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Abstract

SLOWPOKE is a new system to accurately quantify the ef-
fects of hypothetical optimizations on end-to-end throughput
for microservice applications, without relying on tracing or
a priori knowledge of the call graph. Microservice opera-
tors can use SLOWPOKE to ask what-if performance analy-
sis questions of the form "What throughput could my retail
application sustain if I optimized the shopping cart service
from 10K req/s to 20K req/s?". Given a target service and
its hypothetical optimization, SLOWPOKE employs a perfor-
mance model that determines how to selectively slow down
non-target services to preserve the relative effect of the opti-
mization. It then performs profiling experiments to predict the
end-to-end throughput, as if the optimization had been imple-
mented. Applied to four real-world microservice applications,
SLOWPOKE accurately quantifies optimization effects with
a root mean squared error of only 2.07%. It is also effec-
tive in more complex scenarios, e.g., predicting throughput
after scaling optimizations or when bottlenecks arise from
mutex contention. Evaluated in large-scale deployments of
45 nodes and 108 synthetic benchmarks, SLOWPOKE further
demonstrates its scalability and coverage of a wide range of
microservice characteristics.

1 Introduction

The microservice architecture has emerged as a prevail-
ing approach for constructing modern distributed applica-
tions [27, 31, 44, 58]. By decomposing applications into
independently developed and deployed services, microser-
vices simplify cross-team collaboration and scalable deploy-
ment [20,27,36]. The throughput of an application is funda-
mental to its scalability, cost efficiency, and quality of service
under high incoming traffic, e.g., traffic spikes during overlap-
ping periods of global activity on social media platforms [17].

Improving the throughput of individual services—even
with simple techniques such as vertical or horizontal scaling—
does not necessarily yield end-to-end throughput improve-
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Fig. 1: SLOWPOKE overview. Given a microservice application
running on Kubernetes, SLOWPOKE (1) pre-runs experiments to
collect per-service information, (2) selectively slows down non-target
services and measures the resulting throughput, and (3) quantifies
throughput improvements using a performance model.

ments, due to complex service interactions in real deploy-
ments [11]. As a result, estimating how the end-to-end
throughput of a microservice application would change af-
ter optimizing one or more services remains a challenging
problem. A common practice is to implement selected opti-
mizations and evaluate their performance in a canary envi-
ronment [41,47]; yet, this approach leaves the hard task of
identifying the most promising changes to engineering teams.
What-if analysis provides a principled approach to address
this problem by quantifying the effects of hypothetical opti-
mizations ahead of time and with high accuracy. Example op-
timizations include allocating additional resources, improving
runtime efficiency through techniques such as multithread-
ing, or migrating to new frameworks or cloud platforms; for
instance, by adopting a high-capacity data store in data-as-a-
service infrastructures [25].

Existing what-if analysis techniques, such as causal profil-
ing [16], quantify the impact of optimizing specific sections of
code in short-running, multithreaded applications on a single
machine. The core idea behind causal profiling is to introduce
virtual speedups by carefully pausing concurrent execution
threads. A virtual speedup has the same relative effect as a
hypothetical speedup and can be used to accurately estimate



end-to-end performance before applying the real optimization.
Unfortunately, the state-of-the-art causal profiler, Coz [16],
cannot be applied to distributed settings. Coz assumes a sin-
gle monolithic application and can only predict the effect of
optimizing local functions by pausing application threads. On
the other hand, based on distributed tracing [2, 18, 30, 45],
existing microservice profiling tools [15,29, 34,51, 56, 57]
identify critical paths and predict latency. However, without
an accurate causal model and visibility into the services’ inter-
nals, these approaches cannot answer what-if questions about
throughput, since there is no well-defined correlation between
latency and throughput.

This paper presents SLOWPOKE, a system that accurately
quantifies end-to-end throughput improvements of hypothet-
ical optimizations. SLOWPOKE introduces a performance
model that estimates the throughput of a microservice ap-
plication by carefully slowing down non-target services using
a lightweight distributed coordination mechanism. Given a
microservice application, a target service for optimization,
and a predefined workload, SLOWPOKE runs experiments in a
pre-production environment. As shown in Fig. |, SLOWPOKE
first collects per-service information in a pre-run profiling
stage, then computes and applies the appropriate slowdowns
at runtime, and finally predicts the resulting throughput im-
provement using SLOWPOKE’s performance model.

Evaluated on four real-world microservice applications and
108 synthetic benchmarks that cover a wide spectrum of mi-
croservice topologies, execution models, and communication
primitives, SLOWPOKE provides accurate throughput predic-
tions, with errors ranging between -4.35-4.88% (RMSE—
root mean squared error: 2.07%) for real applications, and
-7.61-5.65% (RMSE: 1.89%) for synthetic benchmarks.

This paper makes the following contributions:

* SLOWPOKE, the first system for accurate optimization
prediction in complex microservice architectures (§2).
SLOWPOKE treats microservices as black boxes com-
municating via HTTP or gRPC. SLOWPOKE does not
require application instrumentation or a priori knowl-
edge of the service call graph.

¢ A novel performance model for quantifying end-to-end
throughput improvements of hypothetical optimizations
(§3). It supports multithreaded services, dynamic call
graphs, and hybrid workloads with various request types.
The model formalizes the prediction problem as a linear
program and demonstrates the bottleneck equivalence
between slowed-down and optimized executions.

¢ A lightweight distributed slowdown mechanism that en-
ables coordinated pausing across complex microservices,
allowing SLOWPOKE to accurately quantify the effects
of hypothetical optimizations at scale (§4).

SLOWPOKE is MIT-licensed, open-source software; avail-
able at github.com/atlas-brown/slowpoke.
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Fig. 2: Topology of OnlineBoutique. Vertices represent indepen-
dently developed services that expose APIs. Edges denote various
types of network communication between services.

2 Slowpoke Overview

This section first discusses the challenges of achieving ac-
curate throughput optimization prediction for microservice
applications (§2.1). It then provides an overview of SLOW-
POKE and its core components (§2.2).

2.1 Motivating Example

Consider the topology of the shopping application OnlineBou-
tique [3] shown in Fig. 2. To place an order or perform a prod-
uct search, users send HT TP requests to the frontend service,
which communicates with other services via network proto-
cols, such as gRPC or HTTP. As demand scales—e.g., through
market expansion—developers are often tasked with optimiz-
ing throughput to sustain performance under higher loads. But
should the team accelerate recommendation queries by 30%
through costly model retraining or improve cart lookups by
40% via implementing a high-capacity in-memory key-value
store? Choosing the right optimization is critical for achiev-
ing meaningful end-to-end throughput gains within limited
engineering and financial budgets.

Challenges and complexity: Predicting the end-to-end im-
pact of such hypothetical optimizations before implementing
them is challenging in today’s complex microservice applica-
tions. For a given workload, assume that each service S can
sustain throughput #s when other services are sufficiently fast
(i.e., not bottlenecks). Throughput optimization prediction is
thus reduced to accurately estimating minzg before and after
applying an optimization to a target service.

Given a microservice call graph, one approach is to estimate
ts analytically, by directly predicting which service would
become the bottleneck after the optimization. However, this
unknown throughput zg depends on many factors, including
deployment characteristics, types of requests, request rates,
service states, and interactions with other services. Even with
distributed tracing, the lack of visibility into service internals
prevents accurate estimation of g.

Another approach is to estimate tg experimentally, by mea-
suring the throughput of service S when it is saturated, which
is often impractical. When deploying S as part of the en-
tire system, ensuring no other services become a bottleneck
requires substantial resource over-provisioning to all other
services when S is far from saturation. More importantly, pro-
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Fig. 3: Profiling results from SLOWPOKE for the Cart service
in OnlineBoutique with mixed types of user requests. The x-axis
is the percentage of optimization applied to Cart service, e.g., 50%
optimization means a 50% reduction in average execution time per
request. The y-axis is the end-to-end application throughput.

visioning more resources may not even increase a service’s
throughput, as the service can be single-threaded or bottle-
necked by mutex contention. When deploying S in isolation, it
requires capturing a substantial amount of end-to-end request
traces and developing a workload driver capable of replaying
both calls to and responses from other services to stress-test S,
at arbitrary speeds. Unfortunately, even with a sophisticated
replayer, changing the timescale of captured traces is error-
prone, as it depends on the behavior of other services, which
are unknown.

Alternatively, while one could, in principle, simulate an op-
timization by provisioning additional resources to the target
service, this approach is often impractical given the afore-
mentioned problems in resource provisioning. Furthermore,
it fails to accurately capture the impact of other types of opti-
mizations, such as algorithmic enhancements or migration to
a more efficient execution framework.

2.2 Optimization Prediction with Slowpoke

SLOWPOKE addresses these challenges by performing
bottleneck-equivalent executions that selectively slow down
non-target services, introducing the same relative effect as op-
timized executions (see §3). Bottleneck equivalence implies
that the slowed-down execution will exhibit a bottleneck on
the same service as the hypothetically optimized execution.
As aresult, SLOWPOKE can accurately estimate the effects of
hypothetical optimizations on end-to-end throughput, without
requiring application-level instrumentation or a priori knowl-
edge of the throughput capacity of individual services.

To predict the effects of throughput optimizations, SLOW-
POKE runs in a pre-production environment that mimics the
production environment. Developers replace the communica-
tion libraries with SLOWPOKE’s runtime and provide three
inputs: (1) a target service, (2) its optimization, and (3) a work-
load consisting of end-user requests. SLOWPOKE is agnostic
to the actual optimization implementations and only requires
the expected performance improvement of the target service,
e.g., a 50% reduction in its average processing time.
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Fig. 4: Architecture of SLOWPOKE. SLOWPOKE runs on the con-
trol plane and orchestrates profiling experiments on microservice
applications deployed on Kubernetes. Each microservice runs in a
pod alongside a POKER process. Services interact through instru-
mented communication libraries via a data channel (a). During the
pre-profiling phase, each POKER collects information from instru-
mented libraries through a standard UNIX pipe (b). SLOWPOKE
aggregates this information and computes the slowdowns using
its performance model. During the slowdown execution phase, the
POKER co-located with the target service sends slowdown messages
to its neighboring POKERSs through TCP control channels (c). Other
POKERs will further propagate slowdown messages and pause the
execution of non-target services using POSIX signals.

Fig. 3 shows an example profiling result from SLOWPOKE
for the Cart service in OnlineBoutique under varying opti-
mizations and a mixed workload comprising different types
of user requests (§5.1). Without actually implementing any
optimization, SLOWPOKE accurately quantifies the effect of
optimizing the Cart service on end-to-end throughput. By se-
lecting the point on the x-axis corresponding to the expected
performance improvement of the target service (even when
concrete optimizations have not yet been defined), develop-
ers can use the curve to immediately obtain the predicted
end-to-end throughput of the application. For example, devel-
opers can conclude that reducing Cart’s average processing
time by 40% achieves optimal throughput, and that further
optimization yields no additional benefits.

SLOWPOKE design: Fig. 4 presents an overview of SLOW-
POKE. SLOWPOKE targets microservice applications de-
ployed in containerized environments managed by Kuber-
netes. Its core logic runs on the control plane of the or-
chestration platform. Each service runs inside a container
within a Kubernetes pod and communicates with other ser-
vices via SLOWPOKE’s communication libraries with traffic-
monitoring capabilities. These libraries serve as drop-in re-
placements for existing HTTP and gRPC libraries, simplifying
SLOWPOKE integrate into existing infrastructures. In addi-
tion, SLOWPOKE deploys a lightweight controller program,
POKER, alongside each microservice instance within the same
container. POKER is written in C and is responsible for col-
lecting service information, slowing down non-target services



determined by SLOWPOKE’s performance model (§3), and
communicating with neighboring POKERS to achieve coordi-
nated slowdown (§4).

SLOWPOKE operates in two phases. During the pre-
profiling phase, it performs experiments to collect informa-
tion about the deployment and request load. It then feeds the
collected information into its performance model (§3). The
performance model determines how much to selectively slow
down non-target services in order to produce a bottleneck-
equivalent version of the optimized application. In the slow-
down phase, SLOWPOKE slows down non-target services us-
ing its coordinated slowdown mechanism (§4) and measures
the throughput of the bottleneck-equivalent execution. At the
end of this phase, SLOWPOKE computes the predicted end-to-
end throughput, as if the optimization had been implemented,
and produces profiling summaries shown in Fig. 3.
Runtime orchestration: SLOWPOKE extends Go’s HTTP
and gRPC libraries to enable non-intrusive service instru-
mentation and collection of system information. These exten-
sions are API-compatible with the standard communication
libraries (Fig. 4 (a)), allowing developers to adopt SLOWPOKE
with minimal integration effort .

The instrumented libraries intercept handler invocations
to record two runtime metrics per service: (1) the number
of requests received, and (2) its downstream services that
receive outgoing requests. The first metric is used during
the pre-profiling phase to estimate the request distribution
across services and, during the slowdown phase, to inform
the co-located POKER about how much slowdown to inject
and when. The second metric is used during the slowdown
phase to identify neighboring services and establish TCP
connections between POKERS, which are then used for inter-
POKER communication during the slowdown phase. POKER
collects metrics from the communication library through a
standard UNIX pipe (Fig. 4 (b)).

During the pre-profiling phase, each POKER collects
service-level metadata from the instrumented communica-
tion libraries, including load statistics such as the number of
calls per second, the directly connected neighbor services, and
the number of allocated CPUs. This information is aggregated
by SLOWPOKE to compute per-service slowdowns using its
performance model. During the slowdown phase, SLOWPOKE
restarts the deployment with slowdowns enabled by setting
environment variables in the YAML configuration to inform
POKER of the intended slowdown duration for its co-located
service. When the target service (the one hypothetically opti-
mized) receives a predefined number of incoming requests, its
instrumented communication library notifies the co-located
POKER (Fig. 4 (c)). POKER then initiates slowdown propa-
gation by communicating with neighboring POKERs. Upon
receiving the slowdown messages, POKERs co-located with
non-target services further propagate messages to their neigh-
bors and pause the corresponding service processes by send-
ing POSIX signals.
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Fig. 5: Execution graphs under different scenarios. Each solid
block represents the processing time of a service for a user request,
e.g., three time units for service B in (a). Blocks of the same color
correspond to the same user request. Arrows represent network calls
between services, triggered upon completion of the caller’s process-
ing block. For simplicity, network transmission latency is omitted.
(a) Baseline execution graph: a request is completed and returned to
the user every three time units. (b) Optimized execution: service B’s
processing time is reduced from three to two time units, improving
overall throughput. (c) Slowed-down execution: an artificial delay
of one time unit per request is introduced in services B and C. Gray
blocks indicate the induced slowdowns.

3 Slowpoke Performance Model

This section presents the mathematical model on which
SLOWPOKE relies to quantify the end-to-end throughput im-
provement of an optimization to a target service by selectively
slowing down non-target services. It begins with a simplified
example for exposition purposes (§3.1). It then generalizes to
(§3.2) tackle the complex nuances of real-world applications.

3.1 Model Intuition

Consider an application with three services (Fig. 5) and
assume that services are single-threaded and CPU-bound—
implying a reciprocal relationship between processing time
and throughput. Each user request generates exactly one call
to each service. Service A acts as the frontend: it receives
user requests, processes them for one time unit, calls B, and
waits for a response before replying to the user. Similarly, B
processes the call for three time units and then calls C. Lastly,
C processes the call for another two time units and returns.
The application throughput is determined by the longest pro-
cessing time among all services (i.e., B):

1 1
origingl = ————————— = — 1
original maX(pA,pB,pC) 3 ( )
where pg is the average processing time per request in S.
Suppose an optimization plan optimizes target service B by
reducing pp by d = 1 time unit, as shown in Fig. 5(b). The



Tab. 1: Variables used in the model. RU can be any unit for the
particular resource (e.g., CPU time).

Var. Description Unit

t End-to-end application throughput  Req/s

c Number of calls per user request 1

q Quota of a specific resource RU/s

u Resource consumed per call RU/Req

application’s throughput improves:
1 1
lopt = =z 2

max(pa,pg—d,pc) 2

However, this equation cannot be computed directly without
knowing pa, pp, and pc, which requires precise estimation of
processing times of all services. Rather than directly optimiz-
ing B, SLOWPOKE virtually speeds up the target service by
slowing down other services by d time units, e.g., one time
unit in Fig. 5(c). The resulting throughput is given by:

1 1

" max(pa +d,pg,pc+d) 3

Ty 3)
Note that #,,, and t,,; are connected by max(pa, pg —d, pc) =
max(pa +d, pg, pc +d) — d, therefore:
1 1

—=——d=2 0)

topt tys
Using this relationship, the model predicts #,,,—the through-
put resulting from the actual optimization—by leveraging t,,
the observed throughput after artificially injecting slowdowns
to non-target services, without requiring knowledge of service
internals and the bottleneck.

3.2 Generalization

Here we generalize the model to any type of resource that
has a limit per time unit. Assume there are c calls to the ser-
vice for each user request, each call takes u resource, and g is
the quota for such resource. u can be interpreted as the aver-
age resource consumption per call for non-deterministic and
non-cumulative per-request usage, e.g., memory consump-
tion varying with the input and cache state. For any feasible
throughput ¢, the total resource usage must not exceed the
quota for any resource:

t
uct < g orequivalently il <1 5)
q

The units of all variables are listed in Tab. 1. Each con-
straint inequality represents a single resource constraint, and
each service can have multiple such constraints. Perhaps unin-
tuitively, a mutex-protected resource can also be described in

this fashion. Let u be the average resource consumption—e. g.,
CPU time—a service call requires inside the critical section,
then by the nature of mutexes, uct needs to be less than 1 since
no two threads can enter the critical section simultaneously. In
practice, g may be slightly less than 1 due to locking overhead.
Nevertheless, this formulation can describe the bottlenecks of
various synchronization primitives.

The end-to-end throughput is the maximal ¢ that satisfies

all the resource constraints. The throughput bottleneck is the
resource whose usage constraint reaches equality. This linear
program is implicitly solved when measuring the end-to-end
throughput of the application.
Dynamic call graphs and hybrid workload: The actual
number of calls to each service varies based on the application
logic. A service may be called multiple times within one user
request. Service calls can also be dynamic: a service may
decide whether to call another service based on the incoming
request. The workload can also affect the number of calls a
service receives. If a workload is a mix of two types of re-
quests and only one of them uses the service, then the number
of calls received depends on the ratio of the mixture.

The model encapsulates these behaviors by defining ¢ as
the average ratio between the number of calls received and
the number of user requests. We assume the distribution of
request type remains steady throughout the entire workload.
Multi-core services and general resource quota: In Sec-
tion 3.1 we assumed the services were single-threaded. In
this formulation, we relax that assumption by treating CPU
time as a resource. Here, g becomes the CPU time the ser-
vice gets per second—if 2 CPUs are dedicated to this service,
q = 2. Accordingly, u becomes the average CPU time needed
to handle each service call.

The concepts of quota and usage generalize to other types
of resources as well. One notable example is mutex, where g
is 1 CPU and u is time spent inside the mutex by each call to
this service. This constraint exists alongside the regular CPU
time constraint. Either constraint can become the service’s
bottleneck, and the linear program correctly captures that.
Bottleneck-equivalent transformation: Assuming an opti-
mization reduces usage u; of service 1 by d, the throughput
is then given by the solution to the new constraint set:

l 7dC]l‘ <1
", ©)
%C,‘l‘ <1 (17é 1)

qi

maximize ¢ in

For simplicity, this can be rewritten as:

maximize ¢ in Fit <1

: 7
clandF,-:&c,' (i#1) ™
q1 qi

u
where F| =

In other words, the throughput of the optimized application
fopr is the solution to the linear program in Eq. 7. However, t,,,



cannot be obtained by solving this linear program because u;
and g; cannot be accurately measured without extensive trac-
ing instrumentation. Nor can it be obtained by measuring the
application throughput because one cannot reduce the usage
to u; — d without actually implementing the optimization.

Similar to the transformation from Eq. 2 to Eq. 3, SLOW-
POKE adds d”—l” to the left-hand side of all constraints, trans-
forming the problem into

maximize ¢ in (F; + ?)t <1 3)
1

This new linear program does not yield the same solution ¢ as
the one in Eq.7. Yet, it preserves the exact same bottleneck.
Suppose the k-th constraint reaches equality in Eq. 7, resource
k will be the throughput bottleneck in the optimized applica-
tion. Given 7 is the same in every constraint, it also means Fj
is the largest among all F;. Consequently, the left-hand side
of the k-th constraint in Eq. 8 will also be the largest among
all constraints. Therefore, the k-th constraint in Eq. 8 also
reaches equality. In other words, given the solution to Eq. 8,
denoted as t,5, one can recover the solution to Eq. 7, denoted
as t,p, using the following equation:

1 dey, dey 1 dc
— =R+ - ©)
Topt q1 q1 tys q1
Implicit solution through experiment: Expanding the defi-
nition of F; in Eq. 8, we get

ﬂClt <1
maximize ¢t in 0 d:fl (10)
B S <1 (i#1)
qgi  41€i

While Eq. 7 cannot be implicitly solved by throughput mea-
surement experiments due to the negative term for constraint
1, Eq. 8 can be. By adding % seconds of “pause” to resource
consumption for each service call, we can construct a version
of the application whose throughput—once experimentally
measured—implicitly solves Eq.8.

Measurement requirement: When using the performance
model, only d, g1, and ¢; needs to be known in order to cal-
culate the appropriate delay and predict the throughput. Al-
though u; and g; are part of the model formulation, they do
not need to be explicitly known, since they are implicitly
accounted for during measurement.

4 Slowdown Mechanism

The mechanism to slow down non-target services is crucial for
constructing the experiment for bottleneck-equivalent trans-
formation. As pointed out in Section 3, a resource bottleneck
can be preserved in the bottleneck-equivalent transformation
only if its usage can be paused by the slowdown mechanism.
SLOWPOKE implements slowdown by pausing services using

Service A
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Fig. 6: Uncoordinated (top) vs. coordinated (bottom) pausing..

=== Pause period

POSIX signals [4]. When launching each service, POKER
starts first and spawns the service as a child process. It also
sets a new process group for the service process. To pause a
service, POKER first uses an unblockable SIGSTOP signal that
pauses the service’s entire process group. Then POKER sleeps
for the desired duration, calculated as the time the service
must remain paused according to the model. Finally, POKER
sends a SIGCONT signal to resume the service process.

This implementation correctly preserves general CPU time
bottlenecks, including those within synchronization primi-
tives. It does not accurately preserve network or disk I/O bot-
tlenecks because they have extensive buffering and caching
inside the OS kernel.

One notable property of POKER’s pausing is that it prevents
all CPU usage during the pausing period, even if the service
did not fully utilize CPU outside of the period. In contrast,
cgroup [23] —another potential pausing approach—controls
CPU usage by counting actual total CPU time used by the
service, and therefore can not slow down the service as SLOW-
POKE needs, if the CPU quota is not fully used. As a result,
SLOWPOKE can accurately predict throughput even when a
mutex-induced bottleneck exists in other services.

Batching: POSIX signals can incur non-negligible overhead
due to the need for context switching, especially when the
original service has a low per-call processing time. To mitigate
this overhead, SLOWPOKE accumulates pauses and executes
them in batches, thereby reducing the overall overhead. We
evaluate the overhead of POKER’s pausing mechanism and
the effect of batching in § 5.4.

Pause-induced latency: One subtle yet important scalabil-
ity issue hides in the exact choice of when to perform the
pauses. Suppose we implement pauses in a straightforward
way: let POKER pause the local service based on the incoming
requests it has seen. This uncoordinated local pausing scheme
has a serious scalability problem: the average latency during
profiling phase increases rapidly as the number of services on
the critical path increases.

To illustrate this problem, consider the scenario shown in
Fig. 6. Service A calls service B, which calls service C, and ser-
vice B is the optimization target. Suppose service A and C enter



Tab. 2: Benchmark Summary.

Benchmark Services LOC Sources
OnlineBoutique 9 1088  [3,52]
HotelReservation 6 608 [20,52]
SocialNetwork 6 532 [20,39,52]
MovieReview 12 913 [8,20,52]

the pausing period after seeing three calls. Because pausing a
service stops it from making more calls, the propagation of
the pause across services will be essentially serialized, caus-
ing requests to experience very high latency—proportional to
the number of services along the path. Moreover, subsequent
requests will also encounter serialized pauses and elevated
latency, leading to a higher average latency overall.

In an ideal scenario, this will not lead to throughput degra-
dation because the bubble in service C can be filled by queue-
ing many calls before service A enters the pausing period to
keep it busy. However, the unavoidable increase in average
latency—and, by Little’s law, in-flight requests—will lead
to higher resource consumption (e.g., memory, opened con-
nections) and contention (e.g., scheduling, memory cache),
ultimately skewing the measurement of maximal throughput.

Coordinated pausing: To resolve the problem, POKER coor-
dinates pause periods among services. Instead of each POKER
pausing its service independently, the target service deter-
mines when all services should pause. Each POKER estab-
lishes additional control channels with its neighbors. The
POKER running alongside target service initiates the pausing
by sending slowdown messages to its neighbors. Using a gos-
sip protocol, the pause eventually propagates across the entire
application. When a POKER receives a slowdown message,
it further propagates the message to all directly connected
neighbors and pauses its co-located service for the currently
batched pause duration. This decentralized approach is pre-
ferred over a global controller or pairwise connections, as it
avoids all-to-all network connectivity and distributes propa-
gation across services, thereby reducing the average overhead
imposed on any single service.

The coordination is demonstrated in Fig. 6 (bottom). The
pause messages coordinate services and reduce overall la-
tency. Pause messages originating from the same initial pause
at the target service are considered part of the same round.
Each pause message includes a round number to ensure that
no service pauses twice in the same round. Consider all ser-
vice calls triggered by a user request as forming a graph—the
service call graph. Some service calls may be delayed because
their corresponding services are paused by POKER. However,
assuming that slowdown messages do not travel slower than
service calls, no path in the service call graph will encounter
pauses for the same round. This ensures that the extra la-
tency introduced by SLOWPOKE no longer increases with the
number of services in the application.

Fig. 7: Topologies of synthetic benchmarks. Each block represents
a service, with arrows denoting call dependencies between services.
Red blocks indicate services that issue dynamic calls, with the prob-
ability of a call reaching a callee service specified within the callee
block. Topologies of synthetic benchmarks include: (1) Chain, (2)
Dynamic chain, (3) Fan-out, (4) Unbalanced tree, (5) Dynamic tree
with a two-level dynamic path, (6) Directed Acyclic Graph (DAG)
with a relaying service, (7) Dynamic path with cycles (via different
endpoints), (8) DAG with five services, and (9) Dynamic tree simu-
lating a cache hit/miss scenario.

We evaluate the effectiveness of coordinated pausing in
Section 5.4 and show that it significantly improves average
latency compared to uncoordinated pausing, without requiring
substantially more in-flight requests when using a closed-loop
workload generator.

5 Evaluation

We evaluate SLOWPOKE’s prediction accuracy across a di-
verse set of well-known applications (§5.1) and 108 synthetic
benchmarks that capture a broad spectrum of microservice
characteristics (§5.2). We further demonstrate SLOWPOKE’s
effectiveness in scenarios involving realistic scaling optimiza-
tions, mutex-induced bottlenecks, and large-scale microser-
vice deployments on a 45-node cluster (§5.3). Finally, we
analyze key design decisions contributing to SLOWPOKE’S
accuracy and examine its runtime overheads (§5.4).
Experimental setup: We conduct all experiments on Ku-
bernetes v1.29.14 deployed on AWS EC2. Each worker node
is anm5. large instance with 2 vCPUs (2.5 GHz Intel Xeon
Platinum 8259CL), 10 Gbps network bandwidth, 8 GB RAM,
and 32 GB GP3 EBS volumes. The control node and the
client node—on which workload generators run on—are
m5.2xlarge instances with 8 vCPUs, 32 GB RAM, and 32
GB GP3 volumes. All nodes run Ubuntu 22.04. The size of
clusters varies from 5 to 45 nodes depending on the number
of services. Each service in our experiments occupies one
node due to interference between cgroup resource limits and
SLOWPOKE’s pausing mechanism, as discussed in the lim-
itations section (§7). The target service initiates slowdown
propagation every 100 incoming requests (batching size).
Benchmarks: Tab. 2 summarizes the four open-source ap-
plications used in the evaluation. All services communicate
via HTTP. OnlineBoutique is an online shopping application
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and its workload consists of 75% indexing requests (home-
page views, product browsing, and cart interactions) and 25%
operational requests (currency updates, cart modifications,
and checkouts). HotelReservation is a hotel booking appli-
cation and its workload is composed of 80% search queries
for hotels in a specific area and 20% reservation requests.
SocialNetwork is a social media application and its workload
distribution includes 60% homepage timeline views, 30%
personal timeline views, and 10% post submissions. MovieRe-
view is a review-sharing application and its workload consists
of 90% page views and 10% review submissions.

To further evaluate SLOWPOKE’s accuracy across diverse
microservice characteristics, we extend the Hydragen [42]
microservice benchmark generator to support dynamic call
graphs, expressed as probabilities of invoking downstream ser-
vices. Using the extended generator, we generate 9 synthetic
topologies shown in Fig. 7. Each topology is experimentally
evaluated under three different configuration parameters: com-
munication protocol (gRPC or HTTP), request concurrency
(sequential or concurrent calls), and target service placement
(regardless if it is an existing bottleneck), resulting in 108 total
configurations. Additionally, we generate a large-scale mi-
croservice benchmark with a balanced tree topology compris-
ing 43 services to evaluate SLOWPOKE’s scalability (§5.3).

Workload generation: To generate workloads for all bench-
marks, we use wrk, a closed-loop workload generator, con-
figured with 8 threads and 1024 connections for real-world
benchmarks. Given the diversity of synthetic benchmarks,
coarse-grained connection settings can overload the system,
leading to inaccurate throughput measurements. To address
this, we apply a heuristic strategy that reduces the number
of connections when the observed throughput is significantly
lower than the expected throughput, estimated from the con-
figured processing times. We apply a consistent workload
across all phases of each experiment, including pre-profiling,
slowdown execution, and optimization.

Each throughput measurement includes a 3-second warm-
up phase to estimate the expected execution time for the
workload, followed by a measurement phase that runs un-
til the workload completes. We repeat each experiment five

times and retain the three data points closest to the median
for analysis due to the inherent variance in throughput mea-
surements (§5.1). We calculate the error percentage based
on the throughput predicted by SLOWPOKE and the ground
truth, measured after applying the hypothetical optimization.
Negative errors indicate underestimation, and positive errors
indicate overestimation. For each group of predictions, we
report both the error range (negative to positive) and the root
mean squared error (RMSE) to indicate the spread.

5.1 Real-world Microservice Benchmarks

This experiment evaluates SLOWPOKE’s prediction accuracy
across the four open-source applications listed in Tab. 2.
Methodology: To perform controlled experiments with vary-
ing optimization percentages, we introduce an artificial spin-
ning of 1000 ps to target services and simulate optimizations
by removing different fractions of the spinning time. We se-
lect target services with varying request loads and simulate
optimizations by uniformly reducing the spinning time across
10 experiments, resulting in varying optimization percentages,
as shown in Fig. 8. Specifically, we select Cart (accessed
by 45% of user requests) in OnlineBoutique, HomeTimeline
(70%) in SocialNetwork, Profile (80%) in HotelReservation,
and MovieReviews (90%) in MovieReview. Each benchmark
is initialized with predefined deterministic states—such as
user data in SocialNetwork and review entries in MovieRe-
view—before execution, following prior work [52].

Key results: Fig. 8 illustrates the prediction accuracy of
SLOWPOKE across all applications, with error percentages
ranging between -4.35-4.88% (RMSE: 2.07%). OnlineBou-
tique reports errors ranging between -2.88-4.25% (RMSE:
2.38%). SocialNetwork yields errors ranging between -2.19—
2.89% (RMSE: 1.74%). HotelReservation shows errors rang-
ing between -2.29-4.88% (RMSE: 2.16%). MovieReview ex-
hibits errors ranging between -4.35-1.35% (RMSE: 1.95%).
Analysis: The results demonstrate that SLOWPOKE general-
izes across diverse applications, accurately predicting through-
put improvements with reasonable errors, given the inherent
variance in throughput measurements. For example, the stan-
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Fig. 9: Prediction errors for synthetic experiments grouped by
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dard deviation of ground truth (without slowdowns) through-
put, measured across three runs per configuration, reaches
up to 58 req/s (mean: 2134 req/s) in HotelReservation. High
errors may stem from SLOWPOKE’s overheads (§5.4) and
from Eq.9, whose form can numerically amplify noises in #,;.

Overall, SLOWPOKE accurately predicts performance im-
provements across a wide range of throughput optimizations.
It predicts gains between 1565-3000 req/s in SocialNetwork,
and between 4301-6824 req/s in OnlineBoutique, where the
target services are critical bottlenecks. It also effectively iden-
tifies cases where optimizations yield minimal gains, as ob-
served in MovieReview and HotelReservation.

5.2 Synthetic Benchmarks

In this experiment, we use synthetic benchmarks to evaluate
the impact of diverse microservice topologies and configura-
tions on SLOWPOKE's prediction accuracy.

Methodology: We use the 9 topologies shown in Fig. 7 to
generate 108 synthetic benchmarks with varying configura-
tions, including different communication protocols, request
concurrency models, and target service placements. For ex-
ample, in the chain topology, selecting the head, middle, or
tail service as the target yields three distinct configurations.
All service processing times are randomly generated from a
Gaussian distribution with a mean of 700 ps and a standard
deviation of 300 ps. For each configuration, we generate opti-
mizations ranging from 10% to 100% of the target service’s
processing time, resulting in 108 x 10 experiments in total.
Ground truth is obtained by directly modifying the processing
time within the benchmark generator.

Key results: Across configurations, SLOWPOKE’S errors
range between -7.61-5.65% (RMSE: 1.89%). The heatmap in
Appendix A shows that underestimations are more common at
higher optimization levels, e.g.,-7.61% at a 90% optimization,
where the target service’s processing time approaches zero,
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Fig. 10: Throughput prediction with mutex bottleneck.

resulting in an unrealistically fast service. As a result, the
throughput measured during slowdown execution is lower
due to profiling overhead, leading to underestimation.

Analysis: SLOWPOKE predicts throughput improvements
across diverse microservice topologies and configurations
with high accuracy, achieving error ranges comparable to
those observed in real-world applications. To examine the im-
pact of different topologies and configurations on prediction
accuracy, we aggregate all results by different characteristics,
including whether the target service is an existing bottleneck,
as shown in Fig. 9. Out of 1080 experiments, 300 experi-
ments have the target service as an existing bottleneck, 382
experiments result in underestimation, 540 experiments use
sequential calls, and 540 experiments use HTTP protocol.
SLOWPOKE maintains high prediction accuracy across all
topologies, with slightly larger error ranges in scenarios in-
volving more services and greater complexity, e.g., in dynamic
topology where multiple dynamic paths are exercised.

5.3 Slowpoke in Action

This experiment evaluates SLOWPOKE’s prediction accuracy
in three scenarios: realistic optimizations, mutex-induced bot-
tlenecks, and large-scale deployments.

Optimization by scaling: This experiment explores SLOW-
POKE’s effectiveness in predicting throughput improvements
under realistic optimizations, including horizontal and vertical
scaling. For horizontal scaling, we scale Cart in OnlineBou-
tique from 1 to 2 replicas by adding an EC2 instance of the
same type. For vertical scaling, we scale Hometimeline in
SocialNetwork from 2 to 4 CPUs by deploying the optimized
service on anm5. xlarge instance with 4 vCPUs. SLOWPOKE
requires an expected optimization effect—specifically, by how
much the throughput of the target service improves after its
optimization—as input to predict the end-to-end throughput
improvement. We assume a linear benefit for horizontal scal-
ing. Given that vertical scaling does not lead to linear im-
provement in practice, we first estimate the throughput im-
provement of Homet imeline on 4 vCPUs by provisioning 8
vCPUs to other services, ensuring that Hometimeline is satu-
rated to the best extent possible. This estimated value is used
as input to SLOWPOKE in all slowdown experiments. The
results show that SLOWPOKE accurately predicts the through-
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Fig. 11: Large-scale deployment with 43 services.

put improvement of both optimizations, with errors of -2.41%
for OnlineBoutique and -4.60% for SocialNetwork.

Handling mutex-protected resources: This experiment ex-
plores whether SLOWPOKE’s slowdown mechanism can cor-
rectly handle the throughput prediction of an optimized ap-
plication even when the new bottleneck arises from mutex
contention. We use a simple two-service application where
each service exposes a single endpoint. The client calls A
which in turn calls B. Each service runs on a 2-CPU machine.
Within 2’s endpoint, each request spins the CPU for 800 ps.
Within B’s endpoint, each request spins the CPU for 350 ps
while holding a mutex. We then evaluate SLOWPOKE’s ef-
fectiveness on 10 different optimizations, corresponding to
processing time reductions between 0 and 400 ps. For compar-
ison, we repeat the same experiments with the mutex in B re-
moved. Fig. 10 presents the actual and predicted throughputs
for both the mutexed and unmutexed versions of B. Because
both A and B run on 2 CPUs, but most of B’s processing is
serialized by a mutex lock, the mutexed version of the ap-
plication initially gains performance as A is optimized but
plateaus at 2750 req/s when the bottleneck shifts to B. In
contrast, when B is not mutexed, A remains the bottleneck
throughout the experiments, therefore, the post-optimization
throughput continues to increase. In both cases, SLOWPOKE
predicts the throughput with less than 1% error across all
optimizations, demonstrating that its slowdown mechanism
remains effective with synchronization-induced bottlenecks.

Large-scale deployment: This experiment explores SLOW-
POKE’s effectiveness in a large-scale deployment comprising
43 services using a synthetic balanced tree topology (width
is 6, height is 3). Each service’s processing time is randomly
assigned following the same procedure as in prior synthetic
experiments. We select service4 at level 2—having both par-
ent and child services—as the optimization target, and apply
10 optimizations reducing its processing time.

Fig. || presents SLOWPOKE’s prediction in this setup with
errors ranging between -7.11-0.12% (RMSE: 1.79%). The
largest error occurs under extreme optimizations, where the
target service’s processing time approaches zero. This ex-
periment demonstrates that SLOWPOKE accurately predicts
throughput improvements even in large-scale deployments.
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Fig. 12: Single-service throughput vs. batch size.

5.4 Batching and Coordinated Pausing

This set of experiments evaluates SLOWPOKE’s batching and
coordinated slowdown mechanism.

Pause batching: We first evaluate SLOWPOKE’s overhead
as we vary the batching size using a simple two-service call
graph. The user-facing service accepts HTTP requests and
calls an inner service, which executes a busy-spinning loop for
50 ps before returning. The application’s baseline throughput,
without any instrumentation, is 10960 req/s. We use POKER to
add a no-op slowdown to the service, meaning that it sends the
signals but sets its sleep time to 0 s. As shown in Fig. 12, the
service achieves a throughput of 9180 reqs/s (19.4% overhead)
without batching. Increasing the batching size in steps of 20
gradually improves throughput, reaching 10795 req/s (1.93%
overhead) and stabilizing at batch sizes of 80 and onwards.
Pause coordination: To demonstrate the necessity of pause
coordination in SLOWPOKE, we construct three chain topolo-
gies, with 3, 6, and 9 services, each service deployed on a
2-CPU machine. The root service has a processing time of 1
ms per request, while inner services have processing times ran-
domly selected from the range of 100-150 ps. We select the
root service as the optimization target and measure through-
put for a hypothetical optimization that reduces its processing
time by 600 ps. Coordinated slowdown is implemented using
the mechanism described in Section 4, with a batch size of 50
requests. Uncoordinated slowdown is implemented by having
each POKER count received requests independently and sleep
after every 50 requests.

The first experiment evaluates the impact of pause coor-
dination on prediction accuracy using the 9-service chain
topology. We fix the number of connections to 128 for coor-
dinated pausing and gradually increase it to 352 for uncoor-
dinated pausing, which maximizes the measured throughput.
The results in Tab. 3 show that coordinated pausing results
in a prediction error of only -4.3%, whereas uncoordinated
pausing, even with the highest number of connections, results
in a -17% prediction error.

To further illustrate the root cause of the problem, we mea-
sure the throughput of all three applications with different
connection numbers (32-512), with results shown at the top
of Fig. 13. Without coordinated pausing, the application re-
quires substantially more open connections to reach peak
throughput. Specifically, it needs 96, 256, and 352 open con-



Tab. 3: Prediction accuracy comparison between SLOWPOKE’s
coordinated and uncoordinated pausing. The ground truth
throughput with 128 connections is 3541 req/s.

Setting (conns) Tput. Pred. Rel. error
SLOWPOKE (128) 1680 3387 -4.35%
Uncoordinated pause (128) 956 1340 -62.2%
Uncoordinated pause (352) 1562 2939 -17.0%
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Fig. 13: Throughput and latency with coordinated and unco-
ordinated pausing. Top row: throughput measured with varying
connection parameter in wrk. The applications have a simple chain
topology with 3, 6, and 9 services. Bottom row: latency at different

percentiles for the same set of applications.

nections for 3, 6, 9 services in the application, respectively. In
contrast, with coordinated pausing, applications reach peak
throughput using no more than 128 open connections. Next,
we use an open-loop workload generator with a fixed request
rate of 1500 req/s to record the latency distribution. As shown
in Fig. 13, the 90%ile latency remains stable with coordinated
slowdown, demonstrating the efficiency and scalability of
the coordination mechanism. The 99%ile latency increases
slightly as the number of services grows, which is expected
since the coordination is not a strict global synchronization,
which is infeasible in practice.

6 Related Work

SLOWPOKE is related to a large body of prior work on
distributed tracing, critical path analysis, modularity, perfor-
mance modeling, resource management, and service meshes.
Distributed tracing: Distributed tracing techniques have
been extensively explored to gain visibility and diagnose per-
formance issues in distributed systems [2, 9, 18, 45]. Pivot
Tracing [33], Canopy [30], DeepFlow [43], 3MileBench [53],
Hindsight [54], and Black-box performance analysis [10]
extend distributed tracing for greater visibility in diverse en-
vironments and under different settings.

The core difference between these approaches and SLOW-

POKE is that, traces alone can only capture service depen-
dencies and the total time spent in each service, whereas the
questions answered with SLOWPOKE require accurate model-
ing to capture the complex dependencies and behaviors after
optimizations. The two approaches are synergistic, as SLOW-
POKE could potentially leverage tracing information to extract
necessary dependency information required for its analysis.
Critical path analysis: Critical path analysis aims to iden-
tify latency bottlenecks in complex distributed applications.
Mystery Machine [15] and LatenSeer [56] reconstruct de-
pendency relations based on tracing information and identify
critical paths for latency, used for prediction of end-to-end
latency. CRISP [57] introduces a framework for identifying
critical paths in microservices and leveraging trace analysis
to pinpoint sources of high latency. SnailTrail [24] general-
izes critical path analysis for online analysis of long running
dataflow. These latency analysis may enable throughput pre-
diction if all the services are CPU-bound and handle requests
in a sequential and synchronous way, but not in the general
cases that SLOWPOKE handles. Conversely, SLOWPOKE can-
not identify critical paths for latency optimizations nor predict
latency improvements.

Modularity: Modular applications predate the advent of
microservices [50], with prior work developing profiling tech-
niques and exploring optimization opportunities in modu-
lar systems. Transactional profiling [14] tracks transactions
across shared memory, events, or stages, and measures their in-
terference. Active dependency discovery [13] perturbs system
behavior to reveal dynamic dependencies between compo-
nents. Intra-box analysis [21] introduces variable delays on
network and disk traffic to confirm causal relationships be-
tween events. DiSh [35] and Fractal [26] focus on distributing
opaque modular components in shell scripts to optimize per-
formance. While effective in characterizing complex depen-
dencies and improving performance, these approaches do not
quantify the potential gains of performance optimizations. De-
velopers could leverage SLOWPOKE to evaluate hypothetical
optimizations, complementing prior profiling and optimiza-
tion techniques in modular applications.

Performance modeling: Blocked-time analysis [37] uses
detailed white-box logging and full execution replay to quan-
tify I/O bottlenecks. Indy [22] predicts process performance
on a single machine by tracing resource usage and calculat-
ing predictions based on available hardware resources. These
systems predict potential system performance, yet require
white-box visibility into resource usage, whereas SLOWPOKE
implicitly takes them into account within experiments. Causal
profilers [12, 51] targeting parallel programs on multiple
nodes fail to directly and effectively apply to long-running
microservices, which have different execution models that
involve multiple concurrent requests.

Microservice resource management: Microservice re-
source management focuses on allocating resources efficiently
while minimizing latency and cost. FIRM [38], Erms [32], and



Sinan [55] use learning-based techniques to efficiently provi-
sion resources to meet application-level latency requirements.
Accelerometer [46] provides fine-grained profiling to iden-
tify resource usage hotspots in microservice environments.
Autothrottle [49] uses throttle measurement to maximize effi-
ciency of CPU provisioning in the application while meeting
performance targets. Kraken [48] uses live traffic testing to
help stress production systems with realistic workloads. Con-
cord [28] employs theoretically optimal scheduling policies
to improve throughput in datacenter applications. While these
systems can be useful in identifying potential bottlenecks and
improving performance, they cannot quantify the throughput
improvements of hypothetical optimizations.

Service meshes: Existing production-grade service meshes
such as Istio [6], Linkerd [7], and Cilium [5] offer robust plat-
forms for managing microservices, featuring traffic manage-
ment, security, and observability. MeshInsight [59] enhances
performance analysis by profiling service meshes through
inter-service communication metrics and network latency.
While these systems provide valuable insights and actionable
capabilities, they do not directly leverage this information to
guide optimization planning. SLOWPOKE could be integrated
with service meshes to leverage their rich observability and
traffic control features.

7 Discussions and Limitations

Although SLOWPOKE is effective in many realistic scenar-
ios, the current implementation may not be applicable to all
possible uses encountered in production microservice deploy-
ments. This section discusses SLOWPOKE’s limitations and
extensions for future work.

Resource sharing across services: The SLOWPOKE perfor-
mance model assumes exclusive resource use by each service.
However, modern cloud deployments multiplex resources
across services to improve utilization and reduce costs. Fu-
ture work could extend the SLOWPOKE model to support such
sharing by introducing additional constraints:

<Zu$c“'+dq>t§1
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where u; represents the resource usage of service s, ¢ de-
notes the service call ratio, and g; is the total quota allocated
to the shared resource. To accommodate this extension, the
slowdown mechanism needs to coordinate pauses across all
services sharing the same resource.

Supporting other applications: The current version of
SLOWPOKE implements runtime components in Go, embed-
ded within communication libraries. However, the underlying
model (§3) and slowdown mechanism (§4) are language-
agnostic. Supporting additional applications and services
requires porting these components to other languages or
frameworks capable of instrumenting layer-7 communica-

tions. Such extensions would broaden SLOWPOKE’s applica-
bility across complex microservices.

Compatibility with I/O-bound bottlenecks: The perfor-
mance model generalizes across various types of bottlenecks,
including CPU contention, mutex contention, and network
saturation. However, the slowdown mechanism, implemented
via SIGSTOP signals, has limited effects on the OS kernel.
For instance, once a network packet is pushed into the kernel,
SIGSTOP cannot halt subsequent kernel and NIC processing.
For future work, network bottlenecks could be addressed by
using a sidecar (e.g., Istio [6]) or I/O throttling to slow down
network transmission.

Compatibility with cgroup resource limiting: Container
orchestration platforms such as Kubernetes and Docker Com-
pose, rely on Linux control groups (cgroup) [23] to enforce
resource quotas when specified. The CPU cgroup controls
CPU quota by restricting service’s total CPU time within
consecutive time intervals, called “periods”. The quota is re-
freshed at the beginning of each period. If a POKER pause
begins in the middle of a period, the service might have al-
ready used up its CPU quota for that period, and would have
been paused by the scheduler regardless. Such interaction can
partially or fully nullify POKER’s intended pause, causing
the service to run much faster than expected. Notably, CPU
allocation mechanisms without such “catch up” mechanisms,
e.g., virtual machines or CPU affinity [1], remain compatible
with SLOWPOKE. Given that cgroup contains a pausing mech-
anism cgroup. freeze [23], modifying the kernel to extend
the CPU quota refreshing strategy could enable cgroup to
support SLOWPOKE’s pausing semantics.

Autoscaling: SLOWPOKE’s current model supports predic-
tion only for services with static resource allocation. SLOW-
POKE can still augment autoscaling systems [19,40]—where
resource provisioning is dynamically adjusted—by predicting
the impact of of optimizations, including both horizontal and
vertical scaling.

8 Conclusion

SLOWPOKE quantifies the end-to-end throughput improve-
ments of hypothetical optimizations for microservices. By
introducing a novel performance model, selective service
slowdowns, and an effective coordinated pausing mechanism,
SLOWPOKE accurately predicts these effects across a vari-
ety of microservice applications and deployment scenarios.
SLOWPOKE is MIT-licensed, open-source software; available
at github.com/atlas-brown/slowpoke.
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A Full Results for Synthetic Benchmarks

Fig. 14 shows the error heatmap across all synthetic experi-
ments discussed in Section 5.2. Each row represents a single
call graph, and each cell indicates the estimation error for a
specific optimization percentage (10%—100%), where a 50%
optimization corresponds to a 50% reduction in target ser-
vice’s average processing time per request. The color intensity
reflects the magnitude of the error. Red blocks denote overes-
timation, whereas blue blocks indicate underestimation.
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Fig. 14: Error heatmap of SLOWPOKE across all synthetic call
graph configurations.
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