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Abstract
The control of legged robots, particularly humanoid and quadruped robots, presents significant
challenges due to their high-dimensional and nonlinear dynamics. While linear systems can be
effectively controlled using methods like Model Predictive Control (MPC), the control of nonlinear
systems remains complex. One promising solution is the Koopman Operator, which approximates
nonlinear dynamics with a linear model, enabling the use of proven linear control techniques. How-
ever, achieving accurate linearization through data-driven methods is difficult due to approximation
error and domain shifts. These challenges restrict the scalability of Koopman-based approaches.
This paper addresses these challenges by proposing an Incremental Koopman algorithm designed to
iteratively refine Koopman dynamics for high-dimensional legged robots. The key idea is to progres-
sively expand the dataset and latent space dimension, enabling the learned Koopman dynamics to
converge towards true system dynamics. Theoretical analysis shows that the linear approximation
error of our method converges monotonically. Experimental results demonstrate its superiority on
robots like Unitree G1, H1, A1, Go2, and ANYmal D, across various terrains. This is the first work
to apply linearized whole body dynamics with the Koopman Operator for locomotion control of high-
dimensional legged robots, providing a scalable model-based control solution. The code can be found
at: https://github.com/intelligent-control-lab/Incremental-Koopman.
Keywords: Koopman Operator, Model Predictive Control, Legged Robots, Continual Learning

1. Introduction

Control of legged robots has attracted growing interest, driven by the potential of humanoid and
quadruped robots in real-world applications. However, the task remains challenging due to the high-
dimensional, nonlinear dynamics of legged locomotion. Control strategies for nonlinear systems face
a trade-off between controller complexity and modeling effort, broadly categorized as model-free
or model-based. Model-free methods directly derive the control law without explicitly modeling
the system dynamics. Reinforcement learning (RL) is the representative example, demonstrating
notable success in controlling legged robots in real-world applications Song et al. (2021); Haarnoja
et al. (2018); Zhao et al.; Lee et al. (2020); He et al. (2024); Fu et al. (2024); Luo et al. (2023).
Despite their strong performance, model-free control laws are often highly task-specific and require
retraining or fine-tuning when adapting to new tasks.

Model-based approaches decouple the modeling of system dynamics from the realization of task
objectives, enabling more efficient adaptation to new tasks. The models used in these approaches
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can be catagorized as: original nonlinear models, locally linearized models, and globally linearized
models, with increasing modeling complexity and decreasing control complexity. For direct control
of nonlinear models, Yi et al. (2024) introduced sampling-based MPC for legged robots, while
Kazemi et al. (2013) applied robust backstepping control to quadruped robots. Local linearization
methods, iLQR and NMPC often combine analytical Sotaro Katayama and Tazaki (2023); Zhu et al.
(2024); Zhang et al. (2024) or learned models Nagabandi et al. (2017); Liu et al. (2023) with complex
controllers, requiring extensive domain expertise. A promising alternative to these approaches is
employing Koopman Operator Theory to construct globally linearized models of legged systems and
enabling the use of a simpler controller, e.g., linear MPC. Although Koopman-based methods have
proven effective in motion planning Kim et al. (2024a) and gait prediction Krolicki et al. (2022), no
prior work has directly modeled the whole body dynamics of legged robots with Koopman Operator.

A Koopman Operator can be derived analytically or approximated through data-driven approaches.
While analytical approaches are extremely challenging for high-dimensional nonlinear systems like
legged robots, our method adopts a data-driven approach that reduces reliance on domain expertise
and enhances generalizability. Recent works have applied data-driven approaches to obtain linear
models for high-level motion planning Kim et al. (2024a); Lyu et al. (2023). However, these methods
typically depend on end-to-end optimization aimed at specific task objectives, which can limit their
broader applicability. In contrast, Shi and Meng (2022); Korda and Mezić (2018b); Mamakoukas
et al. (2021) have focused on obtaining accurate Koopman approximations for low-level control, but
their applicability is limited to low-dimensional systems Shi et al. (2024). It remains challenging
to apply Koopman Operator to linearize high-dimensional nonlinear systems due to (a) imperfect
approximations and (b) domain shifts arising from limited state transition data that only covers
a subspace of the entire state space. Such approximation errors make the system sensitive to
inaccurately modeled dynamics, while domain shifts cause failures under perturbations.

To address these challenges, we propose an incremental Koopman algorithm for high-dimensional
legged robots that continually learn and lift Koopman dynamics. Our approach gradually expands
both the training dataset and the latent space dimension. The core idea is that this expansion
progressively spans a state space where refined Koopman dynamics reduce linear approximation
errors, ultimately converging to the true Koopman operator, as supported by our theoretical analysis.
Experimental results demonstrate that our approach reduces linearization error within a few iterations
and enables effective locomotion control for legged robots using Model Predictive Control (MPC).
Our key contributions are summarized as follows:
1. We propose an iterative continual learning algorithm to mitigate linear approximation errors for

Koopman dynamics, supported by a theoretical guarantee of convergence.
2. Our approach is the first work to implement locomotion control for high-dimensional legged

robots using linearized whole body dynamics with Koopman Operator.
3. Compared to traditional NMPC or RL mehods, our approach offers a scalable way to accurately

model the dynamics of high-dimensional systems without requiring extensive expert knowledge,
while maintaining generalizability across tasks and systems.

2. Problem Formulation

2.1. Preliminary: Koopman Operator Theory

Koopman Operator Theory offers a powerful framework for analyzing nonlinear dynamical systems
by mapping them into equivalent linear systems in an infinite-dimensional latent space. Consider
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the discrete-time nonlinear autonomous system st+1 = f(st), where st → S represents the state.
Koopman operator theory introduces the embedding function ω : S ↑ O to map the original state
space S to an infinite dimensional latent space O. In this latent space, the dynamics become linear
through the Koopman Operator K :

Kω(s) = ω(f(s)) (1)

Consider a non-autonomous dynamical system with control input ut → U ↓ Rm→ and system state
xt → X ↓ Rn→ , given by xt+1 = f(xt, ut). The Koopman Operator transforms the system dynamics
into a linear form.

Kω(xt, ut) = ω(f(xt, ut)) = ω(xt+1) (2)

In practice, we approximate the Koopman operator by constraining the latent space to a
finite-dimensional vector space. For a non-autonomous system, a common strategy is to de-
fine the embedding function as ω(xt, ut) = [g(xt);ut], where g : Rn→ ↑ Rn is a state em-
bedding function. The Koopman operator K can be approximated by a matrix representation

K =

[
A → Rn→n

B → Rn→m→

C → Rm→→n
D → Rm→→m→

]
. In conjunction with (2), we obtain a linear model in the lifted

space with the state evolution:

g(xt+1) = Ag(xt) +But (3)

To preserve state information with clear semantics Shi and Meng (2022), and avoid the case of
degeneration, such as cases where A = B = 0 and g(x) ↔ 0, we concatenate the original state with
the neural network embedding to define the latent state zt as zt = g(xt) =

[
xt, g

↑(xt)
]↓, where

g
↑ : Rn→ ↑ Rn↔n→ is a parameterized neural network. This approach allows us to retrieve the original

state using a linear transformation.

xt+1 = Pzt+1 = Pg(xt+1), P =
[
In→→n→ , 0n→→(n↔n→)

]
→ Rn→→n (4)

This formulation supports solving state-constrained control problems (e.g., collision avoidance)
by directly transforming the constraints on x to constraints on z without compromising the lifted
system’s linear properties. Additionally, we use an end-to-end training approach for both the
embedding function and the Koopman operator, parameterized as T .

= (g,A,B).

2.2. Linear Model Predictive Control

With the linear model from the Koopman operator, in our high-dimensional legged robot control
tasks, we employ a linear MPC algorithm as the controller εmpc, thus the problem can be easily
solved by Quadratic Programming (QP). The optimization formulation at time step t is as follows:

min
ut:t+H↑1

↗Pzt:t+H↔1 ↘ x
↗
t:t+H↔1↗2Q + ↗ut:t+H↔1↗2R + ↗Pzt+H ↘ x

↗
t+H↗2F (5)

s.t. zt+k+1 = Azt+k +But+k, ut+k → [umin, umax] , ≃k = 0, · · · , H ↘ 1

where H denotes the horizon length, x↗t:t+H represents the reference trajectory, Q, R, F are cost
matrices and ↗x↗2Q is defined as xTQx. The range [umin, umax] specifies the valid interval for control
inputs. The first constraint ensures adherence to the learned dynamics in the latent space, while the
second constraint bounds control signals within the valid region. Unlike model-free methods, which
may only require a planar velocity objective, linear MPC relies on a full-body reference trajectory.
Developing methods to track lower-dimensional references is left for future work.
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Figure 1: Overview of Incremental Koopman Algorithm

2.3. Legged Robot System

As demonstrated in Wieber et al. (2016), legged robot systems inherently possess the following
characteristics: (i) discontinuities resulting from mode transitions, (ii) sensitivity to noisy control
inputs while maintaining balance, and (iii) failure situations that are often irrecoverable. Existing
Koopman-based methods focus mainly on low-dimensional continuous systems with fixed contact
modes Shi and Meng (2022), where the dynamics are continuous and easier to fit. However, when
applied to high-dimensional hybrid legged systems, the complex and diverse contact modes introduce
significant discontinuities, greatly complicating the modeling process. Moreover, these existing
Koopman methods, which exhibit considerable approximation errors and limited latent subspace
Han et al. (2023), render hybrid legged systems prone to irrecoverable failures caused by unmodeled
dynamics and external perturbations. To overcome these challenges, we introduce an algorithm
that accurately and robustly models dynamics through continual learning and lifting, effectively
expanding a resilient latent subspace.

3. Incremental Koopman Algorithm

As shown in Figure 1, the pipeline consists of two data collectors and two phases. After the initial
data collection and dynamics learning, we iteratively alternate between the lifting phase, where the
dataset is expanded by the increment data collector and the latent space dimension is increased, and
the learning phase, during which dynamics are retrained based on the updated dataset and dimension.

3.1. Initialization and Increment of Dataset

Initial Data Collector. Unlike low-dimensional continuous systems explored in Shi and Meng
(2022), the high-dimensional hybrid dynamics of legged robots need training data with reasonable
gait and consistent contact modes to form a meaningful latent subspace. Thus, we use an initial data
collector (e.g., an RL policy or tele-operation) to generate dynamically feasible trajectories with
reasonable movement patterns for the construction of the initial dataset D(0).

Increment Data Collector. Our method enables robust tracking within the reference repository
R, where references may be dynamically feasible or infeasible, with gaits and contact modes
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similar to D(0). While D(0) lays the foundation for the latent subspace, learning from limited
samples—especially from a “good behavioral collector”—is insufficient. Models may still exhibit
significant approximation errors in near-failure or failure scenarios, leading to ineffective tracking.
Thus we use the MPC controller in Section 2.2 to track references in R, collecting failed tracking
data Dincre to naturally expand the dataset, thereby enhancing the robustness of the latent subspace.

Notably, our algorithm can be applied to any eligible initial data collector and reference repository
R. In this work, within a deterministic environment, we use a Proximal Policy Optimization (PPO
Schulman et al. (2017b)) policy to build D(0) and the initial reference repository Rinit, then add
uniform noise in the range [-0.05, 0.05] to all references, generating the dynamically infeasible R.

3.2. Training with Given Data

Based on the base Koopman framework introduced in Section 2.1, our primary goal is to learn the
embedding function g and the Koopman operators A,B end-to-end. To achieve this, we employ a
discounted k-step prediction loss to enhance long-horizon prediction capabilities which is crucial
for MPC control. Given a set of trajectory data {xt:t+H ;ut:t+H↔1}, real latent trajectories can be
computed as {zt:t+H = g(xt:t+H)}. At the same time, predicted latent trajectories can be obtained
through inference: {ẑt:t+H |ẑt = zt, ẑt+h = Aẑt+h↔1 +But+h↔1, h = 1, 2, · · · , H}. Thus the loss
function is defined as:

Lkoopman =
1

H

H∑

h=1

ϑ
h



↗ẑt+h ↘ zt+h↗2︸ ︷︷ ︸
Llinear

+ϖ · ↗x̂t+h ↘ xt+h︸ ︷︷ ︸
Lrecon

↗2



 (6)

where x̂t:t+H = P ẑt:t+H , ϖ is the weight of Lrecon and ϑ is the discount factor. Here Llinear

focuses on the linearization effect, while Lrecon addresses the reconstruction effect. Since zt =
[xt, g↑(xt)]T , Llinear inherently implies Lrecon. Thus, slighty emphasizing reconsrtuction of original
state by setting ϖ to 0.1 shows better performance in practice. Then we can derive dynamics
T (k) .

= (g(k)
n(k) , A

(k)
n(k) , B

(k)
n(k)) for dataset D(k), here n

(k) represents the latent space dimension of
iteration k.

3.3. Continual Learning and Lifting

The incremental Koopman algorithm begins with the initial dynamics T (0) trained on the initial
dataset D(0). During the lifting phase, we use the increment data collector introduced in Section 3.1
to gather the incremental dataset D(1)

incre, which is then used to augment the initial dataset, forming
D(1) = D(0) ⇐ D(1)

incre. Simultaneously, to accommodate the growing dataset, the latent space
dimension is updated as n(1) = n

(0)+!n, where !n is a hyperparameter chosen based on the trade-
off between computational complexity, performance gain, and the requirement m = ”(n log(n)) to
be introduced in Section 3.4, where m denotes the dataset size.

In the learning phase, we utilize the loss introduced in Section 3.2 to obtain T (1) = (g(1)
n(1) , A

(1)
n(1) ,

B
(1)
n(1)). This process is repeated until the survival steps Tsur under MPC control with dynamics T (k)

cease to show improvement over T (k↔1). The details are shown in Algorithm 1. While sampling all
state-action pairs is unrealistic and unscalable in high-dimensional problems, our method balances
sample complexity, approximation quality, and scalability. It leverages on-policy exploration to
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gradually minimize approximation errors within the MPC controller’s region of attraction, enabling
reliable decisions and establishing robust linear latent dynamics. We validate our claims in Section 4.

3.4. Theoretical analysis

Incremental increases in the dimension of latent space and data size are central to our proposed
algorithm. This section demonstrates that, under our incremental strategy, the learned Koopman
operator matrix K converges to the true Koopman operator K. For theoretical analysis, we primarily
focus on autonomous systems as described in (1). For non-autonomous systems, the methodology
extends by setting s = [x;u]↓. The fundamental premise, as established in Korda and Mezić
(2018a,b), is that the learned Koopman operator K is the L2 projection of the true Koopman operator
K onto the span of the n-dimensional embedding functions ω(s) = [ω1(s), ·,ωn(s)], where ωi(s)
is the one-dimensional embedding function for the i-th dimension of the latent space. Unlike
the convergence analysis in Korda and Mezić (2018a), our theoretical framework introduces the
convergence rate of our incremental Koopman algorithm. The detailed proof can be found in
appendix D.

Theorem 1. Under the assumptions of 1) data samples s1, ·, sm are i.i.d distributed; 2) the latent
state is bounded, ↗ω(s)↗ < ⇒; 3) the embedding functions ω1, · · · ,ωn are orthogonal (independent).
(a) The learned Koopman operator converges to the true Koopman Operator:

lim
m=!(nln(n)),n↘≃

K ↑ K. (7)

(b) Assuming additional conditions: 4) The eigenvalues of K decay sufficiently fast, i.e., |ϱi| ⇑ C
i for

some constant C > 0. 5) The embedding functions ω(·) = [ω1, · · · ,ωn]↓ correspond to the first n
eigenfunctions of K associated with the largest eigenvalues in magnitude. Then the convergence rate
of the linear approximation error is given by:

error ⇑ O(


ln(n)

m
) +O


1⇓
n


. (8)

As indicated in Theorem 1, the proposed algorithm, by incrementally increasing the latent
dimension n and data size m, progressively reduces the linear approximation error. According
to Theorem 1(b), if the sample size meets m = ”(n ln(n)), this reduction error follows the rate
of O(n↔ 1

2 ) as the dimension increases. In our experiments, we adhere to this guideline to ensure
adequate sample generation. We note that the above assumptions are generally mild and hold in
many practical scenarios. Further details on the theorem and underlying assumptions can be found in
appendix D.

4. Experiments

In our experiments, we evaluate the proposed method by addressing the following questions: Q1
Does the learned Koopman Dynamics from algorithm 1 achive better state prediction performance
compared to baselines? Q2 Does our approach, combining learned Koopman dynamics with MPC
control, achieve superior tracking performance relative to baselines? Q3 Is the continual expansion
of the dataset size in our proposed method effective? Q4 Is the continual increase in the dimensions
of the latent state beneficial?
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4.1. Experiment Setup

Task settings. Our experiments use IsaacLab Mittal et al. (2023) as the simulation platform, the
most advanced simulator offering comprehensive and flexible support for a wide range of robots
and environments. Five different legged robots are included in our experiments: (i) ANYmal-D:
(Figure 7(a)) A quadruped robot (U ⇔ R12) designed by ANYbotics. (ii) Unitree-A1: (Figure 7(b))
A quadruped robot (U ⇔ R12) designed by Unitree. (iii) Unitree-Go2: (Figure 7(b)) A quadruped
robot (U ⇔ R12) designed by Unitree. (iiiv) Unitree-H1: (Figure 7(b)) A Humanoid (U ⇔ R19)
designed by Unitree. (v) Unitree-G1: (Figure 7(b)) A Humanoid (U ⇔ R23) designed by Unitree.
Furthermore, two different types of terrain are considered, including (i) Flat: (Figure 7(f )) flat
terrain. (ii) Rough: (Figure 7(g)) rough terrain with random surface irregularities, where the height
follows a uniform distribution between 0.005 and 0.025, and the minimum height variation is 0.005
(in m). All test suites are based on the task Walk: tracking a velocity command with uniformly
sampled heading direction, x-axis linear velocity, and y-axis linear velocity. Considering these
settings, we design 7 test suites with 5 types of legged robots and 2 types of terrain, which are
summarized in Table 3. We name these test suites as {Terrain}-{Make}-{Model}.

Comparison Group. We compare Incremental Koopman algorithm with state-of-the-art model-
based control algorithms (i) Deep KoopmanU with Control (DKUC, Shi and Meng (2022)) algorithm,
(ii) Deep Koopman Affine with control (DKAC, Shi and Meng (2022)) algorithm, (iii) Neural
Network Dynamics Model (NNDM, Nagabandi et al. (2017); Liu et al. (2023)) with Nonlinear
MPC (iv) Deep Koopman Reinforcement Learning (DKRL, Song et al. (2021)). It is worth noting
that all methods are trained seperately on 7 test suites. And for all experiments, we take the best
algorithm-specific parameters mentioned in the original paper and keep the common parameters the
same.

Metrics. We introduce the following metrics to evaluate the tracking ability of our algorithm: (i)
Prediction-based: we leverage k-step prediction error Epre(k)

.
= 1

kn→
k

t=1 ↗xt ↘ x
↗
t ↗1 (x0 = x

↗
0)

generally used for measuring prediction ability of given dynamics. (ii) Pose-based: To evaluate
tracking accuracy, we evaluate Joint-relative mean per-joint position error (EJrPE), Joint-relative
mean per-joint velocity error (EJrV E), Joint-relative mean per-joint acceleration error (EJrAE),
Root mean position error (ERPE), Root mean orientation error (EROE), Root mean linear velocity
error (ERLV E) and Root mean angular velocity error (ERLAE). Check Appendix E.4 for detailed
equations. (iii) Physics-based: Considering the easy-to-fail feature of legged robots, for the same
reference repository R, we evaluate the average survival simulation time step TSur (set 200 as upper
bound, simulation frequency is 50Hz) for each algorithm, deeming tracking unsuccessful when
EJrPE is larger than ςfail. Check Table 3 for details.

State. The system state xt
.
=


(jt, j̇t, pzt , ṗt, ṙt), for humanoid

(jt, j̇t, pzt , ṗt, rt, ṙt), for quadruped robot
of dynamics and

controller includes the joint position jt and joint velocity j̇t in local coordinates, root height pzt , 3D
root linear velocity pt, 4D root orientation rt (optional for humanoid and represented as a quaternion),
and 3D root angular velocity ṙt in world coordinates. All of the aforementioned quantities are
normalized to follow a standard Gaussian distribution, N (0, 1), in order to eliminate inconsistencies
in the scale of different physical quantities.

Control Input and Low-level Controller. We use a proportional-derivative (PD) controller at
each joint of the legged robots as the low-level controller. Thus, the control input ut determined by
the MPC serves as the joint target, denoted as jdt = ut. The torque applied to each joint is given by
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Figure 2: Comparison results of k-step prediction error in our test suites.

φt = k
p ↖ (jdt ↘ jt)↘ k

d ↖ j̇t, where kp and k
d are the proportional and derivative gains, respectively.

The low-level controller operates at a frequency of 200 Hz, with a decimation factor of 4.

4.2. K-step Prediction Error

Specifically, we set k to [1, 3, 6, 9, 12, 15] and compute Epre(k) for each algorithm, subsequently
plotting the results in Figure 2. The results highlight our algorithm’s exceptional ability to maintain
low prediction errors, even over long horizons in complex, nonlinear tasks—challenging for other
algorithms in our comparison. Figures 3(c) to 3(e) show that NNDM and DKRL struggle with the
accumulation of explosive errors as horizon length k increases, while our algorithm remains stable,
with negligible error growth. Though DKAC and DKUC manage a stable rate of loss increase, they
exhibit relatively high prediction errors due to their limited subspace modeling compared to our
incremental method. Please check Appendix E.2 for details of test dataset. These results address Q1.

4.3. Tracking Performance

Figure 3: Visualization of tracking performance on Flat-Unitree-G1.

To highlight the advantage of our method in tracking tasks, we track 3000 references in R over
200 steps in parallel, presenting the results in Table 1 with average tracking metrics from Section 4.1.
Further details are provided in Appendix E.5.

Compared to other algorithms, our approach shows (i) high TSur values nearing the upper bound
of 200, (ii) precise, continuous joint-level tracking, and (iii) sustained global tracking with balance
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Synthesised Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours with MPC 0.0348 0.6499 43.1465 0.1231 0.0668 0.1216 0.3289 188.4514
DKRL with MPC 0.0823 1.1251 68.9520 0.2978 0.1561 0.2089 0.5634 116.9540
DKAC with MPC 0.1816 2.0694 117.5515 0.3955 0.2749 0.2888 0.9143 25.0254
DKUC with MPC 0.1576 1.0828 50.5745 0.2934 0.1989 0.2252 0.5559 82.4620

NNDM with NMPC 0.1439 2.2020 127.4524 0.4334 0.2506 0.2996 0.8536 35.4709

Table 1: The average tracking metrics evaluated for each algorithm across all 7 test suites.

Figure 4: Visualization of the data distribution by plotting the means of the joint-relative and root-relative
states. The first row illustrates the dataset expansion achieved using an RL policy, while the second row shows
the results from applying our algorithm for dataset expansion.

and stability. All measured metrics are significantly lower for competing algorithms, which often
fail to track correctly and fall after only a few attempts. In contrast, our algorithm delivers efficient,
accurate tracking with a steady gait, demonstrating its ability to infer corner cases during tracking,
thanks to the continual learning and lifting process in Algorithm 1. Meanwhile, others struggle to
achieve the correct poses and gait when faced with falling. Notably, the 200-step upper bound for
TSur suggests that many test cases remain robust enough for even longer tracking durations.

Although DKRL and DKUC achieve relatively high TSur, their EJrPE and ERPE are 2 to 5
times higher than ours, indicating that their metrics include brief failure episodes. In contrast, our
algorithm maintains robust tracking throughout, showcasing superior steady tracking with minimal
error. DKAC and NNDM, however, suffer from short inference capabilities and sensitivity to the
dynamics’ corner cases, making them prone to failure—especially in situations where recovery is
impossible for legged robots. As shown in Figure 3, unrecoverable failures end the tracking process,
answering Q2.

4.4. Ablation on Dataset Increment

For the ablation study on dataset increment, we select Flat-Unitree-Go2 and Flat-Unitree-G1 to
examine the impact of dataset increment techniques. As shown in Table 2 and fig. 5, the k-step
prediction error rises sharply with increasing steps, highlighting limited inferencing capability when
dynamics encounter corner cases due to insufficient latent subspace modeling. Furthermore, EJrPE

is nearly seven times higher than the original method, indicating frequent failure scenarios. The low
survival steps TSur further corroborate this observation. In contrast, the original algorithm Algo-
rithm 1 maintains exceptional tracking performance and loss control, demonstrating the effectiveness
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Average Tracking Metrics of Flat-Unitree-Go2 and Flat-Unitree-G1
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Original 0.0246 0.5954 42.1403 0.0673 0.0245 0.0650 0.2060 196.6190
w/o Data.I. 0.2061 1.5251 65.5157 0.3452 0.2449 0.2740 0.6303 53.0540
w/o Dim.I. 0.1189 1.1743 63.6319 0.2526 0.1936 0.2178 0.5782 100.9350

Table 2: The average tracking metrics evaluated for the ablation studies. ‘w/o Data.I.’ and ‘w/o Dim.I.’
indicate the performance of the original method without data increment and dimension increment techniques,
respectively

of dataset enlargement. Additionally, Figure 4 visualizes the data enlargement process, showing
that RL policy-based expansion is ineffective due to repetitive data, while our algorithm achieves
effective dataset growth. This underscores the importance of robust subspace modeling and accurate
inferencing, addressing Q3.

4.5. Ablation on Dimension Increment

(a) Flat-Unitree-Go2 (b) Flat-Unitree-G1

Figure 5: K-step prediction error comparison of ablation on di-
mension and dataset increment.

To conduct the ablation study on di-
mension increment, we select the
same test suites mentioned in Sec-
tion 4.4. As shown in Figure 5,
the k-step prediction error remains
steady and relatively low, similar to
the original methods, benefiting from
the continual increment of the dataset
to model the subspace. However, as
indicated in Table 2, although the al-
gorithm without dimension increment outperforms the algorithm without data increment, its tracking
performance still falls significantly short of the original method. This suggests that a low latent space
dimension fails to model robust dynamics strong enough to resist unseen noise during simulation.
Furthermore, the lack of inferencing capability highlights its shortcomings in linearization and
generalization. Thus, the dimension increment technique emphasizes the importance of modeling
robust and general sub-dynamics, addressing Q4.

5. Conclusion and Future Works

By progressively expanding the dataset and latent subspace, our method ensures convergence of
linearization errors and enables accurate approximations of the system dynamics. Experimental
results show that the approach achieves high control performance with simple MPC controllers
on various tasks after just a few iterations. This work represents the first successful application
of linearized Koopman dynamics to locomotion control of legged robots, offering a scalable and
model-based control solution. At the same time, the incremental Koopman algorithm may encounter
an explosion in latent dimensionality when the subspace expands rapidly. In the future, tele-operation
or retargeted human data will be tested to implement our algorithm in real-world scenarios.
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Appendix A. Related Works

Controlling Nonlinear Dynamics. Nonlinear dynamic systems are generally controlled using two
main approaches: model-free and model-based methods. Model-free methods, often associated
with learning-based approaches, have become popular for addressing complex, high-dimensional
systems in a data-driven manner. Reinforcement learning (RL) techniques, for instance, approximate
a combination of system dynamics and control policies by training neural networks using methods
like policy gradients or value iteration. Off-policy algorithms such as SAC Haarnoja et al. (2018)
efficiently reuse data to learn control policies, whereas on-policy methods like PPO Schulman et al.
(2017a) and its extension APO Zhao et al. ensure monotonic policy improvement. Another learning
paradigm, imitation learning Luo et al. (2023); He et al. (2024), leverages large expert datasets to
guide policy development. Despite their successes, these methods often suffer from challenges such
as sample inefficiency, high computational cost, and limited generalization.

Model-based methods, on the other hand, rely on leveraging system physics to construct accurate
models. Techniques like iLQR Li and Todorov (2004) and NMPC Grüne et al. (2017); Liu et al.
(2023) use these models to optimize control trajectories, while methods such as backstepping Fossen
and Grovlen (1998) are well-suited for systems with well-defined dynamics. Neural network-
based approaches, such as Nagabandi et al. (2017), extend these ideas by approximating nonlinear
dynamics for control tasks. Moreover, model-based RL combines data-driven techniques with
physical modeling to describe nonlinear system dynamics. For instance, Song et al. (2021) uses RL
workflows to fit multiple local approximations of global dynamics, while Nagabandi et al. (2017)
employs RL reward functions to learn dynamics from extensive random-shooting data. However,
even these approaches face significant challenges when applied to high-dimensional systems, such as
legged robots, where designing accurate models becomes increasingly complex and task-specific.

Koopman Operator Theory. While model-based methods struggle with complex, high-
dimensional systems and model-free methods lack interpretability and flexibility, linearizing nonlinear
dynamics has recently emerged as a promising approach. Among these, Koopman Operator Theory
has garnered attention for its ability to represent nonlinear dynamics in a higher-dimensional linear
space. Current research on Koopman theory of control can be categorized into three main directions:
(i) Koopman Operator as a Feature Encoder: The Koopman operator has been applied in some

methods to predict future states based on the current state Han et al. (2023) or vision inputs
Chen et al. (2024). However, these approaches primarily serve as feature extractors and do
not fully exploit the benefits of linearization. Additionally, designing an effective Koopman
operator is often challenging due to the requirement for infinite-dimensional representations and
the inefficiency of available data Kaiser et al. (2020).

(ii) Integrating Koopman Operators with RL: Other methods combine the Koopman latent dynamic
space with traditional RL policies, either hierarchically Kim et al. (2024a) or end-to-end Lyu
et al. (2023). While this integration aims to benefit from Koopman’s properties, it still inherits the
challenges of learning-based methods, particularly in terms of interpretability and generalization

(iii) Linear Control in Koopman Latent Space: A promising direction applies traditional linear control
methods, such as LQR or MPC, to the Koopman-linearized model, emphasizing interpretability
and flexibility. For example, Shi and Meng (2022) applies LQR to a deep-learned Koopman
operator, while others use radial basis functions (RBF) Korda and Mezić (2018b) or derivative
basis functions Mamakoukas et al. (2021) to design the operator. Despite these advances, current
methods struggle to control high-dimensional systems, like legged robots due to severe model
mismatch and domain shifts.
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Finally, research has begun addressing the errors that arise during the Koopman dynamics learning
process. Works such as Kim et al. (2024b) and Korda and Mezić (2018a) evaluate the reconstruction
and projection errors, providing valuable theoretical foundations for further improvement.

Continual Learning. Continual learning aims to incrementally update knowledge from streaming
data, often utilized in learning prediction or dynamics models as seen in works like Nagabandi et al.
(2019); Abuduweili and Liu (2020). A prevalent approach in continual learning is memory replay
Rolnick et al. (2019), where selected samples are stored and repeatedly replayed to train the model
through methods such as random sampling Rolnick et al. (2019) or importance sampling Yin
et al. (2023); Abuduweili and Liu (2023). From the memory replay perspective, our approach
adopts a random replay strategy to efficiently generate and reuse data. Another relevant approach
is the use of dynamic architecture-based methods, exemplified by Learning without Forgetting
(LwF) Li and Hoiem (2017) and PackNet Mallya and Lazebnik (2018), which modify the neural
network architecture incrementally during training. In contrast to these methods, which typically
add parameters in the final layers for task-specific learning, our method leverages a theory-guided
strategy to expand the latent state dimension.

Appendix B. Algorithm

Algorithm 1 presents the proposed the Incremental Learning algorithm for Koopman Operators.

Appendix C. Additional Experiments

C.1. Computational Cost Comparison

Figure 6: Computational cost(GPU occupancy, CPU
occupancy and wall-clock time) comparison

We compare the resource usage of all algorithms
in terms of GPU and CPU consumption, as well
as wall-clock time, using DKUC as a bench-
mark, as presented in Figure 6. The horizontal
axis in the upper area represents the percentage
of resource usage relative to DKUC, while the
horizontal axis in the lower area displays the
running time (in seconds). The experiments are
based on the averages from all seven test suites
set for tracking experiments, as described in Sec-
tion 4.3, and were run and averaged over three different seeds. Our algorithms utilize nearly the same
GPU and CPU resources as the baseline methods while demonstrating a sharp lead in k-step pre-
diction and tracking experiments. Furthermore, although wall-clock time increases when compared
to DKUC and DKAC methods, it remains low enough to facilitate real-time inference for efficient
control of real robots while NNDM method spends unacceptable reasoning time, demonstrating the
effectiveness of the Koopman method and our algorithms, thereby addressing Q5.

Appendix D. Proof of Koopman operator convergence

In this section, we discuss the theoretical properties of the proposed algorithm. The convergence of
data-driven Koopman operator algorithms, particularly the Extended Dynamic Mode Decomposition
(EDMD) Williams et al. (2015), has been rigorously established in prior works Korda and Mezić
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Algorithm 1 Incremental Koopman Algorithm

Input: MPC Controller εmpc, Initial latent space dimension n
(0), Initial dynamics T (0) =

(g(0)
n(0) , A

(0)
n(0) , B

(0)
n(0)), Initial dataset D(0), Reference repository R, Dimension increment step size

!n and Initial training epochs J (0)

function: TrainKoopman(n,D, J):
optimizaer ′ Adam();
scheduler ′ CosineAnnealingLR();
T .

= (gn, An, Bn); {Initialization of Koopman dynamics}
for k = 0, 1, 2, . . . , J ↘ 1 do

for B in D do
Bz ′ g(B); {Embed x → B into latent vectors z}
lk ′ Lkoopman(T ,B,Bz); {Refer to Equation (6) for Lkoopman}
optimizer.zero_grad();
lk.backward();
optimizer.step();

end for
scheduler.step();

end for
return T ;

end function

for j = 0, 1, 2, . . . do
n
(j+1) ′ n

(j) +!n; {Increase latent space dimension}
D(j+1)

incre ′ εmpc(T (j)
,R);

D(j+1) ′ {D(j)
,D(j+1)

incre }; {Dataset augmentation}
J
(j+1) ′ J

(j);
T (j+1) ′ TrainKoopman(n(j+1)

,D(j+1)
, J

(j+1));
while TrainKoopman failed do
J
(j+1) ′ J(j+1)

2 ; {Adjust epochs when collapsing}
T (j+1) ′ TrainKoopman(n(j+1)

,D(j+1)
, J

(j+1));
end while
if TrackConverge(T (j+1)

, T (j)) then
Break; {Quit if tracking performance converge}

end if
end for
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(2018a,b). Specifically, Korda and Mezić Korda and Mezić (2018a) demonstrate that, under mild
assumptions, as the sample size m ↑ ⇒ and the dimension of latent state (or also called number of
observables) n ↑ ⇒, the estimated Koopman operator K converges to the true Koopman operator K.
Our theoretical analysis builds upon the results presented in Korda and Mezić (2018a,b) but differs
by providing explicit convergence rates under additional assumptions. In the following sections, we
focus primarily on autonomous systems without control inputs. For control systems, the results can
be extended by setting s = [x;u]↓

D.1. Preliminary

Koopman Operator Theory. For clarity, we adopt terminology slightly different from that used
in the main content. Here s

+ denotes the next state of s. Consider a dynamical system s
+ = f(s),

with f : S ↑ S , where S is a given separable topological space. Let H represent a separable Hilbert
space, equipped with an inner product ∞·, ·∈ and corresponding norm ↗ · ↗. The Koopman operator
K : H ↑ H is defined as Kω = ω ↖ f , where ω → H are embedding functions.

Extended Dynamic Mode Decomposition (EDMD). EDMD is a data-driven method for approx-
imating the Koopman operator K within a finite-dimensional subspace. Our methodology aligns with
the EDMD approach. Given a embedding function (observable) #(s) = [ω1(s),ω2(s), . . . ,ωn(s)]↓,
where ωi : S ↑ R for i → [1, n]. Given m data pairs {(si, s+i )}mi=1, EDMD seeks a finite-dimensional
Koopman matrix Kn,m → Rn→n that best fits the data according to the following optimization prob-
lem:

min
K⇐Rn↓n

m∑

i=1

#(s+i )↘K#(si)
2
2

(9)

Assuming that the Gram matrix Gn,m is invertible, the closed-form solution for the Koopman matrix
is derived from:

Kn,m = An,mG
↔1
n,m (10)

Gn,m =
1

m

m∑

i=1

#(si)#(si)
↓
, An,m =

1

m

m∑

i=1

#(si)#(s
+
i )

↓ (11)

Denoting Hn the span of ω1(s),ω2(s), . . . ,ωn(s). It is notable that any function g → Hn can be
represented as g = c

↓#, where c → Rn.
EDMD as L2 projection. As shown by Korda and Mezić (2018a), EDMD approximates the

finite-dimensional Koopman operator through an L2 projection of the true Koopman operator. We
interpret these results as follows. Consider an arbitrary nonnegative measure µ on the state space S ,
and let L2(µ) denote the Hilbert space of all square integrable functions with respect to the measure
µ. We define the L2(µ) projection, denoted as Pµ

n , of a function g onto Hn:

Pµ
ng = arg min

h⇐Hn

↗h↘ g↗L2(µ) = arg min
h⇐Hn



S
(h↘ g)2 dµ = #↓ arg min

c⇐Rn



S
(c↓#↘ g)2 dµ.

(12)

We now state a key property of Kn,m as follows.
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Theorem A.1 Korda and Mezić (2018a). Let µ̂m denote the empirical measure associated to the
points s1, . . . , sm, i.e., µ̂m = 1

m

m
i=1 ↼si , where ↼si denotes the Dirac measure at si. Then for any

g → HN ,

Kn,mg = P µ̂m

n Kg = arg min
h⇐Hn

↗h↘Kg↗L2(µ̂m), i.e. Kn,m = P µ̂m

n K|Hn
, (13)

where K|Hn
: Hn ↑ H is the restriction of the Koopman operator to the subspace Hn.

The theorem states that the estimated Koopman operator Kn,m is the L2 projection of the true
Koopman operator K on the span of ω1, . . . ,ωn with respect to the empirical measure on the samples
s1, . . . , sm.

Consequently, the total error in approximating the true Koopman operator K with its learned
finite-dimensional estimate Kn,m can be decomposed into two components: projection error and
sampling error. Sampling error: The sampling error, denoted as ςsamp(n,m) = ↗Kn,m ↘ Kn↗,
originates from estimating the finite-dimensional Koopman operator Kn using a finite number of
data samples m. Projection error: The projection error, denoted as ςproj(n) = ↗KnPµ

n ↘K↗, arises
from the approximation of the infinite-dimensional Koopman operator K within a finite-dimensional
subspace. This conceptual framework forms the basis for the overall proof scheme presented in
prior work by Korda and Mezić Korda and Mezić (2018a). In contrast, we extend these results by
providing explicit convergence rates under certain additional assumptions.

D.2. Convergence of Sampling error

We begin by establishing the assumptions necessary for our analysis.
Assumption 1 (i.i.d samples). Data samples s1, · · · , sm are drawn independently from the distribu-
tion µ.
Assumption 2 (Bounded latent state). The norm of the latent state vector is bounded. Specifically,
there exists a constant B > 0 such that ↗#(s)↗ ⇑ B for all s → S .
Assumption 3 (Invertable Gram matrix). The Gram matrix Gn,m defined in eq. (11) is invertible,
and its smallest eigenvalue is bounded below by ϑ > 0, such as ϱmin(Gn,m) ∋ ϑ.

Assumption 1 ensures the independence of samples, which can be relaxed if the dynamical
system f is ergodic and the samples s1, · · · , sm are taken along a trajectory of the system starting
from some initial condition s0 → S . Under Assumption 3, the learned Koopman operator Kn,m can
be can be computed using eq. (10). We consider the sampling error between the learned Koopman
operator Kn,m with finite data size m, and the Koopman operator Kn obtained as the L2 projection
of the true Koopman operator onto the subspace Hn) with infinite data:

ςsamp(n,m) = ↗Kn,m ↘Kn↗ = ↗G↔1
n,mAn,m ↘G

↔1
n An↗ (14)

Here, Gn,m and An,m are computed using finite samples via eq. (11). While Gn and An, represent
their expected values, equivalent to computing eq. (11) with an infinite number of samples. Under
Assumption 1, by the Law of Large Numbers, Gn,m and An,m converge to the expected value Gn

and An respectively as m ↑ ⇒. Then we have:

Gn = E[Gn,m] = E

1

m

m∑

i=1

#(si)#(si)
↓


, An = E[An,m] = E


1

m

m∑

i=1

#(si)#(s
+
i )

↓


(15)
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We proceed to decompose the sampling error:

ςsamp(n,m) = ↗An,mG
↔1
n,m ↘AnG

↔1
n ↗ = ↗An,mG

↔1
n,m ↘An,mG

↔1
n +An,mG

↔1
n ↘AnG

↔1
n ↗

⇑ ↗An,m↗ · ↗G↔1
n,m ↘G

↔1
n ↗+ ↗An,m ↘An↗ · ↗G↔1

n ↗. (16)

To bound each term in eq. (16). , we utilize properties of matrix norms and inequalities. First,
we consider the difference of the inverses of Gn,m and Gn. Using the identity G

↔1
n,m ↘ G

↔1
n =

G
↔1
n (Gn ↘Gn,m)G↔1

n,m, we have:

↗G↔1
n,m ↘G

↔1
n ↗ ⇑ ↗G↔1

n ↗↗Gn ↘Gn,m↗↗G↔1
n,m↗. (17)

Based on the assumption 2, the spectral norm of Am,n can be bounded:

↗An,m↗ ⇑ 1

m

m∑

t=1

↗#(si)↗↗#(s+i )↗ ⇑ B
2 (18)

Similarly, under Assumption 3, the norms of inverse gram matrices are bounded

↗G↔1
n,m↗ =

1

ϱmin(Gn,m)
⇑ 1

ϑ
, ↗G↔1

n ↗ ⇑ 1

ϑ
(19)

Substitutingeqs. (17) to (19) back to eq. (16), we obtain:

ςsamp(n,m) ⇑ B
2

ϑ2
↗Gn,m ↘Gn↗+

1

ϑ
↗An,m ↘An↗ (20)

To bound ↗Gn,m ↘ Gn↗ and ↗An,m ↘ An↗,we utilize the Matrix Bernstein Inequality Tropp
(2012), which provides concentration bounds for sums of independent random matrices.

Matrix Bernstein Inequality. Let {Yi}mi=1 be independent, mean-zero random matrices with
dimensions d1 △ d2. Assume that each matrix satisfies ↗Yi↗ ⇑ L almost surely. Define the variance
parameter

↽
2 =



m∑

i=1

E[YiY ↓
i ]

 . (21)

Then, for all ς ∋ 0,

P


m∑

i=1

Yi

 ∋ ς


⇑ (d1 + d2) exp


↘ς

2
/2

↽2 + Lς/3


. (22)

We apply the Matrix Bernstein Inequality to bound ↗An,m ↘An↗. Define Yi as:

Yi =
1

m


#(si)#(s

+
i )

↓ ↘ E[#(si)#(s+i )]
↓

. (23)

Then An,m ↘An =
m

i=1 Yi, and E[Yi] = 0. Under Assumption 2, the norm of Yi is bounded:

↗Yi↗ ⇑ 2

m
· ↗#(si)↗ · ↗#(s+i )↗ ⇑ 2B2

m
(24)
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he variance parameter ↽2 is bounded as follows:

↽
2 =



m∑

i=1

E[YiY ↓
i ]

 ⇑
m∑

i=1

↗E

YiY

↓
i


↗ ⇑

m∑

i=1


2B2

m

2

=
4B4

m
(25)

Applying the Matrix Bernstein Inequality with d1 = d2 = n, L = 2B2

m ,↽
2 = 4B4

m , we obtain:

P (↗An,m ↘An↗ ∋ ς) = P


m∑

i=1

Yi

 ∋ ς


⇑ 2n exp


↘ς

2
m/2

4B4 + 2B2ω
3


. (26)

Assuming ς < B
2, and for sufficiently large m, the term 4B4 dominates 2B2ω

3 , allowing us to simplify
the bound::

P (↗An,m ↘An↗ ∋ ς) ⇑ 2n exp


↘mς

2

8B4


. (27)

This bound holds in probability. To ensure that the probability is at most ↼, we set:

2n exp


↘mς

2

8B4


⇑ ↼. (28)

Solving for ς, we find:

ς ∋


8B4 ln(2n/↼)

m
. (29)

Thus, with probability at least 1↘ ↼, the following inequality holds,

↗An,m ↘An↗ ⇑


8B4 ln(2n/↼)

m
. (30)

A similar procedure applies to bound ↗Gn,m ↘ Gn↗. Using the Matrix Bernstein Inequality with
probability at least 1↘ ↼,

↗Gn,m ↘Gn↗ ⇑


8B4 ln(2n/↼)

m
. (31)

Substituting eqs. (30) and (31) into eq. (20), we obtain, with probability at least(1↘ ↼)2,

ςsamp(n,m) ⇑ B
2

ϑ2


8B4 ln(2n/↼)

m
+

1

ϑ


8B4 ln(2n/↼)

m
=

2B2

2 ln(2n/↼)

ϑ
⇓
m


B

2

ϑ
+ 1


(32)

For simplicity, we mainly consider the convergence rate related to m,n, and then with a high
probability,

ςsamp(n,m) ⇑ O(


ln(n)

m
) (33)

For larger sample sizes m, such that m = O (n ln(n)), with high probability we have:

ςsamp(n,m)|m=O(n ln(n)) ⇑ O(
1⇓
n
) (34)

This result indicates that, under the given assumptions, the sampling error decreases inversely with
the square root of the number of observables n, when the number of samples m grows proportionally
to n lnn.
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D.3. Convergence of Projection Error

In this section, we establish the convergence of the projection error ςproj(n) as the dimension n of the
subspace Hn increases. We begin by introducing additional assumptions necessary for our analysis.
Assumption 4 (Orthogonal basis). The embedding functions ω1, · · · ,ωn are orthogonal (indepen-

dent). i.e. ∞ωi,ωj∈ = ↼ij , for all i, j = 1, . . . , n, where ↼ij is the Kronecker delta.
Assumption 5 (Bounded Koopman Operator). The Koopman operator K : H ↑ H is bounded, i.e.
↗K↗ ⇑ M < ⇒.

Given a function ⇀ → H, we define the projection error as

ςproj(n) = ↗KnPµ
n⇀ ↘K⇀↗ =



S
↗KnPµ

n⇀ ↘K⇀↗dµ (35)

where Kn is the finite-dimensional approximation of the Koopman operator defined on Hn, and Pµ
n

is the orthogonal projection onto Hn.
We decompose ⇀ into its projection onto Hn and its orthogonal complement: ⇀ = Pµ

n⇀ + (I ↘
Pµ
n )⇀, where I is the identity operator. Then we have:

ςproj(n) = ↗KnPµ
n⇀ ↘K⇀↗ (36)

= ↗KnPµ
nPµ

n⇀ ↘KPµ
n⇀ +KnPµ

n (I ↘ Pµ
n )⇀ ↘K(I ↘ Pµ

n )⇀↗ (37)

According to the definition of the orthogonal projection Pµ
n , we have Pµ

nPµ
n⇀ = Pµ

n⇀, Pµ
n · (I ↘

Pµ
n )⇀ = 0. Recall from Theorem A.1 that Kn = Pµ

nK. Therefore, we can rewrite eq. (37) as :

ςproj(n) = ↗KnPµ
n⇀ ↘KPµ

n⇀ ↘K(I ↘ Pµ
n )⇀↗ (38)

= ↗(Pµ
n ↘ I)KPµ

n⇀ +K(Pµ
n ↘ I)⇀↗ (39)

⇑ ↗(Pµ
n ↘ I)↗↗KPµ

n⇀↗+ ↗K↗↗(Pµ
n ↘ I)↗↗⇀↗ (40)

Under Assumption 5, ↗K↗ ⇑ M . Under assumption 2, ↗ωi↗ ⇑ B. Let ⇀ =
≃

i=1 ciωi. By
Parseval’sidentity

≃
i=1 |ci|2 = 1. Then ↗⇀↗ ⇑ B. Therefore, we can rewrite eq. (40) as :

ςproj(n) ⇑ 2MB↗(Pµ
n ↘ I)↗ (41)

From Equation (41), we observe that the projection error depends on the norm of the residual
(Pµ

n ↘ I)⇀. As n ↑ ⇒, the subspace Hn becomes dense in H, and Pµ
n converges strongly to the

identity operator I Korda and Mezić (2018a). Therefore,

lim
n↘≃

ςproj(n) = 0, lim
n↘≃

KnPµ
n = K (42)

Recall that Kn is an operator on the finite-dimensional subspace Hn spanned by the embedding
functions ω1, · · · ,ωn. And K is an operator on H. The convergence of Kn to K implies convergence
of their eigenvalues and eigenfunctions under certain conditions. Prior work Korda and Mezić
(2018a) shows the convergence of eigenvalue as the following theorem.

Theorem A.2 Korda and Mezić (2018a). If assumption 4 and assumption 5 holdes, and ϱn is a
sequance of eigenvalue of Kn with associated normalized eigenfunctions ωn → Hn, then there exists
a subsequence (ϱni

,ωni
) such that

lim
i↘≃

ϱni
= ϱ

ε
, ωni

weak convergence↘↘↘↘↘↘↘↘↘↑ ω
ε (43)
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where ϱ
ε → C and ω

ε → H are eigenvalue and eigenfunction of Koopman operator, such that
Kω

ε = ϱ
ε
ω
ε.

This theorem demonstrates the convergence of eigenvalues and eigenfunctions of Kn to those
of K as n ↑ ⇒. Let the sorted (decreasing order) eigenvalues of the Koopman operator K are
ϱ
↗
1,ϱ

↗
2, · · · , and corresponding eigenfunctions are ω

↗
1,ω

↗
2, · · · . The sorted eigenvalues of the Kn

are ϱ1,ϱ2, · · · ,ϱn, and corresponding eigenfunctions are ω1,ω2, · · · ,ωn. To provide an explicit
convergence rate for the projection error, we introduce further assumptions.
Assumption 6 (Spectral Decay). The eigenvalues of the Koopman operator K decay sufficiently fast,
for instance, |ϱi| ⇑ C

i for some constant C > 0.
Assumption 7 (Accurate Learning of Dominant Modes). The embedding functions #(·) =
[ω1, · · · ,ωn]↓ correspond to the first n eigenfunctions of K associated with the largest eigenvalues
in magnitude. That is, ϱi = ϱ

↗
i or ∞ϱiωi, f∈ = ∞ϱ↗

iω
↗
i ,P

µ
nf∈ for f → H.

Assumption 6 holds for systems where the Koopman operator has rapidly decaying spectral
components.Under assumption 7, we can quantify the convergence rate of ςproj(n). Let ⇀ → H, be
expressed in terms of the eigenfunctions of K: ⇀ =

≃
i=1 ciω

ε
i → H with

≃
i=1 |ci|2 = 1. The

projection error is given by

ςproj(n) = ↗KnPµ
n⇀ ↘K⇀↗ = ↗

≃∑

i=1

ciKnPµ
nω

ε
i ↘

≃∑

i=1

ciKω
ε
i ↗ (44)

= ↗
n∑

i=1

ciϱiω
ε
i ↘

≃∑

i=1

ciϱ
ε
iω

ε
i ↗ = ↗

n∑

i=1

ci(ϱi ↘ ϱ
ε
i )ω

ε
i +

≃∑

i=n+1

ciϱ
ε
iω

ε
i ↗ (45)

= ↗
≃∑

i=n+1

ciϱ
ε
iω

ε
i ↗ ⇑ B ·

 ≃∑

i=n+1

|ϱε
i |2

1/2

(46)

Considering assumption 6, we can estimate the projection error

ςproj(n) ⇑ B

 ≃∑

i=n+1


C

i

2
1/2

= BC

 ≃∑

i=n+1

1

i2

1/2

(47)

⇑ BC

 ≃∑

i=n+1


1

i↘ 1
↘ 1

i

1/2

=
BC⇓
n
. (48)

Therefore, we have the convergence rate of projection error:

ςproj(n) ⇑ O


1⇓
n


(49)

Thus, under the given assumptions, the projection error decreases inversely with the square root of n.

D.4. Convergence of Koopman Operator Under Incremental Strategy

By combining the convergence results of the sampling error eq. (34) and the projection erroreq. (42),
we conclude that the estimated Koopman operator Km,n converges to the true Koopman operator K.
This convergence has also been established in previous work by Korda and Mezić Korda and Mezić
(2018a).
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Theorem A.3 Under the assumptions of 1) data samples s1, ·, sm are i.i.d distributed; 2) the
latent state is bounded, ↗ω(s)↗ < ⇒; 3) the embedding functions ω1, · · · ,ωn are orthogonal
(independent). The learned Koopman operator Km,n converges to true Koopman Operator:

lim
m=!(nln(n)),n↘≃

Km,n ↑ K (50)

.
Unlike prior work, we provide explicit convergence rates for both the sampling error and the

projection error eqs. (34) and (49), leading to an overall error bound for Km,n.
Theorem A.4 Under the assumptions of 1) data samples s1, ·, sm are i.i.d distributed; 2) the

latent state is bounded, ↗ω(s)↗ < ⇒; 3) the embedding functions ω1, · · · ,ωn are orthogonal.
(a) Sampling Error Rate: The sampling error decreases with the number of samples m as:

ςsamp(n,m) ⇑ O(


ln(n)

m
) (51)

(b) Projection Error Rate: Assuming additional conditions: 4) The eigenvalues of the Koopman
operator K decay sufficiently fast, for instance, |ϱi| ⇑ C

i for some constant C > 0. 5) The embedding
functions #(·) = [ω1, · · · ,ωn]↓ correspond to the first n eigenfunctions of K associated with the
largest eigenvalues in magnitude.Then, the projection error decreases with n:

ςproj(n) ⇑ O


1⇓
n


(52)

(c) Overall Error Bound: The total approximation error between Km,n and true koopman operator
K satisfies:

error ⇑ O(


ln(n)

m
) +O


1⇓
n


(53)

Theorem 1 (Informal) Let x: original state, ωi(x): embedding function, z = [ω1(x), . . . ,ωn(x)]↓:
hidden state, n: dimension of lifted space, m: number of samples. Assume ω1, . . . ,ωn are orthogonal.

Then the approximation error between the estimated Koopman operator Km,n and the true
operator K satisfies:

(a) Sampling error:

ςsamp(n,m) ⇑ O


ln(n)

m



(b) Projection error:

ςproj(n) ⇑ O


1

nϑ



for some constant ⇁ > 0.
(c) Total error:

↗Km,n ↘K↗ ⇑ O


ln(n)

m


+O


1

nϑ


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(a) ANYmal-D (b) Unitree-A1 (c) Unitree-Go2 (d) Unitree-H1 (e) Unitree-G1

(f ) Flat (g) Rough

Figure 7: Legged robots and terrain in our test suites.

Appendix E. Expeiment Details

E.1. Task Settings

We summarize our test suites in Table 3, and present the tracking failure threshold ςfail in Table 4. It
is worth noting that robots performing different tasks have distinct physical structures and movement
patterns, necessitating different ςfail values. These hyperparameters are selected when the robot is
on the verge of falling and entering an unrecoverable state.

Table 3: The settings of test suites environment for our experiments

Task Settings Producer Terrain Robot Type
Unitree ANYmal Flat Rough Quadruped Humanoid

Anymal-D (R12) ↭ ↭ ↭
IsaacLab A1 (R12) ↭ ↭ ↭

Go2 (R12) ↭ ↭ ↭ ↭
Robot H1 (R19) ↭ ↭ ↭

G1 (R23) ↭ ↭ ↭ ↭

Table 4: The settings of hyperparameter ςfail for test suites

ςfail Settings Anymal-D A1 Go2 H1 G1
Terrain Flat 0.18 0.16 0.16 0.15 0.10
Type Rough - - 0.12 - 0.08
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E.2. Dataset Settings

All five legged robots are trained on IsaacLab Mittal et al. (2023). The initial dataset D(0) consists of
6e4 trajectories of length lD(0) , and the reference repository R, containing 3e3 demonstrations of
length lR showcasing diverse and rich walking styles.

To achieve a more uniform data distribution under specific gait and contact modes, we apply
random initialization techniques for constructing D(0) and R. First, we randomize the initial
movement commands, including heading direction, x-axis linear velocity, and y-axis linear velocity in
world coordinates, where the x-axis aligns with the heading direction and the y-axis is perpendicular
to it. After collecting 6e4 trajectories of length linit (where linit > lD(0)), we randomly extract
continuous segments of length lD(0) to enrich the robot’s range of motion and postures. All detailed
hyperparameters are provided in Table 5.

In the following lifting phase, incremental dataset Dincre, containing 3e4 trajectories of length
lD(0) , will be added to the training dataset.

The test dataset for evaluating k-step prediction error consists of 30,000 "success" data points
and 30,000 "fail" data points. The success data is collected using the initial data collector with a
stable walking gait, while the fail data is generated by all five algorithms tested in our experimental
setup. Specifically, each algorithm produces 6,000 trajectories using the incremental data collector.
Iterative algorithms, such as the Incremental Koopman Algorithm and DKRL, generate testing data
based on the initial model. Notably, the test dataset is constructed independently of the lifting phase,
ensuring that the test data is not used for re-training the dynamics.

E.3. Algorithm Settings

The detailed dimensional information for the original and latent spaces for each task and algorithm is
provided in Table 5. For simplicity, we organize the hyperparameters corresponding to each task in an
array format as follows: (Flat-Anymal-D, Flat-Unitree-A1, Flat-Unitree-Go2,

Rough-Unitree-Go2, Flat-Unitree-H1, Flat-Unitree-G1, Rough-Unitree-G1).
We set a fixed step size !n for dimension increment at 100. The horizon length H for loss computa-
tion and MPC solving is set to 24 for the Unitree-H1 robot and 16 for the others.

All networks implemented for testing the algorithms are Residual Neural Networks (He et al.
(2015)), featuring residual blocks structured as {Linear}-{Relu}-{Linear}-{Residual}-{RELU}.
The hidden dimensions and number of blocks are listed in Table 5. All networks are trained using
the Adam optimizer with a Cosine Annealing learning rate scheduler. The initial learning rate and
training epochs are 1e-3 and 100, respectively.

We normalize data in all test suites to mitigate the misaligned scale for each physical variable.
The initial trajectories mD(0) is set to 6e6 with initial trajectories length lD(0) 100 for flat terrain
and 200 for rough terrain. The clipped trajectory length linit is equal to horizon length H . Then we
construct reference repository R with reference number mR 3000 and reference length 500.

Other unique hyperparameters for each algorithm follow the original paper to attain the best
performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 6426Y CPU @ 2.5.GHz,
four Nvidia RTX A6000 GPU with 48GB memory, and Ubuntu 22.04.
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E.4. Definition of Tracking Metrics

• Joint-relative mean per-joint position error(EJrPE): 1
200↗J

200
t=1 ↗jt ↘ j

↗
t ↗1, where jt is the

measured DoF position, j↗t is the reference DoF position, J is the number of DoF.

• Joint-relative mean per-joint velocity error (EJrV E): 1
200↗J

200
t=1 ↗j̇t ↘ j̇

↗
t ↗1

• Joint-relative mean per-joint acceleration error (EJrAE): 1
200↗J

200
t=1 ↗j̈t ↘ j̈

↗
t ↗1

• Root mean position error (ERPE): 1
200↗3

200
t=1 ↗pt ↘ p

↗
t ↗1, where pt is the measured root

position, p↗t is the reference root position.

• Root mean linear velocity error (ERLV E): 1
200↗3

200
t=1 ↗ṗt ↘ ṗ

↗
t ↗1

• Root mean orientation error (EROE): 1
200↗4

200
t=1 ↗rt ↘ r

↗
t ↗1, where rt is the measured root

orientation (represented as a quaternion), r↗t is the reference root orientation (represented as a
quaternion).

• Root mean angular velocity error (ERLAE): 1
200↗3

200
t=1 ↗ṙt ↘ ṙ

↗
t ↗1

E.5. Tracking Metrics for Each Task

General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0467 0.9227 55.7386 0.1464 0.0418 0.1322 0.3367 194.5080
DKRL 0.0794 1.2533 69.3621 0.2752 0.0549 0.2077 0.4619 182.3020
DKAC 0.2422 1.7859 69.4619 0.5077 0.2532 0.3533 0.7922 44.6020
DKUC 0.3137 1.4798 47.1150 0.5221 0.3251 0.3472 0.7125 27.9680
NNDM 0.1841 1.8721 75.2555 0.5357 0.2126 0.3564 0.7197 35.0360

Table 6: The average tracking metrics evaluated for each algorithm on Flat-Anymal-D.
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General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0322 0.8212 59.6711 0.0930 0.0256 0.0800 0.2657 195.4880
DKRL 0.0498 1.0385 71.4132 0.1180 0.0401 0.1039 0.3671 161.4340
DKAC 0.1462 3.8430 276.9420 0.3574 0.1101 0.2874 1.3771 10.8920
DKUC 0.0382 0.9525 69.6217 0.0997 0.0287 0.0896 0.3132 176.9560
NNDM 0.2166 3.9797 253.8551 0.4614 0.1215 0.3371 1.1712 3.8280

Table 7: The average tracking metrics evaluated for each algorithm on Flat-Unitree-A1.

General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0428 0.9563 67.1742 0.1127 0.0364 0.0934 0.2946 195.1240
DKRL 0.0734 1.5231 104.0327 0.1817 0.0557 0.1432 0.4822 159.8200
DKAC 0.1710 2.9952 186.1956 0.3994 0.1956 0.2931 1.0813 19.5120
DKUC 0.1328 1.6218 89.0778 0.2163 0.1116 0.1814 0.5298 115.7020
NNDM 0.1716 3.3656 203.0976 0.4645 0.1290 0.3181 1.0053 4.6600

Table 8: The average tracking metrics evaluated for each algorithm on Flat-Unitree-Go2.

General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0425 0.7963 55.5985 0.1001 0.1227 0.1021 0.4320 191.7280
DKRL 0.0846 1.5861 116.1124 0.1843 0.2604 0.1554 0.6729 71.1740
DKAC 0.1648 1.7733 91.0318 0.3195 0.4493 0.2015 0.7549 21.8420
DKUC 0.1177 0.8725 35.6163 0.1687 0.2227 0.1492 0.5043 82.0040
NNDM 0.1180 2.2806 147.1042 0.3023 0.4345 0.1997 0.8586 28.0060

Table 9: The average tracking metrics evaluated for each algorithm on Rough-Unitree-Go2.
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General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0377 0.2983 15.1954 0.1860 0.0874 0.1949 0.3396 181.4740
DKRL 0.0992 0.5034 17.7740 0.3657 0.2438 0.2538 0.5304 98.7680
DKAC 0.1951 0.9522 32.7991 0.3813 0.3077 0.2613 0.7258 40.0660
DKUC 0.1925 0.9012 32.0362 0.3701 0.2438 0.2563 0.6709 71.2460
NNDM 0.1105 0.8381 31.3497 0.4377 0.2752 0.2792 0.5807 109.2700

Table 10: The average tracking metrics evaluated for each algorithm on Flat-Unitree-H1.

General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0065 0.2346 17.1064 0.0219 0.0126 0.0365 0.1174 198.1140
DKRL 0.0858 1.1325 55.2168 0.5004 0.2182 0.3082 0.6091 73.2240
DKAC 0.1819 2.0094 110.0289 0.3974 0.3332 0.3274 0.9012 14.0400
DKUC 0.1579 0.9549 44.7592 0.3077 0.2420 0.2746 0.6048 51.1280
NNDM 0.1158 1.5910 87.3439 0.4060 0.2896 0.2994 0.7254 37.4180

Table 11: The average tracking metrics evaluated for each algorithm on Flat-Unitree-G1.

General Tracking Metrics
Algorithm Joint-relative ↙ Root-relative ↙ Survival ∝

EJrPE EJrV E EJrAE ERPE EROE ERLV E ERAV E TSur

Ours 0.0351 0.5202 31.5414 0.2017 0.1408 0.2120 0.5166 162.7240
DKRL 0.1039 0.8387 48.7527 0.4591 0.2198 0.2903 0.8203 71.9560
DKAC 0.1699 1.1268 56.4011 0.4061 0.2754 0.2979 0.7680 24.2240
DKUC 0.1503 0.7970 35.7952 0.3692 0.2186 0.2779 0.5559 52.2300
NNDM 0.0905 1.4870 94.1604 0.4262 0.2918 0.3075 0.9143 30.0780

Table 12: The average tracking metrics evaluated for each algorithm on Rough-Unitree-G1.
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