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Abstract—LoRaWAN is widely used for large-scale Internet
of Things (IoT) deployments, but real-world reliability is often
affected by high packet error rate. Existing optimization methods,
such as heuristics or supervised learning, cannot fully capture
the effects of environment, spatial layout, and network dynamics,
which limits their adaptability. In this paper, we present LO-
RADOCTOR, the first framework that leverages Large Language
Models (LLMs) to optimize LoRaWAN. LORADOCTOR per-
forms causal analysis, generates adaptive transmission policies,
and predicts network performance in an interpretable way. We
perform simulation-based evaluations using a year-long dataset
collected from eight sensors deployed in East London. The results
show that LORADOCTOR can significantly reduce packet error
rates compared to both the default LoRaWAN settings and stan-
dard machine learning methods. Our evaluation also identifies
distance-based path loss, temperature effects, and human activity
as the main causes of packet error rate, showing its potential to
support more reliable and adaptive LoRaWAN deployments in
future urban environments.

Index Terms—LoRaWAN, Low-Power Wide Area Networks,
Packet Error Rate Reduction, Causal Analysis, Adaptive Policy
Optimization, Large Language Models, Multi-Modal Reasoning

I. INTRODUCTION

Low-Power Wide Area Networks (LPWANs) serve as the

communication backbone for the rapidly expanding Internet

of Things ecosystem, with LoRaWAN deployments alone

expected to connect over 200 million devices by 2025 [1].

These networks enable critical applications ranging from smart

city infrastructure and environmental monitoring to industrial

automation, where reliable data transmission is essential for

operational safety and efficiency [2], [3]. According to the

study conducted by Ma et al. [4], bespoke LoRaWAN heat

sensors can be used to explore microclimate effects within

London’s urban heat islands. However, real-world LoRaWAN

deployments face a fundamental challenge: substantial packet

error rate in dense urban environments, severely compromising

network reliability and rendering many Internet of Things

(IoT) applications impractical [5], [6], [7], [8], [9].

Existing optimization methods face three fundamental lim-

itations that prevent effective adaptation to real-world con-

∗The first two authors contributed equally to this work.

ditions. First, heuristic-based approaches like Adaptive Data

Rate (ADR) algorithms rely on simplified models that as-

sume network conditions and fail to capture the complex

interdependencies between multiple performance factors [10].

Studies show that default ADR achieves packet delivery ratios

below 60% in dense deployments, highlighting the inadequacy

of rule-based optimization [11]. Second, supervised machine

learning approaches require extensive labeled training data

for each deployment scenario and cannot generalize across

different environmental conditions or urban topologies [12],

[13]. Third, existing approaches lack interpretability, making

it impossible for network operators to understand optimization

decisions or adapt to changing deployment requirements [14].

We observe that Large Language Models (LLM) offer

unique capabilities for multi-factor reasoning and causal infer-

ence that directly address these limitations. Unlike traditional

optimization methods, LLMs can analyze heterogeneous data

sources. These include network telemetry, environmental mea-

surements, spatial characteristics, and temporal patterns. They

can identify causal relationships across these factors. Based

on this analysis, LLMs generate targeted and context-aware

optimization policies [15], [16]. Moreover, LLMs provide

human-interpretable explanations for optimization decisions,

enabling network operators to understand system behavior and

validate policy recommendations.

We present LORADOCTOR, the first LLM-driven frame-

work for LoRaWAN network optimization that combines

causal analysis, adaptive policy generation, and performance

prediction. The framework addresses three core technical

challenges: (1) multi-factor data integration and causal anal-

ysis across heterogeneous data sources, (2) constraint-aware

policy generation that complies with LoRaWAN regulatory

requirements and hardware limitations, and (3) performance

prediction and validation through LLM-driven simulation. Our

main contributions are as follows.

• We develop the first LLM-based method for LoRaWAN,

which identifies causal links between environmental,

spatial, and network factors. The approach combines

statistical checks with physics-based reasoning.



• We build a constraint-aware optimization engine, which

creates clear policies that adjust transmission settings,

duty cycles, and retransmissions. The system reacts to

real-time conditions and stays within regulations.

• We propose a new simulation method powered by LLM

reasoning, which predicts how policies will perform

in various scenarios. This avoids the need for detailed

mathematical radio models.

Our paper is organized as follows. Section II reviews the

related work. Section III presents our design of LORADOC-

TOR. Section IV describes our collected data and analysis.

Section V evaluates LORADOCTOR. Section VI concludes

this paper.

II. RELATED WORK

LoRaWAN optimization research spans three main areas:

heuristic-based approaches, machine learning (ML)-driven

methods, and emerging AI-based network management. While

each has advanced the state of the art, existing solutions

struggle with the complex, multi-factor nature of packet error

rate in real deployments.

A. Heuristic-Based Optimization

Heuristic parameter tuning based on distance and coverage

is common, but fails in dynamic environments. Adelantado

et al. [10] show default ADR can drop delivery ratios below

60% in dense networks. Cuomo et al. [11] improve capacity by

40% with EXPLoRa, and Zorbas et al. [17] reduce collisions

by 25% via interference-aware channel selection, but both rely

on fixed assumptions and manual tuning.

B. ML-Based Optimization

ML methods adapt parameters dynamically with better

performance. Sandoval et al. [12] use Q-learning to cut energy

use by 30% while maintaining high delivery rates, but require

long training. Xu et al. [13] predict optimal settings from

environmental features, improving success rates by 45%, yet

lack causal reasoning. Chen et al. [14] achieve 60% packet

error rate reduction in simulation using deep networks, but

their method is non-interpretable.

C. AI-Driven Network Management

LLMs have been applied to enterprise network configura-

tion [18] and diagnosis [19], while Zhao et al. [20] optimize

cellular handovers with transformers. However, these works

target high-power networks, overlooking LPWAN constraints

such as ultra-low energy use and duty-cycle limits.

D. Gap and Contribution

Current approaches lack (1) multi-factor reasoning across

environmental, spatial, and temporal factors, (2) causal in-

ference to identify root loss causes, and (3) interpretable

decision-making for operator trust. We present the first LLM-

driven LoRaWAN optimizer integrating multi-factor analysis,

causal reasoning, and adaptive policy generation, validated

with extensive real-world data.

Fig. 1: System Architecture.

III. METHODOLOGY

Our LLM-driven LoRaWAN optimization framework con-

sists of four integrated components that work together to

analyze network performance, identify root causes of packet

error rate, generate adaptive policies, and predict optimization

effectiveness. Figure 1 presents the overall system architecture,

illustrating the data flow from real-time network monitoring

through LLM-based analysis1 to policy implementation and

performance feedback.

A. Problem Formulation

We formulate LoRaWAN network optimization as an op-

timization problem aimed at minimizing Packet Error Rate

(PER). Let S = {s1, s2, . . . , sn} represent the set of n sensors

in the network, where each sensor si is characterized by

its spatial location, environmental conditions, and operational

parameters.

For each sensor si, the packet error rate PERi(t) at time

t is influenced by a comprehensive set of factors:

Fi(t) = {di, Ti(t), Hi(t), Ai(t), Pi(t)} (1)

where di represents the distance from sensor si to the gateway,

Ti(t) denotes the ambient temperature at time t, Hi(t) repre-

sents the humidity level at time t, Ai(t) captures the human

activity level affecting the sensor environment, and Pi(t)
encompasses the transmission parameters, including spreading

factor SFi(t), transmission power TXpower,i(t), and duty

cycle DCi(t).
The optimization objective is to determine the optimal

parameter configuration P ∗

i (t) that minimizes PER:

min
Pi(t)

PERi(t) (2)

1We use ChatGPT-4o as the LLM backbone in this work.



subject to LoRaWAN regulatory constraints, transmission

power limitations, and duty cycle restrictions.

The primary challenge lies in modeling the complex, non-

linear relationships between environmental factors and packet

error rate. These dependencies exhibit temporal variations

and cross-correlations that traditional optimization approaches

struggle to capture effectively, necessitating advanced machine

learning or adaptive optimization techniques to achieve opti-

mal network performance.

B. System Overview

As Figure 1 shows, the architecture integrates heterogeneous

data sources from LoRaWAN deployments, including network

telemetry, environmental sensors, and spatial information. An

LLM-based multi-modal analysis engine extracts causal fac-

tors and confidence scores by combining context vectors and

prompt generation. These insights drive an adaptive policy

generation module, which performs constraint checking, range

validation, and compatibility analysis to recommend optimized

transmission policies. Finally, an LLM-powered simulation

and performance prediction layer enables predictive modeling

and what-if analysis, ensuring robust policy evaluation before

real-world deployment.

C. LLM-Based Multi-factor Data Analysis

The foundation of our approach is a multi-factor data anal-

ysis component that leverages LLMs to understand complex

relationships between diverse data sources. Unlike traditional

machine learning approaches that require extensive feature

engineering and labeled training data, our LLM-based analyzer

can reason about causal relationships and identify patterns

across heterogeneous data types.

1) Data Integration and Preprocessing: Our system contin-

uously collects data from multiple sources: network telemetry

(Received Signal Strength Indicator (RSSI) measurements,

Signal-to-Noise Ratio (SNR), and frame counters), environ-

mental sensors (temperature and humidity readings), and spa-

tial characteristics (GPS coordinates). The data integration

module standardizes these heterogeneous inputs into a unified

representation suitable for LLM-based processing.

We employ a temporal windowing approach that aggregates

data over configurable time intervals (default: 1 hour) to

capture both short-term fluctuations and longer-term trends.

For each sensor si and time window w, we construct a

comprehensive context vector:

Cw
i = {Dw

network, D
w
env, Dspatial} (3)

where Dw
network represents aggregated network telemetry

statistics (e.g., average RSSI, SNR distributions, PER, and

frame counter differentials) during window w, Dw
env denotes

environmental observations (e.g., mean temperature and hu-

midity) in the same interval, and Dspatial encodes static geo-

graphic features (e.g., latitude, longitude, and altitude) asso-

ciated with sensor si. This unified representation ensures that

the LLM has access to temporally aligned, multi-factor context

for robust reasoning and policy generation.

Algorithm 1 LLM-Based Causal Analysis

Require: Network data D, time window w, sensor set S, threshold
θcausal = 0.7

Ensure: Validated causal factors CF with confidence scores
1: CF ← ∅
2: for each sensor si ∈ S do

3: Extract context vector Cw
i using Equation 3

4: Generate structured causal prompt Pcausal(C
w
i , PERw

i )
5: hypothesis← LLM.generate(Pcausal)
6: factors← parse causal factors(hypothesis)
7: for each factor f ∈ factors do

8: confgranger ← granger causality test(f, PERi, D)
9: confcorrelation ← cross correlation analysis(f, PERi, w)

10: confphysics ← validate physical mechanism(f, PERi)
11: confidence← 0.4 ·confgranger+0.3 ·confcorrelation+0.3 ·

confphysics
12: if confidence > θcausal then

13: CF ← CF∪{(f, confidence,mechanism explanation)}
14: end if

15: end for

16: end for

17: return CF ranked by confidence scores

2) LLM-Driven Causal Analysis and Factor Identification:

The core innovation of our approach lies in using LLMs

to perform causal inference on network performance data,

distinguishing between correlation and causation to avoid sub-

optimal optimization decisions. Algorithm 1 enhances causal

discovery by combining LLM-generated hypotheses with sta-

tistical and physics-based validation. The process begins by

iterating over each sensor si in the monitored network and

computing a context vector Cw
i over the time window w,

which encodes relevant covariates such as environmental con-

ditions, human activity, spatial topology, and network metrics.

Using this context together with observed PER, the system

constructs a structured causal prompt Pcausal and queries the

LLM to hypothesize possible causal factors, which are then

parsed into candidate variables f . Each candidate undergoes

three independent validation stages: (i) a Granger causality

test to measure temporal predictive power of f over PER,

(ii) cross-correlation analysis to quantify short-term statistical

associations within the same window, and (iii) a physics-based

plausibility check against established wireless models (e.g.,

path-loss, interference, or mobility-induced fading). These

evidences are integrated into a weighted confidence score,

where Granger causality receives higher weight for its pre-

dictive grounding, while correlation and physics tests balance

statistical robustness with real-world consistency. Only factors

with confidence above the threshold θcausal are retained, and

each is annotated with a mechanism explanation drawn from

both LLM reasoning and validation feedback.

D. Adaptive Policy Generation

Building on the causal analysis results, our system generates

context-aware optimization policies that adapt to real-time

network conditions. The policy generation component uses

LLMs to reason about complex trade-offs and generate human-

interpretable optimization strategies.

1) Policy Reasoning Framework: Our policy generation

framework employs a hierarchical reasoning approach. First,



the LLM analyzes the current network state and identifies

causal factors to determine optimization priorities. Second, it

generates specific parameter adjustments with justifications.

Third, it evaluates potential risks and provides fallback strate-

gies. The policy generation process considers multiple con-

straints simultaneously: regulatory duty cycle limits, coverage

requirements, and interference mitigation. Unlike rule-based

systems that handle constraints independently, our LLM-based

approach can reason about constraint interactions and find

creative solutions that traditional methods miss.

2) Parameter Mapping and Validation: Generated policies

must be translated into concrete LoRaWAN parameter con-

figurations. Our parameter mapping module converts LLM-

generated policy descriptions into valid network configurations

while ensuring compliance with LoRaWAN specifications and

regulatory requirements.

For each policy recommendation, we validate feasibility

through:

1) Constraint checking: Verify compliance with duty cy-

cle, power, and spectrum regulations

2) Range validation: Ensure parameters fall within valid

LoRaWAN ranges (SF: 7-12)

3) Compatibility analysis: Check for conflicts between

simultaneous parameter changes

E. LLM-Based Performance Prediction and Simulation

Our system uses LLM-driven performance prediction to

evaluate policy effectiveness before deployment. The model

estimates the impact of parameter changes. It shows how these

changes affect network performance.

1) Predictive Modeling: Traditional simulation approaches

require detailed mathematical models of radio propagation,

interference patterns, and environmental effects. Our LLM-

based predictor leverages the reasoning capabilities of large

language models to estimate performance impacts based on

observed patterns in historical data.

The prediction component generates scenarios by varying

environmental conditions, human activity patterns, and net-

work loads. For each scenario, the LLM predicts expected PER

with confidence intervals and coverage reliability metrics.

2) What-If Analysis: Our system supports comprehensive

what-if analysis that explores the impact of different policy

choices under various conditions. This capability allows net-

work operators to understand policy robustness and identify

potential failure modes before implementation.

Algorithm 2 performs counterfactual stress-testing of a

candidate policy P . Given historical traces H , it (i) fabricates

plausible future or extreme scenarios, (ii) queries an LLM to

reason about P ’s behavior under each scenario, and (iii) parses

predicted metrics with calibrated confidence. The output is a

set Pred = {(sc,metrics, confidence)} that supports policy

ranking and risk-aware deployment.

a) Inputs/Outputs.: Inputs: (1) Policy P (e.g., ADR

settings, power/SF maps, or decision rules), (2) history H

containing telemetry (PER, RSSI, SNR, temperature, humidity,

topology snapshots), (3) scenario budget K. Outputs: A table

Algorithm 2 LLM-Based What-If Analysis

Require: Policy P , historical data H , scenario count K
Ensure: Performance predictions Pred with confidence scores
1: Scenarios← generate scenarios(H,K)
2: Pred← ∅
3: for each scenario sc ∈ Scenarios do

4: prompt← construct prediction prompt(P, sc)
5: prediction← LLM.generate(prompt)
6: metrics← parse performance metrics(prediction)
7: confidence← assess prediction confidence(metrics,H)
8: Pred← Pred ∪ {(sc,metrics, confidence)}
9: end for

10: return Pred

of predicted performance per scenario with confidence scores

suitable for Pareto filtering.

b) Line 1: Scenario synthesis.: We construct a diverse

set Scenarios = {sc1, . . . , scK} that spans both typical and

tail conditions:

• Time-series resampling: block bootstrap and

seasonality-aware replay to preserve diurnal/weekly

structure in H .

• Covariate perturbations: controlled shifts in

(temp, humidity, human activity, density) drawn from

fitted distributions; extremes via EVT (e.g., generalized

Pareto) to emulate heat waves, rainstorms, or rush-hour

surges.

• Topology variations: randomized link degradations,

gateway outages, and shadowing maps to mimic urban

canyons or temporary blockages.

• Load profiles: bursty traffic and duty-cycle caps to test

congestion sensitivity.

Coverage can be guided by a design matrix (Latin hypercube /

maximin) so that K scenarios evenly tile the covariate space.

c) Lines 4–6: LLM evaluation and metric extraction.:

For each sc, we form a structured prompt prompt =
construct prediction prompt(P, sc) that includes: (i) a

compact schema of P , (ii) salient scenario features (summaries

+ a few exemplars), (iii) an explicit JSON output contract for

metrics. We then call LLM.generate(prompt) and parse

with parse_performance_metrics, which validates the

JSON and extracts task-specific KPIs.

d) Line 7: Confidence assessment : Confidence integrates

several signals:

• Historical calibration: back-test the same prompting

pipeline on held-out slices of H; map past absolute errors

to a reliability score.

• Ensemble consistency: run M stochastic LLM samples

(temperature or paraphrased prompts) and compute dis-

persion (e.g., coefficient of variation) of KPIs.

• OOD detection: measure scenario distance to H . Larger

distances down-weight confidence.

• Spec compliance: penalize malformed outputs or con-

straint violations (e.g., PER outside [0, 1]).

The final confidence c ∈ [0, 1] can be a learned aggregator or

a weighted sum of the above components.



Fig. 2: Map of LoRaWAN sensors in East London.

e) Practical guidance.:

• Choosing K: start with K=50−200; increase until sce-

nario coverage metrics (e.g., max-min distance) stabilize.

• Guardrails: enforce the JSON schema, add unit checks,

and clamp out-of-range values; reject and re-query on

parse failure.

f) Extensions.: Hybrid simulation: replace or augment

LLM.generate with a physics or packet-level simulator to

produce priors; let the LLM critique/adjust these priors given

qualitative factors (e.g., pedestrian flows). Causal sensitivity:

couple scenario generation with a causal graph over covariates

to craft interventions (do-operations) rather than mere corre-

lations.

IV. DATA COLLECTION AND ANALYSIS

We have collected data from eight custom LoRaWAN

sensors deployed in East London from August 2023 to July

2024 and used it to investigate the complex factors affecting

LoRaWAN performance in urban environments.

A. Hardware and Software Deployment

As Figure 2 shows, our deployment consists of eight

custom-built LoRaWAN sensor nodes strategically placed in

diverse urban environments in East London, spanning dis-

tances from 300 to 1200 meters from the centrally located

ArcelorMittal Orbit gateway. Each sensor node integrated an

Arduino MKR WAN 1310 microcontroller with an embedded

LoRa radio, a Texas Instruments HDC1080 temperature and

humidity sensor (±0.2°C accuracy), and a 2000mAh recharge-

able LiPo battery housed within commercial Stevenson screens

for environmental protection. The network leveraged The

Things Network (TTN) infrastructure for data relay, with

sensors transmitting 5-minute interval messages containing

environmental readings, operational telemetry, and critical

LoRaWAN metadata (RSSI, SNR, SF, frame counters) through

an MQTT-InfluxDB pipeline for continuous data capture and

processing.

B. Performance Characteristics and Spatial Patterns

Our analysis reveals significant performance variations that

correlate strongly with distance from the gateway, environ-

mental factors, and temporal patterns. Analysis of more than

TABLE I: Deployment Site Performance Summary

Location Dist. (m) Env. Type Avg PER (%) Signal Quality
(RSSI/SNR)

Playground 823 Residential 1.2 -98 dBm / 7.2 dB
Courtyard 763 Residential 1.5 -102 dBm / 6.8 dB
Riverside 796 Open/Waterfront 0.8 -95 dBm / 8.1 dB
Square 723 Open/Commercial 1.0 -97 dBm / 7.5 dB
Shaded Corner 1157 Dense Residen-

tial
20.5 -118 dBm / 2.3 dB

Sun Corner 1177 Dense Residen-
tial

19.8 -119 dBm / 1.9 dB

Crossroad 1290 Urban/Traffic 21.2 -121 dBm / 1.2 dB
Station 1531 Transport Hub 15.3 -115 dBm / 3.1 dB

840,000 transmission records demonstrates a clear perfor-

mance threshold effect, with sensors experiencing a sharp

degradation in reliability beyond 800 meters from the Arcelor-

Mittal Orbit gateway. Data processing revealed significant

temperature outliers across all sensors, ranging from extreme

readings below -20°C to above 50°C, which were systemati-

cally removed using interquartile range (IQR) filtering. After

outlier removal, the cleaned dataset shows distinct perfor-

mance clusters: proximity-dependent reliability for near sen-

sors and environment-dependent variability for distant sensors.

Table I presents the performance characteristics derived from

our cleaned dataset, highlighting the non-linear relationship

between distance and reliability that traditional path loss

models fail to capture.

C. Analysis of Low PER

The top-5 Pearson correlations in Figure 3 reveal distinct

signal and environmental drivers of low PER at proximity

sensors such as Playground, Courtyard, Riverside, and Square.

We summarize four key contributing factors:

• Signal Quality Sensitivity: Features like RSSI 0, SNR 0,

and CH RSSI 0 frequently appear among the most cor-

related with PER across multiple sites (e.g., Courtyard,

Square). Sensors within 600 meters consistently maintain

RSSI above −105 dBm and SNR above 6 dB. Riverside,

despite its distance (500 m), benefits from line-of-sight

over water, achieving the lowest PER (0.8%) due to

minimal multipath and attenuation effects.

• Payload and Frame-Level Indicators: At several sites

(e.g., Crossroad, Station, ShadedCorner), Payload and

FrameCnt are strongly correlated with PER, indicating

that traffic volume, retransmission behavior, or encoding

complexity plays a measurable role. Sensors closer to

gateways exhibit fewer retransmission events, likely due

to more stable connections.

• Environmental Coupling: Features such as Humidity

and Temperature consistently correlate with PER at prox-

imity sites (e.g., Playground, Riverside, Station). This

suggests environmental stability reduces PER through

reduced signal fading and improved hardware stability.

Notably, sensors closer to vegetation or shaded structures

exhibit more stable thermal conditions.

• Channel and Index Effects: Channel index and location-

based metadata (e.g., CH IDX 0, Lon 0) also emerge as

correlated features at certain sites (e.g., Square, Shaded-
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Fig. 3: Top-5 Pearson correlation coefficients between PER and input features at eight deployment sites.

Corner), implying that spatial allocation of frequencies

and urban structure may play secondary roles in shaping

link quality.

Overall, this multi-site correlation analysis provides inter-

pretable insights into the dominant PER drivers under real

deployment conditions, informing adaptive and location-aware

policy design.

V. TRACE-DRIVEN SIMULATION STUDY

We evaluate our LLM-driven LoRaWAN optimization

framework using real-world traces and LLM-based network

simulations. The evaluation addresses three central questions:

(1) Can the LLM-based simulation engine accurately repro-

duce packet error rate behavior observed in real deployments?

(2) How effectively do LLM-generated policies mitigate spe-

cific root causes of degraded performance? (3) How closely

do simulated performance outcomes align with real-world

measurements under different optimization strategies?

A. Simulation Setup

Our evaluation framework combines real-world data traces

with LLM-driven network simulations to test policy effective-

ness in diverse scenarios. The LLM simulation engine models

complex interactions between environmental factors, spatial

characteristics, and network parameters to predict PERs under

different policy configurations.

We evaluate three optimization approaches: (1) Baseline

real-world performance with default LoRaWAN configuration,

(2) Distance-based heuristic policies, and (3) LLM-generated

adaptive policies targeted to specific root causes. Performance

metrics include simulated vs. actual PER accuracy, policy ef-

fectiveness per causal factor, and overall network performance

improvement.

B. LLM-Based Network Simulation Validation

Question: How accurately can the LLM simulation replicate

real-world PER?
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Fig. 4: LLM simulation accuracy vs. real-world PER measure-

ments. The red dashed line indicates perfect prediction. MAE

= 0.098, r = 0.23.

Setup: We train the LLM simulation engine on 80% of the

deployment dataset and evaluate predictions on the remaining

20% held-out test set. The model accounts for distance,

environmental conditions, temporal variations, and hardware

degradation patterns observed in the field. Predicted PER

values are compared against actual measurements for weekly

averaged data across all sensor locations.

Results: Figure 4 shows the scatter plot of predicted versus

actual PER on Courtyard. The LLM simulation achieves a

Mean Absolute Error (MAE) of 0.098 and a correlation

coefficient of r = 0.23. Most predictions cluster near the ideal

y = x line, though slight underestimation occurs at higher

observed PER values.

Analysis: While the LLM captures key trends in packet

error rate behavior, including low-PER stability and moderate



TABLE II: Root Cause-Specific Policy Performance (LLM

Simulation Results). Dist. = Distance Policy, Therm. = Ther-

mal Policy, Interf. = Interference Policy, Integ. = Integrated

Policy.

Location Baseline PER (%) Dist. (%) Therm. (%) Interf. (%) Integ. (%)

Playground 1.2 0.9 1.0 0.8 0.4
Courtyard 1.5 1.1 1.2 1.0 0.6

Riverside 0.8 0.6 0.7 0.5 0.3
Square 1.0 0.8 0.9 0.6 0.4
Shaded Corner 20.5 12.3 16.8 18.2 7.2

Sun Corner 19.8 11.7 14.5 17.1 6.9
Crossroad 21.2 13.8 18.4 15.6 8.8

Station 15.3 9.2 12.7 13.5 5.4

Average 10.2 6.3 8.3 8.4 3.8

sensitivity to environmental changes, the moderate correlation

suggests limitations in modeling extreme conditions. This may

be due to rare high-loss events not fully represented in the

training data. Nonetheless, the MAE values indicate the model

provides sufficiently accurate estimates for guiding policy

optimization.

C. Root Cause-Specific Policy Optimization

Question: How effectively do LLM-generated policies address

different root causes of packet error rate?

Setup: We identify five primary root causes from our data

analysis: (1) Distance-based path loss, (2) Environmental tem-

perature effects, and (3) Interference during peak hours. For

each cause, we generate targeted LLM policies and simulate

their effectiveness.

Results: Table II presents the simulation results for cause-

specific policy interventions across all eight sensor locations.

Analysis: Distance-based policies provide the largest single

improvement, particularly for distant sensors. Thermal and

interference policies show moderate benefits, while integrated

policies combining multiple interventions achieve optimal

performance.

D. LLM Policy Generation for Specific Scenarios

The LLM generates distinct optimization strategies based

on identified root causes:

Distance Policy: For sensors beyond 800m, the LLM rec-

ommends increasing transmission power to 14dBm, using SF

11-12 for improved sensitivity, enabling confirmed uplinks

for critical data, and implementing adaptive retry mechanisms

with exponential backoff.

Thermal Policy: During high-temperature periods (> 25 ◦C),

policies include reducing duty cycle during peak hours (12-

5PM), implementing temperature-based transmission power

scaling, enabling adaptive data rate adjustments, and schedul-

ing maintenance transmissions during cooler periods.

Interference Policy: For peak-hour interference mitigation,

the LLM suggests implementing frequency hopping across

available channels, using random transmission timing within

duty cycle windows, increasing SF during congested periods,

and employing listen-before-talk mechanisms.

Integrated Policy: Combining all approaches with dynamic

weighting based on real-time conditions, multi-objective opti-

mization balancing PER, energy, and latency, predictive policy
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Fig. 5: Simulated PERs across eight sensor locations under

baseline, distance-optimized, and integrated optimization poli-

cies.

switching based on environmental forecasts, and continuous

learning from performance feedback.

E. Performance Comparison

Question: How do different optimization strategies impact

PER across diverse sensor deployment sites?

Setup: We evaluate three policy configurations across eight

sensor locations: (1) Baseline using default LoRaWAN param-

eters, (2) Distance-Optimized policies that adapt transmission

settings based on link distance, and (3) Integrated optimization

that combines distance adaptation with environment-aware

tuning. Figure 5 reports the simulated PER under each policy.

Results: Integrated optimization consistently achieves the low-

est PER at all sites, followed by distance-optimized policies

and then baseline. The most significant improvements occur at

Crossroad, where baseline PER exceeds 20% but drops below

10% with integrated optimization. Even at sites with moderate

baseline reliability (e.g., Riverside and SunCorner), integrated

optimization reduces PER by more than half.

Analysis: These results demonstrate that policies incorporat-

ing both distance awareness and environmental factors are

most effective in improving reliability. Distance-based tuning

alone provides noticeable benefits over baseline but cannot

fully address interference and multipath effects, particularly at

high-loss sites. The integrated approach thus provides a more

robust solution for maintaining low PER across heterogeneous

deployment conditions.

F. Temporal Policy Adaptation Analysis

Question: How effectively do adaptive LLM-generated poli-

cies respond to temporal variations in network and environ-

mental conditions?

Setup: We compare a baseline configuration with an LLM-

driven adaptive policy across two time scales: (a) month-level

trends over a seasonal transition period, and (b) hour-level

variations during peak summer conditions. PER is used as the

primary evaluation metric.

Results: Figure 6(a) shows that the adaptive policy yields

a consistent monthly reduction in PER, falling from about



Fig. 6: Temporal adaptation effectiveness: (a) Monthly PER

trends with static vs. adaptive policies, (b) Daily pattern

optimization during summer peak conditions.

0.18 to below 0.1, whereas the static policy remains largely

unchanged. In the daily profile (Figure 6b), the adaptive pol-

icy significantly suppresses midday performance degradation

during high-interference periods.

Analysis: These findings indicate that the LLM-based policy

can dynamically adapt to both long-term seasonal shifts and

short-term diurnal fluctuations. By preemptively mitigating

interference and stress conditions, the adaptive strategy main-

tains consistently lower PERs, demonstrating the value of

temporal reasoning in real-world deployments.
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VI. CONCLUSION

Real-world LoRaWAN deployments face significant packet

error rate caused by complex environmental, spatial, and

temporal factors that traditional optimization methods cannot

fully address. In this study, we introduced LORADOCTOR,

the first LLM-driven framework for LoRaWAN optimization.

Using a year-long dataset collected from eight sensors in East

London, we carried out simulation-based evaluations, showing

that LORADOCTOR can apply multi-factor reasoning and

causal analysis to generate adaptive policies with clear, human-

interpretable explanations. The simulation results indicate that

LLMs hold strong potential as tools for network optimization

and open promising directions for applying multi-factor AI

reasoning to complex network management. These findings

suggest that LORADOCTOR could support more reliable,

adaptive, and scalable IoT infrastructure in future real-world

deployments.
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