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ABSTRACT

Fairness plays a crucial role in various multi-agent systems (e.g., communication
networks, financial markets, etc.). Many multi-agent dynamical interactions can
be cast as Markov Decision Processes (MDPs). While existing research has fo-
cused on studying fairness in known environments, provably efficient exploration
of fairness in such systems for unknown environments remains open. In this paper,
we propose a Reinforcement Learning (RL) approach to achieve fairness in multi-
agent finite-horizon episodic MDPs. Instead of maximizing the sum of individual
agents’ value functions, we introduce a fairness function that ensures equitable
rewards across agents. Since the classical Bellman’s equation does not hold when
the sum of individual value functions is not maximized, we cannot use traditional
approaches. Instead, in order to explore, we maintain a confidence bound of the
unknown environment and then propose an online convex optimization based ap-
proach to obtain a policy constrained to this confidence region. We show that such
an approach achieves sub-linear regret in terms of the number of episodes. Addi-
tionally, we provide a probably approximately correct (PAC) guarantee based on
the obtained regret bound. We also propose an offline RL algorithm and bound
the optimality gap with respect to the optimal fair solution. To mitigate com-
putational complexity, we introduce a policy-gradient type method for the fair
objective. Simulation experiments also demonstrate the efficacy of our approach.

1 INTRODUCTION

In classical Markov Decision Processes (MDPs), the primary objective is to find a policy that max-
imizes the reward obtained by a single agent over the course of an episode. However, in numerous
real-world applications, decisions made by an agent can have an impact on multiple agents or enti-
ties. For instance, in a wireless network scenario, each device aims to maximize its own throughput
by increasing its transmission power. However, higher transmission power can lead to interference
issues for neighboring terminals. Similarly, consider a situation where two jobs are competing for
a single machine; selecting one job results in a penalty or delay for the other job. The sequential
decision-making process as in the above examples can be cast as a multi-agent episodic MDP where
the central decision-maker seeks to obtain the best policy for multiple users or agents over a time
horizon. Each user or agent achieves a reward (potentially different) based on the state and action.

Before delving into the concept of an optimal policy, it is necessary to address what constitutes an
optimal policy in the given context. While a particular policy may be good for one agent, it may
not be the best choice for another agent. A naive approach could be to maximize the aggregate
value functions across all agents, thereby reducing the problem to a classical MDP. However, such
an approach may not be considered “fair” for all agents involved. To illustrate this, consider a
scenario where two jobs are competing for a single machine. If one job offers a higher reward, a

1



Published as a conference paper at ICLR 2024

central controller that focuses solely on maximizing the aggregate reward may allocate the machine
exclusively to the job with the higher reward, causing the job with the lower reward to remain in a
waiting state indefinitely. In this paper, our objective is to identify fair decision-making strategies
for multi-agent MDP problems, ensuring that all agents are treated equitably.

Drawing inspiration from well-known fairness principles (Arrow, 1965; Pratt, 1978; Atkinson et al.,
1970), we establish a formalization of fairness as a function of the individual value function of
agents. Specifically, we concentrate on α-fairness, which encompasses both egalitarian or max-min
fairness (when α → ∞) and proportional fairness (when α = 1). The parameter α allows us to
adjust the level of fairness desired. To illustrate this concept, let’s consider our example of two
jobs with different rewards competing for the same machine. Proportional fairness dictates that the
machine should be accessed with equal probability by both the low-reward and high-reward jobs.
Conversely, max-min fairness suggests that the job with the higher reward should access the machine
with a probability that is inversely proportional to its reward.

In this work, we seek to determine the policy that maximizes the α-fairness value of the individual
value functions of an MDP. Considering that the knowledge of the environment is usually unknown
beforehand in real-world applications, we consider a Reinforcement Learning (RL)-based approach.
However, a significant challenge of non-linearity arises since the central controller is not optimizing
the sum of the individual value functions, rendering the classical Bellman equation inapplicable.
Consequently, conventional techniques such as value-iteration-based or policy-gradient-based ap-
proaches cannot be directly employed. To evaluate an online algorithm, regret is a widely used met-
ric that measures the cumulative performance gap between the online solution in each episode and
the optimal solution. While there are algorithms that provide good empirical performance, they do
not provide any regret guarantee. Therefore, we aim to develop an algorithm that exhibits sub-linear
regret with respect to the α-fair solution. Further, since generating new data is costly or impossible
for some applications, we also seek to develop a provably-efficient offline fair RL algorithm, i.e., an
algorithm that requires no real-time new data. In short, we seek to answer–

Can we attain a fair RL algorithm with sub-linear regret for multi-agent MDP? Can we develop a
provably-efficient fair offline RL algorithm?

Our Contributions: We summarize our contributions in the following:

• We show that our proposed algorithm achieves Õ
(

CF (H2NS
√
AK)

)

regret where H is the

length of the horizon of each episode, S is the cardinality of state space, A is the cardinality
of the action space, and K is the number of episodes. CF is a parameter determined by the
types/parameters of the fairness function.

• This is the first sub-linear regret bound for the α-fairness function in MDP. We achieve the result
by proposing an optimism-based convex optimization framework using state-action occupancy
measures. In our algorithm, we use confidence bounds to quantify the error of the estimated
reward and transition probability, with which we relax the constraints on possible values of the
state-action occupancy measures to encourage exploration. With any convex optimization solver,
our proposed algorithm can be solved efficiently in polynomial time. In order to address large
state-space problems, we also develop an efficient policy-gradient-based approach that caters to
the function approximation setup.

• We also propose a pessimistic version of the optimization problem and establish the theoretical
guarantees for the offline fair RL setup. In particular, we construct an MDP with a reward function
based on the available data such that the value function of the constructed MDP is a lower bound
of the actual value function for the same policy with high probability. The policy is obtained by
solving the convex optimization problem using the occupancy measure on the constructed MDP.
We show that the sub-optimality gap of our policy depends on the intrinsic uncertainty multiplied
by CF . This is the first result with a theoretical bound for the offline fair RL setup.

2 RELATED WORK

Fairness in resource allocation: Fairness in traditional resource allocation setup has been well
studied (Mo & Walrand, 2000; Kelly et al., 1998; Lin et al., 2006). RL-based fair resource alloca-
tion decision-making has also been considered for resource allocation (Chen et al., 2021; Hao et al.,
2023; Jain et al., 2017; Cui et al., 2019). However, theoretical guarantees have not been provided.
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Fairness in MDP/RL: Joseph et al. (2016); Liu et al. (2017) considered individual fairness cri-
terion which stipulates that an RL system should make similar decisions for similar individuals.
Huang et al. (2022); Schumann et al. (2019); Wen et al. (2021) considered a group fairness notion
where the main focus is on policy is fair to a group of users (refer to Gajane et al. (2022) for details).
Jiang & Lu (2019) proposed an approach where they perturbed the reward to make it fair across the
users. In contrast to the above, our setup is different as we seek to achieve fairness in terms of value
functions (i.e., long-term return) of different agents.

Hossain et al. (2021); Bistritz et al. (2020); Barman et al. (2022); Patil et al. (2021) considered Nash
social welfare (or, proportional fairness) and other fairness notions in multi-armed bandit setup.
Do et al. (2022) also considered fairness in the contextual bandit setup. However, we consider an
RL setup instead of a bandit setup. The algorithms designed for bandit setup can not be readily
extended to the MDP setup. Further, we consider the generic α fairness concept rather than the
proportional-fairness concept. Zimmer et al. (2021); Siddique et al. (2020) considered α-fairness
and Gini social welfare metrics. However, the regret bounds have not been provided there. Finally,
we provide a fair algorithm in an offline RL setup, which has not been considered in most of the RL
literature.

The closest to our work is Mandal & Gan (2022) which adopted a welfare-based axiomatic ap-
proach and showed regret bound for Nash social welfare, and max-min fairness. In contrast, we
considered the α-based fairness metric and showed regret bound for the generic value of α. Unlike
in Mandal & Gan (2022), our approach admits efficient computation. Further, we provided the PAC
guarantee and developed an algorithm for offline fair RL with a theoretical guarantee. Finally, we
also developed a policy-gradient-based algorithm that is applicable to large state space as well.

Convex and multi-objective MDP: Cheung (2019) obtained regret bound for a specific non-linear
function of the objectives. Tarbouriech et al. (2020) considered an MDP setup with a convex objec-
tive for infinite-horizon setup. Brantley et al. (2020) considered an episodic MDP setting where the
objective is to maximize a concave function of an individual value function. Unlike all the above
works, we consider a setup where the objective is to achieve fairness among multiple agents. Natu-
rally, the above papers did not consider the effect of various fairness metrics on the agents. Further,
the proof techniques and algorithms also rely on the Lipschitz property, however, the fairness func-
tion may not be Lipschitz (e.g., α fairness), hence, the proof techniques and the regret bound are also
different. Furthermore, we consider offline setup unlike all the above papers. For detailed literature
review, please see Appendix A.

3 BACKGROUND: TYPES OF FAIRNESS IN RESOURCE ALLOCATION

Fairness in resource allocation in multi-agent systems (especially in networks) has been extensively
studied (Lin & Shroff, 2005; 2004; Eryilmaz & Srikant, 2007; Neely et al., 2008). Specifically, in
resource allocation, a feasible solution is any vector x := [x1 x2 · · · xN ] ∈ F ⊆ RN

+ where N de-
notes the number of agents, xi denotes the allocated resource to each agent, and F denotes a feasible
set determined by some constraints. A fair objective is to allocate resources while maintaining some
kind of fairness. As described in Mo & Walrand (2000), the following are some standard definitions
of fairness.

Proportional Fairness: A solution x∗ is proportional fair when it is feasible and for any other
feasible solution x ∈ F , the aggregate of proportional change is non-positive:

∑N
i=1

xi−x∗
i

x∗
i
≤ 0. (1)

In particular, for all other allocations, the sum of proportional rate changes with respect to x∗ is
non-positive. Proportional fairness is widely used in network applications such as scheduling.

Max-min fairness: Max-min fairness wants to get a feasible solution that maximizes the minimum
resources of all agents, i.e., maxx∈F mini xi. For this solution, no agent can get more resources
without sacrificing another agent’s resources.

(p,α)-proportional fairness: Let p = (p1, · · · , pN ) and α be positive numbers. A solution x∗ is
(p,α)-proportionally fair when it is feasible and for any other feasible solution x ∈ F , we have

∑N
i=1 pi

xi−x∗
i

x∗
i
α ≤ 0. (2)
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When p = (1, · · · , 1) and α = 1, Eq. (2) reduces to Eq. (1), i.e., the proportionally fair solution.
Besides, by Corollary 2 of Mo & Walrand (2000), the solution of (p,α)-proportional fair approaches
the one of max-min fair as α → ∞. By Lemma 2 of Mo & Walrand (2000), the solution that
achieves (p,α)-proportional fairness can be solved by

max
x

∑

i

pifα(xi), where fα(x) =

{

log x, if α = 1
(1− α)−1x1−α, other positive α.

When pi = 1 for all i, we denote that by α-fairness in short, which is widely studied in the network-
ing literature (Lan et al., 2010). Note that fα is a monotonic increasing function, and concave.

4 SYSTEM MODEL

Multi-agent Finite Horizon MDPs. Let M = (N,S,A, r, p, s1, H) be the finite-horizon MDP,
where N denotes the number of agents, A denotes the action space with cardinality A, S denotes
the state space with cardinality S, and H is a positive integer that denotes the horizon length. At
time h = 1, 2, · · · , H , we let rh,(i)(s, a) denote the non-stationary immediate reward for the i-th
agent when action is a ∈ A at state s ∈ S . The transition probability is denoted by ph(s′|s, a).
Note that this setup can be easily extended to the scenario where agents are also part of the MDP by
letting A denote the joint action space of all agents.

4.1 VALUE FUNCTION AND FAIRNESS

The state-action value function of agent i is defined as

Qπ
h,(i)(s, a) := rh,(i)(s, a) + E

[
H
∑

l=h+1

rl,(i)(sl, al)|sh = s, ah = a,ε, p
]

.

The i-th agent’s value function is defined as V π
h,(i)(s) :=

∑

a∈A εh(a|s)Qπ
h,(i)(s, a).

To achieve fairness among each agent’s return, we optimize a different global value function (instead
of V π,sum

1 (s) that sums up each agent’s return):

V π,F
1 (s) := F (V π

1,(1)(s), V
π
1,(2)(s), · · · , V

π
1,(N)(s)), (3)

where F is some function of every agent’s return that can be chosen for fairness. Similar to the
fairness objective used in resource allocation literature (Mo & Walrand, 2000), we consider the fol-
lowing three possible options of F :

Fmax-min = min{V π
1,(1)(s), V

π
1,(2)(s), · · · , V

π
1,(N)(s)} (max-min fairness), (4)

Fproportional =
∑N

i=1 log V
π
1,(i)(s) (proportional fairness), (5)

Fα =
∑N

i=1
1

1−αV
π
1,(i)(s)

1−α
(α fairness where α > 0), (6)

Note that we have adopted the α-fairness in resource allocation to the α-fairness in value functions
across the agents. Chen et al. (2021) also formalized fairness among value functions in network
applications. Recently, Zhang et al. (2022) also adopted α-fairness to federated learning setup. In

the rest of this paper, we sometimes remove the superscript F in V π,F
1 (s) for ease of notation.

Remarks and Connections: From (1), maximizing proportional fairness in the value function
means that the average relative value function is maximized. In particular, at any other policy, the
average relative value function across the agents would be reduced compared to the proportionally
fair maximizing policy. Hossain et al. (2021); Mandal & Gan (2022) maximize the product (contrast

to the sum) of each agent’s value function
∏N

i=1 V
π
1,(i)(s) (also, known as Nash social welfare). By

taking the logarithm on the product, it is equivalent to Fproportional (Kelly, 1997) in Eq. (5) in our case.
Mandal & Gan (2022) has a regret bound for Nash social welfare. Even though the proportional-
fair solution is Nash social welfare solution, the regret bound for the Nash social welfare and for
the proportional fair case is not comparable. For example, their bound scales O(HN ), whereas our
regret bound scales as O(NH2) (shown later in this paper). The proof technique is also different.
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When α = 0, we recover the utilitarian social welfare where the objective is to maximize the sum
of the value functions. On the other hand, α =∞ refers to max-min fairness in value functions. By
tuning α, one can achieve different fairness metrics.

Social Impact: One can view different types of fairness as achieving different goals in society. For
example, max-min fairness aims to make decisions that are beneficial to the weakest users.

4.2 PERFORMANCE EVALUATION

Define the optimal fair value function corresponding to the optimal policy as

V ∗
1 (s) = supπ V

π
1 (s).

The central controller does not know either the probability or the rewards. Rather, it selects a policy
εk for k ∈ [K] episode. Without loss of generality, we assume that the initial state s1 for all episodes
is the same and fixed. If the initial state s1 is drawn from some distribution, then we can construct an
artificial initial state s0 that is fixed for all episodes, and the distribution of the actual initial state s1
determines the transition probability p0(s1|s0, a). We consider the bandit-feedback setup, i.e., the
central controller can only observe the rewards (of all the agents) corresponding to the encountered
state-action pair (Agarwal et al., 2011; Dani et al., 2008). We assume the following for the reward:

Assumption 1. The noisy observation of the immediate reward is a random variable r̂h,(i)(s, a),
which is in the range [ ε

H , 1] almost surely where ε is some positive real number. The mean value of
the noisy observation is equal to the true immediate reward, i.e., E r̂h,(i)(s, a) = rh,(i)(s, a).

Remark 1. We need r̂ ≥ ε
H because this guarantee V π

1,(i)(s1) ≥ ε > 0 which ensures that Eqs. (5)

and (6) are finite. Also, this makes the functions Lipschitz continuous everywhere. We characterize
the impact of ε on the regret/suboptimality bound in Theorem 1.

We are interested in minimizing the regret Reg(K) over finite time horizon K, given by

Reg(K) :=
∑K

k=1 (V
∗
1 (s1)− V πk

1 (s1)) .

The regret characterizes the cumulative sum of the difference at each episode k = 1, 2, · · · ,K
between the fair value function and the optimal fair value function.

5 ONLINE FAIR MARL

5.1 OPTIMAL POLICY WITH COMPLETE INFORMATION

Before we characterize the algorithm when the MDP parameters are unknown, we start from the
ideal situation where all parameters of the MDP are known, i.e., complete information. The insight
will help us to develop an algorithm for the challenging scenario when the parameters are unknown.

For the classical objective that maximizes the sum of all agents’ returns, the optimal return and
policy can be efficiently calculated by backward induction that utilizes the Bellman equation, i.e,

V ∗,sum
h (s) = maxa∈A

{
∑N

i=1 rh,(i)(s, a) +
∑

s′∈S ph(s′|s, a)V ∗,sum
h+1 (s′)

}

, (7)

where V ∗,sum
H+1 (s) = 0 for all s ∈ S . The reason for Eq. (7) is that maximize

∑N
i=1 V

π
h,(i)(s) is

equivalent to solving another single-agent MDP with immediate reward equal to
∑N

i=1 rh,(i)(s, a).

In contrast, such a convenience no longer exists for the fairness objective since Eq. (7) relies on the
linearity of V π,sum

h (s) w.r.t. V π
h,(i)(s). To solve this problem, we alternatively use an occupancy-

measure-based approach which is inspired by Efroni et al. (2020). Define the occupancy measure

qπh(s, a; p) := Pr{sh = s, ah = a | s1, p,ε}. (8)

The occupancy measure defined by Eq. (8) represents the frequency of the appearance for each
state-action pair under the policy ε on the environment transition probability p. We will omit p in
the notation qπh(s, a; p) when the context is clear.

With this definition, each agent’s return can be written as a linear function w.r.t. qπh(s, a), i.e.,

V π
1,(i)(s1) =

∑

s,a,h rh,(i)(s, a) · qπh(s, a). (9)
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Then we can solve a convex optimization of q (we use [·]i=1,2,··· ,N to denote N inputs of F (·)):

max
q∈Q

F

(
[
∑

s,a,h rh,(i)(s, a) · qπh(s, a)
]

i=1,2,··· ,N

)

(i.e., maxq∈Q V π,F
1 (s1)), (10)

where Q is a set of linear constraints on q to make sure q is a legit occupancy measure with the tran-
sition probability p and initial state s1 (details in Appendix C). Since (10) is a convex optimization
(proof in Lemma 6 in Appendix B), and thus can be solved efficiently in polynomial time. After we

get the occupancy measure q, the corresponding policy can be calculated by εh(a|s) = qh(s,a)∑
a′ qh(s,a′) .

5.2 ONLINE ALGORITHM WITH UNKNOWN ENVIRONMENT

To construct an online algorithm under the bandit-feedback, a straightforward idea is using the
empirical average p̄, r̄ (precisely defined in Eqs. (31) and (30) in Appendix C) of the unknown
transition probability p and reward r to replace the precise ones in (10). Due to the imprecision
of the empirical average, a common strategy is to introduce some confidence interval to balance
exploration and exploitation as done in Efroni et al. (2020). Here we briefly show the algorithm.
More details are in Appendix C.

Define the confidence interval for pk−1
h (s′|s, a) as βp

h,k(s, a, s
′) such that

∣
∣pk−1

h (s′|s, a)− p̃h(s
′|s, a)

∣
∣ ≤ βp

h,k(s, a, s
′), for all h ∈ [H − 1], s, s′ ∈ S, a ∈ A. (11)

Define the confidence interval for rk−1
h,(i)(s, a) as βr

h,k(s, a) such that
∣
∣
∣r̃h,(i)(s, a)− rk−1

h,(i)(s, a)
∣
∣
∣ ≤ βr

h,k(s, a), for all i ∈ [N ], h ∈ [H], s ∈ S, a ∈ A. (12)

After we get the confidence interval at the h-th step during the k-th iteration, we solve the following
extended convex optimization:

max
z∈Z

F

(
[
∑

s,a,h,s′

(

rk−1
h,(i)(s, a) + βr

h,k(s, a)
)

· zh(s, a, s′)
]

i=1,2,··· ,N

)

, (13)

where Z is a set of constraints that ensures z is a legit state-action-next-state occupancy measure
given initial state s1 (characterized by the set of probable transition probabilities, see Appendix C).

Once we have solved z, we can recover the policy by εk,h(a|s) =
∑

s′ zh(s,a,s
′)∑

a′,s′ zh(s,a
′,s′) . The whole

algorithm is summarized in Algorithm 1. Mandal & Gan (2022) developed an algorithm using the
state-action occupancy measure. However, the algorithm in Mandal & Gan (2022) relies on an op-
timization problem with infinite variables, which does not always have a polynomial solver. In
contrast, our approach requires only finite variables and is more efficient.

Algorithm 1 Online FairMARL

1: for k = 1, 2, · · · ,K do

2: Calculate the empirical average pk−1
h (s′|s, a), and rk−1

h,(i)(s, a).

3: Calculate the confidence intervals βp
h,k(s, a, s

′) and βr
h,k(s, a).

4: Compute policy εk by solving (13).
5: Execute the policy εk.
6: end for

Theorem 1. With probability 1− δ, we have

Reg(K) = CF ·
(

Õ(H2NS
√
AK) + Õ(HN2S3/2A) + Õ(H2NS2A)

)

,

where CF is a constant determined by the type of fairness. Specifically,

CF =







ε−α when F = Fα (α fairness)

ε−1 when F = Fproportional (proportional fairness)

1/N when F = Fmax-min (max-min fairness)

.

The notation Õ(·) ignores logarithm terms (such as log 1
δ ).
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Proof of Theorem 1 is in Appendix C. Here we provide a proof outline:

First, for the optimism choice of q (i.e., εk), r̃, p̃, we have V πk

1 (s1; r̃, p̃) ≥ V ∗
1 (s1; r, p) when

r, p ∈ Mk (which happens with high probability). By the montonocity property of F (·), we thus

have
∑K

k=1

(

V ∗,F
1 (s1)− V πk,F

1 (s1)
)

≤
∑K

k=1

(

V πk,F
1 (s1; r̃, p̃)− V πk,F

1 (s1; r, p)
)

.

Next, we need to bound V πk,F
1 (s1; r̃, p̃) − V πk,F

1 (s1; r, p). However, unlike the tra-
ditional techniques, we can not use the standard value-difference lemma to bound the
above as the Bellman’s equation does not hold. Rather, we obtain the bound in two

steps. First, we bound the above by CF
∑N

i=1

∣
∣
∣V πk

1,(i)(s1; r̃, p̃)− V πk

1,(i)(s1; r, p)
∣
∣
∣ or by CF ·

N maxi∈[N ]

∣
∣
∣V πk

1,(i)(s1; r̃, p̃)− V πk

1,(i)(s1; r, p)
∣
∣
∣. The value of CF is determined by the Lipchitz con-

stant of the fairness objective function F or the property of the max-min operator. Then we bound

the individual differences
∣
∣
∣V πk

1,(i)(s1; r̃, p̃)− V πk

1,(i)(s1; r, p)
∣
∣
∣ using Azuma-Hoeffding inequality. The

result of Theorem 1 then follows.

Remark 2. For max-min fairness, the requirement r̂ ≥ ε
H in Assumption 1 can be relaxed.

To the best of our knowledge, this is the first sub-linear regret for α-fair RL. When α = 0, we
recover the single-agent regret (scaled by N ) as it is equivalent to the MDP where the reward is
∑

i rh,(i). The constant CF decreases as α increases. For the max-min fairness, our result matches
that of Mandal & Gan (2022), although our algorithm is more efficient.

From regret to PAC guarantee: The probably approximately correct (PAC) guarantee shows how
many samples are needed to find an ε-optimal policy ε satisfying V ∗

1 (s1)− V π
1 (s1) ≤ ε (Jin et al.,

2018; Valiant, 1984). Similar to Section 3.1 in Jin et al. (2018), in order to get the probably approx-
imately correct (PAC) guarantee from regret, we can randomly select ε = εk for k = 1, 2, · · · ,K.
We define such a policy as εmix. However, since V π

1 (s) is not linear w.r.t. the immediate reward

r, generally V πmix,F
1 (s) )= 1

K

∑K
k=1 V

πk,F
1 (s). Therefore, compared with Jin et al. (2018), some

additional derivation is needed to achieve PAC guarantee from regret in our case. In particular, from

Jensen’s inequality (since F is concave), V πmix

1 (s1) ≥ 1
K

∑K
k=1 V

πk

1 (s1). We obtain

Theorem 2. To find ε-optimal policy, with high probability, it suffices to have C number of samples
where

C = CF max
{

Õ(H5N2S2A/ε2), Õ(H3N4S3A2/ε2), Õ(H3N2S4A2/ε2)
}

.

Proof of Theorem 2 is in Appendix D.

Fair Online Policy Gradient. In the proposed convex-optimization-based algorithm, the decision
variable and the constraints scale with the cardinality of the state space. In order to develop an
algorithm for large state space, generally function approximation-based approaches (e.g., using neu-
ral networks) are used to approximate the Q function or value function. We can use policy-gradient
methods that cater to such a function approximation-based approach. In particular, consider a trajec-
tory τ = (sτh, a

τ
h, r̂

τ
h)h=1,2,··· ,H where r̂τh = (r̂τh,(1), · · · , r̂

τ
h,(N)) denotes the noisy observation of

immediate reward for all agents. We define the return for the i-th agent as R(i)(τ) :=
∑H

h=1 r̂
τ
h,(i).

To calculate the gradient of the fair objective, we can apply the chain rule of ∇θF (·). We use
proportional fairness Fproportional as an example of calculating the gradient:

∇θV
πθ,F
1 (s1) = ∇θ

N
∑

i=1

log V πθ

1,(i)(s1) =
N
∑

i=1

∂ log(V πθ

1,(i)(s1))

∂V πθ

1,(i)(s1)
∇θV

πθ

1,(i)(s1) =
N
∑

i=1

∇θV
πθ

1,(i)(s1)

V πθ

1,(i)(s1)
.

It is known that ∇θV
πθ

1,(i)(s1) = Eτ [R(i)(τ) log εθ(aτh|sτh)] and V πθ

1,(i)(s1) = Eτ [R(i)(τ)]. By using

the empirical average to replace Eτ , we can get an unbiased estimator of gradient w.r.t. θ as follows:

gproportional =
∑N

i=1

∑
τ∈D

∑H
h=1 R(i)(τ)∇θ log πθ(a

τ
h|s

τ
h)∑

τ∈D R(i)(τ)
.

For other types of fairness, we can use a similar method. The final expression of the gradient, the
rest part of the algorithm, and other related details are in Appendix F. Note that we can extend this
approach to the natural policy-gradient, actor-critic method, and baseline-based approach. Charac-
terization of the convergence rate of the approaches are beyond the scope of this paper. Interested

7



Published as a conference paper at ICLR 2024

readers can refer to Zhang et al. (2020); Agarwal et al. (2021); Mei et al. (2020) for convergence
analysis of standard policy gradient.

6 OFFLINE FAIR MARL

As mentioned in the Introduction, we develop an offline algorithm because for some applications
generating new data may not be feasible. In an offline setting, the learner is given a dataset and
it needs to compute a policy only based on this given dataset. One cannot employ a policy and
measure its return. Due to this difference, instead of optimism, pessimism is optimal for standard
MDP (Xie et al., 2021; Jin et al., 2021b). We develop an offline fair algorithm and analyze its sub-
optimality gap. Before delving into the result, we need to have some assumptions about the data
collection process.

Assumption 2. The dataset D = {rτh,(i), x
τ
h, a

τ
h}h∈[H],τ∈[K],i∈[N ] is compliant with the underlying

MDP, i.e., ∀i,
PD(r

τ
h,(i) = r′i, x

τ
h+1 = x′|{(xj

h, a
j
h)}

τ
j=1, {(r

j
h,(i), x

j
h+1)}

τ−1
j=1 )

=P(rh,(i)(sh, ah) = r′i, sh+1 = x′|sh = xτ
h, ah = aτh).

The above assumption is satisfied when the data is collected by interacting with the environment and
the policy is only updated at the end of an episode. Jin et al. (2021b) also uses a similar assumption.
Similar to the online algorithm, we denote the empirical estimation p and r on p and r, respectively,
for the dataset D. We first define the uncertainty quantizer for the data set which we use to construct
MDP with pessimistic reward.

Definition 1. We define the set E as the δ-uncenrtainty quantifier with respect to the dataset D as–

E = {brh(s, a, δ), b
p
h(s, a, s

′, δ) :
∣
∣rh,(i)(s, a)− rh,(i)(s, a)

∣
∣ ≤ brh(s, a, δ)

|ph(s′|s, a)− ph(s
′|s, a)| ≤ bph(s, a, s

′, δ), ∀i, s, a, h}

such that PD(E) ≥ 1− δ.

The values of brh(s, a, δ), b
p
h(s, a, s

′, δ) are given in Appendix E. They are related to βr
h,k, and βp

h,k.

The only difference is that the empirical estimation now depends on the dataset rather than the
obtained information till episode k in the online version.

We can show that with probability 1− δ, for any Vh,(i)

|Ph[Vh,(i)]− P̄h[Vh,(i)](s, a)| =
∑

s′

|(ph(s′|s, a)− ph(s
′|s, a))Vh,(i)(s

′)| ≤ H
∑

s′

bph(s, a, s
′, δ).

We then define the pessimistic reward rh,(i) as

rh,(i)(s, a) := rh,(i)(s, a)− brh(s, a, δ)−H
∑

s′

bph(s, a, s
′, δ).

Note that we have also subtracted H
∑

s′ b
p
h(s, a, s

′) in order to ensure the value function attained
for the MDP with reward rh,(i) and empirical probability ph is less than the value function corre-
sponding to the original MDP parameters for the same policy, i.e., ensure pessimism. Note that
similar pessimistic estimate is also used in constrained MDP setup (Liu et al., 2021). However, our
proof and algorithms are different as we consider a fair objective.

To bound the suboptimality, we need an additional assumption that each agent’s return under pes-
simistic reward r should be positive and shouldn’t be too small. Specifically, we need the following
assumption.

Assumption 3. V1,(i)(s1, r, p) ≥ ε for all i.

The above assumption is required to apply the Lipschitz continuous property (see Lemma 5 in Ap-
pendix B). If rh,(i)(s, a) ≥ ε/H for every h, i, s, a, then the above Assumption is trivially satisfied.
Also, our analysis would go through using a slightly larger r since the true reward value is greater
than or equal to ε/H . In particular, we can set rh,(i)(s, a) = max{rh,(i)(s, a)− brh(s, a, δ), ε/H}−
H
∑

s′ b
p
h(s, a, s

′). Hence, it is clear that Assumption 3 is more likely to hold when the uncertainty

8



Published as a conference paper at ICLR 2024

on the estimation of p in the offline data is small. This is reasonable because when the uncertainty is
high, it is unlikely to bound the regret, especially since some fair objectives F are unbounded when
any agent’s return is near 0.

Our proposed offline algorithm is solving the following convex optimization:

max
q∈Q

F
[ ∑

h,s,a

rh,(i)(s, a)qh(s, a)
]

i=1,2,··· ,N



, (14)

where Q is the same as Q in (10) but with p instead of p. Similar to the online algorithm, we still use
the occupancy measure q to construct a convex optimization problem. However, compared with the
online version, a key difference is that we use a pessimistic reward instead of the optimistic reward
in the objective. Further, the MDP is based on the empirical probability p, unlike the online setup
where we allow the probability to take value within the confidence interval.

6.1 PERFORMANCE GUARANTEE OF THE OFFLINE ALGORITHM

We denote the solution of Eq. (14) as q̂ and the corresponding policy as ε̂. The suboptimality of any
policy ε is defined by

SubOpt(ε; s) :=V π∗

1 (s; r, p)− V π
1 (s; r, p).

Theorem 3. Given offline data D, with probability 1− δ

SubOpt(ε̂; s1) ≤ 2NCFEπ∗ [
∑

h

((brh(sh, ah, δ) +H
∑

s′

bph(sh, ah, s
′, δ)))

 ︷︷ 

Intrinsic−Uncertainty

]. (15)

To the best of our knowledge, this is the first offline RL result for the α-fairness function. In the
standard single-agent MDP, the result also depends on the δ uncertainty quantifier term and intrin-
sic uncertainty term that constitutes information theoretic lower limit on optimality-gap (Jin et al.,
2021b). Here, it is scaled by N and CF . CF is the Lipschitz constant which depends on α-
fairness function. Further, if the dataset D has good coverage over the optimal policy, then the
Intrinsic−Uncertainty term is small.

Proof of Theorem 3 is in Appendix E. Here we provide a proof sketch: We have

SubOpt(ε̂; s) =
(

V π∗,F
1 (s; r, p)− V π∗,F

1 (s; r, p)
)

 ︷︷ 

Term 1

+
(

V π∗,F
1 (s; r, p)− V π̂,F

1 (s; r, p)
)

 ︷︷ 

Term 2

+
(

V π̂,F
1 (s; r, p)− V π̂,F

1 (s; r, p)
)

 ︷︷ 

Term 3

. (16)

Term 2 of Eq. (16) is non-positive because ε̂ is the solution of Eq. (14). In standard offline RL
literature (Jin et al., 2021b; Xie et al., 2021), Term 3 of Eq. (16) is non-positive because of the
pessimism which is proved using Bellman’s property. However, since Bellman’s property does not
hold, we cannot use the standard technique. Rather, we use the fact that F (·) is monotone increasing
w.r.t. r to show Term 3 is non-positive. For Term 1, we use the Lipschitz property of F (·) to show

(

V π∗,F
1 (s; r, p)− V π∗,F

1 (s; r, p)
)

≤
∑N

i=1 CF |V π∗

1,(i)(s; r, p)− V π∗

1,(i)(s; r, p)|. (17)

The right-hand side then becomes differences of individual value functions and can be bounded by
the Value-difference lemma.

7 NUMERICAL RESULTS

We have conducted experiments on randomly generated MDP environments to verify our online and
offline algorithms. Please see Appendix G for details.

8 CONCLUSION AND FUTURE WORK

In this paper, we develop convex-optimization-based algorithms for both the online and offline fair
RL with provable performance guarantee. Potential future directions include studying decentralized
fair MARL algorithms and other policy gradient methods along with their convergence. Developing
provably-efficient fair RL algorithms beyond tabular setup constitutes a future research direction.
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1965.

Anthony B Atkinson et al. On the measurement of inequality. Journal of economic theory, 2(3):
244–263, 1970.

Siddharth Barman, Arindam Khan, Arnab Maiti, and Ayush Sawarni. Fairness and welfare quantifi-
cation for regret in multi-armed bandits. arXiv preprint arXiv:2205.13930, 2022.

Ilai Bistritz, Tavor Baharav, Amir Leshem, and Nicholas Bambos. My fair bandit: Distributed
learning of max-min fairness with multi-player bandits. In International Conference on Machine
Learning, pp. 930–940. PMLR, 2020.
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Supplemental Material

A RELATED WORKS IN DETAIL

Fairness in resource allocation: Fairness in traditional resource allocation setup has been well
studied (Mo & Walrand, 2000; Kelly et al., 1998; Lin et al., 2006). RL-based fair resource alloca-
tion decision-making has also been considered for resource allocation (Chen et al., 2021; Hao et al.,
2023; Jain et al., 2017; Cui et al., 2019). However, theoretical guarantees have not been provided.

Fairness in MDP/RL: Zhang & Shah (2014) proposed max-min fairness in MDP, however, the
learning component has not been considered. Joseph et al. (2016); Liu et al. (2017) considered indi-
vidual fairness criterion which stipulates that an RL system should make similar decisions for similar
individuals or the worst action should not be selected compared to a better one. Huang et al. (2022);
Schumann et al. (2019); Wen et al. (2021) considered a group fairness notion where the main focus
is on policy is fair to a group of users (refer to Gajane et al. (2022) for details). Deng et al. (2022);
Metevier et al. (2019) considered an approach where fairness is modeled as a constraint to be sat-
isfied. (Jiang & Lu, 2019) proposed an approach where they perturbed the reward to make it fair
across the users. In contrast to the above, our setup is different as we seek to achieve fairness in
terms of value functions (i.e., long-term return) of different agents.

Zimmer et al. (2021); Siddique et al. (2020) considered Gini-fairness across the value functions of
the multiple agents, while we focus on different fairness metrics. Besides, the regret bounds have
not been provided there. Hossain et al. (2021); Bistritz et al. (2020); Barman et al. (2022); Patil et al.
(2021) considered Nash social welfare (or, proportional fairness) and other fairness notions in multi-
armed bandit setup. Do et al. (2022) also considered fairness in the contextual bandit setup. How-
ever, we consider an RL setup instead of a bandit setup. The algorithms designed for bandit setup
can not be readily extended to the MDP setup. Further, we consider the generic α fairness concept
rather than the proportional-fairness concept. Finally, we provide a fair algorithm in an offline RL
setup, which has not been considered in most of the fair RL literature.

The closest to our work is Mandal & Gan (2022) which adopted a welfare-based axiomatic ap-
proach and showed regret bound for Nash social welfare, and max-min fairness. In contrast, we
considered the α-based fairness metric and showed regret bound for the generic value of α. Unlike
in Mandal & Gan (2022), our approach admits efficient computation. Further, we provided the PAC
guarantee and developed an algorithm for offline fair RL with a theoretical guarantee. Finally, we
also developed a policy-gradient-based algorithm that is applicable to large state space as well unlike
Mandal & Gan (2022).

Convex and multi-objective MDP: Our work is related to multi-objective RL (Roijers et al.,
2013). Most of the approaches considered a single objective by weighing multiple objectives
(Van Moffaert et al., 2013; Abels et al., 2019). Few also proposed algorithms to learn Pareto op-
timal front (Yang et al., 2019; Mossalam et al., 2016). We consider a non-linear function of the mul-
tiple value functions and provide a regret bound which was different from the existing approaches.
Cheung (2019) obtained regret bound for a specific non-linear function of the objectives. Unlike the
above, our objective is fairness among multiple agents. Naturally, the above papers did not consider
the effect of various fairness metrics on the agents. Additionally, they considered infinite-horizon
setup rather than an episodic setup which are fundamentally different. Thus, the algorithms are also
different. Furthermore, we consider offline setup. Tarbouriech et al. (2020) considered a MDP setup
with convex objective for infinite-horizon setup. However, the above paper also did not consider
the fairness metrics and the offline which we considered. Furthermore, the paper considered sample
complexity rather regret bound. Brantley et al. (2020) considered a MDP setting where the objective
is to maximize a concave function of an individual value function. Unlike the above, we consider a
setup where the objective is to achieve fairness among multiple agents. Naturally, the above paper
did not consider the effect of various fairness metrics on the agents. Further, the proof techniques
and algorithms also rely on the Lipschitz property, however, fairness function may not be Lipschitz
(e.g.,max-min fairness), hence, the proof techniques are also different. Additionally, our proposed
algorithm is computationally much simpler. For example, for the online setup, we only need to solve
a convex optimization problem while the algorithm proposed by Brantley et al. (2020) is a bi-level
optimization problem where the lower-level problems are convex. Hence, (Brantley et al., 2020)
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needs to solve a large number of convex optimization problems at each episode. Furthermore, we
consider offline setup unlike all the above papers.

Multi-agent RL: Another related approach is Multi-agent RL (MARL) which seeks to learn equi-
librium (Li et al., 2022; Jin et al., 2021a) in the Markov game. However, our focus is to achieve
fairness among the individual value functions. In our setup, the central controller is taking decisions
rather than the agents. Hence, the objective is inherently different, and thus, the algorithms and
analysis are also different.

However, in all the above setups, the fair policy is largely ignored. Besides, in the above papers, the
individual agent takes a decision, instead, we focus on the setup where the central decision maker
is taking the decision. Our focus is to ensure fairness among value functions of individual agents,
hence, the setup is inherently different compared to the above.

B USEFUL LEMMAS

Lemma 4. Let x1, x2, · · · , xN and y1, y2, · · · , yN be real numbers. We must have
∣
∣
∣
∣

min
i∈{1,2,··· ,N}

xi − min
j∈{1,2,··· ,N}

yj

∣
∣
∣
∣
≤ max

i∈[N ]
|xi − yi| .

Proof. Without loss of generality, we let mini xi ≥ minj yj . For any i∗ ∈ argmini xi and any
j∗ ∈ argminj yj , we have

xi∗ ≤ xj∗ ,

which implies that

xi∗ − yj∗ ≤ xj∗ − yj∗ ≤ |xj∗ − yj∗ | . (18)

We thus have
∣
∣
∣
∣
min
i

xi −min
j

yj

∣
∣
∣
∣
=min

i
xi −min

j
yj

=xi∗ − yj∗

≤ |xj∗ − yj∗ | (by Eq. (18))

≤max
i

|xi − bi| .

The result of this lemma thus follows.

Lemma 5. Recall the definition of CF in Theorem 1. When xi, yi ≥ ε > 0 for all i ∈ [N ], we must
have

|F (x1, x2, · · · , xN )− F (y1, y2, · · · , yN )| ≤ N · CF max
i∈[N ]

|xi − yi| .

Proof. When F = Fproportional, we have

|F (x1, x2, · · · , xN )− F (y1, y2, · · · , yN )|

=

∣
∣
∣
∣
∣

N
∑

i=1

log xi − log yi

∣
∣
∣
∣
∣

≤
N
∑

i=1

|log xi − log yi| (by the triangle inequality)

≤N max
i∈[N ]

|log xi − log yi|

≤N
1

ε
max
i∈[N ]

|xi − yi| .

The last step is by the Lipschitz continuity of log(·) in the domain [ε,∞), where 1
ε is the correspond-

ing Lipschitz constant.
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Similarly, when F = Fα, since the Lipschitz constant of
(·)1−α

1−α in the domain [ε,∞) is ε−α, we can
show that

|F (x1, x2, · · · , xN )− F (y1, y2, · · · , yN )| ≤ N · ε−α max
i∈[N ]

|xi − yi| .

When F = Fmax-min, by Lemma 4, we have

|F (x1, x2, · · · , xN )− F (y1, y2, · · · , yN )| ≤max
i∈[N ]

|xi − yi|

=N
1

N
· max
i∈[N ]

|xi − yi| .

Notice that in this case xi, yi ≥ ε is not needed.

In summary, the result of this lemma thus follows.

Lemma 6. (10) is a convex optimization whose value is monotone increasing w.r.t. the immediate
reward r.

Proof. Notice that the constraints of (10) are linear, we only need to prove that the fair objectives in
Eqs. (4) to (6) are concave w.r.t. state-action occupancy measure q and state-action-state occupancy
measure z. Notice that V π

1,(i) is a weighted sum of q and z, in order to prove the concavity, it remains

to show that Eqs. (4) to (6) are concave w.r.t. V π
1,(i). Notice that min(·) and log(·) are concave. We

only need to verify the concavity of Fα. Since

∂2 1
1−αx

1−α

∂x2
= −αx−α−1,

which is non-positive when x ≥ 0. Thus, we have also proven the concavity of Fα. Therefore, we
have proven that (10) is a convex optimization.

Notice that r only appears in the objective (i.e., the constraints do not have r), and all Fmax-min,
Fproportional, Fα are monotone increasing w.r.t. r. Thus, the value of (10) is monotone increasing w.r.t
r.

The result of this lemma thus follows.

Lemma 7 (Hoeffding’s inequality). Let Z1, Z2, · · · , Zn be i.i.d. samples of a random variable

Z ∈ [0, 1]. For any δ̃ > 0, we must have

Pr







∣
∣
∣
∣
∣
EZ −

1

n

n
∑

i=1

Zi

∣
∣
∣
∣
∣
≤



ln(2/δ̃)

2n






≥ 1− δ̃.

Lemma 8 (empirical Bernstein inequality (Theorem 4 of (Maurer & Pontil, 2009))). Let

Z1, Z2, · · · , Zn be i.i.d. samples of a random variable Z ∈ [0, 1]. For any δ̃ > 0, we must have

Pr







∣
∣
∣
∣
∣
EZ −

1

n

n
∑

i=1

Zi

∣
∣
∣
∣
∣
≤



2Vn ln(4/δ̃)

n
+

7 ln(4/δ̃)

3(n− 1)






≥ 1− δ̃,

where VARn is the sample variance

VARn =
1

n(n− 1)

∑

1≤i≤j≤n

(Zi − Zj)
2. (19)

Lemma 9 (Lemma F.4 of (Dann et al., 2017)). Let Fi for i = 1, 2, · · · be a filtration and X1, X2, · · ·
be a sequence of Bernoulli random variables with Pr{Xi = 1|Fi−1} = Pi with Pi being Fi−1-
measurable and Xi being Fi measurable. For any W ≥ 0, It holds that

Pr



exist n :
n
∑

t=1

Xt <
n
∑

t=1

Pt

2
−W

}

≤ e−W .
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The following is the standard value difference lemma. Its proof can be found in, e.g., (Dann et al.,
2017), Lemma E.15.

Lemma 10 (Value difference lemma). For any two MDPs M ′ and M ′′ with rewards r′ and r′′ and
transition probabilities P ′ and P ′′, the difference in value functions with respect to the same policy
ε can be written as

V ′
i (s)− V ′′

i (s) = E
P ′′,π

[
H
∑

t=i

(r′(st, at, t)− r′′(st, at, t))

∣
∣
∣
∣
si = s



+ E
P ′′,π

[
H
∑

t=i

∑

s̃



P ′
t (s̃|st, at)− P ′′

t (s̃|st, at))TV ′
t+1(s̃)





.

C DETAILS IN SECTION 5

The overall confidence interval is defined as

Mk := {(p̃, r̃) : Eq. (11) and Eq. (12)} ,

i.e., the true value of (p, r) is in Mk with high probability. We now want to use this confidence
interval Mk in (10). A possible way is to replace p and r by (r̃, p̃) ∈ Mk and view r̃, p̃ as decision
variables. Thus, the objective in (10) now becomes

max
(r̃,p̃)∈Mk, q∈Q

V π,F
1 (s1). (20)

It is indeed an optimistic solution compared to the real optimal solution because we relax the value of
r and p in such optimization (which leads to better objective value). However, it is no longer a convex
optimization problem because now r and p are decision variables. To turn such an optimization
into a convex one, we need to determine the value of r̃ and p̃ beforehand. To that end, notice the
monotonicity of the objective with respect to r̃ (proof in Lemma 6 in Appendix B). Thus, without
affecting the solution of (20), we can let

r̃h,(i)(s, a) = rk−1
h,(i)(s, a) + βr

h,k(s, a). (21)

Now, we only need to determine the value of p̃. To that end, consider the state-action-next-state
occupancy measure zπh (s, a, s

′; p) := ph(s′|s, a)qπh(s, a; p). Considering Eq. (11), we only need

zh(s, a, s′) ≤
(

pk−1
h (s′|s, a) + βp

h,k(s, a, s
′)
)
∑

y∈S zh(s, a, y) for all h ∈ [H − 1], s, a, s′,

zh(s, a, s′) ≥
(

pk−1
h (s′|s, a)− βp

h,k(s, a, s
′)
)
∑

y∈S zh(s, a, y) for all h ∈ [H − 1], s, a, s′.
(22)

Now we are ready to solve (20) by convex optimization.

C.1 ABOUT OPTIMIZATION PROBLEMS

In this subsection, we will show details of the optimization problems (10), (20), and (13).

Let µ(s) denote the probability of the initial state s. (for a fixed initial state s1, then µ(s) equals to
1 for s = s1 while equals to 0 otherwise.)

About Q (constraints of q):

The following are the constraints that make q a legit state-action occupancy measure, i.e., the defi-
nition of Q:

∑

a

qh(s, a) =
∑

s′,a′

ph−1(s|s′, a′)qh−1(s
′, a′) for all s ∈ S, h ∈ [H] \ {1}

qh(s, a) ≥ 0 for all s ∈ S, a ∈ A, h ∈ [H]
∑

a

q1(s, a) = µ(s) for all s ∈ S.

(23)

17
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The constraint
∑

s,a qh(s, a) = 1 is redundant because the first and the third constraint imply
∑

s,a qh(s, a) = 1 for all h ∈ [H].

About Z (constraints of z):

By the definition of z, (22) is part of Z . Besides, z should also be constrained by Eq. (23). Recall
the definition of z

zh(s, a, s
′) := ph(s

′|s, a)qh(s, a). (24)

By summing over the next state s′ on both sides of Eq. (24), we have

∑

s′

zh(s, a, s
′) =

∑

s′

ph(s
′|s, a)qh(s, a) = qh(s, a). (25)

Summing over a on both sides of Eq. (25), we have

∑

a,s′

zh(s, a, s
′) =

∑

a

qh(s, a). (26)

Thus, we can rewrite the constraints Q Eq. (23) in the form of z:

∑

a,s′

zh(s, a, s
′) =

∑

s′,a′

zh−1(s
′, a′, s) for all s ∈ S, h ∈ [H] \ {1},

zh(s, a, s
′) ≥ 0 for all s, a, s′, h,

∑

a,s′

z1(s, a, s
′) = µ(s) for all s ∈ S.

(27)

In Eq. (27), we get the first constraint by plugging Eq. (26) into the left side of the first constraint of
Eq. (23) while plugging Eq. (24) into the right side. We get the third constraint by plugging Eq. (26)
into the third constraint of Eq. (23).

Notice that by replacing q by z, we have one additional requirement Eq. (24). Using Eq. (25) to
replace qh(s, a) in Eq. (24), we can express Eq. (24) as

zh(s, a, s
′) = ph(s

′|s, a) ·
∑

y∈S

zh(s, a, y). (28)

By Eqs. (11) and (28), we have the constraint Eq. (22) (used in the optimization problem (13)).

We now show that (20) is equivalent to (13) by the following proposition.

Proposition 11. (20) and (13) are equivalent. In other words, the optimal value of the objective of
(20) is equal to the optimal value of the objective of (13).

Proof. By the monotonicity w.r.t. r shown in Lemma 6, we know that the optimal choice of r̃ in
(20) is r + βr. It remains to show that the effect of choosing optimal of p̃ in (20) is equivalent to
Eq. (22). To that end, notice that p̃ does not appear in the objective. Thus, we only need to focus on
how p̃ affects the constraints of z. Notice that among all constraints in Eqs. (27) and (28), the only
one that connects p and z is Eq. (28). Since the optimal p̃ in (20) must be in the confidence interval
[p − βp, p + βp], we know that the optimal objective value by using Eq. (22) is at least as good as
the one by using the optimal p̃ in Eq. (28). From another aspect, For the optimal z get by Eq. (22),
we can always construct p̃ which is in the confidence interval [p− βp, p+ βp] by letting

p̃h(s
′|s, a) =


zh(s,a,s

′)∑
y∈S zh(s,a,y)

if
∑

y∈S zh(s, a, y) )= 0,

p if
∑

y∈S zh(s, a, y) = 0.

which implies that the optimal objective value by using optimal p̃ in Eq. (28) is at least as good as
the one by using Eq. (22). The equivalent of these two different approaches is thus follows.
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C.2 PROOF OF THEOREM 1

To prove Theorem 1, we will first introduce the good event and its probability, then prove a regret
bound under the good event. Some auxiliary lemmas are needed in the proof. We list them at the
end of this subsection.

Failure events and the good event

Define the empirical average of the transition probability and the immediate reward at the k-th
iteration of Algorithm 1 as

nk−1
h (s, a) :=

k−1
∑

k′=1

(

sk
′

h = s, ak
′

h = a
)

, (29)

pk−1
h (s′|s, a) :=

∑k−1
k′=1

(

sk
′

h = s, ak
′

h = a, sk
′

h+1 = s′
)

max{nk−1
h (s, a), 1}

, (30)

rk−1
h,(i)(s, a) :=

∑k−1
k′=1 r̂

k′

h,(i)(s, a) ·
(

sk
′

h = s, ak
′

h = a
)

max{nk−1
h (s, a), 1}

. (31)

Define

βp
h,k(s, a, s

′) :=



4pk−1
h (s′|s, a)(1− pk−1

h (s′|s, a))Lp
δ

max{nk−1
h (s, a), 1}

+
14Lp

δ

3max{nk−1
h (s, a), 1}

, (32)

βr
h,k(s, a) :=



Lr
δ

max{nk−1
h (s, a), 1}

. (33)

where Lp
δ := ln 12S2AHK

δ and Lr
δ := 2 ln 3SAHNK

δ .

We define the following failure events based on confidence intervals in Eq. (11) and Eq. (12).

Gp :=
{

exist some s, a, s′, h, k such that
∣
∣pk−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≥ βp

h,k(s, a, s
′)
}

,

Gn :=






exist some s, a, h, k such that nk−1

h (s, a) ≤
1

2

∑

j<k

q
πj

h (s, a)− ln
3SAH

δ






, (34)

Gr :=
{

exist some s, a, h, i, k such that
∣
∣
∣rk−1

h,(i)(s, a)− rk−1
h,(i)(s, a)

∣
∣
∣ ≥ βr

h,k(s, a)
}

.

Intuitively, Gp denotes the case where the transition probability is out of the confidence interval,
Gn denotes the case where the empirical occupancy measure deviates from the actual occupancy
measure, and Gr denotes the case where the empirical reward is out of the confidence interval. The
following lemma estimates the probability of those failure events.

Lemma 12. We have

Pr{Gp} ≤
δ

3
.

Proof. We first focus on the situation on fixed s, a, s′, h, k. If nk−1
h (s, a) ∈ {0, 1}, then

βp
h,k(s, a, s

′) =


4pk−1
h (s′|s, a)(1− pk−1

h (s′|s, a))Lp
δ +

14Lp
δ

3
≥

14Lp
δ

3
≥

14 ln 4

3
> 2.

Thus, we have

Pr
{∣
∣pk−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≥ βp

h,k(s, a, s
′) | nk−1

h (s, a) ∈ {0, 1}
}

= 0 ≤
δ

3S2AHK
.

(35)
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Now we consider the case of nk−1
h (s, a) ≥ 2. We define b1, b2, · · · , bnk−1

h (s,a), where each term

is
(

sk
′

h+1 = s′
)

under the condition sk
′

h = s and ak
′

h = a for k = 1, 2, · · · , k − 1 (recall the

definition of nk−1
h (s, a) in Eq. (29)). Thus, b1, b2, · · · , bnk−1

h (s,a) are nk−1
h (s, a) i.i.d. samples of

Bernoulli distribution with the parameter of the (success) probability ph(s′|s, a). Therefore, the

sample variance (defined in Eq. (19)) of these nk−1
h (s, a) samples is equal to

1

nk−1
h (s, a)(nk−1

h (s, a)− 1)

∑

1≤i≤j≤nk−1
h (s,a)−1

(bi − bj)
2

=

∑k−1
k′=1

(

sk
′

h = s, ak
′

h = a, sk
′

h+1 = s′
)

·
∑k−1

k′=1

(

sk
′

h = s, ak
′

h = a, sk
′

h+1 )= s′
)

nk−1
h (s, a)(nk−1

h (s, a)− 1)

=
nk−1
h (s, a)

nk−1
h (s, a)− 1

pk−1
h (s′|s, a)(1− pk−1

h (s′|s, a)) (by Eq. (30))

≤2pk−1
h (s′|s, a)(1− pk−1

h (s′|s, a)).

Thus, by Lemma 8 (where δ̃ = δ
3S2AHK ), for fixed s, a, s′, h, k, we have

Pr



∣
∣pk−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≥



4pk−1
h (s′|s, a)(1− pk−1

h (s′|s, a)) ln 12S2AHK
δ

nk−1
h (s, a)

+
7 ln 12S2AHK

δ

3(nk−1
h (s, a)− 1)

}

≤
δ

3S2AHK
.

Notice that 7
3(nk−1

h (s,a)−1)
≤ 14

3 when nk−1
h (s, a) ≥ 2. We thus have

Pr
{∣
∣pk−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≥ βp

h,k(s, a, s
′) | nk−1

h (s, a) ≥ 2
}

≤
δ

3S2AHK
. (36)

Combining Eq. (35) and Eq. (36), we thus have

Pr
{∣
∣pk−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≥ βp

h,k(s, a, s
′)
}

≤
δ

3S2AHK
.

Applying the union bound by traversing all s, a, s′, h, k, we thus have

Pr{Gp} ≤
δ

3
.

The result of this lemma thus follows.

Lemma 13. We have

Pr{Gn} ≤
δ

3
.

Proof. For fixed s, a, h, by Lemma 9 (letting W = ln 3SAH
δ ), we have

Pr






exist k such that nk−1

h (s, a) ≤
1

2

∑

j<k

q
πj

h (s, a|p)− ln
3SAH

δ






≤

δ

3SAH
.

Applying the union bound by traversing all s, a, h, the result of this lemma thus follows.

Lemma 14. We have

Pr{Gr} ≤
δ

3
.
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Proof. For fixed s, a, h, i, k, by Lemma 7, we have

Pr


∣
∣
∣rk−1

h,(i)(s, a)− rk−1
h,(i)(s, a)

∣
∣
∣ ≥



Lr
δ

nk−1
h (s, a)

}

≤
δ

3SAHNK

Applying the union bound by traversing all s, a, h, i, k, the result of this lemma thus follows.

The regret bound under the good event

Lemma 15. If outside the union of all failure events Gp ∪Gn ∪Gr, then we must have

Reg(K) ≤4CF



Lr
δ ln(4 +K)HN

√
SAK + 2CF

√

Lr
δ

(

4 ln
SAH

δ′
+ 5

)

HNSA

+ 8CF



Lp
δ ln(4 +K)H2NS

√
AK + 4CF



Lp
δ

(

4 ln
SAH

δ′
+ 5

)

HN2S3/2A

+
28CFL

p
δ



4 ln(4 +K) + 4 ln SAH
δ′ + 5



3
H2NS2A

=CF ·
(

Õ(H2NS
√
AK) + Õ(HN2S3/2A) + Õ(H2NS2A)

)

.

Proof. Let r̃k, p̃k, and εk denote the optimal r̃, p̃, and policy in (20) in the k-th iteration of Algo-
rithm 1, respectively. Since outside Gr, we have r̃k ≥ r. Thus, by Assumption 1 and Remark 1, we
have

V πk

1,(i)(s1; r̃
k, p̃k) ≥ ε, and V πk

1,(i)(s1; r, p) ≥ ε. (37)

We have

Reg(K)

=
K
∑

k=1

(V ∗
1 (s1)− V πk

1 (s1))

=
K
∑

k=1

(V ∗
1 (s1; r, p)− V πk

1 (s1; r, p))

≤
K
∑

k=1



V πk

1 (s1; r̃
k, p̃k)− V πk

1 (s1; r, p)


(by optimism, i.e., r̃k and q̃k are optimal)

≤
K
∑

k=1

CFN max
i∈[N ]

∣
∣
∣V πk

1,(i)(s1; r̃
k, p̃k)− V πk

1,(i)(s1; r, p)
∣
∣
∣ (by Lemma 5 and Eq. (37))

=CFN
K
∑

k=1

max
i∈[N ]

∣
∣
∣
∣
∣
E

H
∑

h=1

[(

r̃k−1
h,(i)(s, a)− rh,(i)(sh, ah)

)

+
∑

s′∈S



p̃k−1
h (s′|s, a)− ph(s

′|s, a)


· V πk

h+1,(i)(s
′; r̃k−1

(i) , p̃)

∣
∣
∣
∣
s1, p,εk

∣
∣
∣
∣
∣

(by Lemma 10)

≤CFN
K
∑

k=1

max
i∈[N ]

E

[
H
∑

h=1

∣
∣
∣r̃k−1

h,(i)(s, a)− rh,(i)(sh, ah)
∣
∣
∣

∣
∣
∣
∣
s1, p,εk



 ︷︷ 

Term A

+ CFN
K
∑

k=1

max
i∈[N ]

E

[
H
∑

h=1

∑

s′

∣
∣p̃k−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ·
∣
∣
∣V πk

h+1,(i)(s
′; r̃k−1

(i) , p̃)
∣
∣
∣

∣
∣
∣
∣
s1, p,εk



 ︷︷ 

Term B

.

(38)
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Since outside Gr and Gp, we have
∣
∣
∣r̃k−1

h,(i)(s, a)− rh,(i)(sh, ah)
∣
∣
∣ ≤ 2βr

h,k(s, a), (39)
∣
∣p̃k−1

h (s′|s, a)− ph(s
′|s, a)

∣
∣ ≤ 2βp

h,k(s, a, s
′). (40)

We have

Term A of Eq. (38)

≤2CFN
K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)βr
h,k(s, a) (by Eq. (39))

=2CFN
K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)



Lr
δ

max{nk−1
h (s, a), 1}

(by Eq. (33))

≤2CF

√

Lr
δN

(

2H
√

SAK ln(4 +K) + SAH

(

4 ln
SAH

δ′
+ 5

))

(by Lemma 16)

=4CF



Lr
δ ln(4 +K)HN

√
SAK + 2CF

√

Lr
δ

(

4 ln
SAH

δ′
+ 5

)

HNSA.

Since 0 ≤ r̃k−1
h,(i)(s, a) ≤ 1 for all h, i, s, a, we have

∣
∣
∣V πk

h+1,(i)(s
′; r̃k−1

(i) , p̃)
∣
∣
∣ ≤ H. (41)

Thus, we have

Term B of Eq. (38)

≤2CFNH
K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)
∑

s′

βp
h,k(s, a, s

′) (by Eqs. (40) and (41))

≤4CFHN


Lp
δ

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)
1



max{nk−1
h (s, a), 1}

∑

s′



pk−1
h (s′|s, a)

+
28CFHNSLp

δ

3

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)

max{nk−1
h (s, a), 1}

(by Eq. (32) and 1− pk−1
h (s′|s, a) ≤ 1)

≤4CFHN


Lp
δ

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)

√
S



max{nk−1
h (s, a), 1}


∑

s′

pk−1
h (s′|s, a)

+
28CFHNSLp

δ

3

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)

max{nk−1
h (s, a), 1}

(by Cauchy–Schwarz inequality)

=4CFHN


SLp
δ

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)
1



max{nk−1
h (s, a), 1}

+
28CFHNSLp

δ

3

K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a)

max{nk−1
h (s, a), 1}

(since
∑

s′

pk−1
h (s′|s, a) = 1)

≤8CF



Lp
δ ln(4 +K)H2NS

√
AK + 4CF



Lp
δ

(

4 ln
SAH

δ′
+ 5

)

HN2S3/2A

+
28CFL

p
δ



4 ln(4 +K) + 4 ln SAH
δ′ + 5



3
H2NS2A (by Lemma 16).
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Some auxiliary lemmas

Define δ′ := δ
3 and

Lk,h :=






(s, a)

∣
∣
∣
∣

1

4

∑

j<k

q
πj

h (s, a) ≥ ln
SAH

δ′
+ 1






. (42)

The following lemmas and proofs are similar to those in (Efroni et al., 2019; Zanette & Brunskill,
2019) with different notations. For ease of reading, we provide the full proof using the notation of
this paper.

Lemma 16. If outside the failure event Gn, then

K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)



1

max{nk−1
h (s, a), 1}

≤ 2H
√

SAK ln(4 +K) + SAH

(

4 ln
SAH

δ′
+ 5

)

,

(43)

K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)

max{nk−1
h (s, a), 1}

≤ SAH

(

4 ln(4 +K) + 4 ln
SAH

δ′
+ 5

)

. (44)

Proof. We have

K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)



1

max{nk−1
h (s, a), 1}

≤
K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)



1

nk−1
h (s, a)

(since nk−1
h (s, a) ≥ 1 by Lemma 17)

≤
K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)



1

nk−1
h (s, a)

+
K
∑

k=1

H
∑

h=1

∑

(s,a)/∈Lk,h

qπk

h (s, a). (45)

By Eq. (8), we have

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a) ≤
K
∑

k=1

H
∑

h=1

∑

(s,a)

qπk

h (s, a) = KH. (46)

For the first term of Eq. (45), we have

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)



1

nk−1
h (s, a)

=
K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h



qπk

h (s, a)



qπk

h (s, a)

nk−1
h (s, a)

≤

√
√
√
√

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a) ·

√
√
√
√

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)

nk−1
h (s, a)

(by Cauchy-Schwarz inequality)

≤
√
KH

√

4SAH ln(4 +K) (by Eq. (46) and Lemma 20)

=2H
√

SAK ln(4 +K). (47)
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By Eq. (47), Eq. (45), and Lemma 19, we can get Eq. (43). It remains to prove Eq. (44). To that end,
we have

K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)

max{nk−1
h (s, a), 1}

≤
K
∑

k=1

H
∑

h=1

∑

s,a

qπk

h (s, a)

nk−1
h (s, a)

(since nk−1
h (s, a) ≥ 1 by Lemma 17)

≤
K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)

nk−1
h (s, a)

+
K
∑

k=1

H
∑

h=1

∑

(s,a)/∈Lk,h

qπk

h (s, a)

≤4SAH ln(4 +K) + SAH

(

4 ln
SAH

δ′
+ 5

)

(by Lemma 19 and Lemma 20)

=SAH

(

4 ln(4 +K) + 4 ln
SAH

δ′
+ 5

)

.

Thus, we have proven Eq. (44). The result of this lemma thus follows.

Lemma 17. If outside the failure event Gn, for any (s, a) ∈ Lk,h, we must have

nk−1
h (s, a) ≥ max







1

4

∑

j≤k

q
πj

h (s, a), 1






.

Proof. We have

nk−1
h (s, a) >

1

4

∑

j<k

q
πj

h (s, a) +
1

4

∑

j<k

q
πj

h (s, a)− ln
SAH

δ′
(recall the definition of Gn in Eq. (34))

≥
1

4

∑

j<k

q
πj

h (s, a) + 1 (since (s, a) ∈ Lk,h)

≥max







1

4

∑

j≤k

q
πj

h (s, a), 1






(since qπk

h ≤ 1).

Lemma 18. For any (s, a) )∈ Lk,h, we must have

∑

j≤k

q
πj

h (s, a) ≤ 4 ln
SAH

δ′
+ 5.

Proof. Since (s, a) /∈ Lk,h, we have

1

4

∑

j<k

q
πj

h (s, a) < ln
SAH

δ′
+ 1.

Thus, we have

∑

j<k

q
πj

h (s, a) < 4 ln
SAH

δ′
+ 4.

Because qπk

h ≤ 1, the result of this lemma thus follows.

Lemma 19. We have

K
∑

k=1

H
∑

h=1

∑

(s,a)/∈Lk,h

qπk

h (s, a) ≤ SAH

(

4 ln
SAH

δ′
+ 5

)

.
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Proof. Define

ks,a,h :=

{

0, if {k∗ ∈ [K] | (s, a) /∈ Lk∗,h} = ∅,
max {k∗ ∈ [K] | (s, a) /∈ Lk∗,h} otherwise.

(48)

By the definition of Lk,h in Eq. (42), we know that

(s, a) /∈ Lk,h for all k ≤ ks,a,h. (49)

Therefore, we have

K
∑

k=1

H
∑

h=1

∑

(s,a)/∈Lk,h

qπk

h (s, a) =
∑

(s,a)

K
∑

k=1

H
∑

h=1

qπk

h (s, a) ((s, a) /∈ Lk,h)

=
∑

(s,a)

H
∑

h=1

ks,a,h
∑

k=1

qπk

h (s, a) (by Eq. (48))

≤SAH

(

4 ln
SAH

δ′
+ 5

)

(by Eq. (49) and Lemma 18).

Lemma 20. If outside the failure event Gn, we must have

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)

nk−1
h (s, a)

≤ 4SAH ln(4 +K).

Proof. We have

K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)

nk−1
h (s, a)

≤4
K
∑

k=1

H
∑

h=1

∑

(s,a)∈Lk,h

qπk

h (s, a)
∑

j≤k q
πj

h (s, a)
(by Lemma 17)

=4
∑

(s,a)

H
∑

h=1

K
∑

k=1

qπk

h (s, a)
∑

j≤k q
πj

h (s, a)
((s, a) ∈ Lk,h) . (50)

For fixed s, a, h, if

{k = 1, 2, · · · , | (s, a) ∈ Lk,h} )= ∅,

then by the monotonicity of the size of Lk,h with respect to k, we can define

ks,a,h := min {k = 1, 2, · · · , | (s, a) ∈ Lk,h} .

Thus, we have

K
∑

k=1

qπk

h (s, a)
∑

j≤k q
πj

h (s, a)
((s, a) ∈ Lk,h) =

K
∑

k=ks,a,h

qπk

h (s, a)
∑

j≤k q
πj

h (s, a)

≤
K
∑

k=ks,a,h

qπk

h (s, a)

4 +
∑

ks,a,h≤j≤k q
πj

h (s, a)
. (51)

The last inequality is because (s, a) ∈ Lks,a,h,h, by the definition of Lk,h in Eq. (42), we have

1

4

∑

j<ks,a,h

q
πj

h (s, a) ≥ ln
SAH

δ′
+ 1 ≥ 1.

Define functions

Gs,a,h(x) := (x− -x.) · qπ%x&

h (s, a) +
∑

ks,a,h≤j≤'x(

q
πj

h (s, a), (52)

gs,a,h(x) := q
π%x&

h (s, a). (53)
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Roughly speaking, Gs,a,h(x) is the linear interpolation of the sum of q
πj

h (s, a), and gs,a,h(x) is the

step function whose steps are q
πj

h (s, a). We can easily check that when x is not an integer,

∂Gs,a,h(x)

∂x
= gs,a,h(x). (54)

Notice that the not-differentiable points (i.e., when x is an integer) of Gs,a,h(s, a)(x) are countable
and will not affect the following calculation.

K
∑

k=ks,a,h

qπk

h (s, a)

4 +
∑

ks,a,h≤j≤k q
πj

h (s, a)

=

∫ K

ks,a,h−1

gs,a,h(x)

4 +Gs,a,h(/x0)
dx (by Eq. (52) and Eq. (53))

≤
∫ K

ks,a,h−1

gs,a,h(x)

4 +Gs,a,h(x)
dx (since Gs,a,h(·) is monotone increasing)

= ln(4 +Gs,a,h(K))− ln(4 +Gs,a,h(ks,a,h − 1)) (by Eq. (54))

≤ ln



4 +
∑

ks,a,h≤j≤K

q
πj

h (s, a)





≤ ln(4 +K). (55)

By Eq. (55), Eq. (50), and Eq. (51), the result of this lemma thus follows.

D PROOF OF THEOREM 2

Proof. For the proof of PAC guarantee, we have

V ∗,F
1 (s1)− V πmix

1 (s1) = V ∗,F
1 (s1)− F





[

1

K

K
∑

k=1

V πk

1,(i)(s1)



i=1,··· ,N



 .

Because F is a concave function, by Jensen’s inequality, we have

F





[

1

K

K
∑

k=1

V πk

1,(i)(s1)



i=1,··· ,N



 ≥
1

K

K
∑

i=1

F

(
[

V πk

1,(i)(s1)
]

i=1,··· ,N

)

=
1

K

K
∑

i=1

V πk,F
1 (s1).

Thus, we have V ∗,F
1 (s1) − V πmix

1 (s1) ≤ 1
K

∑K
k=1

(

V ∗,F
1 (s1)− V πk,F

1 (s1)
)

=
Reg(K)

K . By Theorem 1, we know that with high probability Reg(K) = CF ·
(

Õ(H2NS
√
AK) + Õ(HN2S3/2A) + Õ(H2NS2A)

)

. Thus, by letting

ε =
CF ·

(

Õ(H2NS
√
AK) + Õ(HN2S3/2A) + Õ(H2NS2A)

)

K
,

we can get

K = CF max
{

Õ(H4N2S2A/ε2), Õ(H2N4S3A2/ε2), Õ(H2N2S4A2/ε2)
}

.

Notice that for each episode we have H samples. Thus, the total number of samples is

C = CF max
{

Õ(H5N2S2A/ε2), Õ(H3N4S3A2/ε2), Õ(H3N2S4A2/ε2)
}

.

The result thus follows.
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E PROOF OF THEOREM 3

Recalling the definition of suboptimality, we get Eq. (16). Term 2 of Eq. (16) is non-positive because
ε̂ is the solution of Eq. (14).

We now bound Term 3. First, we specify the value of brh(s, a, δ) and bph(s, a, s
′, δ). For the offline

setup, we denote nh(s, a, s′) as the empirical value within the dataset. Now, set brh(s, a, δ) as the
value in (12) and bph(s, a, s

′, δ) as the value in (32) respectively. From the Value-difference Lemma,
for any i, we have

V π̂
1,(i)(s, r, p)− V π̂

1,(i)(s, r, p) = p,π̂

[
H
∑

h=1

(r(i),h(sh, ah)− r(i),h(sh, ah)|s1 = s



+ p,π̂[
H
∑

h=1

∑

s′h+1

(ph(sh, ah, s
′
h+1)− p(sh, ah, a

′
h+1))Vh+1,(i)]

(56)

From Lemma 12, 13, and 14, we have |r(i),h(s, a) − r(i),h(s, a)| ≤ brh(s, a, δ), and |p(s, a, s′) −
p(s, a, s′)| ≤ bph(s, a, s

′) with probability 1− δ. Since, Vh+1,(i) ≤ H . Thus,

V π̂
1,(i)(s, r, p)− V π̂

1,(i)(s, r, p) ≤

p,π̂





H
∑

h=1

(r(i),h(sh, ah)− r(i),h(sh, ah) + brh(sh, ah, δ) +H
∑

s′h+1

bph(sh, ah, s
′
h+1, δ))



 (57)

Now, by the definition of r, we can bound the above by 0. Finally, using the fact that F (·) is
monotone increasing, we can conclude that Term 3 is bounded by 0.

It remains to estimate Term 1. To that end, when the event E (defined in Definition 1) happens, we
have

∣
∣
∣rh,(i)(s, a)− rh,(i)(s, a)

∣
∣
∣

=

∣
∣
∣
∣
∣
rh,(i)(s, a)− rh,(i)(s, a)− brh(s, a, δ)−H

∑

s′∈S

bph(s, a, s
′, δ)

∣
∣
∣
∣
∣

(by the definition of r)

≤2brh(s, a, δ) +H
∑

s′∈S

bph(s, a, s
′, δ) (by Definition 1 and the triangle inequality). (58)

By Assumption 3, we have

V π∗,F
h,(i) (s, r, p) ∈ [ε, H]. (59)
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Thus, we can apply Lemma 5. Specifically, under Assumption 3 and when the event E happens, we
have

Term 1 of Eq. (16)

=V π∗,F
1 (s1; r, p)− V π∗,F

1 (s1; r, p)

≤CFN max
i∈[N ]

∣
∣
∣V π∗

i,(i)(s1; r, p)− V π∗

1,(i)(s1; r, p)
∣
∣
∣ (by Lemma 5)

=CFN max
i∈[N ]

∣
∣
∣E

[

rh,(i)(sh, ah)− rh,(i)(sh, ah)
]

+ E

[
H
∑

h=1

∑

s′∈S

(ph(s
′|sh, ah)− ph(s

′|sh, ah))V π∗

h+1,(i)(s
′; r, p)

∣
∣
∣
∣
∣

(by Lemma 10)

≤CFN max
i∈[N ]

E

H
∑

h=1

∣
∣
∣rh,(i)(sh, ah)− rh,(i)(sh, ah)

∣
∣
∣

+ CFN max
i∈[N ]

H
∑

h=1

∑

s′∈S

∣
∣
∣(ph(s

′|sh, ah)− ph(s
′|sh, ah))V π∗

h+1,(i)(s
′; r, p)

∣
∣
∣

(by the triangle inequality)

≤CFN E

[
H
∑

h=1

(

2brh(sh, ah, δ) +H
∑

s′∈S

bph(sh, ah, s
′, δ)

)

+ CFN E

[
H
∑

h=1

∑

s′∈S

bph(sh, ah, s
′, δ)H



(by Eqs. (58) and (59) and Definition 1)

=2CFN E

[
H
∑

h=1

(

brh(sh, ah, δ) +H
∑

s′∈S

bph(sh, ah, s
′, δ)

)

.

(The expectation E in the above equation is on the trajectories with optimal policy ε∗ on the true
MDP with r and p.) The result of Theorem 3 thus follows.

F DETAILS OF FAIR ONLINE POLICY GRADIENT

The following proposition gives an estimation of the gradient based on the samples.

Proposition 21. After collecting a set D of trajectories (with the policy εθ) where each trajectory
τ ∈ D contains the information (sτh, a

τ
h, r

τ
h)h=1,2,··· ,H , then g ∈ Rd is an unbiased1 estimation of

the gradient ∇θV
πθ,F
1 (s1).

gmax-min =
1

|D|
∑

τ∈D

H
∑

h=1

R(̂i∗
θ
)(τ)∇θ log εθ(a

τ
h|sτh), where î∗θl

:= argmin
i∈[N ]

∑

τ∈D

R(i)(τ).

gproportional =
N
∑

i=1

∑

τ∈D
∑H

h=1 R(i)(τ)∇θ log εθ(aτh|sτh)
∑

τ∈D R(i)(τ)
. (60)

gα = |D|α−1
N
∑

i=1

∑

τ∈D
∑H

h=1 R(i)(τ)∇θ log εθ(aτh|sτh)
∑

τ∈D R(i)(τ)
α .

Proof. Based on the chain rule, we have the following results.

1. When F = Fmax-min, let i∗
θ
:= argmini∈[N ] V

πθ,F
1,(i) (s1):

∇θV
πθ,F
1 (s1) = ∇θV

πθ

1,(i∗
θ
)(s1). (61)

1An unbiased estimation means that when |D| → ∞, the estimated value approaches the true value.
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Notice that ∇θ i∗
θ
= 0 almost everywhere if V πθ,F

1,(i) (s1) is continuous w.r.t. θ.

2. When F = Fproportional:

∇θV
πθ,F
1 (s1) = ∇θ

N
∑

i=1

log V πθ

1,(i)(s1) =
N
∑

i=1

∇θV
πθ

1,(i)(s1)

V πθ

1,(i)(s1)
. (62)

3. When F = Fα:

∇θV
πθ,F
1 (s1) = ∇θ

N
∑

i=1

1

1− α

(

V πθ

1,(i)(s1)
)1−α

=
N
∑

i=1

(

V πθ

1,(i)(s1)
)−α
∇θV

πθ

1,(i)(s1). (63)

It remains to approximate ∇θV
πθ

1,(i)(s1) and V πθ

1,(i)(s1) in the above equations. To that end, noticing

that V πθ

1,(i)(s1) = Eτ R(i)(τ), we can approximate V πθ

1,(i)(s1) by the empirical average of R(i), i.e.,

1

|D|
∑

τ∈D

R(i)(τ). (64)

Before calculating∇θV
πθ

1,(i)(s1), we first list some equations that will be used later.

1. Probability of a trajectory:

Pr(τ |θ) =
H
∏

h=1

ph(sh+1|sh, ah)εθ(ah|sh). (65)

2. The log-derivative trick:

∇θ Pr(τ |θ) = Pr(τ |θ) ·∇θ log Pr(τ |θ). (66)

3. Log-probability of a trajectory:

log Pr(τ |θ) = log
H
∏

h=1

ph(sh+1|sh, ah)εθ(ah|sh) (by Eq. (65))

=
H
∑

h=1

log ph(sh+1|sh, ah) + log εθ(ah|sh).

Thus, we have

∇θ log Pr(τ |θ) =
H
∑

h=1

∇θ log εθ(ah|sh). (67)

Notice that to get the above equation, we use the fact that the transition probability p is irrelevant to
θ.
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Now we are ready to calculate ∇θV
πθ

1,(i)(s1). We have

∇θV
πθ

1,(i)(s1) =∇θ E
τ
R(i)(τ)

=∇θ

∫

τ
Pr(τ |θ)R(i)(τ)

=

∫

τ
∇θ Pr(τ |θ)R(i)(τ)

=

∫

τ
Pr(τ |θ)∇θ log(Pr(τ |θ))R(i)(τ) (by Eq. (66))

=E
τ
∇θ log(Pr(τ |θ))R(i)(τ)

=E
τ
R(i)(τ)∇θ log Pr(τ |θ)

=E
τ
R(i)(τ)

H
∑

h=1

∇θ log εθ(ah|sh) (by Eq. (67)).

Thus, we can approximate∇θV
πθ

1,(i)(s1) by the following empirical average:

1

|D|
∑

τ∈D

R(i)(τ)
H
∑

h=1

∇θ log εθ(ah|sh). (68)

The result of this proposition thus follows by plugging the empirical estimation Eqs. (64) and (68)
into Eqs. (61) to (63).

As an example, we show the whole algorithm for max-min fairness in Algorithm 2.

Algorithm 2 Policy Gradient for Max-Min Fairness

1: Initialize: θ0 ∈ Rd, step size α′ > 0.
2: for each iteration l = 0, 1, 2, · · · , do
3: Collect a set of trajectory D by using εθl

where each trajectory τ ∈ D contains the infor-
mation (sh, ah, rh)h=1,2,··· ,H .

4: For each collected trajectory, calculate its total reward for each agent

5: For each agent i, get an estimation of its own value function V̂ θl

1,(i)(s1) ∞
1

|D|
∑

τ∈D R(i)(τ).

6: Select the agent with the minimum estimated value î∗
θl
∞ argmini∈{1,2,··· ,N} V̂

θl

1,(i)(s1).

7: Calculate the estimated gradient g ∈ Rd by

g ∞
1

|D|
∑

τ∈D

R(̂i∗
θl

)(τ)
H
∑

h=1

∇θl
log εθl

(ah|sh).

8: Update the parameters θl+1 ∞ θl + α′g.
9: end for

G SIMULATION RESULTS

In Fig. 1, we plot the curves of V F
1 (s1) of the optimal policy (dashed red curves) and the curves of

the policy calculated by Algorithm 1 (the blue curves) for different fair objectives. We can see that
for all three different fair objectives, the solution of Algorithm 1 becomes very close to the optimal

one after K ≥ 550. This validates our theoretical result that the regret scales sub-linearly (Õ(
√
K))

since the average regret Õ(
√
K
K ) goes to zero when K becomes larger.

In Fig. 2, we plot the curves of V F
1 (s1) of the optimal policy (dashed red curves) and the curves

of the policy calculated by the policy gradient method (the blue curves). We use a two-layer fully-
connected neural network with ReLU (rectified linear unit) as the policy model. During each iter-
ation of the policy gradient algorithm, 20 trajectories are generated and collected under the current
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Figure 1: Curves of V F
1 (s1) of Algorithm 1 w.r.t. K for different fair objectives. The solid blue

curve is the average of 10 runs with different seeds. The shaded part denotes the range of these 10
runs (i.e., the range between the max and the min value).

policy. As shown by Fig. 2, such a policy gradient method can achieve the nearly optimal solution
within 1000 iterations.

In Figs. 3 and 4, each point of the offline curve is calculated by applying the offline algorithm with
the data generated by Algorithm 1 at K-th epoch. We can see that the offline policy is better than the
online policy, which is reasonable because the offline policy only needs exploitation (i.e., choose the
current best action), while the online policy needs to explore (i.e., try suboptimal actions to estimate
the environment).

Figs. 5 and 6 show the cost of fairness. In Fig. 6, the fair optimal solution is evaluated in the classical
objective (i.e., the sum of individuals’ return), compared with the optimal classical (unfair) solution.
We can see the gap is not very large, which suggests that the cost of fairness is relatively small.
In contrast, in Fig. 5, the optimal classical (unfair) solution is evaluated in the fairness objective,
compared with the optimal fair solution. We can see for some points the gap is significant, which
justifies the necessity of a fair solution.

G.1 CONFIGURATIONS OF SIMULATIONS

We use a synthetic MDP. Each term of the transition probability p is i.i.d. uniformly generated
between [0, 1], and then we normalize p to make sure that

∑

s′∈S p(s, a, s′) = 1. Every term of the
true immediate reward r is i.i.d. uniformly generated between [0.15, 0.95]. Each noisy observation
of an immediate reward is drawn from a uniform distribution centered at its true value within the
range of ±0.05 (thus all noisy observations are in [0.1, 1]). Figs. 1 and 2 use S = A = N = 2 and
H = 3. Fig. 3 uses A = 3, S = 3, N = 3, H = 4. Fig. 4 uses A = 2, S = 2, N = 3, H = 10.
Figs. 5 and 6 use A = 2, S = 2, H = 3.
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Figure 2: Curves of V F
1 (s1) of policy gradient w.r.t. the number of iterations for different fair

objectives. The solid blue curve is the average of 10 runs with different seeds. The shaded part
denotes the range of these 10 runs (i.e., the range between the max and the min value).
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Figure 3: The curve of the offline algorithm performance w.r.t. the number of data, where the offline
data is generated by the Algorithm 1 during the online learning process. Each point is the average
of 10 random runs. (A = 3, S = 3, N = 3, H = 4)

32



Published as a conference paper at ICLR 2024

0 200 400 600 800 1000
K

4.5

5.0

5.5

6.0

V
F 1
(s

1
)

max-min fairness

optimal

Algo. 1 (online)

offline

Figure 4: The curve of the offline algorithm performance w.r.t. the number of data, where the offline
data is generated by the Algorithm 1 during the online learning process. Each point is the average
of 10 random runs. (A = 2, S = 2, N = 3, H = 10)
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Figure 5: The value of the fairness objective for the optimal unfair (classical) policy
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Figure 6: The value of the classical objective for the optimal fair policy.
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