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Abstract—LoRaWAN is widely used for large-scale Internet
of Things (IoT) deployments, but real-world reliability is often
affected by high packet error rate. Existing optimization methods,
such as heuristics or supervised learning, cannot fully capture
the effects of environment, spatial layout, and network dynamics,
which limits their adaptability. In this paper, we present LO-
RADOCTOR, the first framework that leverages Large Language
Models (LLMs) to optimize LoRaWAN. LORADOCTOR per-
forms causal analysis, generates adaptive transmission policies,
and predicts network performance in an interpretable way. We
perform simulation-based evaluations using a year-long dataset
collected from eight sensors deployed in East London. The results
show that LORADOCTOR can significantly reduce packet error
rates compared to both the default LoORaWAN settings and stan-
dard machine learning methods. Our evaluation also identifies
distance-based path loss, temperature effects, and human activity
as the main causes of packet error rate, showing its potential to
support more reliable and adaptive LoRaWAN deployments in
future urban environments.

Index Terms—LoRaWAN, Low-Power Wide Area Networks,
Packet Error Rate Reduction, Causal Analysis, Adaptive Policy
Optimization, Large Language Models, Multi-Modal Reasoning

I. INTRODUCTION

Low-Power Wide Area Networks (LPWANS) serve as the
communication backbone for the rapidly expanding Internet
of Things ecosystem, with LoRaWAN deployments alone
expected to connect over 200 million devices by 2025 [1].
These networks enable critical applications ranging from smart
city infrastructure and environmental monitoring to industrial
automation, where reliable data transmission is essential for
operational safety and efficiency [2], [3]. According to the
study conducted by Ma et al. [4], bespoke LoRaWAN heat
sensors can be used to explore microclimate effects within
London’s urban heat islands. However, real-world LoRaWAN
deployments face a fundamental challenge: substantial packet
error rate in dense urban environments, severely compromising
network reliability and rendering many Internet of Things
(IoT) applications impractical [5], [6], [7], [8], [9].

Existing optimization methods face three fundamental lim-
itations that prevent effective adaptation to real-world con-
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ditions. First, heuristic-based approaches like Adaptive Data
Rate (ADR) algorithms rely on simplified models that as-
sume network conditions and fail to capture the complex
interdependencies between multiple performance factors [10].
Studies show that default ADR achieves packet delivery ratios
below 60% in dense deployments, highlighting the inadequacy
of rule-based optimization [11]. Second, supervised machine
learning approaches require extensive labeled training data
for each deployment scenario and cannot generalize across
different environmental conditions or urban topologies [12],
[13]. Third, existing approaches lack interpretability, making
it impossible for network operators to understand optimization
decisions or adapt to changing deployment requirements [14].

We observe that Large Language Models (LLM) offer
unique capabilities for multi-factor reasoning and causal infer-
ence that directly address these limitations. Unlike traditional
optimization methods, LLMs can analyze heterogeneous data
sources. These include network telemetry, environmental mea-
surements, spatial characteristics, and temporal patterns. They
can identify causal relationships across these factors. Based
on this analysis, LLMs generate targeted and context-aware
optimization policies [15], [16]. Moreover, LLMs provide
human-interpretable explanations for optimization decisions,
enabling network operators to understand system behavior and
validate policy recommendations.

We present LORADOCTOR, the first LLM-driven frame-
work for LoRaWAN network optimization that combines
causal analysis, adaptive policy generation, and performance
prediction. The framework addresses three core technical
challenges: (1) multi-factor data integration and causal anal-
ysis across heterogeneous data sources, (2) constraint-aware
policy generation that complies with LoRaWAN regulatory
requirements and hardware limitations, and (3) performance
prediction and validation through LLM-driven simulation. Our
main contributions are as follows.

o We develop the first LLM-based method for LoRaWAN,
which identifies causal links between environmental,
spatial, and network factors. The approach combines
statistical checks with physics-based reasoning.



e We build a constraint-aware optimization engine, which
creates clear policies that adjust transmission settings,
duty cycles, and retransmissions. The system reacts to
real-time conditions and stays within regulations.

o We propose a new simulation method powered by LLM
reasoning, which predicts how policies will perform
in various scenarios. This avoids the need for detailed
mathematical radio models.

Our paper is organized as follows. Section II reviews the
related work. Section III presents our design of LORADOC-
TOR. Section IV describes our collected data and analysis.
Section V evaluates LORADOCTOR. Section VI concludes
this paper.

II. RELATED WORK

LoRaWAN optimization research spans three main areas:
heuristic-based approaches, machine learning (ML)-driven
methods, and emerging Al-based network management. While
each has advanced the state of the art, existing solutions
struggle with the complex, multi-factor nature of packet error
rate in real deployments.

A. Heuristic-Based Optimization

Heuristic parameter tuning based on distance and coverage
is common, but fails in dynamic environments. Adelantado
et al. [10] show default ADR can drop delivery ratios below
60% in dense networks. Cuomo et al. [11] improve capacity by
40% with EXPLoRa, and Zorbas et al. [17] reduce collisions
by 25% via interference-aware channel selection, but both rely
on fixed assumptions and manual tuning.

B. ML-Based Optimization

ML methods adapt parameters dynamically with better
performance. Sandoval et al. [12] use Q-learning to cut energy
use by 30% while maintaining high delivery rates, but require
long training. Xu et al. [13] predict optimal settings from
environmental features, improving success rates by 45%, yet
lack causal reasoning. Chen et al. [14] achieve 60% packet
error rate reduction in simulation using deep networks, but
their method is non-interpretable.

C. AI-Driven Network Management

LLMs have been applied to enterprise network configura-
tion [18] and diagnosis [19], while Zhao et al. [20] optimize
cellular handovers with transformers. However, these works
target high-power networks, overlooking LPWAN constraints
such as ultra-low energy use and duty-cycle limits.

D. Gap and Contribution

Current approaches lack (1) multi-factor reasoning across
environmental, spatial, and temporal factors, (2) causal in-
ference to identify root loss causes, and (3) interpretable
decision-making for operator trust. We present the first LLM-
driven LoRaWAN optimizer integrating multi-factor analysis,
causal reasoning, and adaptive policy generation, validated
with extensive real-world data.
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Fig. 1: System Architecture.

III. METHODOLOGY

Our LLM-driven LoRaWAN optimization framework con-
sists of four integrated components that work together to
analyze network performance, identify root causes of packet
error rate, generate adaptive policies, and predict optimization
effectiveness. Figure 1 presents the overall system architecture,
illustrating the data flow from real-time network monitoring
through LLM-based analysis! to policy implementation and
performance feedback.

A. Problem Formulation

We formulate LoRaWAN network optimization as an op-
timization problem aimed at minimizing Packet Error Rate
(PER). Let S = {s1, s2, ..., 8, } represent the set of n sensors
in the network, where each sensor s; is characterized by
its spatial location, environmental conditions, and operational
parameters.

For each sensor s;, the packet error rate PER;(t) at time
t is influenced by a comprehensive set of factors:

Fi(t) = {d;, Ti(t), Hi(t), As(t), P;(t)} (D

where d; represents the distance from sensor s; to the gateway,
T;(t) denotes the ambient temperature at time ¢, H;(t) repre-
sents the humidity level at time ¢, A;(¢) captures the human
activity level affecting the sensor environment, and P;(t)
encompasses the transmission parameters, including spreading
factor SF;(t), transmission power T X,oueri(t), and duty
cycle DC,(t).

The optimization objective is to determine the optimal
parameter configuration P;(¢) that minimizes PER:

in PER;(t 2
i PO ?

I'We use ChatGPT-40 as the LLM backbone in this work.



subject to LoRaWAN regulatory constraints, transmission
power limitations, and duty cycle restrictions.

The primary challenge lies in modeling the complex, non-
linear relationships between environmental factors and packet
error rate. These dependencies exhibit temporal variations
and cross-correlations that traditional optimization approaches
struggle to capture effectively, necessitating advanced machine
learning or adaptive optimization techniques to achieve opti-
mal network performance.

B. System Overview

As Figure 1 shows, the architecture integrates heterogeneous
data sources from LoRaWAN deployments, including network
telemetry, environmental sensors, and spatial information. An
LLM-based multi-modal analysis engine extracts causal fac-
tors and confidence scores by combining context vectors and
prompt generation. These insights drive an adaptive policy
generation module, which performs constraint checking, range
validation, and compatibility analysis to recommend optimized
transmission policies. Finally, an LLM-powered simulation
and performance prediction layer enables predictive modeling
and what-if analysis, ensuring robust policy evaluation before
real-world deployment.

C. LLM-Based Multi-factor Data Analysis

The foundation of our approach is a multi-factor data anal-
ysis component that leverages LLMs to understand complex
relationships between diverse data sources. Unlike traditional
machine learning approaches that require extensive feature
engineering and labeled training data, our LLM-based analyzer
can reason about causal relationships and identify patterns
across heterogeneous data types.

1) Data Integration and Preprocessing: Our system contin-
uously collects data from multiple sources: network telemetry
(Received Signal Strength Indicator (RSSI) measurements,
Signal-to-Noise Ratio (SNR), and frame counters), environ-
mental sensors (temperature and humidity readings), and spa-
tial characteristics (GPS coordinates). The data integration
module standardizes these heterogeneous inputs into a unified
representation suitable for LLM-based processing.

We employ a temporal windowing approach that aggregates
data over configurable time intervals (default: 1 hour) to
capture both short-term fluctuations and longer-term trends.
For each sensor s; and time window w, we construct a
comprehensive context vector:

Czw = {Drifétworlo D;lI)IV’ DSpalial} 3

where D . represents aggregated network telemetry
statistics (e.g., average RSSI, SNR distributions, PER, and
frame counter differentials) during window w, D¢, denotes
environmental observations (e.g., mean temperature and hu-
midity) in the same interval, and Dyyia €ncodes static geo-
graphic features (e.g., latitude, longitude, and altitude) asso-
ciated with sensor s;. This unified representation ensures that
the LLM has access to temporally aligned, multi-factor context

for robust reasoning and policy generation.

Algorithm 1 LLM-Based Causal Analysis

Require: Network data D, time window w, sensor set S, threshold
Ocausal = 0.7
Ensure: Validated causal factors C'F' with confidence scores
1: CF+ 0
2: for each sensor s; € S do

3: Extract context vector '}’ using Equation 3

4:  Generate structured causal prompt Pegysq1(C;’, PERY)

5: hypothesis < LLM.generate(Peqysal)

6: factors < parse_causal_factors(hypothesis)

7: for each factor f € factors do

8: confgranger < granger_causality_test(f, PER;, D)

9: coNfeorrelation < cross_correlation_analysis(f, PER;, w)
10: con fphysics < validate_physical_mechanism(f, PER;)
11: confidence <= 0.4-con fgranger +0.3-confeorrelation + 0.3

Confphys'ics
12: if confidence > 0.qysq1 then
13: CF + CFU{(f,confidence, mechanism_explanation)}
14: end if
15: end for
16: end for

17: return C'F' ranked by confidence scores

2) LLM-Driven Causal Analysis and Factor Identification:
The core innovation of our approach lies in using LLMs
to perform causal inference on network performance data,
distinguishing between correlation and causation to avoid sub-
optimal optimization decisions. Algorithm 1 enhances causal
discovery by combining LLM-generated hypotheses with sta-
tistical and physics-based validation. The process begins by
iterating over each sensor s; in the monitored network and
computing a context vector C;” over the time window w,
which encodes relevant covariates such as environmental con-
ditions, human activity, spatial topology, and network metrics.
Using this context together with observed PER, the system
constructs a structured causal prompt P, s, and queries the
LLM to hypothesize possible causal factors, which are then
parsed into candidate variables f. Each candidate undergoes
three independent validation stages: (i) a Granger causality
test to measure temporal predictive power of f over PER,
(ii) cross-correlation analysis to quantify short-term statistical
associations within the same window, and (iii) a physics-based
plausibility check against established wireless models (e.g.,
path-loss, interference, or mobility-induced fading). These
evidences are integrated into a weighted confidence score,
where Granger causality receives higher weight for its pre-
dictive grounding, while correlation and physics tests balance
statistical robustness with real-world consistency. Only factors
with confidence above the threshold 6.4, are retained, and
each is annotated with a mechanism explanation drawn from
both LLM reasoning and validation feedback.

D. Adaptive Policy Generation

Building on the causal analysis results, our system generates
context-aware optimization policies that adapt to real-time
network conditions. The policy generation component uses
LLMs to reason about complex trade-offs and generate human-
interpretable optimization strategies.

1) Policy Reasoning Framework: Our policy generation
framework employs a hierarchical reasoning approach. First,



the LLM analyzes the current network state and identifies
causal factors to determine optimization priorities. Second, it
generates specific parameter adjustments with justifications.
Third, it evaluates potential risks and provides fallback strate-
gies. The policy generation process considers multiple con-
straints simultaneously: regulatory duty cycle limits, coverage
requirements, and interference mitigation. Unlike rule-based
systems that handle constraints independently, our LLM-based
approach can reason about constraint interactions and find
creative solutions that traditional methods miss.

2) Parameter Mapping and Validation: Generated policies
must be translated into concrete LoRaWAN parameter con-
figurations. Our parameter mapping module converts LLM-
generated policy descriptions into valid network configurations
while ensuring compliance with LoRaWAN specifications and
regulatory requirements.

For each policy recommendation, we validate feasibility
through:

1) Constraint checking: Verify compliance with duty cy-
cle, power, and spectrum regulations

2) Range validation: Ensure parameters fall within valid
LoRaWAN ranges (SF: 7-12)

3) Compatibility analysis: Check for conflicts between
simultaneous parameter changes

E. LLM-Based Performance Prediction and Simulation

Our system uses LLM-driven performance prediction to
evaluate policy effectiveness before deployment. The model
estimates the impact of parameter changes. It shows how these
changes affect network performance.

1) Predictive Modeling: Traditional simulation approaches
require detailed mathematical models of radio propagation,
interference patterns, and environmental effects. Our LLM-
based predictor leverages the reasoning capabilities of large
language models to estimate performance impacts based on
observed patterns in historical data.

The prediction component generates scenarios by varying
environmental conditions, human activity patterns, and net-
work loads. For each scenario, the LLM predicts expected PER
with confidence intervals and coverage reliability metrics.

2) What-If Analysis: Our system supports comprehensive
what-if analysis that explores the impact of different policy
choices under various conditions. This capability allows net-
work operators to understand policy robustness and identify
potential failure modes before implementation.

Algorithm 2 performs counterfactual stress-testing of a
candidate policy P. Given historical traces H, it (i) fabricates
plausible future or extreme scenarios, (ii) queries an LLM to
reason about P’s behavior under each scenario, and (iii) parses
predicted metrics with calibrated confidence. The output is a
set Pred = {(sc, metrics, confidence)} that supports policy
ranking and risk-aware deployment.

a) Inputs/Outputs.: Inputs: (1) Policy P (e.g., ADR
settings, power/SF maps, or decision rules), (2) history H
containing telemetry (PER, RSSI, SNR, temperature, humidity,
topology snapshots), (3) scenario budget K. Outputs: A table

Algorithm 2 LL.M-Based What-If Analysis

Require: Policy P, historical data H, scenario count K
Ensure: Performance predictions Pred with confidence scores
1: Scenarios < generate_scenarios(H, K)

2: Pred < 0

3: for each scenario sc € Scenarios do

4:  prompt < construct_prediction_prompt(P, sc)

5:  prediction < LLM.generate(prompt)
6:  metrics < parse_per formance_metrics(prediction)
7

8
9

0

con fidence < assess_prediction_con fidence(metrics, H)
: Pred < PredU {(sc, metrics, con fidence)}
: end for
: return Pred

—_

of predicted performance per scenario with confidence scores
suitable for Pareto filtering.

b) Line 1: Scenario synthesis.: We construct a diverse
set Scenarios = {scy,...,sck} that spans both typical and
tail conditions:

o Time-series resampling: block bootstrap and
seasonality-aware replay to preserve diurnal/weekly
structure in H.

o Covariate perturbations: controlled shifts in
(temp, humidity, human activity, density) drawn from
fitted distributions; extremes via EVT (e.g., generalized
Pareto) to emulate heat waves, rainstorms, or rush-hour
surges.

o Topology variations: randomized link degradations,
gateway outages, and shadowing maps to mimic urban
canyons or temporary blockages.

o Load profiles: bursty traffic and duty-cycle caps to test
congestion sensitivity.

Coverage can be guided by a design matrix (Latin hypercube /
maximin) so that K scenarios evenly tile the covariate space.

c) Lines 4-6: LLM evaluation and metric extraction.:
For each sc, we form a structured prompt prompt =
construct_prediction_prompt(P, sc) that includes: (i) a
compact schema of P, (ii) salient scenario features (summaries
+ a few exemplars), (iii) an explicit JSON output contract for
metrics. We then call LLM.generate (prompt) and parse
with parse_performance_metrics, which validates the
JSON and extracts task-specific KPIs.

d) Line 7: Confidence assessment : Confidence integrates
several signals:

o Historical calibration: back-test the same prompting
pipeline on held-out slices of H; map past absolute errors
to a reliability score.

o Ensemble consistency: run M stochastic LLM samples
(temperature or paraphrased prompts) and compute dis-
persion (e.g., coefficient of variation) of KPIs.

e OOD detection: measure scenario distance to H. Larger
distances down-weight confidence.

o Spec compliance: penalize malformed outputs or con-
straint violations (e.g., PER outside [0, 1]).

The final confidence ¢ € [0, 1] can be a learned aggregator or
a weighted sum of the above components.
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Fig. 2: Map of LoRaWAN sensors in East London.

e) Practical guidance.:

o Choosing K: start with K=50—200; increase until sce-
nario coverage metrics (e.g., max-min distance) stabilize.

o Guardrails: enforce the JSON schema, add unit checks,
and clamp out-of-range values; reject and re-query on
parse failure.

f) Extensions.: Hybrid simulation: replace or augment
LLM.generate with a physics or packet-level simulator to
produce priors; let the LLM critique/adjust these priors given
qualitative factors (e.g., pedestrian flows). Causal sensitivity:
couple scenario generation with a causal graph over covariates
to craft interventions (do-operations) rather than mere corre-
lations.

IV. DATA COLLECTION AND ANALYSIS

We have collected data from eight custom LoRaWAN
sensors deployed in East London from August 2023 to July
2024 and used it to investigate the complex factors affecting
LoRaWAN performance in urban environments.

A. Hardware and Software Deployment

As Figure 2 shows, our deployment consists of eight
custom-built LoORaWAN sensor nodes strategically placed in
diverse urban environments in East London, spanning dis-
tances from 300 to 1200 meters from the centrally located
ArcelorMittal Orbit gateway. Each sensor node integrated an
Arduino MKR WAN 1310 microcontroller with an embedded
LoRa radio, a Texas Instruments HDC1080 temperature and
humidity sensor (£0.2°C accuracy), and a 2000mAh recharge-
able LiPo battery housed within commercial Stevenson screens
for environmental protection. The network leveraged The
Things Network (TTN) infrastructure for data relay, with
sensors transmitting 5-minute interval messages containing
environmental readings, operational telemetry, and critical
LoRaWAN metadata (RSSI, SNR, SF, frame counters) through
an MQTT-InfluxDB pipeline for continuous data capture and
processing.

B. Performance Characteristics and Spatial Patterns

Our analysis reveals significant performance variations that
correlate strongly with distance from the gateway, environ-
mental factors, and temporal patterns. Analysis of more than

TABLE I: Deployment Site Performance Summary

Location Dist. (m) Env. Type Avg PER (%) Signal Quality
(RSSI/SNR)

Playground 823 Residential 1.2 -98 dBm /7.2 dB

Courtyard 763 Residential 1.5 -102 dBm / 6.8 dB

Riverside 796 Open/Waterfront 0.8 -95 dBm / 8.1 dB

Square 723 Open/Commercial 1.0 -97 dBm /7.5 dB

Shaded Corner 1157 Dense Residen- 20.5 -118 dBm /2.3 dB
tial

Sun Corner 1177 Dense Residen- 19.8 -119 dBm / 1.9 dB
tial

Crossroad 1290 Urban/Traffic 21.2 -121 dBm / 1.2 dB

Station 1531 Transport Hub 153 -115 dBm /3.1 dB

840,000 transmission records demonstrates a clear perfor-
mance threshold effect, with sensors experiencing a sharp
degradation in reliability beyond 800 meters from the Arcelor-
Mittal Orbit gateway. Data processing revealed significant
temperature outliers across all sensors, ranging from extreme
readings below -20°C to above 50°C, which were systemati-
cally removed using interquartile range (IQR) filtering. After
outlier removal, the cleaned dataset shows distinct perfor-
mance clusters: proximity-dependent reliability for near sen-
sors and environment-dependent variability for distant sensors.
Table I presents the performance characteristics derived from
our cleaned dataset, highlighting the non-linear relationship
between distance and reliability that traditional path loss
models fail to capture.

C. Analysis of Low PER

The top-5 Pearson correlations in Figure 3 reveal distinct
signal and environmental drivers of low PER at proximity
sensors such as Playground, Courtyard, Riverside, and Square.
We summarize four key contributing factors:

« Signal Quality Sensitivity: Features like RSSI_0, SNR_0,
and CH_RSSI_O frequently appear among the most cor-
related with PER across multiple sites (e.g., Courtyard,
Square). Sensors within 600 meters consistently maintain
RSSI above —105 dBm and SNR above 6 dB. Riverside,
despite its distance (500 m), benefits from line-of-sight
over water, achieving the lowest PER (0.8%) due to
minimal multipath and attenuation effects.

o Payload and Frame-Level Indicators: At several sites
(e.g., Crossroad, Station, ShadedCorner), Payload and
FrameCnt are strongly correlated with PER, indicating
that traffic volume, retransmission behavior, or encoding
complexity plays a measurable role. Sensors closer to
gateways exhibit fewer retransmission events, likely due
to more stable connections.

o Environmental Coupling: Features such as Humidity
and Temperature consistently correlate with PER at prox-
imity sites (e.g., Playground, Riverside, Station). This
suggests environmental stability reduces PER through
reduced signal fading and improved hardware stability.
Notably, sensors closer to vegetation or shaded structures
exhibit more stable thermal conditions.

o Channel and Index Effects: Channel index and location-
based metadata (e.g., CH_IDX_0, Lon_0) also emerge as
correlated features at certain sites (e.g., Square, Shaded-
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do simulated performance outcomes align with real-world
measurements under different optimization strategies?

A. Simulation Setup

Our evaluation framework combines real-world data traces
with LLM-driven network simulations to test policy effective-
ness in diverse scenarios. The LLM simulation engine models
complex interactions between environmental factors, spatial
characteristics, and network parameters to predict PERs under
different policy configurations.

We evaluate three optimization approaches: (1) Baseline
real-world performance with default LoRaWAN configuration,
(2) Distance-based heuristic policies, and (3) LLM-generated
adaptive policies targeted to specific root causes. Performance
metrics include simulated vs. actual PER accuracy, policy ef-
fectiveness per causal factor, and overall network performance
improvement.

B. LLM-Based Network Simulation Validation

Question: How accurately can the LLM simulation replicate
real-world PER?

Fig. 4: LLM simulation accuracy vs. real-world PER measure-
ments. The red dashed line indicates perfect prediction. MAE
=0.098, r = 0.23.

Setup: We train the LLM simulation engine on 80% of the
deployment dataset and evaluate predictions on the remaining
20% held-out test set. The model accounts for distance,
environmental conditions, temporal variations, and hardware
degradation patterns observed in the field. Predicted PER
values are compared against actual measurements for weekly
averaged data across all sensor locations.

Results: Figure 4 shows the scatter plot of predicted versus
actual PER on Courtyard. The LLM simulation achieves a
Mean Absolute Error (MAE) of 0.098 and a correlation
coefficient of r = 0.23. Most predictions cluster near the ideal
y = « line, though slight underestimation occurs at higher
observed PER values.

Analysis: While the LLM captures key trends in packet
error rate behavior, including low-PER stability and moderate



TABLE II: Root Cause-Specific Policy Performance (LLM
Simulation Results). Dist. = Distance Policy, Therm. = Ther-
mal Policy, Interf. = Interference Policy, Integ. = Integrated
Policy.

Location Baseline PER (%) Dist. (%) Therm. (%) Interf. (%) Integ. (%)
Playground 12 0.9 1.0 0.8 0.4
Courtyard 1.5 1.1 1.2 1.0 0.6
Riverside 0.8 0.6 0.7 0.5 0.3
Square 1.0 0.8 0.9 0.6 0.4
Shaded Corner 20.5 12.3 16.8 18.2 7.2
Sun Corner 19.8 11.7 14.5 17.1 6.9
Crossroad 21.2 13.8 18.4 15.6 8.8
Station 15.3 9.2 12.7 135 54
Average 10.2 6.3 8.3 8.4 38

sensitivity to environmental changes, the moderate correlation
suggests limitations in modeling extreme conditions. This may
be due to rare high-loss events not fully represented in the
training data. Nonetheless, the MAE values indicate the model
provides sufficiently accurate estimates for guiding policy
optimization.

C. Root Cause-Specific Policy Optimization

Question: How effectively do LLM-generated policies address
different root causes of packet error rate?

Setup: We identify five primary root causes from our data
analysis: (1) Distance-based path loss, (2) Environmental tem-
perature effects, and (3) Interference during peak hours. For
each cause, we generate targeted LLM policies and simulate
their effectiveness.

Results: Table II presents the simulation results for cause-
specific policy interventions across all eight sensor locations.
Analysis: Distance-based policies provide the largest single
improvement, particularly for distant sensors. Thermal and
interference policies show moderate benefits, while integrated
policies combining multiple interventions achieve optimal
performance.

D. LLM Policy Generation for Specific Scenarios

The LLM generates distinct optimization strategies based
on identified root causes:
Distance Policy: For sensors beyond 800m, the LLM rec-
ommends increasing transmission power to 14dBm, using SF
11-12 for improved sensitivity, enabling confirmed uplinks
for critical data, and implementing adaptive retry mechanisms
with exponential backoff.
Thermal Policy: During high-temperature periods (> 25 °C),
policies include reducing duty cycle during peak hours (12-
5PM), implementing temperature-based transmission power
scaling, enabling adaptive data rate adjustments, and schedul-
ing maintenance transmissions during cooler periods.
Interference Policy: For peak-hour interference mitigation,
the LLM suggests implementing frequency hopping across
available channels, using random transmission timing within
duty cycle windows, increasing SF during congested periods,
and employing listen-before-talk mechanisms.
Integrated Policy: Combining all approaches with dynamic
weighting based on real-time conditions, multi-objective opti-
mization balancing PER, energy, and latency, predictive policy

EEl Baseline

[Nl Distance-Optimized

X Integrated

Packet Error Rate

Fig. 5: Simulated PERs across eight sensor locations under
baseline, distance-optimized, and integrated optimization poli-
cies.

switching based on environmental forecasts, and continuous
learning from performance feedback.

E. Performance Comparison

Question: How do different optimization strategies impact
PER across diverse sensor deployment sites?

Setup: We evaluate three policy configurations across eight
sensor locations: (1) Baseline using default LoORaWAN param-
eters, (2) Distance-Optimized policies that adapt transmission
settings based on link distance, and (3) Integrated optimization
that combines distance adaptation with environment-aware
tuning. Figure 5 reports the simulated PER under each policy.
Results: Integrated optimization consistently achieves the low-
est PER at all sites, followed by distance-optimized policies
and then baseline. The most significant improvements occur at
Crossroad, where baseline PER exceeds 20% but drops below
10% with integrated optimization. Even at sites with moderate
baseline reliability (e.g., Riverside and SunCorner), integrated
optimization reduces PER by more than half.

Analysis: These results demonstrate that policies incorporat-
ing both distance awareness and environmental factors are
most effective in improving reliability. Distance-based tuning
alone provides noticeable benefits over baseline but cannot
fully address interference and multipath effects, particularly at
high-loss sites. The integrated approach thus provides a more
robust solution for maintaining low PER across heterogeneous
deployment conditions.

F. Temporal Policy Adaptation Analysis

Question: How effectively do adaptive LLM-generated poli-
cies respond to temporal variations in network and environ-
mental conditions?

Setup: We compare a baseline configuration with an LLM-
driven adaptive policy across two time scales: (a) month-level
trends over a seasonal transition period, and (b) hour-level
variations during peak summer conditions. PER is used as the
primary evaluation metric.

Results: Figure 6(a) shows that the adaptive policy yields
a consistent monthly reduction in PER, falling from about



(a) Monthly PER: static vs adaptive
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Fig. 6: Temporal adaptation effectiveness: (a) Monthly PER
trends with static vs. adaptive policies, (b) Daily pattern
optimization during summer peak conditions.

0.18 to below 0.1, whereas the static policy remains largely
unchanged. In the daily profile (Figure 6b), the adaptive pol-
icy significantly suppresses midday performance degradation
during high-interference periods.

Analysis: These findings indicate that the LLM-based policy
can dynamically adapt to both long-term seasonal shifts and
short-term diurnal fluctuations. By preemptively mitigating
interference and stress conditions, the adaptive strategy main-
tains consistently lower PERs, demonstrating the value of
temporal reasoning in real-world deployments.
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VI. CONCLUSION

Real-world LoRaWAN deployments face significant packet
error rate caused by complex environmental, spatial, and
temporal factors that traditional optimization methods cannot
fully address. In this study, we introduced LORADOCTOR,
the first LLM-driven framework for LoORaWAN optimization.
Using a year-long dataset collected from eight sensors in East
London, we carried out simulation-based evaluations, showing
that LORADOCTOR can apply multi-factor reasoning and
causal analysis to generate adaptive policies with clear, human-
interpretable explanations. The simulation results indicate that
LLMs hold strong potential as tools for network optimization
and open promising directions for applying multi-factor Al
reasoning to complex network management. These findings
suggest that LORADOCTOR could support more reliable,
adaptive, and scalable IoT infrastructure in future real-world
deployments.
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