of vanilla Adam, focusing on the large initial step sizes observed during neural network
training (Figure 1(b)). Neural networks often exhibit a flat loss landscape at the beginning of train-
ing, with gradients that are small inmagnitude. This phenomenon is particularly pronouncedwhen
training Transformers, as noted in priorworks [24–26]. The initial loss landscape of the Transformer
model is visualized in Figure 1(c), where the loss is plotted along two random directions as de-
scribed in [27]. The visualization highlights that the loss landscape is extremely flat, and gradients
are correspondingly small. When training such networks with Adam, the "sign descent" behavior
during the initial step can amplify these small gradients disproportionately, resulting in overly large
parameter updates. To further investigate this phenomenon, Figure 1(b) illustrates the norm of the
update step ↔!εt↔ during training for three optimizers: SGD, vanilla Adam, and Adam with the
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(a) Vanilla Adam v0,0 (b) Adam with initialization v0,data (c) SGD

Figure 2: Histogram of update step distribution across coordinates.

proposed initialization v0,data. The results show that the first update step size for vanilla Adam v0,0
is significantly larger compared to Adam v0,data or SGD. These large initial updates can push the op-
timizer away from initial regions in the parameter space, making recovery and convergence more
challenging. In contrast, SGD exhibits much smaller update steps during the initial stages, even
when using a larger learning rate (lr=0.1) than Adam (lr=0.001) in our experiments. To further
illustrate the update step sizes, Figure 2 presents histograms of the absolute values of parameter
updates for di!erent optimizers. For vanilla Adam (Figure 2(a)), many parameters are updated
with a step size equal to the learning rate in the first step (t = 1) due to its "sign descent" behav-
ior. Subsequently, the update step sizes decrease. In contrast, Adam with non-zero initialization
(Figure 2(b)) achieves relatively stable update step sizes throughout training, avoiding the large
initial jumps seen in vanilla Adam. This behavior aligns closely with SGD (Figure 2(c)), which
consistently maintains stability in its updates from the start.

2.3. Non-zero Initialization of Second Order Moment

As shown in Equations (2) and (4), initializing the second-order moment v0 with non-zero values
e!ectively prevents the first step of Adam from degenerating into sign descent.
Special case: linear loss. To build intuition for initializing the second-order moment, we first study
a simplified setting. Consider the linear loss function f(εt) = ↗εt, gt↘ with a Noisy Gradient Or-
acle with Scale Parameter (NGOS), a widely used framework for analyzing training dynamics of
optimizers [28, 29]. In this setting, the stochastic gradient gt is sampled from a Gaussian distribu-
tion with mean ḡ and and variance ϱ2I , i.e. gt ≃ N (ḡ,ϱ2I). This setup mimics mini-batch training
in neural networks, where the stochastic gradient is provided as a noisy approximation of the full
gradient. Using this framework, the expectation of first- and second-order moments is given by

E[mt] = ωt
1m0 + (1→ ω1)

t→1∑

k=0

ωk
1 ḡ = ωt

1m0 + (1→ ωt
1)ḡ (6)

E[vt] = ωt
2v0 + (1→ ω2)

t→1∑

k=0

ωk
2 (ḡ

2 + ϱ2I) = ωt
2v0 + (1→ ωt

2)(ḡ
2 + ϱ2I) (7)

These results indicate that, after a su"cient number of steps, E[mt] ⇐ ḡ, and E[vt] ⇐ ḡ2 + ϱ2I . In
many practical scenarios, where the average gradientmagnitude is smallE[gt] ⇐ 0, initializingm0 =
0 is a reasonable choice to stabilizemt. Sincemt approximates the first moment of the gradient, zero
initialization aligns with its role. However, for vt, which represents the second-order moment of the
gradient, it must satisfy E[vt] > 0. This makes the standard zero initialization (v0 = 0) inherently
inconsistent with its purpose. Furthermore, v0 plays a critical role in determining the adaptive
learning rate during the initial steps, directly influencing convergence and optimization stability.

To assess the stability of the optimization process and the influence of the initial state, we define the
drift of the second-order moment as:

driftvt(v0) = ↔E[v↑]→E[v0]↔. (8)
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This term quantifies the adjustment required for the second moment to transition from its initial
value to its steady-state. It reflects how much the optimizer must adapt its gradient scaling during
training. Since vt directly determines the adaptive learning rate, a smaller drift term indicates better
stability of optimization process.
For vanilla Adam, v0 = 0, the expected value of vt converges to E[v↑]| = ḡ2 + ϱ2I from E[v0] = 0.
Then driftvt(v0 = 0) = ḡ2 + ϱ2. This large drift value causes significant initial adjustments of vt,
leading to potential instability in optimization.
For non-zero initialization, v0 = ḡ2 + ϱ2I , the expected second moment remains constant for all
E[vt] = ḡ2+ϱ2I . Thus driftvt(v0 = ḡ2+ϱ2I) = 0. With this initialization, vt is immediately aligned
with its steady-state value, eliminating the need for adjustments and ensuring stability from the
start. The expectation E[vt] is of scale O(ϱ2) and the standard deviation of each coordinate of vt is
of scaleO((1→ω2)ϱ2). When ω2 is close to 1, vt becomes nearly deterministic and tightly concentrates
around vt ⇐ ḡ2 + ϱ2I . Ignoring ϖ for simplicity, the Adam update rule becomes:

εt ⇐ εt→1 → ϑ
mt√

ḡ2 + ϱ2I
(9)

This ensures a stable adaptive learning rate: ϑ · (ḡ2+ϱ2I)→1/2. Such stability aligns with the defini-
tion of an adaptive learning rate, where vt incorporates local geometry (e.g., Hessian information).
For the linear loss case, this stability results in more consistent updates. Further illustration of the
stability provided by a non-zero v0 in RMSprop is presented in Appendix A.1.
For random initialization, v0 = ςI,ς > 0, the the drift term becomes: driftvt(v0 = ςI) = |ḡ2+ϱ2

→ς|.
For any 0 < ς < 2(ḡ2 + ϱ2), this drift term is smaller than that of zero initialization: driftvt(v0 =
ςI) < driftvt(v0 = 0). This reduced drift results in a more stable optimization process compared to
v0 = 0, even with random initialization.
Initialization of v0. Inspired by the analysis of linear loss cases with stochastic gradients, we pro-
pose two di!erent non-zero initialization strategies for the second-order moment v0.
• Data-driven Initialization, denoted as v0,data. In the data-driven strategy, v0 is initialized using
the gradient statistics calculated from sampled training data (xi, yi) ≃ D, whereD represents the
training set. Specifically, for sampled data (xi, yi), the gradient of the loss function is computed
as: g(xi, yi) = ⇒εf(xi, yi) for (xi, yi). The second-order moment is then initialized as:

v0 = ϱ ·
(
E[g(xi, yi)]

2 +VAR[g(xi, yi)]
)
, where (xi, yi) ≃ D. (10)

Here, ϱ is a hyperparameter that controls the scale of v0. This approach ensures that v0 reflects
meaningful statistical information about the gradient, aligning the optimizer’s initialization with
the characteristics of the specific training data.

• Random Initialization, denoted as v0,rnd. This is computationally e"cient and avoids the over-
head associated with data-driven initialization. As shown in the previous analysis, any small
positive value for v0 enhances the stability of vt, making random initialization a practical choice.
We propose initializing v0 using a scaled chi-squared distribution 1:

v0 ≃
ϱ

fanin + fanout
· φ2

1, (11)

where φ2
1 denotes a chi-squared distribution with one degree of freedom. fanin and fanout are the

input and output dimensions of the weight matrix ε ⇑ R
fanout↓fanin , and ϱ is a hyperparameter

that controls the scale of the distribution. This distribution ensures that v0 scales appropriately
with the dimensions of the weight parameters, similar to Xavier initialization for neural network
weights [30]. Furthermore, the squared value g2t of a Gaussian random gradient gt naturally
follows a scaled chi-squared distribution, providing a principled foundation for this initialization
strategy. Please refer to Appendix B for the pseudocode of the proposed initialization methods.
Note that only weight matrices with two or more dimensions are initialized.

1Which is also can be described as gamma distribution, v0 → Gamma
(

1
2 ,

2(fanin+fanout)
ω

)
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Under the proposed initialization v0,data and v0,rnd, the first step size of Adam becomes:

!ε1 = →ϑ
g1√

g21 +
ω2

1→ω2
v0

↓= →ϑ · sign(g1), |!ε1| < ϑ (12)

This ensures that the first update step is influenced by both the magnitude and direction of the
gradient, avoiding the pure "sign descent" behavior seen with v0 = 0. Such stabilization is par-
ticularly crucial for deep learning tasks with shrinking gradients, such as training Transformers.
The proposed initialization strategies are broadly applicable beyond Adam and can be extended
to other adaptive gradient methods, including AMSGrad [10, 31], AdaBound [12], RAdam [11],
and AdaBelief [13]. These methods could benefit from improved stability during the initial steps,
potentially enhancing both training dynamics and final performance. A discussion comparing the
proposed initialization strategy with other optimization approaches is presented in Appendix A.2.

3. Experiments

To evaluate the e!ectiveness of our approach, we conducted extensive experiments across a variety
of tasks, including image classification with convolutional neural networks (CNNs) [32], image
generation with generative adversarial networks (GANs) [33], language modeling with long short-
termmemory networks (LSTMs) [34], and neural machine translation with Transformers [17]. We
empirically evaluate the performance of two initialization strategies — v0,data (Equation (10)) and
v0,rnd (Equation (11))—across severalwidely used adaptive gradient optimizationmethods. These
methods include SGD with momentum [35, 36], Adam [4], AdamW [37], AdaBound [12], RAdam
[11], and AdaBelief [13]. For each optimizer, we use the standard initialization (v0 = 0) as the
baseline and compare it against the proposed strategies (v0,rnd and v0,data). For v0,data, gradient
statistics are computed using 5,000 random samples prior to training, with the scaling factor set to
ϱ = 1. For v0,rnd, the scaling factor is set to ϱ = 100. Detailed information about the experimental
setup is provided in Appendix C.1.

3.1. Toy Experiments of Adam’s Instability and Initialization

(a) Saddle objective function (b) Objective value vs. iterations (c) Parameter vs. iterations

Figure 3: Optimization of the saddle objective function with di!erent methods.

We conduct a toy experiment to illustrate the instability of Adamwith its standard zero initialization
and the e!ectiveness of our proposed non-zero initialization. For this demonstration, we use the
random initialization strategy v0,rnd. The objective function is a non-convex saddle function:

f(x) =






(x→ b)n, if x ⇓ xs

→(x+ b)n, if x ⇔ →xs

x2 + d, if → xs < x < xs

(13)

Here xs is a switch point, b is a bias and d is a shift ensuring smooth transition at the switch points.

xs =
( s

n

) 1
n→1

+ b, d = (xs → b)n → x2
s (14)

The parameter n represents the degree of the polynomial. In our experiment, we set n = 7,
b = 1, and s = 0.5. The purpose of the experiment is to observe the optimization behavior
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under di!erent initializations. We use the Adam optimizer with the following hyperparameters:
ϑ = 1,ω1 = 0.9,ω2 = 0.999. For scenarios requiring smaller learning rates, the objective function
can be scaled down to achieve similar conclusions.
The optimization process starts at an initial point x0 = →10→6, close to the true optimum xϑ = 0, as
shown in Figure 3(a). Figure 3(b) and Figure 3(c) depict the loss values and parameter convergence
over iterations for di!erent methods. Standard Adam with v0 = 0 converges to a suboptimal local
minimum around x↑ ⇐ →1, far from the true optimum. In contrast, Adam with the proposed non-
zero initialization v0,rnd converges successfully to the true optimum. As a baseline, both the SGD
and Adam with warmup also converge near the optimum; however, the proposed method v0,rnd
demonstrates greater stability and e"ciency, as reflected in the convergence values inAppendix C.2.

3.2. Image Classification with CNN

We evaluate the ResNet-34 architecture [32] on the CIFAR-10 image classification dataset [38]. The
test accuracy at the final epoch is summarized in Table 1. The results demonstrate that the proposed
initialization of v0, represented as v0,rnd and v0,data, enhances the performance of adaptive gradi-
ent optimization methods, including Adam, AdamW, AdaBound, RAdam, and AdaBelief. Notably,
with v0,data, Adam achieves a test accuracy surpassing that of the more recent AdaBelief approach.
Furthermore, AdaBeliefwith v0,data outperforms SGD, showcasing the e!ectiveness of the proposed
method. v0,rnd also consistently improves the performance of adaptive gradient methods without
incurring additional computational overhead, making it a practical and e"cient solution for stabi-
lizing the optimization process.

Table 1: Test accuracy ↖ (%) of ResNet-34 on CIFAR-10 dataset.
Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 96.19±0.09 95.25±0.11 95.36±0.11 95.38±0.07 95.61±0.16 95.94±0.07

v0,rnd - 95.87±0.09 95.94±0.09 95.80±0.07 95.83±0.11 96.11±0.07
v0,data - 96.02±0.09 95.95±0.09 95.96±0.07 95.90±0.12 96.24±0.07

To further validate the e!ectiveness of our algorithm on a more comprehensive dataset, we con-
ducted experiments on the ImageNet dataset [39], utilizing ResNet-18 as the backbone network.
As shown in Table 2, both v0,rnd and v0,data provide significant performance gains across several
adaptive gradient optimization methods.

Table 2: Test accuracy ↖ (%) of ResNet-18 on ImageNet dataset.
Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 70.23±0.07 63.79±0.12 67.93±0.12 68.13±0.11 67.62±0.11 70.08±0.10

v0,rnd - 65.99±0.11 68.95±0.11 68.80±0.11 68.83±0.11 70.69±0.10
v0,data - 66.13±0.11 68.49±0.11 68.96±0.11 68.99±0.11 70.77±0.10

3.3. Language Modeling with LSTM

We evaluate a 2-layer LSTM network [34] on the language modeling task of Penn Treebank dataset
[40]. The test perplexity (lower is better) is summarized in Table 3. The results demonstrate that
both v0,rnd and v0,data significantly improve the performance of adaptive gradient methods. No-
tably, with these proposed initialization strategies, Adam achieves test perplexity results that sur-
pass the more recent AdaBelief optimizer. Results for a 3-layer LSTM network are provided in Ap-
pendix C.3.

Table 3: Test perplexity ↙ of 2 Layer LSTM on Penn Treebank dataset.
Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 67.25±0.20 67.11±0.20 73.61±0.15 67.69±0.24 73.61±0.25 66.75±0.11

v0,rnd - 66.70±0.17 68.35±0.14 66.94±0.19 68.55±0.17 66.12±0.10
v0,data - 66.37±0.17 69.31±0.14 66.90±0.19 69.32±0.17 65.87±0.10
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3.4. Neural Machine Translation with Transformer

We evaluated a small Transformer model [17] using the Fairseq package [41] on the IWSLT’14
German-to-English machine translation dataset. The BLEU scores [42] are summarized in Table 4.
The results demonstrate that the proposed initialization strategies, v0,rnd and v0,data, provide sig-
nificant performance improvements for adaptive gradient optimization methods.

Table 4: BLEU score ↖ of Transformer on IWSTL’14 DE-EN dataset.
Optimization SGD Adam AdamW RAdam AdaBelief
Vanilla v0,0 28.22±0.21 30.14±0.39 35.62±0.11 34.76±0.14 35.60±0.11

v0,rnd - 33.71±0.19 36.06±0.11 34.97±0.14 36.12±0.11
v0,data - 33.64±0.20 35.98±0.11 34.84±0.14 36.18±0.11

3.5. Image Generation with GAN

We evaluated a deep convolutional GAN (DCGAN) [43] on the CIFAR-10 image generation task.
The performance ismeasured using the Frechet InceptionDistance (FID, lower is better) [44], which
quantifies the similarity between generated images and the real dataset. In training GANs, opti-
mizer stability is crucial for achieving high-quality image generation. As shown in Table 5, the
proposed initialization strategies, v0,rnd and v0,data, stabilize the optimization process for adap-
tive gradient methods, resulting in additional performance gains. For instance, v0,rnd and v0,data
improve the performance of the Adam optimizer by 10% and 13%, respectively, highlighting the
e!ectiveness of the proposed approaches.

Table 5: FID score ↙ of GAN on CIFAR-10 dataset dataset.
Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 237.77±147.9 54.22±4.21 52.39±3.62 118.75±40.64 48.24±1.38 47.25±0.79

v0,rnd - 48.60±3.19 46.94±3.21 92.36±35.76 47.70±1.32 45.91±0.78
v0,data - 47.02±3.20 45.25±3.07 85.45±36.31 47.84±1.24 45.02±0.78

3.6. Further Discussion of the Proposed Initialization Method

(a) CIFAR-10 Test Accuracy (b) PTB Test Perplexity (c) IWSTL’14 DE-EN Test Perplexity

Figure 4: Comparison of Vanilla Adam and Adam v0,rnd on (a) CIFAR-10 image classification task.
(b) Penn Treebank language modeling task. (c) IWSTL’14 machine translation task.

Training curve. We compare the training curves of Vanilla Adam and Adam with random initial-
ization v0,rnd, as it is more computationally e"cient. In the CIFAR-10 image classification task in
Figure 4(a), while Adam v0,rnd exhibits slightly lower accuracy in the initial steps, it achieves more
stable convergence and higher final accuracy. For the Penn Treebank language modeling task in
Figure 4(b), Adam v0,rnd results in lower perplexity at convergence compared to Vanilla Adam.
For Transformer models on the IWSLT’14 DE-EN machine translation dataset (with warmup) in
Figure 4(c), Adam v0,rnd demonstrates faster convergence, more stable optimization, and lower
perplexity at the end of training.
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(a) Vanilla Adam (b) Adam v0,rnd

Figure 5: Comparison of the loss landscape around the convergent points of Transformer trained by
vanilla Adam and Adam v0,rnd.

Loss landscape. To further explore the converged behavior of Adam with v0,rnd, we visualize the
loss landscapes around the convergent points of Transformer models trained with Vanilla Adam
and Adam v0,rnd on the IWSLT’14 DE-EN machine translation task. The loss landscape is plotted
along two normalized random directions. As shown in Figure 5, the loss landscape for Adam v0,rnd
is flatter than that for Vanilla Adam. A flatter loss landscape is often indicative of better general-
ization performance [45, 46]. Although the training losses of Vanilla Adam and Adam v0,rnd are
comparable, the flatter landscape for Adam v0,rnd explains its superior testing accuracy. Moreover,
as discussed in Appendix C.5, there is no linear mode connectivity between the solutions found by
Vanilla Adam and those found using the proposed initialization strategy.

Table 6: Impact of ϱ on CIFAR-10 Test Accuracy.

ϱ 0 0.1 1 10 100 1000
v0,rnd 95.25 95.45 95.74 95.89 95.87 95.84
v0,data 95.25 95.70 96.02 95.92 95.85 95.72

Ablation study. The scaling factor ϱ is a key
hyperparameter in the proposed initialization
method Equations (10) and (11). To evaluate
the impact of ϱ,we conducted an ablation study
on the CIFAR-10 image classification task, as
summarized in Table 6. The results show that
for a wide range of ϱ values, such as ϱ ⇑ [1, 1000], the performance consistently outperforms zero
initialization. This highlights the robustness and tuning-friendly nature of the proposed approach,
as it achieves stable improvements across di!erent ϱ settings.
Comparison between warmup. The warmup technique [17, 47] is a widely used approach to mit-
igate the sign-descent behavior observed in Adam’s early steps. However, it introduces additional
hyperparameters, such as scheduling parameters, which require careful tuning. Moreover, warmup
often involves several initial training steps during which network parameters are not e!ectively up-
dated. In contrast, ourmethod directly addresses the aggressive sign-descent issue by initializing v0
with non-zero values, thereby eliminating the need for awarmupphase. As shown inAppendixC.4,
the comparison experiments demonstrate that random initialization of v0 stabilizes the training pro-
cess e!ectively, without requiring extra hyperparameter tuning or wasted iterations.

4. Conclusion

In this work, we revisited the initial steps of adaptive gradient optimization methods, focusing on
the instability caused by the sign-descent behavior during early iterations. To address this issue, we
proposed two simple yet e!ective approaches: data-driven initialization and random initialization
of the second-moment estimate v0. Our empirical results demonstrate that these initialization strate-
gies significantly enhance the performance and stability of several adaptive gradient optimization
methods, including Adam, particularly in challenging tasks such as training Transformer models.
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A. Additional Details about Second-order Moment Initialization

A.1. Linear Loss

To simplify the analysis, we consider the RMSprop update rule (ignoring ϖ) for a linear loss. The
update for the parameter εt can be expressed as:

E[!εt] = →ϑE

[
gt
↑
vt

]
(15)

Using a Taylor expansion of 1/↑vt around E[vt], we approximate:
1

↑
vt

⇐=
1

E[vt]
→

1

2E[vt]
3
2

(vt →E[vt]) (16)

Substituting this into the expectation, we have:

E[!εt] ⇐ →ϑ


E[gt]√
E[vt]

→
E[gt(vt →E[vt])]

2E[vt]
3
2


(17)

Considering E[gt] = ḡ, and that gt and vt → E[vt] are uncorrelated, we have: E[gt(vt → E[vt])] =
E[gt] ·E[vt →E[vt]] = 0. This simplifies the expression to:

E[!εt] ⇐ →ϑ
ḡ√
E[vt]

(18)

⇐ →ϑ
ḡ√

ωt
2v0 + (1→ ωt

2)(ḡ
2 + ϱ2I)

(19)

Case 1: vanilla Adam ( v0 = 0). When v0 = 0, the update becomes:

E[!εt] ⇐ →ϑ
ḡ√

(1→ ωt
2)(ḡ

2 + ϱ2I)
(20)

In this setting, the denominator is initially small due to (1→ ωt
2) approaching 0 as t ∝ 0. The small

denominator leads to excessively large initial updates, particularly when ḡ is small or ϱ2 is large.
This instability can cause erratic optimization behavior, especially in the early stages of training.
Case 2: non-zero initialization ( v0 = ḡ2 + ϱ2I). When v0 = ḡ2 + ϱ2I , the update becomes:

E[!εt] ⇐ →ϑ
ḡ√

ḡ2 + ϱ2
. (21)

In this setting, the denominator is well-scaled from the start, incorporating the correct statistical
variance. This prevents excessively large updates during early iterations, ensuring better stability.
The step sizes remain consistent across iterations, aligning with the principles of adaptive gradient
methods. Additionally, the incorporation of gradient statistics ḡ2 + ϱ2I ensures that vt adapts ap-
propriately to the local geometry of the loss function, such as the Hessian information. For a linear
loss, this stabilization leads to smoother convergence, providing a more robust optimization pro-
cess. It is worth noting that the above analysis can be readily extended to other adaptive gradient
methods, such as Adam.

A.2. Revisiting Previous Works on Stabilizing the Initial Steps of Adam

Warmup. Thewarmup technique [17, 47] implicitly adjusts the initialization of the second-moment
estimate v by employing a smaller learning rate during the initial steps. While the optimizer’s state
updates normally, the parameter changes areminimal due to the extremely small learning rate. This
approach e!ectively mitigates the sign-descent behavior observed in Adam’s early steps. However,
warmup introduces additional hyperparameters (e.g., the scheduler) that require careful tuning
and necessitates several steps of training where the network parameters are not e!ectively updated.
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This can be ine"cient, particularly in resource-constrained settings. In contrast, ourmethod directly
addresses the aggressive sign-descent issue by initializing v0 with non-zero values, eliminating the
need for a warmup phase. Our experimental results demonstrate that random initialization of v0
stabilizes the training process e!ectively, without requiring extra tuning or wasted iterations.
RAdam. RAdam [11] avoids the sign-descent issue by behaving like SGD [47] during the initial
steps. This is achieved by introducing a rectification term, dynamically adjusting the optimizer’s
behavior to stabilize updates in the early iterations. While RAdam successfully addresses initial-
step instability, it adds complexity to the optimization process through the computation of the rec-
tification term. In contrast, our approach provides a simpler and more intuitive solution by directly
adjusting the initialization of the moment estimates, without modifying the core algorithm or in-
troducing additional dynamic terms.
AdaBound. AdaBound [12] tightly bounds the update size during the initial steps, preventing
excessively large updates caused by sign-descent behavior. However, this approach introduces dy-
namic bounds that require careful tuning of the bounding functions, adding additional complexity
to the optimization process. Our initialization strategy simplifies this issue by stabilizing updates
without the need for dynamic bounds, making it a more e"cient and practical alternative.
AdaBelief. AdaBelief [13] reduces the impact of initial sign-descent behavior by refining the vari-
ance estimation, leading to more reliable adaptive learning rates. However, this comes at the cost
of increased computational complexity due to the need for precise variance estimation. By contrast,
our method provides stability during the initial steps without additional computational overhead,
o!ering a straightforward alternative to improve early optimization dynamics.
Our initialization strategy can be seamlessly integrated into existing methods, such as RMSprop,
AdamW, RAdam, AdaBound, AdaBelief, and even Warmup. By addressing the aggressive sign-
descent behavior directly through non-zero initialization of v0, we enhance the stability of these
optimizers in their early steps. Importantly, this random initialization incurs no extra computational
costs and avoids the need for additional hyperparameter tuning.

B. Initialization Algorithms for Adaptive Gradient Methods

In this section, we present the pseudocode for the proposed initialization methods for adaptive gra-
dient algorithms, implemented in PyTorch. Algorithm 1 outlines the pseudocode for random initial-
ization (v0,rnd), while Algorithm 2 details the pseudocode for data-driven initialization (v0,data). It
is important to note that the second-order moment for network biases is not initialized and remains
zero. Only weight matrices with two or more dimensions are initialized with non-zero values.

Algorithm 1 : PyTorch Pseudocode for Random Initialization v0,rnd
# optim: PyTorch optimizer (e.g., Adam)
# sigma: Scaling factor

for theta in optim.parameters ():
fan_in , fan_out = theta.size (1), theta.size (0)
if theta.dim() > 2:

receptive_field = torch.prod(torch.tensor(theta.shape [2:])).item()
fan_in = fan_in * receptive_field
fan_out = fan_out * receptive_field

chi = torch.randn_like(theta) # Sample from standard normal
v_0 = (sigma / (fan_in + fan_out)) * (chi ** 2) # Compute scaled chi^2
optim.state[theta ][’exp_avg_sq ’] = v_0 # Assign to optimizer state
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Algorithm 2 : PyTorch Pseudocode for Data-driven Initialization v0,data
# model: PyTorch model
# data_loader: Data loader for the dataset
# criterion: Loss function (e.g., CrossEntropyLoss)
# optim: PyTorch optimizer (e.g., Adam)
# sigma: Scaling factor

# Accumulate gradient statistics
grad_sum = defaultdict(torch.zeros_like)
grad_sq_sum = defaultdict(torch.zeros_like)
for inputs , targets in data_loader:

outputs = model(inputs) # Forward pass
loss = criterion(outputs , targets) # Compute loss
model.zero_grad ()
loss.backward () # Backward pass
for param in model.parameters ():

if param.grad is not None:
grad_sum[param] += param.grad
grad_sq_sum[param] += param.grad ** 2

# Compute expected value (mean) and variance of gradients
num_samples = len(data_loader.dataset)
for param in model.parameters ():

grad_mean = grad_sum[param] / num_samples
grad_var = (grad_sq_sum[param] / num_samples) - grad_mean ** 2
# Compute v_0 using the equation: v_0 = sigma * (E[g]^2 + VAR[g])
v_0 = sigma * (grad_mean ** 2 + grad_var)
optim.state[param ][’exp_avg_sq ’] = v_0

C. Additional Details of Experiments

C.1. Experimental Setting

We empirically evaluate the performance of the proposed data-driven initialization (Equation (10))
and random initialization (Equation (11)) strategies across several widely-used adaptive gradient
optimization methods. These include SGD with momentum (SGDM) [35, 36], Adam [4], AdamW
[37], AdaBound [12], RAdam [11], and AdaBelief [13]. Each optimizer is tested using its standard
initialization (v0 = 0) as the baseline, which is then compared against the proposed strategies v0,data
and v0,rnd. Following experimental protocols established in prior works [11, 13, 14], we perform
thorough hyperparameter tuning for learning rate, ω1, ω2, and ϖ. To ensure statistical robustness,
each experiment is repeated with five random seeds, and we report the mean results along with
standard deviations. For data-driven initialization, gradient statistics are computed using 5,000
random samples prior to training, with the scaling factor set to ϱ = 1. For random initialization, the
scaling factor is set to ϱ = 100, demonstrating the tuning-friendly nature of the proposed approach.

Image Classification with CNN.We evaluate the ResNet-34 [32] architecture on the CIFAR-10 im-
age classification dataset [38]. Each model is trained for 200 epochs with a batch size of 128, and
the learning rate is decayed by a factor of 0.2 at epochs 60, 120, and 160. Label smoothing [48]
with a smoothing factor of 0.1 is applied. In addition to CIFAR-10, we perform experiments on the
ImageNet ILSVRC 2012 dataset [39] using ResNet-18 as the backbone network. Each optimizer is
executed for 100 epochs with a cosine annealing learning rate schedule, which has demonstrated
superior performance compared to step-based decay strategies [49]. For SGD, we use the momen-
tum factor of 0.9, a common default setting [32], with a tuned learning rate of 0.1. For adaptive
gradient methods (Adam, AdamW, RAdam, AdaBound, AdaBelief), we use the learning rate of
0.001, ω1 = 0.9, ω2 = 0.999, and ϖ = 10→8.
Language Modeling with LSTM. We evaluate a 2-layer LSTM [34] on the Penn Treebank dataset
[40]. Models are trained for 200 epochs with a batch size of 20, and the learning rate is reduced by
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a factor of 0.1 at epochs 100 and 145. For SGD, we use a learning rate of 30 and a momentum factor
of 0.9. Adam, AdamW, AdaBound, and AdaBelief use a learning rate of 0.01, while RAdam uses a
learning rate of 0.001. All adaptive methods are configured with ω1 = 0.9 and ω2 = 0.999.
Neural Machine Translation with Transformer. We experiment with a small Transformer model
[17] implemented using the Fairseq package [41] on the IWSLT’14 German-to-English machine
translation dataset. The model is trained with a length penalty of 1.0, a beam size of 5, and an
initial warmup step size of 10→7. Training is conducted for 55 epochs, and results are reported
as the average of the last 5 checkpoints. Adaptive learning methods use a learning rate of 0.0015.
Adam, AdamW, AdaBound, and AdaBelief are configured with ω1 = 0.9, ω2 = 0.98, while RAdam
uses ω1 = 0.9, ω2 = 0.999.
Image Generation with GAN. We evaluate a deep convolutional GAN (DCGAN) [43] on the
CIFAR-10 image generation task. Both the generator and discriminator networks use CNN archi-
tectures. Models are trained for 200,000 iterations with a batch size of 64. Learning rate is fixed at
0.0002 for both the generator and discriminator across all optimizers. All other hyperparameters
are set to their default values for fair comparison.

C.2. Additional Results for the Saddle Objective Function

We provide the additionnal results for the saddle objective function discussed in Section 3.1. The fi-
nal converged parameter values for eachmethod are summarized in Table 7. These results highlight
that the proposedmethod achieves the lowest loss among all optimization techniques, underscoring
its e!ectiveness in handling this optimization task.

Table 7: Final converged parameter values for di!erent optimization methods.
Adam (vanilla) Adam + warmup Adam (v0,rnd) SGD

-0.96 0.01 1′ 10→7 9′ 10→7

C.3. Language Modeling with 3-Layer LSTM

We evaluate a 3-layer LSTM network on the Penn Treebank dataset [40]. The test perplexity results
are summarized in Table 8. Similar to the findingswith the 2-layer LSTM, the proposed initialization
strategies provide additional performance gains for adaptive gradient optimization methods.

Table 8: Test perplexity ↙ of 3 Layer LSTM on Penn Treebank dataset dataset.
Optimization SGD Adam AdamW AdaBound RAdam AdaBelief
Vanilla v0,0 63.52±0.16 64.10±0.25 69.91±0.20 63.52±0.11 70.10±0.16 61.33±0.19

v0,rnd - 62.68±0.19 66.43±0.18 62.75±0.11 68.05±0.16 61.29±0.15
v0,data - 62.46±0.20 66.38±0.18 62.07±0.11 68.14±0.16 60.70±0.14

C.4. Comparison between Warmup and Proposed Initialization

The warmup strategy, which begins with a small learning rate and incrementally increases it to the
standard value, is widely used in neural network training to stabilize the training process. This
approach serves a similar purpose to the proposed initialization strategy. However, warmup often
requires several initial training steps during which network parameters are not e!ectively updated.
In contrast, our method directly addresses the aggressive sign-descent issue by initializing v0 with
non-zero values, eliminating the need for a warmup phase. To illustrate the superiority of the pro-
posed initialization strategy, we conducted experiments comparing it to the warmup approach.
The test accuracy of ResNet-34 on the CIFAR-10 image classification dataset is presented in Table 9.
While the warmup strategy slightly improves accuracy compared to vanilla Adam (v0,0), the pro-
posed initialization methods, v0,rnd and v0,data, outperformAdamwith warmup. This improvement
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Table 9: Test accuracy ↖ for ResNet-34 on CIFAR-10: warmup vs. proposed method.
Adam (vanilla) Adam + warmup Adam (v0,rnd) Adam (v0,data)

95.25±0.11 95.31±0.09 95.87±0.09 96.02±0.09

occurs because the warmup strategy starts with a very small learning rate, which ine"ciently uti-
lizes gradients to update parameters, primarily updating vt instead. In contrast, our method, with
a better initialization of v0 and a larger learning rate, e!ectively updates parameters from the be-
ginning, as shown in Figure 6. Moreover, our approach achieves an even better final convergence
performance.

Figure 6: Comparison of Vanilla Adam,
Adam with warmup, and Adam v0,rnd
on CIFAR-10 image classification task.

The test perplexity of a 2-layer LSTM on the Penn Tree-
bank language modeling task is shown in Table 10.
The proposed initialization methods, v0,rnd and v0,data,
achieve lower (better) perplexity compared to Adam
with warmup. The FID score for the Image Generation
withGAN task is presented in Table 11. Similarly, the pro-
posed initialization methods demonstrate superior im-
age generation quality compared to Adamwith warmup,
as reflected by their lower FID scores. For the Neu-
ral Machine Translation task using Transformers on the
IWSLT’14 DE-EN dataset, the results are summarized in
Table 12. Notably, the default setup for this task employs
a warmup strategy; without it, Transformers trained with
Adam fail to converge. This behavior, which aligns with
observations in Figure 1(a) and previous studies [11],
highlights the critical role of initialization. However, with the proposed non-zero initialization
strategies, v0,rnd and v0,data, the Transformer successfully converges, as evidenced by the training
curves in Figure 1(a). Furthermore, when combined with warmup, these proposed initialization
methods outperform the defaultAdamwithwarmup strategy, achieving better overall performance.

Table 10: Test perplexity ↙ of 2 Layer LSTM on PTB dataset: warmup vs. proposed method.
Adam (vanilla) Adam + warmup Adam (v0,rnd) Adam (v0,data)

67.11±0.20 67.12±0.19 66.70±0.17 66.37±0.17

Table 11: FID score ↙ of GAN on CIFAR-10 dataset dataset: warmup vs. proposed method.
Adam (vanilla) Adam + warmup Adam (v0,rnd) Adam (v0,data)

54.22±4.21 55.87±4.02 48.60±3.19 47.02±3.20

C.5. Linear Mode Connectivity Analysis for Adam Initialization

The superiority of Adamwith non-zero initialization over vanilla Adam can be linked to the rugged-
ness of the loss landscape. Vanilla Adam, with zero initialization of the second moment estimate,
often takes overly aggressive steps during the early stages of optimization. This behavior increases
the likelihood of convergence to suboptimal local minima or saddle points, especially in complex,
non-convex loss landscapes commonly encountered in deep neural network training. The rugged-
ness of such landscapes often leads to disconnected basins of attraction, where di!erent optimiza-
tion trajectories result in vastly di!erent local minima.
To illustrate this phenomenon, we employ Linear Mode Connectivity (LMC) [50], which demon-
strates that the optima found using the proposed method and vanilla Adam are not linearly con-
nected. This observation implies that initializing the second-order moment di!erently alters the
resulting loss landscape compared to vanilla Adam. We also leverage the concept of Linear In-
terpolation Instability [50]. Let εv0,0t and ε

v0,rnd
t represent the network parameters at time step t,
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Table 12: BLEU score ↖ of Transformer on IWSTL’14 DE-EN dataset: warmup vs. proposedmethod.

Methods Adam (vanilla) Adam (v0,rnd) Adam (v0,data)
w/o warmup <10.0 31.53±0.24 30.74±0.28
with warmup 30.14±0.39 33.71±0.19 33.64±0.20

optimized using vanilla Adam (v0,0) and Adam with the proposed random initialization (v0,rnd),
respectively. Both networks share the same architecture, initialization, dataset, and random seeds.
Let E(ε) denote the test error of a network with weights ε, and define Eϖ(ε1, ε2) = E(ϑε1+(1→ϑ)ε2)
for ϑ ⇑ [0, 1], representing the test error of a network created by linearly interpolating between ε1
and ε2. Furthermore, let Esup(ε1, ε2) = supϖ Eϖ(ε1, ε2) denote the maximum error along this linear
interpolation path, and Ē(ε1, ε2) = mean(E(ε1), E(ε2)) represent the average error between ε1 and
ε2. The error barrier height, which serves as our measure of instability along the linear path, is
defined as:

instability = Esup(ε
v0,0
t , ε

v0,rnd
t )→ Ē(ε

v0,0
t , ε

v0,rnd
t ). (22)

Figure 7(a) illustrates the test error when linearly interpolating between the converged minima
found by the vanillaAdamoptimizer (εv0,0t ) and the proposed randomly initializedAdamoptimizer
(εv0,rndt ). The results clearly show that the two networks are not linearly connected, as indicated by
the instability during interpolation. Figure 7(b) depicts the linear interpolation instability, as de-
fined in Equation (22), measured across di!erent epochs. At the start of training, the networks are
identical, but the non-zero initialization of the second-order moment in Adam causes the optimiza-
tion process to converge to di!erent optima in distinct regions of the loss landscape. Consequently,
the solutions found by vanilla Adam and Adam with v0,rnd are are non linearly connected. This
observation is further supported by the distinct loss landscapes shown in Figure 5.

(a) Error during linear interpolation (b) Linear interpolation instability

Figure 7: Linear Mode Connectivity Analysis. (a) Error observed when linearly interpolating be-
tween networks trained with di!erent optimizer initialization strategies: Vanilla Adam (εv0,0t ) and
the proposed method (εv0,rnd

t ), corresponding to interpolation points 0.0 and 1.0, respectively. (b)
Linear interpolation instability, measured over training iterations.
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