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Abstract

Deep reinforcement learning (RL) has achieved remarkable success across various control tasks.
However, its reliance on exploration through trial and error often results in safety violations during
training. To mitigate this, safety filters are commonly employed to correct unsafe actions generated
by the RL policy. Yet, a key challenge remains: how to enable safety-filter-guided learning to
produce a policy that remains optimally safe even after the filter is removed. In this paper, we
propose Safe Set Guided State-wise Constrained Policy Optimization (S-3PO) — a novel algorithm
designed to generate optimal safe RL policies with zero training violations while maintaining safety
during evaluation even without any safety filter. S-3PO integrates a safety-oriented monitor operating
on black-box dynamics to ensure safe exploration and introduces an imaginary cost mechanism that
guides the safe RL agent toward optimal behavior under safety constraints. This imaginary cost
inherits the interpretability of the safety filter while outperforming conventional imitation-based
cost designs. Equipped with state-of-the-art components, S-3PO demonstrates superior performance
on high-dimensional robotic control tasks, effectively handling expected state-wise constraints and
ensuring safety throughout the training process.

1. Introduction

Safe Reinforcement Learning (safe RL) has emerged as a powerful approach in domains such
as games and robotic control, where ensuring safety during or after training is critical. While
objective-based methods aim to optimize reward, they often lack formal guarantees on safety
performance Bohez et al. (2019). To address this, many approaches enforce hard constraints Bouvier
et al. (2024b,a); however, these methods are typically effective only in low-dimensional systems.
More recent advances Zhao et al. (2023b, 2024b) leverage trust-region techniques combined with
Maximum Markov Decision Processes (MMDP) to enforce simultaneous improvement of worst-case
performance and adherence to cost constraints.

Despite these developments, RL-based methods fundamentally depend on trial-and-error explo-
ration, making it difficult to guarantee safety throughout the training process. A common strategy
to mitigate this issue is the use of safety filters Alshiekh et al. (2018), which is designed to correct
unsafe actions generated by the RL policy. These safety filters are often constructed using principles
from safe control theories Shao et al. (2021), where energy function-based methods remain the most
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Figure 1: Overview of the principles of the S-3PO algorithm.

widely adopted approach Khatib (1986); Ames et al. (2014); Liu and Tomizuka (2014); Gracia et al.
(2013); Wei and Liu (2019). Although safety filters can ensure safety during training by overriding
unsafe actions, they also prevent the policy from learning how to avoid unsafe behaviors on its own.
This creates a fundamental dilemma: how can an agent learn to avoid unsafe scenarios if it is always
shielded from experiencing them?!

To enable the policy to learn from the safety filter and generate safe actions by itself, rather than
only being protected by the safety filter, Cheng et al. (2019) use Gaussian Process (GP) models to
estimate unknown system dynamics and construct a safety filter that implicitly guides the policy
updates based on the history of safety filter interventions. To explicitly imitate the effect of the safety
filter at each step, other works have considered using reward penalties to learn from safety filters.
Krasowski et al. (2022) introduce a constant penalty when the safety filter is activated. Yet, this
approach does not account for how unsafe the proposed action was. In contrast, Wabersich and
Zeilinger (2021) penalize the reward with magnitude of the action correction applied by the safety
filter. However, the magnitude of the correction alone may not accurately capture the true impact
of the action on system safety, and the reward penalty can only impose a soft constraint during the
learning process.

These limitations highlight a critical gap: to enable a policy to maintain safety after the
safety filter is removed, it is essential to introduce a cost term that explicitly measures how the
policy’s actions influence the system’s safety level if the safe filter is removed. To this end, we
introduce Safe Set Guided State-wise Constrained Policy Optimization (S-3PO). S-3PO safeguards
the exploration of immature policies through a black-box safe control mechanism and formulates a
novel constrained optimization framework where RL learns an optimal safe policy by constraining
imaginary safety violations—violations that would have occurred without the filter.

2. Problem Formulation

2.1. Assumptions

Dynamics We consider a robot system described by its state s; € S C R™s at time step ¢, with ng
denoting the dimension of the state space S, and its action input a; € A C R"™ at time step ¢, where
n, represents the dimension of the control space .A. The system dynamics are defined as follows:

si+1 = f(s¢,a4), (D

where f : S x A — S is a deterministic function that maps the current robot state and control to the
robot’s state in the next time step.



To maintain simplicity, our approach focuses on deterministic dynamics, although the proposed
method can be easily extended to stochastic dynamics Zhao et al. (2021). Additionally, we assume
the access to the dynamics model f is only in the training phase and restricted to an black-box form,
such as an implicit digital twin simulator or a deep neural network model Zhao et al. (2021). We also
assume there is no model mismatch. Model mismatch can be addressed by robust safe control Wei
et al. (2022) and is left for future work. Post training, the knowledge of the dynamics model is
concealed—a benefit of using "imaginary cost"—aligning with practical scenarios where digital
twins of real-world environments are too costly to access during deployment. Based on these, our
core target is to figure out how can safety-filter-guided learning be used to produce a policy that
remains optimally safe even without the filter.

Markov Decision Process In this research, our primary focus lies in ensuring safety for episodic
tasks, which falls within the purview of finite-horizon Markov Decision Processes (MDP). An MDP
is defined by a tuple (S, A, v, R, P, ). The reward function is denoted by R : S x A x § — R,
the discount factor by 0 < ~ < 1, the initial state distribution by 1 : S — R, and the transition
probability functionby P : S x A xS — R.

The transition probability P(s’|s, a) represents the likelihood of transitioning to state s’ when
the previous state was s, and the agent executed action a at state s. This paper assumes deterministic
dynamics, implying that P(s+1|st,a¢) = 1 when s;11 = f(s¢,a;). We denote the set of all
stationary policies as II, and we further denote 7y as a policy parameterized by the parameter 6.

In the context of an MDP, our ultimate objective is to learn a policy 7 that maximizes a perfor-
mance measure 7 (), computed via the discounted sum of rewards, as follows:

H
J () =Err Z'th(st, at, 5t+1)] , ()
t=0
where H € N denotes the horizon, 7 = [sg, ag, $1,- - - |, and 7 ~ 7 indicates that the distribution

over trajectories depends on 7, i.e., So ~ , ay ~ w(-|s¢), and sp41 ~ P(:|s¢, ay).

Safety Specification The safety specification requires that the system state remains within a closed
subset in the state space, denoted as the “safe set” Sg. This safe set is defined by the zero-sublevel set
of a continuous and piecewise smooth function ¢g : R” — R, where Sg = {s | ¢o(s) < 0}, usually
specified by users. For instance, for collision avoidance, ¢ can be specified as d,,;, — d where d is
the closest distance between the robot and environmental obstacles and d,;, is the distance margin.

2.2. Problem

We are interested in the safety imperative of averting collisions for mobile robots navigating 2D
planes. We aim to persistently satisfy safety specifications at every time step while solving MDP,
following the intuition of State-wise Constrained Markov Decision Process (SCMDP) Zhao et al.
(2023c). Formally, the set of feasible stationary policies for SCMDP is defined as

ﬁC:{WEH‘VStNT,Stegs}, (3)

where 7 ~ 7. Then, the objective for SCMDP is to find a feasible stationary policy from II. that
maximizes the performance measure. Formally,

max J(ma), s.t. mp € U “)
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State-wise Safe Policy with Zero Violation Training The primary focus of this paper centers on
solving (4), i.e., ensuring no safety violation during the training process, while achieving convergence
of the policy to the optimal solution of (4).

3. Preliminary
3.1. Implicit Safe Set Algorithm

As a deterministic safety filter, Implicit Safe Set Algorithm (ISSA) Zhao et al. (2021, 2024a) ensures
the persistent satisfaction of safety specifications for systems with black-box dynamics (e.g., digital
twins or neural networks) through energy function-based optimization. Leveraging energy function
=5+ kido+ -+ knqﬁ(()") and theoretical results from SSA Liu and Tomizuka (2014), ISSA
synthesizes a safety index to guarantee that the safe control set Ag(s) := {a € A| ¢ < —n(¢)}
is nonempty. And then the set S := {s | ¢(s) < 0} N {s | ¢o(s) < 0} is forward invariant under
Assumption 1. Here 7(¢) is designed to be a positive constant when ¢ > 0 and —oco when ¢ < 0.

Assumption 1 The system (1) is a second-order mobile platform that avoids 2D obstacles. 1)
The state space is bounded, and the relative acceleration w and angular velocity z to the obstacle
are bounded and both can achieve zeros, i.e., W € [Wmin, Wmaz] fOr Wmin < 0 < Wpa, and
Z € [Zmin, Zmaz) JOr Zmin < 0 < Zmaazs 2) For all possible values of z and w, there always exists a
control a to realize such z and w; 3) The discrete-time system time step dt — 0; 4) At any given time,
there can at most be one obstacle becoming safety critical (Sparse Obstacle Environment).

Remark 1 The bounds in the first assumption will be directly used to synthesize ¢. The second
assumption enables us to turn the question on whether there exists a feasible control in Ag to the
question on whether there exists z and w to decrease ¢. The third assumption ensures that the
discrete time approximation error is small. The last assumption ensures that the safety index design
rule is applicable to multiple moving obstacles.

The deterministic ISSA could be used as a safety filter in the discrete-time MDP and is treated as
part of the environment during training. We define the discrete-time safe control set as Ag (s) :=
{a e Al ¢(f(s,a)) < max{¢(s) —n,0}}. The ISSA mechanism ensures safety by projecting the
nominal control action a;, proposed by the RL policy 7y, onto the safe control set .Ag (s¢) by solving
the optimization problem:

: * 2
muin flag — | )
s.t. ¢(f(5t7 at)) < max{¢(st) -1 O}

3.2. State-wise Constrained Policy Optimization

Safe RL algorithms under the framework of Constrained Markov Decision Process (CMDP) do not
consider state-wise constraints. To address this gap, State-wise Constrained Policy Optimization
(SCPO) was proposed Zhao et al. (2023b) to provide guarantees for state-wise constraint satisfaction
in expectation, which is under the framework of State-wise CMDP (SCMDP). To achieve this, SCPO
directly constrain the expected maximum state-wise cost along the trajectory. And they introduced
Maximum MDP (MMDP). In this setup, a running maximum cost value is associated with each state,
and a non-discounted finite MDP is utilized to track and accumulate non-negative increments in cost.
The format of MMDP will be introduced in Section 4.
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Figure 2: (a) S-3PO pipeline during training. (b) S-3PO pipeline during evaluation.

4. Safety Index Guided State-wise Constrained Policy Optimization

The core idea of S-3PO is to enforce zero safety violations during training by projecting unsafe
actions to the safe set, and then constraining the "imaginary" safety violations to ensure convergence
of the policy to an optimal safe policy. As shown in Figure 2, the safety filter is part of the training
environment, while the evaluation environment does not have the safety filter.

4.1. Learn with Imaginary Cost

Zero Violation Exploration To ensure zero violation exploration, we adopt ISSA as the safety
filter and safeguard nominal control via solving (5) at every time step during policy training. With
the safety index synthesis rule in Zhao et al. (2021), ISSA is guaranteed to find a feasible solution
of (5), making the system forward invariance in the set S. It is worth mentioning that any energy-
function-based method that ensures forward invariance could be used as the safety filter, and the
scalar energy function could be used to evaluate the imaginary cost. The integration with other
energy-function-based methods will be left for future work.

Learning Safety Measures Safely While eliminating safety violations during training is beneficial,
it also poses challenges for RL policy training, as RL relies on a trial-and-error process. To address
this, our key insight is that instead of directly encountering unsafe states (s ¢ Sg), the policy can
leverage an "imaginary cost" to learn about unsafe scenarios without actually experiencing them.

Imaginary Cost Define "imaginary cost" as A¢y = A¢(s, at, Se+1) = ¢(f (s¢, ar))—d(f(s¢,af)),
i.e. the degree of required correction to safeguard a;. Here a; is the projected action by ISSA. There-
fore, A¢; can be treated as an imagination on how unsafe the reference action would be, where
A¢y < 0 means a; € Ag(st).

Following the definition, Equation (4) can be translated to:

max J(mg), st.mg € {m € H‘ VAp: ~ 1, A¢y < 0}. (6)

Remark 2 Policies satisfying (6) ensure there is no imaginary safety violation in expectation for
any possible a;, making g a safe policy as required by (4), to be proved by lemma 5.

4.2. Transfrom State-wise Constraint into Maximum Constraint

For (6), each state-action transition pair corresponds to a constraint, which is intractable to solve.
Inspired by Zhao et al. (2023c), we constrain the expected maximum state-wise A¢ along the
trajectory instead of individual state-action transition Agp.
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Next, by treating A¢; as an “imaginary” cost, we define a MMDP Zhao et al. (2023c) by
introducing (i) an up-to-now maximum state-wise cost M within M C R, and (ii) a "cost increment"
function D, where D : (8, M) x A x (S, M) — [0, R"] maps the augmented state-action transition

tuple to non-negative cost increments. We define the augmented state § = (s, M) € (S, M) = S,
where S is the augmented state space. Formally,

D (51, ar, 8141) = max{A¢(sy, ag, sp41) — M, 0}, N

By setting D (8o, ao, $1) = A¢(so, ao, s1), we have M = S D(8k, ak, Sk+1) fort > 1. Hence,
we define expected maximum state-wise cost (or D-return) for S-3PO policy 7:

H
Ip(m) =Brr | > D(31,0, 841) |- (®)
t=0
With (8), (6) can be rewritten as:
max J (7), s.t. IJp(m) <0, )

where J () = Eror Zfio Y R(3, ay, §t+1)] and R(3,a,8") = R(s,a,s’). With R(7) being the
discounted return of a trajectory, we define the on-policy value function as V7" (§) = E . [R(T)[50 =
§], the on-policy action-value function as Q™ (8,a) = E,[R(7)|80 = §, ap = al, and the advantage
function as A™(5,a) = Q™(5,a) — V7 (3).

Lastly, we define on-policy value functions, action-value functions, and advantage functions for

the cost increments in analogy to V7, Q™, and A™, with D replacing R, respectively. We denote
those by V5, QT and AT,.

Remark 3 Equation (6) is difficult to solve since there are as many constraints as the size of
trajectory T. With (9), we turn all constraints in (6) into only a single constraint on the maximal A¢
along the trajectory, yielding a practically solvable problem.

4.3. S-3PO

To solve (9), we propose S-3PO under the framework of trust region optimization methods Schulman
et al. (2015). S-3PO uses KL divergence distance to restrict the policy search in (9) within a trust
region around the most recent policy 7. Moreover, S-3PO uses surrogate functions for the objective
and constraints, which can be easily estimated from sample trajectories by m;. Mathematically,
S-3PO updates policy via solving the following optimization:

Tp+1 = argmax E [A™ (8, a)] (10)
melly  SdTk

1
JIp(my) + ]% AT (8,a)| +2(H + 1)65\/55 <0.
md™

where D, (7'[|7)[3] is KL divergence between two policy (7', ) at state 3, the set {7 € Ily :
E; g [Prr(m||me)[8]] < 0} is called trust region, d™ = (1 — ) Zio YVP(3; = §|mg), d™ =
S P(5¢ = 8|my,) and €, = maxg|Eq[ATF (3, a)]|.



Remark 4 Despite the complex forms, the objective and constraints in (10) can be interpreted in two
steps. First, maximizing the objective (expected reward advantage) within the trust region (marked by
the KL divergence constraint) theoretically guarantees the worst performance degradation. Second,
Jp(m) can not be computed at step k + 1 since the state sy is inaccessible, thus we leverage a
surrogate function to upper bound the Jp(m) to guarantee the worst-case “imagionary” cost is
non-positive at all steps as in (6).

4.4. Practical Implementation

The pseudocode of S-3PO is give as algorithm 1. Here we summarize two techniques that helps
with S-3PO’s practical performance. (i) Weighted loss for cost value targets: A critical step in
S-3PO involves fitting the cost increment value function, V5 (3;), which represents the maximum
future cost increment relative to the highest state-wise cost observed so far. This function follows
a non-increasing staircase pattern along the trajectory. Thus, we adopt a weighted loss function,
Liyeignt» to penalize predictions that violate the non-increasing property: Lqcight = L(ge —y) * (14
w * 1[(9¢ — ye—1) > 0]), where L denotes Mean Squared Error, g is the prediction, y; is the fitting
target and w is the penalty weight. (ii) Line Search scheduling: Constraints in (10) might become
infeasible due to approximation errors. In this case, we perform a recovery update, enforcing the cost
advantage A7, to decrease from early training steps kg,s. While focusing on reward improvements
of A™ towards the end of training, prioritizing safety first and reward performance later. Check
Appendix C.3 for furthur details.

5. Theoretical Results

In this section, we first present the lemma to show the equivalence between constraining the imaginary
cost and constraining the safety violation. Then we present the main conclusion for S3PO.

Lemma 5 (Safety Equivalence under Imaginary Cost) For a given policy w and any initially safe
state sy (P(so) < 0), the following two conditions are equivalent: 1) the corresponding trajectory in
the training environment has zero imaginary cost maxy A¢y < 0; 2) the corresponding trajectory in
the evaluation environment has zero safety violation maxy ¢y < 0. And if either condition holds, the
two trajectories are the same.

Theorem 6 (Safety and Optimality of S-3PO) S-3PO will converge in the training environment
to a policy ™ with no imaginary cost in expectation, and bounded worst case reward perfor-
mance. In particular, if T and 71 are related by applying S-3PO (10), then with €™+ =
max;|Eqr,,, [A™ (8, a)]|, the performance of T4y in the training environment satisfies:

m y€eTh+1
T
Since the training environment is deterministic and all the assumptions in the theoretical results for
SCPO are satisfied, the proof for the theorem directly follows from Proposition 2 from SCPO Zhao
et al. (2023b).

By lemma 5, no imaginary cost in the training environment implies no safety violation in the
evaluation environment. The theorem then implies that the converged policy could achieve zero
safety violation in expectation in the evaluation environment. Nevertheless, formally establishing
their equivalence in the probability space (e.g., in expectation) will be left for future work.

T (mpy1) — T (mg) >
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Figure 3: Illustration of training-time cost performance from four representative test suites.

6. Experiments

In our experiments, we aim to answer: Q1: Does S-3PO achieve zero-violation during the training?
Q2: How does S-3PO without safeguard compare with other advanced safe RL methods? Q3: Does
S-3PO learn to act without safeguard? Q4: How does weighted loss trick impact the performance of
S-3P0O? QS: Is “imaginary” cost necessary to make the RL policy learn to achieve zero violation by
itself? Q6: How does S-3PO scale to high dimensional robots?

6.1. Experiments Setup

To answer these questions, we conducted experiments on the safe reinforcement learning benchmark
GUARD Zhao et al. (2023a) which is based on Mujoco and Gym interface.

Environment Setting We design experimental environments with different task types, constraint
types, constraint numbers, and constraint sizes. We name these environments as { Robot}_{Constraint
Number } { Constraint Type}. All of the environments are based on Goal where the robot must
navigate to a goal. Three different robots that can be categorized into two types are included in our
experiments: (i) Wheel Robot: Point: (fig. 8(a)) A point robot (A C R?) that maintains seamless
interaction with the environment. (ii) Link Robot: (a) Swimmer: (fig. 8(b)) A three-link robot
(A C R?) that interacts intermittently with the surroundings. (b) Ant: (fig. 8(c)) A quadrupedal robot
(A C R®). Two different types of constraints are considered. (i) Hazard: (fig. 8(d)) Trespassable
circles on the ground. (ii) Pillar: (fig. 8(e¢)) Fixed obstacles. All tasks are trained over 200 epochs,
with each epoch consisting of 30,000 steps. More details about the experiments are discussed in
Appendix C.1.

Comparison Group The methods in the comparison group include: (i) unconstrained RL
algorithm TRPO (Schulman et al., 2015) and TRPO-ISSA. (ii) end-to-end constrained safe RL
algorithms CPO (Achiam et al., 2017), TRPO-Lagrangian (Bohez et al., 2019), PCPO (Yang et al.,
2020), SCPO (Zhao et al., 2023b). (iii) We select TRPO as our baseline method since it already
has safety-constrained derivatives that can be tested off-the-shelf. The full list of parameters of all
methods compared can be found in Appendix C.2.

Metrics For comparison, we evaluate algorithm performance based on (i) reward performance,
(i1) average episode cost, and (iii) cost rate. More details are provided in Appendix C.4. We set the
limit of cost to O for all safe RL algorithms since no violation of the constraints is allowed.
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Figure 5: Triggering frequency of the safeguard from four representative test suites.
6.2. Evaluating S-3PO and Comparison Analysis

Zero Violation During Training The training performance of four representative test suites are
summarized in Figure 3, where the S-3PO algorithm clearly outperforms other baseline methods
by achieving zero violations, consistent with the safety guarantee outlined in Zhao et al. (2021).
For more experiments, please check Appendix C. This superior performance is attributed to the
safeguard mechanism within the S-3PO framework, which effectively corrects unsafe actions at
every step, particularly during training. Furthermore, as demonstrated in Figure 4, the reward
performance remains comparable to advanced baselines. This distinct capability of S-3PO ensures
safe reinforcement learning with zero safety violations, addressing Q1.

State-wise Safety Without Safety Monitor At the end of each epoch, the S-3PO policy is tested
over 10,000 steps without the safeguard. This allows us to determine whether S-3PO effectively
learns a state-wise safe policy through the guidance of the safe set-guided cost. As shown in Figure 4,
S-3PO demonstrates superior performance even without the safeguard, achieving (i) near-zero
average episode cost and (ii) significantly reduced cost rates, all while maintaining competitive
reward performance. These findings highlights that by minimizing imaginary safety violations, the
policy rapidly learns to act safely, which addresses Q2.
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Learn to Act without Safeguard As highlighted in Section 4.1, the key concept behind penaliz-
ing imaginary safety violations is to minimize the activation of the safeguard, thereby significantly
reducing its computational complexity and enabling real-time implementation. To illustrate this, we
visualize the average number of times the ISSA-based safeguard is triggered per step in Figure 5. For
comparison, TRPO-ISSA is included as a baseline, which relies continuously on the safeguard to
maintain safe control. Figure 5 shows that S-3PO dramatically reduces the frequency of safeguard
activations, approaching zero, indicating that a state-wise safe policy has been effectively learned,
thus addressing Q3.

Ablation on Weighted Loss for Fit-
ting Cost Increment Value Targets As
pointed in Section 4.4, fitting Vp, (5;) is a
critical step towards solving S-3PO, which
is challenging due to non-increasing stair R . —
shape of the target sequence. To elucidate N - e -
the necessity of weighted loss for solv-
ing this challenge, we evaluate the cost
rate of S-3PO under six distinct weight
settings (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) on Figure 6: Comparison results of S-3PO
Point_4Hazard test suite. The results shown in Figure 6(a) validates that a larger weight
(hence higher penalty on predictions that violate the characteristics of value targets) results in better
cost rate performance. This ablation study answers Q4.

Necessity of “Imaginary” Cost To understand the importance of the "imaginary" cost within the
S-3PO framework, we compare it to another cost based on the magnitude of action correction Chen
and Liu (2021). This empirical analysis is conducted using the Point_4Hazard test suite. As
shown in Figure 6(b), the "imaginary" cost yields superior cost rate performance. This suggests that
the "imaginary" cost offers deeper insights into the complex dynamics between the robot and its
environment, thereby addressing QS.

Scale S-3PO to High-Dimensional
Link Robots To showcase S-3PO’s scala- :
bility and performance with complex, high-
dimensional link robots, we conducted ad-
ditional tests on Ant_ 1Hazard featuring
8 dimensional control spaces. As shown in
Figure 7, S-3PO effectively drives the cost
to zero and rapidly reduces the cost rate, showcasing its superiority in high-dimensional safety policy
learning and highlighting its exceptional scalability to more complex systems, which answers Q6.

Cost Rate Performance

(a) Comparison of cost (b) Comparison between
rate performance with “imaginary” cost and
6 different weights. action correction cost.

TtalEnvintersets ) TotalEnvinteracts

Figure 7: Cost performance of Ant_1Hazard.

7. Conclusion and Future Prospectus

In this study, we introduce Safe Set Guided State-wise Constrained Policy Optimization (S-3PO),
a novel algorithm pioneering state-wise safe optimal policies. This distinction is underlined by
the absence of training violations, signifying an error-free learning paradigm. S-3PO employs a
safeguard anchored in black-box dynamics to ensure secure exploration. Subsequently, it integrates a
novel “imaginary” safety cost to guide the RL agent towards optimal safe policies. In the following
work, we will try to implement our algorithm in real robot implementation.
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Appendix A. Algorithms
A.1. S-3PO Algorithm

Algorithm 1 S-3PO

Input: Initial policy my € Ily.
for k=0,1,2,... do
fort =0,1,2,... do
Sample nominal action a; ~ 7 (s¢)
Compute and execute a; = ISSA (s, a})
Log 7 < 7 U{(s¢, ae, ¢, Se41, Ady) }
end for
g < VGE§,a~T [Aﬂ(gv a)]|9:9k
b <= VoEsar [AD(5,a)][g—,
¢+ JIp(mk) +2(H + 1)€5+/5/2
H « ViEsr[Drp(rllme)[8]]] o,
Orpr = arglénax g (0 —6y) s.t.

%(6 — ) TH(O —0) <6,c+b"(0—0;) <0
Get search direction A9* « 07 | — O
for j =0,1,2,... do
0 < 0 + ET NG
if E§~T[DKL(7T0/||7Tk)[§]] < ¢ and
Esanr [AR (8,a) — AT (3,a)] < max(—c,0) and
(k < keafe o1 Eg gor [A70(5,a)] > E; goor [A™ (8, a)]) then
011 < 0" {Update policy}
break
end if
end for
end for
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Appendix B. Proof of Lemma 5

Proof To prove that the two conditions are equivalent, we show that condition 2 can be derived from
condition 1, and vice versa.

(Condition 1 = Condition 2):

By the property of ISSA, A¢ > 0 only when the safety filter is triggered. Under condition 1,
we have A¢ < 0 throughout the trajectory in the training environment, which implies that ISSA is
never activated during training. As a result, the trajectory remains entirely within the safe state set,
satisfying max; ¢ < 0.

Moreover, since ISSA is inactive, the applied action coincides with the nominal policy action,
i.e., aj = aq for all ¢. Therefore, the same sequence of actions will be executed in the evaluation
environment (which uses the same initial state), producing the same trajectory that stays within the
safe set, with max; ¢y < 0 and without triggering ISSA.

(Condition 2 = Condition 1):

Conversely, if a given policy starting from a certain initial state generates a trajectory in the
evaluation environment that never triggers ISSA and satisfies max; ¢; < 0, the same trajectory will
be produced in the training environment when initialized from the same state. Along this trajectory,
ISSA remains inactive, implying that the imaginary cost remains zero, i.e., A¢; < 0 for all ¢.

Since both conditions ensure that ISSA is never triggered along the entire trajectory, the actions
remain unchanged, aj = a; for all ¢, and the resulting trajectories are identical in both the training

and evaluation environments.
]

It is important to note that the guarantee in Lemma 5 holds only when both conditions are strictly
satisfied over the entire trajectory distribution induced by the policy. In contrast, for the probability
space where the conditions are satisfied in expectation, the trajectories in the evaluation environment
may deviate from those in the training environment, even when initialized from the same initial state.
Such deviation can occur if either the imaginary cost or the safety index ¢ becomes positive at any
step along the trajectory. The deviation may lead to discrepancies in the policy performance during
evaluation, which will be analyzed in future work.
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Appendix C. Expeiment Details

C.1. Environment Settings

v 5o B[]

(a) Point (b) Swimmer (¢) Ant (d) Hazard (e) Pillar
Figure 8: Robots and constraints for benchmark problems in our environment.

Goal Task In the Goal task environments, the reward function is:
r(z) = dffl —dj +1[d} < RY],

where df is the distance from the robot to its closest goal and RY is the size (radius) of the goal.
When a goal is achieved, the goal location is randomly reset to someplace new while keeping the rest
of the layout the same. The test suites of our experiments are summarized in Table 1.

Hazard Constraint In the Hazard constraint environments, the cost function is:
() = max(0, R" — dP)
where di‘ is the distance to the closest hazard and R" is the size (radius) of the hazard.

Pillar Constraint In the Pillar constraint environments, the cost ¢; = 1 if the robot contacts with
the pillar otherwise c¢; = 0.

Additional high dimensional link robot To scale our method to high dimensional link robots. We
additionally adopt Walker shown in 9 as a bipedal robot (A C R'?) in our experiments.

¢

Figure 9: Walker

State Space The state space is composed of two parts. The internal state spaces describe the
state of the robots, which can be obtained from standard robot sensors (accelerometer, gyroscope,
magnetometer, velocimeter, joint position sensor, joint velocity sensor and touch sensor). The details
of the internal state spaces of the robots in our test suites are summarized in Table 2. The external
state spaces are describe the state of the environment observed by the robots, which can be obtained
from 2D lidar or 3D lidar (where each lidar sensor perceives objects of a single kind). The state
spaces of all the test suites are summarized in Table 3. Note that Vase and Gremlin are two other
constraints in Safety Gym Ray et al. (2019) and all the returns of vase lidar and gremlin lidar are
zero vectors (i.e., [0,0, - - - , 0] € R'®) in our experiments since none of our test suites environments
has vases.
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Table 1: The test suites environments of our experiments

Task Setting | Low dimension \ High dimension

Point Swimmer ‘ Walker Ant
v v v

Hazard-1

Hazard-4

Hazard-8
Pillar-1
Pillar-4
Pillar-8

N NENENENRN

Table 2: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker  Ant
Accelerometer (R?) v v v v
Gyroscope (R?) v v v v
Magnetometer (R?) v v v v
Velocimeter (R?) v v v v

Joint position sensor (R™) | n =0 n=2 n=10 n=28
Joint velocity sensor (R™) | n =10 n=2 n=10 n=2~8
Touch sensor (R™) n=>0 n=4 n=2 n=238§

Control Space For all the experiments, the control space of all robots are continuous, and linearly
scaled to [-1, +1].

C.2. Policy Settings

The hyper-parameters used in our experiments are listed in Table 4 as default.

Our experiments use separate multi-layer perception with tanh activations for the policy network,
value network and cost network. Each network consists of two hidden layers of size (64,64). All of
the networks are trained using Adam optimizer with learning rate of 0.01.

We apply an on-policy framework in our experiments. During each epoch the agent interact B
times with the environment and then perform a policy update based on the experience collected from
the current epoch. The maximum length of the trajectory is set to 1000 and the total epoch number
N is set to 200 as default. In our experiments the Walker was trained for 250 epochs due to the high
dimension.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of
backtracking with a coefficient of 0.8 for line searching.
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Table 3: The external state space components of different test suites environments.

External State Space | Goal-Hazard Goal-Pillar

Goal Compass (R?)
Goal Lidar (R'6)
3D Goal Lidar (R?)
Hazard Lidar (R'6)
3D Hazard Lidar (R%")
Pillar Lidar (R'6)
Vase Lidar (R1)
Gremlin Lidar (R'6)

WA X X XA
AN X X X QK

For all experiments, we use a discount factor of v = 0.99, an advantage discount factor A = 0.95,
and a KL-divergence step size of dx 7, = 0.02.

For experiments which consider cost constraints we adopt a target cost §. = 0.0 to pursue a
zero-violation policy.

Other unique hyper-parameters for each algorithms are hand-tuned to attain reasonable perfor-
mance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz,
Nvidia RTX A4000 GPU with 16GB memory, and Ubuntu 20.04.

C.3. Practical Implementation Details

In this section, we summarize implementation techniques that helps with S-3PO’s practical perfor-
mance. The pseudocode of S-3PO is give as algorithm 1.

Weighted loss for cost value targets A critical step in S-3PO requires fitting of the cost increment
value functions, denoted as V/(3;). By definition, V5 (3;) is equal to the maximum cost increment
in any future state over the maximal state-wise cost so far. In other words, V}j(5;) forms a non-
increasing stair shape along the trajectory. Here we visualize an example of Vj(5;) in Figure 10.
To enhance the accuracy of fitting this stair shape function, a weighted loss strategy is adopted,
capitalizing on its monotonic property. Specifically, we define a weighted 1088 Lieigni:

Lweight = L(gt - yt) * (1 +w * ]1[(@5 - yt—l) > 0])

where L denotes Mean Squared Error (MSE), 4, is the prediction, e
y; is the fitting target and w is the penalty weight. To account for '
the initial step (¢ = 0), we set y;—1 to sufficiently large, thereby
disregarding the weighted term associated with the first step. In
essence, the rationale is to penalize any prediction that violates the
non-increasing characteristics of the target sequence, thereby leading 0.5
to an improved fitting quality. 0

201

s 1] L

104 |

VA(S,) target

4] 200 400 800 800 1000
interaction step t

17 Figure 10: Vp, . (8) target of

five sampled episodes.
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Table 4: Important hyper-parameters of different algorithms in our experiments

Policy Parameter TRPO TRPO-ISSA TRPO-Lagrangian  CPO PCPO SCPO  S-3PO
Epochs N 200 200 200 200 200 200 200
Steps per epoch B | 30000 30000 30000 30000 30000 30000 30000
Maximum length of trajectory L 1000 1000 1000 1000 1000 1000

Policy network hidden layers (64, 64) (64, 64) (64, 64) (64,64) (64,64) (64,64) (64,64)
Discount factor 0 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Advantage discount factor A 0.97 0.97 0.97 0.97 0.97 0.97 0.97
TRPO backtracking steps 100 100 100 100 - 100 100
TRPO backtracking coefficient 0.8 0.8 0.8 0.8 - 0.8 0.8
Target KL 0K 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Value network hidden layers (64, 64) (64, 64) (64, 64) (64,64) (64,64) (64,64) (64,64)
Value network iteration 80 80 80 80 80 80 80
Value network optimizer Adam Adam Adam Adam Adam Adam Adam
Value learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cost network hidden layers - - (64, 64) (64,64) (64,64) (64,64) (64,64)
Cost network iteration - - 80 80 80 80 80
Cost network optimizer - - Adam Adam Adam Adam Adam
Cost learning rate - - 0.001 0.001 0.001 0.001 0.001
Target Cost ¢ - - 0.0 0.0 0.0 0.0 0.0
Lagrangian learning rate - - 0.005 - - - -
Cost reduction - - - 0.0 - 0.0 0.0
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Line search scheduling Note that in (10), there are two constraints: (a) the trust region and (b) the
bound on expected advantages. In practice, due to approximation errors, constraints in (10) might
become infeasible. In that case, we perform a recovery update that only enforces the cost advantage

7 to decrease starting from early training steps (in first kg, updates), and starts to enforce reward
improvements of A™ towards the end of training. This is different from Zhao et al. (2023b), where
the reward improvements are enforced at all times. This is because SCPO only guarantees safety
(constraint satisfaction) after convergence, while S-3PO prioritizes constraining imaginary safety
violation. With our line search scheduling, S-3PO is able to first grasp a safe policy, and then improve
the reward performance. In that way, S-3PO achieves zero safety violation both during training and
in testing with a worst-case performance degradation guarantee.

C.4. Metrics Comparison

In Tables 5 to 7, we report all the 9 results of our test suites by three metrics:
* The average episode return J,.
* The average episodic sum of costs M.
» The average cost over the entirety of training p..

Both the evaluation performance and training performance are reported based on the above metrics.
Besides, we also report the ISSA triger times as ISSA performance of TRPO-ISSA and S-3PO. All
of the metrics were obtained from the final epoch after convergence. Each metric was averaged over
two random seed. The evaluation performance curves of all experiments are shown in Figures 11, 14
and 17, the training performance curves of all experiments are shown in Figures 12, 15 and 18 and
the ISSA performance curves of all experiments are shown in Figures 13, 16 and 19
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Table 5: Metrics of three Point_Hazard environments obtained from the final epoch.
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Point_1Hazard

Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
j?" ]‘71(, /7(3 ‘ jT MC‘ ﬁl) ‘
TRPO 2.5738 0.5078 0.0082 | 2.5738 0.5078 0.0082 -
TRPO-Lagrangian | 2.6313 0.5977 0.0058 | 2.6313 0.5977 0.0058 -
CPO 2.4988 0.1713 0.0045 | 2.4988 0.1713 0.0045 -
PCPO 2.4928 0.3765 0.0054 | 2.4928 0.3765 0.0054 -
SCPO 2.5457 0.0326 0.0022 | 2.5457 0.0326 0.0022 -
TRPO-ISSA 2.5113 0.0000 0.0000 | 2.5981 0.0000 0.0000 0.2714
S-3PO 2.4157 0.0000 0.0000 | 2.2878 0.0000 0.0000 0.0285
Point_4Hazard
Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
j)" ]‘71(, /_)(3 ‘ jT MC‘ ﬁl} ‘
TRPO 2.6098 0.2619 0.0037 | 2.6098 0.2619 0.0037 -
TRPO-Lagrangian | 2.5494 0.2108 0.0034 | 2.5494 0.2108 0.0034 -
CPO 2.5924 0.1654 0.0024 | 2.5924 0.1654 0.0024 -
PCPO 2.5575 0.1824 0.0025 | 2.5575 0.1824 0.0025 -
SCPO 2.5535 0.0523 0.0009 | 2.5535 0.0523 0.0009 -
TRPO-ISSA 2.5014 0.0712 0.0000 | 2.5977 0.0135 0.0000 0.1781
S-3PO 2.3868 0.0000 0.0000 | 2.3550 0.0000 0.0000 0.0117
Point_8Hazard
Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
b M. e | d M. |
TRPO 2.5535 0.5208 0.0074 | 2.5535 0.5208 0.0074 -
TRPO-Lagrangian | 2.5851 0.5119 0.0064 | 2.5851 0.5119 0.0064 -
CPO 2.6440 0.2944 0.0041 | 2.6440 0.2944 0.0041 -
PCPO 2.6249 0.3843 0.0052 | 2.6249 0.3843 0.0052 -
SCPO 2.5126 0.0703 0.0020 | 2.5126 0.0703 0.0020 -
TRPO-ISSA 2.5862 0.0865 0.0000 | 2.5800 0.0152 0.0000 0.3431
S-3PO 2.4207 0.1710 0.0000 | 2.3323 0.0000 0.0000 0.0337
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Table 6: Metrics of three Pillar_Hazard environments obtained from the final epoch.

Point_1Pillar

Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
j?" ]‘71(, /_)C ‘ jT M{J ﬁl) ‘
TRPO 2.6065 0.2414 0.0032 | 2.6065 0.2414 0.0032 -
TRPO-Lagrangian | 2.5772 0.1218 0.0020 | 2.5772 0.1218 0.0020 -
CPO 2.5464 0.2342 0.0028 | 2.5464 0.2342 0.0028 -
PCPO 2.5857 0.2088 0.0025 | 2.5857 0.2088 0.0025 -
SCPO 2.5928 0.0040 0.0003 | 2.5928 0.0040 0.0003 -
TRPO-ISSA 2.5985 0.0000 0.0000 | 2.5909 0.0020 0.0000 0.3169
S-3PO 2.5551 0.0000 0.0000 | 2.5241 0.0000 0.0000 0.0060
Point_4Pillar
Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
j)" ]‘71(, /_)C ‘ jT M{J ﬁl} ‘
TRPO 2.5671 0.4112 0.0063 | 2.5671 0.4112 0.0063 -
TRPO-Lagrangian | 2.6040 0.2786 0.0050 | 2.6040 0.2786 0.0050 -
CPO 2.5720 0.5523 0.0062 | 2.5720 0.5523 0.0062 -
PCPO 2.5709 0.3240 0.0052 | 2.5709 0.3240 0.0052 -
SCPO 2.5367 0.0064 0.0005 | 2.5367 0.0064 0.0005 -
TRPO-ISSA 2.5739 0.1198 0.0001 | 2.5881 0.0427 0.0001 0.2039
S-3PO 2.2513 0.0114 0.0000 | 2.3459 0.0000 0.0000 0.0116
Point_8Pillar
Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
o M. 5 | 4 M. 5|
TRPO 2.6140 3.1552 0.0201 | 2.6140 3.1552 0.0201 -
TRPO-Lagrangian | 2.6164 0.6632 0.0129 | 2.6164 0.6632 0.0129 -
CPO 2.6440 0.5655 0.0166 | 2.6440 0.5655 0.0166 -
PCPO 2.5704 6.6251 0.0219 | 2.5704 6.6251 0.0219 -
SCPO 24162 0.2589 0.0024 | 2.4162 0.2589 0.0024 -
TRPO-ISSA 2.6203 0.6910 0.0009 | 2.5921 0.0709 0.0009 0.3517
S-3PO 2.0325 0.0147 0.0002 | 2.3371 0.0000 0.0002 0.0231
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Table 7: Metrics of three link robots environments obtained from the final epoch.

Swimmer_1Hazard

Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
j?" ]‘71(, /7(3 ‘ jT MC‘ ﬁl) ‘
TRPO 27049 0.3840 0.0076 | 2.7049 0.3840 0.0076 -
TRPO-Lagrangian | 2.6154 0.3739 0.0060 | 2.6154 0.3739 0.0060 -
CPO 2.5817 0.3052 0.0056 | 2.5817 0.3052 0.0056 -
PCPO 2.5418 0.6243 0.0055 | 2.5418 0.6243 0.0055 -
SCPO 2.6432 03919 0.0051 | 2.6432 0.3919 0.0051 -
TRPO-ISSA 2.5826 0.2595 0.0000 | 2.5955 0.0000 0.0000 0.1240
S-3PO 2.6032  0.0313 0.0000 | 2.6239 0.0001 0.0000 0.0378

Ant_1Hazard

Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
jT ]\’TIC ﬁC ‘ jT ]\:[C ﬁ(! ‘
TRPO 2.6390 0.3559 0.0074 | 2.6390 0.3559 0.0074 -
TRPO-Lagrangian | 2.5866 0.2169 0.0044 | 2.5866 0.2169 0.0044 -
CPO 2.6175 0.2737 0.0072 | 2.6175 0.2737 0.0072 -
PCPO 2.6103 0.2289 0.0076 | 2.6103 0.2289 0.0076 -
SCPO 2.6341 0.2384 0.0065 | 2.6341 0.2384 0.0065 -
TRPO-ISSA 2.6509 0.3831 0.0032 | 2.6318 0.3516 0.0032 0.0279
S-3PO 2.2047 0.0000 0.0002 | 2.2031 0.0000 0.0002 0.0001

Walker_1Hazard

Algorithm Evaluation Performance ‘ Training Performance ‘ ISSA Performance
o M. 5 | 4 M. 5|
TRPO 25812 0.2395 0.0075 | 2.5812 0.2395 0.0075 -
TRPO-Lagrangian | 2.6227 0.1666 0.0041 | 2.6227 0.1666 0.0041 -
CPO 2.6035 0.3068 0.0062 | 2.6035 0.3068 0.0062 -
PCPO 25775 0.2414 0.0059 | 2.5775 0.2414 0.0059 -
SCPO 2.6352  0.1423 0.0051 | 2.6352 0.1423 0.0051 -
TRPO-ISSA 2.6419 0.3544 0.0037 | 2.5787 0.2060 0.0037 0.0316
S-3PO 2.6117 0.3437 0.0025 | 2.6055 0.2665 0.0025 0.0319
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Figure 11: Evaluation performance of Point_Hazard
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Figure 13: ISSA performance of Point_Hazard

24



Reward Performance
[
L

=3 — PO —— PCPO = TRPD-ISSA
— TRPO-lagrangian —— SCPO  — 53RO
-4 — ro
2 3 4 5 [
TotalEnvinteracts lef
ag TRPO — PCPO  —— TRPO-ISSA
-3 TRPO-lagramglan  —— SCPO  —— 53RO
@0
v 2.0
H
=
E1s
2
10
]
=3
s}

o
n

o
=

%] w

Cost Rate Performance
-

o

2 3 4 5 6
TotalEnvinteracts led

(a) Point_1Pillar

I+
s
[
g
't
&
B
L]
=
d
THPO — PCPO —— TRPO-ISSA
—— TRPO-Lagrangian —— SCPO —— S5.3PO
— PO
-2
2 3 4 5 [
TotalEnvinteracts 1e6
— TRPO — PCPO —— TRPO-ISSA
— SCPO  — S3F0

- TRPO-Lagrangian
— CPO

Cost Performance
Y3 w

-

§ — meo — PCPO _ — TRPO-ISSA
7 — 5. 3P0
£
E 6
5
2
g
]
3
&
%2
3
1
o
1 2 3 a 5 &
TotalEnvinteracts 126

(b) Point_4Pillar

Reward Performance

_3 — TRPO — PCPO —— TRPO-ISSA
—— TRPO-Lagranglan —— SCPO  —— S.3PO
— PO
-4
2 3 4 5 6
TotalEnvinteracts le6
lel
1.4 — TRPO — PCPD  —— TRPO-ISSA
—— TRPO-Lagrangian —— SCPO  —— 5-3P0
12 — oo

1 2 3 4 5 [
TotalEnvinteracts 1e6
le-2
2.5 — TRPO — PCPO  —— TAPD-ISSA
—— TRPO-lagrangian —— SCPO = S3PO
u — PO
g 2.0
o
E
15
&
Z10
&
Zos
go
oo
1 2 3 4 5 6
TotalEnvinteracts led

(¢) Point_8Pillar
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Figure 16: ISSA performance of Point_Pillar
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Figure 17: Evaluation performance of link robots
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