SPARK:
Safe Protective and Assistive Robot Kit

Yifan Sun, Rui Chen, Kai S. Yun, Yikuan Fang, Sebin Jung
Feihan Li, Bowei Li, Weiye Zhao, and Changliu Liu

Robotics Institute, Carnegie Mellon University,
{yifansu2,ruic3,sirkhooy,yikuanf,sebing, feithanl, sboweili,weiyezha, cliu6}
@andrew.cmu.edu

Abstract: This paper presents the Safe Protective and Assistive Robot Kit (SPARK), a bench-
mark and toolbox for enhancing safety in humanoid autonomy and teleoperation. Humanoid
robots, due to their complex physical structures and interaction with dynamic environments,
demand robust safety solutions. SPARK provides a modular safe control framework with repre-
sentative algorithms, allowing users to configure safety criteria and trade-offs between safety
and performance. It includes simulation benchmarks across diverse tasks and supports rapid
deployment on real hardware, including the Unitree G1 humanoid robot. SPARK also integrates
with external sensors like Apple Vision Pro and Motion Capture Systems. Open-source code is
available at https://github.com/intelligent-control-lab/spark.

Keywords: Humanoid robots, safe set algorithm, teleoperation, VR, human robot interaction

1. INTRODUCTION

Safety is a core requirement for robotic systems in both
industrial and everyday settings. Safe control ensures task
performance while respecting safety constraints, reducing
risks and harm. Many approaches cast safe control as a
constrained optimization problem, solved either analyti-
cally (e.g., via quadratic programs) or with data-driven
methods. However, model-free methods often lack safety
guarantees in high-dimensional systems, motivating a fo-
cus on model-based safe control.

In simple scenarios—such as imposing a speed limit on a
differential-drive robot—the synthesis of a safe controller
is relatively straightforward. However, complexity arises
when changing the robot, task, or environment. For exam-
ple, the safety mechanism for a humanoid navigating open
ground is similar to that of a wheel based mobile robot.
However, a humanoid performing package delivery must
account for both mobility safety and manipulation safety
simultaneously. For more complex tasks like assembly, the
robot must operate safely as a dual-arm manipulator,
while bipedal locomotion requires full-body safety consid-
erations similar to legged robots. These diverse and task-
specific safety requirements make case-by-case controller
design inefficient and heavily reliant on expert knowledge.

To address this, we introduce the Safe Protective and
Assistive Robot Kit (SPARKIZ): a modular framework
for scalable and efficient synthesis, benchmarking, and
deployment of safe controllers. Key features of SPARK
include:

Composable. A flexible Python framework for building
safe-control scenarios across diverse robot types (manip-

1 The complete paper is available at
https://arxiv.org/pdf/2502.03132.

ulators, mobile bases, etc), tasks (manipulation, locomo-
tion, etc), and operating modes (autonomous, teleoper-
ated, etc).

Extensible. A clear template that enables users to inte-
grate their own robots and implement new control algo-
rithms with minimal effort.

Deployable. ROS-based interfaces that connect seam-
lessly to real robots and AR headsets for real-world de-
ployment.

2. SPARK’'S FRAMEWORK FOR TESTING,
BENCHMARKING, DEVELOPMENT AND
DEPLOYMENT

Figure 1| presents SPARK, a modular collection of Python
class templates designed to streamline the synthesis, test-
ing, benchmarking, development, and deployment of safe
controllers for robotic systems.

Fig. 1. SPARK system framework.

The SPARK framework is organized around decomposing
system components into distinct modules that efficiently

https://arxiv.org/pdf/2502.03132

manage system states, measurements, objectives, dynam-
ics, and controllers. This modular structure enables com-
posable, extensible, and deployable safe controller design.

We first introduce the Configuration module, which
supports and connects all other modules.

Configuration Module defines the system dynamics,
encapsulating robot-specific information such as degrees
of freedom, motor interfaces, and system models.

The SPARK Environment consists of the Agent and
Task modules, serving as the “front-end” responsible for
obtaining system measurements and updating the system
state within the context of system objectives.

Agent Module interfaces with either the physical robot
or its simulation. It receives control commands from the
controller and applies them to the robot’s actuators,
modifying the robot’s system state.

Task Module provides task-specific information, includ-
ing system measurements and system objectives. It defines
mission goals (e.g., reaching a target, obstacle avoidance)
and bridges the current robot state (via the Agent) with
environmental information (e.g., obstacle locations).

The “back-end” of the framework is represented by the Al-
gorithm, which unifies the Policy and Safety modules.
Here, the system controller is split into two submodules:

Policy Module processes task information to generate
reference control actions aimed at achieving performance
goals, without explicitly considering safety constraints.

Safety Module modifies the control actions produced by
the Policy to enforce safety constraints while preserving
task performance as much as possible.

Both Policy and Safety modules support model-based
and data-driven designs, maintaining SPARK’s core princi-
ples of composability and extensibility.

3. SPARK SUITE OPTIONS

In addition to safe control modules, SPARK offers a compre-
hensive testing suite to evaluate the performance of various
safe controllers, as shown in [2| Leveraging SPARK’s mod-
ularity, users can configure robot models, agents, tasks,
policies, and safety algorithms to create diverse benchmark
scenarios.

Fig. 2. SPARK Suite Options.

8.1 Configuration Options

Given the complexity of humanoid systems, SPARK pro-
vides predefined configurations based on the Unitree G1
humanoid robot, simulated via MuJoCo XML files. The
testing suite includes four robot configurations: fixed-
base single and dual arm manipulators that target safe
manipulation, a wheeled mobile robot for safe mobile-
manipulation, and a bipedal robot that tackles the most
demanding loco-manipulation scenarios—collectively pro-
viding coverage from simple manipulation to complex, in-
tegrated locomotion and manipulation tasks. Additionally,
users can adjust the order of the dynamic system to obtain
more realistic configurations.

8.2 Agent Options

SPARK supports both simulation agents and real robot
agents based on Unitree G1 configurations. The G1 robot,
which has 29 physical degrees of freedom (DOFs), is
simplified in different MuJoCo XML files to represent
various robot configurations.

3.8 Task Options

SPARK’s testing suite provides predesigned tasks to bench-
mark safe controllers across various scenarios.

Clollision Coltigion
Volurme
] (]
: @
u p
®
Collision U

é ' Frovidnierit

Fig. 3. SPARK whole body task environment.

Task Objectives The framework supports two types of
task goals: 1) Arm Goals, in which each hand must reach
designated static or dynamic 3D targets, and 2) Base
Goals, where the robot navigates to specified 2D positions
while avoiding obstacles. Goal motion can be set to static
or dynamic, and all goals are visualized as green spheres.

in[3Bl

Task Constraints ~ With SPARK ’s built-in interface, users
can tailor task complexity by selecting obstacle shape
(sphere or box), motion (static or dynamic), and quantity.

Task Interfaces The task interface supports multiple
methods for specifying tasks and constraints in real time.
For example, simulation agents enable real-time obstacle
manipulation through keyboard control. In contrast, real
robot agents integrate Apple Vision Pro to track human
hands as dynamic obstacles.

8.4 Policy Options

SPARK provides PID control for locomotion and combined
PID + inverse kinematics (IK) for manipulation tasks.

Fig. 4. The first two illustrate how the robot’s hands successfully reach into a confined cabinet under user

teleoperation.

. " sate Set Aigoritren
- o (G

Fig. 5. Limb-level collision avoidance with static humanoid reference pose.

Users can also integrate custom policies, including data-
driven methods. While SPARK focuses on model-based
safe controllers, future work will explore broader control
policies.

3.5 Safety Options

Consider the control-affine system

x =f(x) +g(x)u, ucl,
where x is the state, u the control input, and U the
admissible control set. The safe control problem seeks a
safe policy that generates safe control ugss, keeping the
system state trajectories inside a prescribed safe set Xg
while tracking the reference control.

In SPARK, users can choose from a suite of baseline safe-
control algorithms. Each algorithm employs an energy
function ¢(x) to measure the potential to stay in the
prescribed safe set in the future, where states satisfying
¢(x) > 0 are considered potentially unsafe.

The first family of methods guarantees safety by solving
the constrained optimization problem
min [u— e, &
s.t. x=1f(x)+gx)u
Safety Constraint
uelU
where the Safety Constraint can be formulated based on
¢(x). Among the three representative methods:
Safe Set Algorithm (SSA) |[Liu and Tomizuka [2014]
enforces ¢(x,u) < —n whenever ¢(x) > 0, where n > 0 is
a user-defined margin.
Control Barrier Functions (CBF) |Ames et al. [2019]
impose the condition ¢(x,u) < —A¢(x), with a class-K
gain A > 0.

Sublevel Safe Set Algorithm (SSS) |Wei and Liu [2019]
combines the above ideas, applying the CBF-style bound

(i)(x,u) < =X ¢(x) only when ¢(x) > 0.

In addition to the optimization-based baselines, SPARK
offers two projection methods that modify the reference
input directly, avoiding solving constrained optimizations:

Potential Field Method(PFM) [1986]. Safety

is enforced in Cartesian space via an energy function ¢(c,.)
defined over the Cartesian state c,, yielding

— C v&a if (,Z;(Cr) Z 07

after which the Cartesian command u,. is mapped back to
joint space.

Sliding Mode Algorithm(SMA) |Gracia et al|[2013].
The reference joint command is projected in joint space as
— cLgop', if ¢(x) >0,

where Lg@max is the Lie derivative of the energy function
along g. ¢; and ¢y are positive constants.

Ue = Uc-ref

U = Uref

4. USE CASES

4.1 Use Case 1:
Benchmarking Safe Control Algorithms

To demonstrate SPARK’s capability as a benchmarking
toolbox for safe control, we utilize it to systematically eval-
uate various algorithms under different constraints and ob-
jectives. By leveraging SPARK’s suite options, we ensure
fair comparisons and gain insights into algorithmic per-
formance, safety-efficiency trade-offs, and task complexity
effects. Comprehensive experiments conducted using the
benchmark are presented in the full version of the paper.

4.2 Use Case 2:
Safe Teleoperation With Simulated Robot

To present a user scenario where teleoperation is per-
formed in simulation to collect human demonstration data
without requiring real hardware, we configure the robot
with G1fixedBase and use the simulation agent in SPARK.
The Task module defines a cabinet as an obstacle, with
teleoperation targets provided via an external Apple Vi-
sion Pro input.

CARNEG,

MELLON” 8

" sabe Set Algorithim
*-.oN i

Fig. 7. Limb-level collision avoidance with teleoperation commands.

As shown in the first two images of [4 the robot’s hands
maneuver into the cabinet under user control. In the fourth
image, when the green target spheres move outside the
cabinet, the robot’s hands remain safely inside, demon-
strating effective constraint enforcement.

4.8 Use Case 3: Safe Autonomy on Real Robot

Building on the benchmark use case in 4.1} we replaced the
simulation agent with the real G1 SDK, allowing direct
deployment of previously safe control algorithms.

We first evaluated a static task where the robot maintains
a fixed position while avoiding human users. As shown in
when a human hand approaches within a minimum safe
distance dpi,, the robot actively moves away. Once the
human moves beyond d,i,, the robot resumes its nominal
behavior, maintaining the target static pose.

Next, we assessed dynamic target tracking by commanding
the robot’s right hand to follow a circular trajectory while
ensuring collision avoidance. Unlike the static case, the
nominal controller now tracks a moving target xgrget.
As shown in [6] the robot tracks the reference trajectory
when safe and actively adjusts its waist and arms to
avoid collisions when humans intrude into the d,;, region,
prioritizing safety over nominal control.

4.4 Use Case 4:
Safe Teleoperation With Real Robot

This section evaluates the SPARK safe controller under
“Safe Teleoperation” where the nominal controller’s tar-
get x{grget is generated in real time by a teleoperator,
introducing greater unpredictability. To implement this,
we modified the Task module to set the operator’s hand
positions as goals, while treating other humans as dynamic
obstacles.

We tested a realistic scenario where the robot retrieves
objects from a table. As shown in [7} when a human
reaches for the same object, the safe controller overrides
the teleoperation command to avoid collisions, prioritizing

safety over task execution and protecting both the human
and the robot.

5. DISCUSSION AND CONCLUSION

In this paper, we introduced SPARK, a comprehensive
benchmark for advancing safe humanoid autonomy and
teleoperation. We presented its modular safe control
framework, core algorithms, and simulation environment
with diverse benchmark tasks.

SPARK enables configurable trade-offs between safety and
performance and supports broad task, hardware, and cus-
tomization needs through accessible APIs. By providing
robust baselines and practical deployment tools, SPARK
aims to accelerate humanoid robotics development while
ensuring hardware and environmental safety.

6. ACKNOWLEDGEMENT

This work is supported by the National Science Founda-
tion under grant No. 2144489.

REFERENCES

Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G.,
Sreenath, K., and Tabuada, P. (2019). Control barrier
functions: Theory and applications. In 2019 18th Furo-
pean control conference (ECC), 3420-3431. IEEE.

Gracia, L., Garelli, F., and Sala, A. (2013). Reactive
sliding-mode algorithm for collision avoidance in robotic
systems. IEEE Transactions on Control Systems Tech-
nology, 21(6), 2391-2399.

Khatib, O. (1986). Real-time obstacle avoidance for
manipulators and mobile robots. The international
journal of robotics research, 5(1), 90-98.

Liu, C. and Tomizuka, M. (2014). Control in a safe
set: Addressing safety in human-robot interactions. In
2014 ASME Dynamic Systems and Control Conference.
ASME.

Wei, T. and Liu, C. (2019). Safe control algorithms using
energy functions: A unified framework, benchmark, and
new directions. In 2019 IEEE 58th Conference on
Decision and Control (CDC), 238-243.

	Introduction
	SPARK's Framework for Testing, Benchmarking, Development and Deployment
	SPARK Suite Options
	Configuration Options
	Agent Options
	Task Options
	Policy Options
	Safety Options

	Use Cases
	Use Case 1: Benchmarking Safe Control Algorithms
	Use Case 2: Safe Teleoperation With Simulated Robot
	Use Case 3: Safe Autonomy on Real Robot
	Use Case 4: Safe Teleoperation With Real Robot

	Discussion and Conclusion
	Acknowledgement

