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Abstract—Self-supervised (SeSu) learning is a powerful sub-
class of unsupervised methods that aims to alleviate the need for
large-scale annotated datasets to successfully train data-hungry
machine learning models. To this end, SeSu methods learn
contextualized embeddings from unlabeled data to efficiently
tackle downstream tasks. Despite their success, most existing
SeSu approaches are heuristic, and typically fail to exploit
multiple views of data available for the problem at hand. This
becomes particularly challenging when non-linear dependencies
among multiple views or data samples exist, often emerging in
applications such as learning over large-scale graphs. In this
context, the present paper builds upon kernel-based learning
framework to introduce principled SeSu approaches. Specifically,
in lieu of the well-celebrated Representer theorem, this work
posits that the optimal function for addressing the downstream
problem resides in a Reproducing Kernel Hilbert space. The
proposed SeSu approach then learns ‘“low-dimensional” em-
beddings to approximate the feature map associated with the
optimal underlying kernel. By judiciously combining the learned
embeddings from multiple views of data, this paper demonstrates
that a wide range of downstream problems over graphs can be
efficiently solved. Numerical tests using synthetic and real graph
datasets showcase the merits of the proposed approach relative
to competing alternatives.

Index Terms—Self-supervised learning, kernel-based learning,
multi-view data, semi-supervised learning over graphs.

I. INTRODUCTION

Millions of connected devices and large-scale networks
continuously generate vast amounts of data. While this data
holds great promise for training deep neural network models,
a significant challenge arises from the fact that most of it
remains unlabeled due to the high costs of annotation. Tradi-
tional data analytics, while effective for small-scale datasets,
struggle to scale with such sheer volume and high dimension-
ality of data. This necessitates innovative approaches capable
of efficiently processing large-scale, high-dimensional, and
predominantly unlabeled data while maintaining affordable
computational complexity.

Self-supervised learning (SeSu) is an innovative paradigm
that addresses the challenges of limited labeled data by lever-
aging abundant unlabeled data and predefined reference mod-
els [11], [9]. Unlike traditional supervised learning, which de-
pends on costly and labor-intensive manual annotations, SeSu
utilizes unlabeled datasets to pre-train expressive feature ex-
tractors. These pre-trained models generate low-dimensional,
context-rich representations of the input data [11], [7], [18].
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The learned representations serve as a foundation for fine-
tuning lightweight models with affordable computation using
a minimal amount of labeled samples, enabling effective
learning in data-scarce scenarios.

Prior work. SeSu has recently demonstrated remarkable
success across diverse domains, including computer vision [4],
natural language processing [25], [5], and graph learning [8],
making it a promising approach for label-efficient and data-
driven solutions. Its abiligty to harness the wealth of unlabeled
data effectively positions SeSu as a key enabler for advancing
machine learning in a sample-efficient manner. Critical to
SeSu is the reference model selection, with recently popular
approaches including predicting masked data, such as in
auto-regressive masked language models [5] or bidirectional
ones [25], reconstructing input samples, or contrasting similar
and dissimilar data points as in the contrastive learning
paradigm [4]. Such approaches enable pre-trained models to
learn meaningful representations without explicit supervision.
Once pre-trained on these tasks, the learned representations
can be used and further fine-tuned with minimal labeled
data, significantly reducing the need to annotate samples.
Despite their remarkable success in pre-training [25], [5], [19],
most existing SeSu approaches remain heuristic, particularly
in specifying the reference model and leveraging unlabeled
data [7].

This paper builds on kernel-driven learning methods [23],
[12], [16], [21] to introduce principled SeSu algorithms with
enhanced prediction performance. Relative to prior art, our
contributions can be summarized as follows

o A novel kernel-driven SeSu approach is advocated to
fully leverage unlabeled data, and learn expressive em-
beddings during a pre-training step. The learned embed-
dings can be used to efficiently carry out a down-stream
learning task using only a few labeled data samples.

o An extended unified kernel-driven SeSu framework is
proposed for multi-view learning over graphs, treating
nodal features and the adjacency matrix as distinct but
complementary views of graph data.

o Numerical tests were conducted on synthetic and real
graph datasets, demonstrating significant performance
gains in prediction tasks, outperforming competing al-
ternatives.

II. SINGLE-VIEW SELF-SUPERVISED LEARNING

Consider a generic learning task over a graph G :=
{V,A, X} with vertex set V := {1,...,N} collecting N
Asilomar 2024
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nodes, and an N x N adjacency matrix A capturing the

node connectivity pattern, with a,, = A[:,n| representing
the adjacency of node n. The matrix X € RF*N captures
the F' x 1-dimensional nodal features, with x, = X[:,n]

representing the nodal feature on node n. The objective here
is to learn a real-valued function f : )V x X — R, where the
labels y,, per node obey the input-output relationship

Yn = fan,Xp) + €, Vn (1)

with ¢, denoting the observation noise; see [15], [24], [13],
[14]. For the time being, we assume f is only a function of
{a,}N_,, and we will revise the generic problem (1) while
incorporating nodal features {x,, }__, from a multi-view data
analysis perspective later.

The objective here is to perform a semi-supervised learning
task over the sought graph. That is, in the given graph,
the labels {y,}nco are given only for a small subset of
observed nodes, where O represents the index set of such
nodes, and U denotes the index set of unobserved ones.
Given a large unlabeled dataset {a,, },c;s and a small labeled
one {(an,¥Yn)}neco, , the task is to learn
an expressive function f as in (1). To address such ill-
posed problems, common remedies include regularization,
such as the Laplacian [3], or using graph neural networks
(GNNs) [10], [26] to propagate information from observed
to unobserved nodes. The former approach is challenged
in selecting appropriate regularization, while the latter fails
when features are unavailable. Here, we propose an alternative
method to address these issues, as outlined next.

A. Kernel-driven Self-Supervision

To formalize our approach, let f YV — R belong
to a reproducing kernel Hilbert space (RKHS), which is a
class of functions H := {f|f(a) = ZnN:1 apk(a,an)}
induced by a kernel x(a,a,) : RY x RY — R which
measures the similarity between any two node with their adja-
cency patterns a and a,,. Among possible choices, a popular
choice for x is the Gaussian kernel given by x(a,a,) :=
exp [—[la — a,||3/(20?)] with width o. A kernel is reproduc-
ing if it satisfies (k(a, ), k(an, ))n = k(a,a, ), which in turn
induces the RKHS norm || f[|3, := 3", 3, anan k(an, ay).
Having f € H, the objective is to learn f by solving

mmzc (an),wm) + 22 ([1£15,) @)

where £(-) is the loss, and the regularizer {(-) is an increasing
function, with hyperparameter A > 0 that controls overfitting.
A pitfall of the learning task in (2) is that it falls short of lever-
aging abundant unlabeled data {a, },cy. The typical remedy
for solving (2) is to invoke the Representer theorem to find a
simple finite-dimensional closed-form optimal solution [22]

= Z ank(a,a,) = a'k(a) (3)

neO

where a = [a1,...,q0)]7 € Rl collects the learn-
able coefficients, and the |O] x 1 kernel vector is rep-
resented by k(a) = [k(a,a1),...,k(a,a0))]" . Subst-
tuting (2) into the RKHS norm, we obtain |f||3, :=

yzef Rref ( )

—>| Reference SeSu model

an encoder-decoder learnable model q
E( ref )
Encoder Decoder Yn 7yn
eenc - odec ?’n
v
P(am aenc)

Fig. 1: Kernel-driven (reference) Self-supervision.

S 3 anank(an, a,) = o Ko where the |O] x |O]
kernel matrix K has entries [K], ,» = r(an,a, ). Using
this, our problem boils down to the following one over

ﬁ(aTk(an),yn) + )\Q(aTKa) 4)

where kT (a,,) is the nth row of the matrix K. While a scalar
Yn, 1s used here for brevity, coverage extends readily to vectors
{yn}ﬁl:l'

The learning task formulated under (4) has certain limita-
tions. The main drawback is that it relies solely on labeled
data samples, requires a pre-selected kernel function x, and
assumes data pairs {a,, yn fnco are available in batch form.
Additionally, the dimension of the learnable parameter o
grows with |O|, where the computational complexity required
to solve this is often prohibitive, scaling with |O]3. These
challenges necessitate the development of efficient, scalable,
and adaptive methods capable of operating effectively in
dynamic environments, particularly in contexts involving large
graphs with partially labeled or even completely unlabeled
data. Addressing these limitations could offer the full potential
of kernel-based methods for broader applications, including
those of online learning, semi-supervised graph inference, and
real-time decision-making over complex networks.

To address these challenges, we reformulate the functional
learning problem in (2) as a parametric one, ensuring that
the dimensionality of the optimization variables remains fixed
regardless of the number of available samples. More impor-
tantly, the proposed approach effectively leverages all avail-
able unlabeled data, thereby enhancing overall performance.
Our novel reformulation allows us to leverage powerful tools
from convex optimization and online learning in vector spaces,
facilitating efficient and scalable solutions.

To fully leveraging the abundant unlabeled data, we build
our approach on SeSu learning, to pre-train a generalizable
feature extractor, that can be fine-tuned later using only a
few labeled samples. Our novel approach advocates a two-
step learning process, including a pre-training step, followed
by fine-tuning. Critical to our proposed kernel-driven SeSu
framework pre-training step, where an encoder with weights
Ocnc and a decoder with weights @4, are pre-trained using
only unlabeled data {a,, },cy; see Fig. 1 for an illustration.
The key here is the user-specified reference model R™(-),
which synthetically generates “pseudo-labels” for the unla-
beled data as y™ := R™(a,), for n € U. The output of
the decoder, y,,, aims to reconstruct the pseudo-label given
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its input p(a,;0emc) € RY(d < |O|), which is a low-
dimensional embedding for the input a,, generated by the
encoder. The encoder-decoder architecture is trained end-to-
end using back-propagation via the least-squares reconstruc-
tion 1oss £(Benc, Ogec) = ZnGZ/{U(’) 91 (Benc, Baec) — yis' 13-

Remark 1. Although SeSu leverages unlabeled data, it can
also incorporate labeled data during pre-training. Hence, the
reconstruction loss above considers the union of the unlabeled
set U and labeled set O to utilize all available information.

This work advocates a kernel-driven reference model where
R™(a) := [k(a,a1),...,k(a,ap)] which guides the pre-
training process. Such a reference model offers all the benefits
of kernel-based learning [20], [23], [22]. In practice, however,
the dimensionality of the kernel-driven R™!(a) € RI*!*1 can
be prohibitive when |U/| > 1. To address this challenge, a
remedy is to sample a subset S := {ags),...,a‘(?l} from
{an}neu, thereby reducing the dimensionality to R™(a) =
[k(a, ags)), .., k(a, a‘(‘sg))] € RIS with |S| < |U|. The
intuition here is that the kernel-driven reference model R™'(a)
produces embeddings that provide non-linear approximations
of the kernel, that is

H(anv an’) ~ PT (an§ Genc)p(an’ ) eenc) (5)

which provides more expressive feature representations com-
pared to e.g., random features (RF) [20], [23], and accom-
modates a broader class of kernels, beyond shift-invariant
ones. Here, p(a,f..) € R? is a learned low-dimensional
parametric embedding of input a, with associated encoder
weights Bc,., which is trained using unlabeled data and
preselected reference model R™!(-). This allows for learning
a reduced-dimensional model f in the transformed feature
space, resulting in more sample-efficient learning procedures.
Compared with alternatives [25], [4], [7], [8], the kernel-
driven SeSu can learn a function with certain optimality
guarantees as we shall see later. Leveraging the encoder with
pre-trained @¢,., one can obtain the following linear function
approximant

f(a) = Z an“(av an) ~ Z OanT (a§ aenc)p(an; aenc)

neO neO
= eTp(a§ b\enc)~ (6)

where the d-dimensional 6 := }_ ., anp(an;aenc) is the
weighted sum of parametric embeddings of labeled data.
Instead of directly finding {,, },c0, We rely on the parameter
vector 8 = > o anp(an;Oenc), which transforms the
learning problem from the |O|-dimensional space of {, } neo
to the reduced d-dimensional space of & € R?. Having the
linear function approximant in (6), one can readily fine-tune
the function with a small labeled data set, even arriving on-the-
fly using e.g., online gradient descent. This online processing
is especially attractive for time-sensitive applications.

The proposed kernel-driven SeSu learning approach offers
several advantages; namely the dimensionality d is a tunable
hyperparameter that can even be smaller than |O|, enabling
significant computational savings. The encoder, parameterized
by .., effectively leverages unlabeled data to estimate the
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Fig. 2: Multi-view Kernel-driven SeSu.

pre-selected kernel, enriching the model’s ability to gen-
eralize. Finally, by operating in the embedding space, the
computational complexity is reduced from O(|O|3) to O(d?),
making the approach scalable to large datasets.

Upon leveraging the pre-trained encoder 6., and the
learned embeddings, the main downstream regressor can be
efficiently learned by solving the following optimization prob-
lem

—~ 2
* L : T .
6" = argm;n;g(yn 07 pla; Bunc) ) +AQ0), ()

where 6 is the aggregated weight vector — to be learned from
sampled data, defined as @ = 3, anp(an; Oenc), and Q(0)
is a regularization term, such as ||@||3 or ||@||;. This step, also
referred to as fine-tuning, requires only a few labeled data
samples, resulting in a sample-efficient learning framework.
The proposed two-step pre-training and fine-tuning kernel-
driven learning approach demonstrates the synergy between
self-supervision and kernel methods, offering a computa-
tionally efficient yet flexible framework for regression and
other learning tasks. By leveraging the learned embeddings,
the model achieves both scalability and adaptability when
handling graph-structured or high-dimensional data.

III. MULTI-VIEW SELF-SUPERVISED LEARNING

Multi-view data, often collected from different transforma-
tions of a shared signal, are common in various applications.
In the problem under consideration, the adjacency matrix A
and the feature matrix X can naturally be interpreted as mul-
tiple views of a shared embedding space. The former captures
the adjacency information encoding the relationships among
nodes, while the latter represents the features associated with
the nodes themselves. To address such multi-view data, one
approach is to construct a second graph with adjacency
matrix A(®), where the edge between any nodes n and n/
is determined based on the partial correlation between their
corresponding feature vectors x,, and X,. Partial correlation
is employed as a similarity measure between nodes due to its
intuitive appeal and demonstrated effectiveness across vari-
ous applications. By leveraging (partial) correlations between
features x, and x,/, and incorporating hypothesis testing,
this method facilitates the construction of a distinct graph to
capture relationships among the node features [6].

To formalize learning from such multi-view data, consider
a generic setup with v = 1,---,V views of data, each
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n=
objective is to learn per-view embeddings {p*) (an”); 0{“))}
foralln =1,---, N nodes. The embedding for each node is
shared across all views; that is, for a given node n, it holds

that p)(al; (%)) = p,,. Vv.

To learn the shared embedding across all views, we employ
a dictionary of kernels {x()}V_,, representing a set of
reference SeSu models, one for each view. We further rely
on separate learnable parametric encoders and decoders per
view, denoted by {68)}V_, and {6\")}V_,, respectively; see
Fig. 2 for an illustration.

Once the encoders and decoders are pre-trained using un-
labeled data, one can estimate the function using labeled data
samples as f(a; o) = Yneconp' (@)p, == p'(a)f, where
p(a) is the shared embedding for the node with adjacency a.

consisting of distinct features denoted by {agf) N %,Vu. The

Remark 2. Instead of using a shared embedding across all
the views, one can alternatively assign separate embeddings
for each view, denoted as {pﬁf’ l‘,/zl for each node n. These
embeddings can then be concatenated to form the embedding

of node n as p,, := [p4) - ptYT.

IV. NUMERICAL TESTS

To assess the performance of our proposed approach we
used synthetic and real graph datasets. For the former we
used a synthetic graph consisting of N = 60 nodes, con-
structed using the stochastic block model (SBM) comprising
10 communities; see [18], [17] for further details. The nodal
value of node n is given by the n-th entry of the eigenvector
corresponding to the lowest nonzero eigenvalue of the graph
Laplacian

L :=diag(Aly) — A,

with 1, denoting an N x 1 vector of all ones, the number of
observed nodes is |O] = 10, and the number of unobserved
(test) nodes is |U| = 50. For the real dataset, we used the
Network Delays dataset, where a graph with N = 70 nodes
is constructed. The nodes represent paths connecting two of
the 9 end-nodes on the Internet2 backbone, and the edges
represent the shared links between any two paths [2]. The
{yn }N_, are the measured delays on these paths. The number
of observed nodes is |O| = 15, and the number of unobserved
ones is |U| = 55.

The last dataset considered is the Temperature Stations
dataset, where a graph with N = 109 nodes is constructed.
The nodes represent weather stations across the US, and
the edge weights correspond to the geographic distances
between them [1]. Nodal values {y,, })_; are the temperature
measurements across the stations. Only |O| = 15 measured
temperatures are available, while |/| = 94 temperatures are
to be predicted.

We begin by evaluating the single-view SeSu learning
against a set of benchmarks. Given that our method inherently
focuses on dimensionality reduction, we first compare its
performance with kernel-based Principal Component Analysis
(Kernel-PCA) and an autoencoder (AE) approach. For the
main learning task, benchmarks are conducted using linear
regression. Additionally, two neural network configurations

Dataset Kernel PCA  Autoencoder SeSu

Synthetic SBM 0.3595 0.0207 0.0185
Temperature 3.0075 0.0781 0.0472
Network Delays 0.2232 0.1321 0.0897

TABLE I: NMSE comparison across datasets for Kernel PCA,
Autoencoder, and single-view SeSu learning.

Dataset RF SeSu Multi-view SeSu
Synthetic SBM 0.0942 0.0185 0.0164
Temperature 0.2175  0.0472 0.0454
Network Delays  0.0942  0.0897 0.0484

TABLE II: NMSE comparison across datasets for RF based
method and (multi-view) Kernel-driven SeSu.

are considered for encoder-decoder architecture, where the
encoder is a l-layer neural network with d = 15 neurons
for the SBM dataset, d = 10 for the temperature dataset,
and d = 4 for the network delay dataset, and the decoder,
another 1-layer neural network with d = 60 neurons for
the SBM dataset, d = 109 for the temperature dataset, and
d = 70 for the network delay dataset. The metric used in
our evaluation is the normalized mean square error (NMSE),

defined as NMSE = w where y,, represents
the ground truth value and g)'fudéhotes the predicted values.
This metric ensures that the error is normalized by the magni-
tude of the true signal, allowing for meaningful comparisons
across datasets. For a fair comparison, we used a radial basis
function (RBF) kernel for all (multi-view) SeSu and kernel-
PCA approaches, with the width parameter o set before hand.
Table I reports the NMSE of the proposed method compared
with alternative approaches across all datasets. Evidently, the
single-view kernel-driven SeS algorithm outperforms both
Kernel-PCA and autoencoders, delivering at least an order of
magnitude improvement over Kernel-PCA.

To further compare our method, we also considered Ran-
dom Features (RF)-based learning as another benchmark, as
it provides an efficient mechanism to approximate kernel
functions, as introduced by [20]. The RF approach carries
over all the benefits of our method, including reducing the
dimensionality of input features, which helps to deal with
computational complexities along with the parametric coun-
terpart of kernel-based learning.

The RF approach capitalizes on d/2 (where d is even)
random vectors v; sampled from the Fourier transform of
the kernel’s probability distribution, 7(v) = F(k), where
i =1,...,d/2, to find the embeddings of the input data.
Using these random vectors, an embedding for the input data
(also known as a random feature) vector of dimension d x 1
is constructed as

1

Pyt (ag) = m

sin(v] a,),cos(v] a,), ...,

.
sin(v;—/zan),cos(v;ﬂan) .®

This RF vector p2F (a,,) can be used as a linear approxima-
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tion of the kernel — similar to what we proposed in (5)

"%(any an’) ~ pxP}F(an>Tp\l:r{F(an’)

While the RF method is computationally efficient and scal-
able, it critically relies on the quality of the drawn random
samples {Vi}?ii for kernel approximation. In addition, RF
method does not leverage abundant available unlabeled data.
In contrast, our proposed approach avoids direct feature
mapping and instead leverages a learnable framework that
can adaptively infer embeddings, often resulting in improved
performance for tasks involving structured data.

The results comparing the RF method with the single-view
kernel-driven SeSu are reported in Table II. Clearly, SeSu
offers enhanced performance by leveraging unlabeled data
samples to learn the embeddings.

Multi-view Data and Its Usage

Multi-view data offers a comprehensive representation by
leveraging multiple perspectives of the same dataset. To assess
the performance of our proposed multi-view kernel-driven
SeSu learning, we utilized two distinct views of the data. The
first is derived from the adjacencies {a,,}2_;, which capture
the relational structure among nodes, and the second comes
from the features {x,}N_,, representing the node-specific
attributes. For the features, we employed a separate kernel
to process the data, as illustrated in Figure 2. The embedding
dimensions used in our experiments are d = 30 for the SBM
dataset, d = 20 for the temperature dataset, and d = 8 for the
network delay dataset.

The results of this multi-view embedding approach are
summarized in the last column of Table II. Notably, leveraging
the additional view, derived from the features {x,})_,,
consistently reduces the NMSE across all datasets. This high-
lights the importance of incorporating node features alongside
adjacency information to improve predictive performance and
representation quality.

V. CONCLUSION

We propose a novel SeSu learning framework that builds on
kernel-based learning to handle multi-view graph-structured
data. By treating nodal features and the adjacency matrix as
distinct views of a shared embedding, our approach effectively
leverages multiple data views. A key advantage of the method
is its ability to utilize unlabeled data, enabling improved per-
formance. Numerical tests demonstrate significant improve-
ments in predictive tasks, surpassing competing alternatives.
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