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We propose the construct of playful math to support instances of student authoring. Authoring 
positions students as authors of mathematics in an environment in which students and teachers 
meet as epistemological equals. By emphasizing student agency and autonomy, playful math 
encourages students to explore self-selected goals as they design novel problems for one another 
or for their teachers. We introduce two types of novel mathematics that emerged from student 
authoring, Unfamiliar Problem and Catalyst, and share one example of each to envision a 
mathematics education future that celebrates student authoring. 
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Supporting students to develop and solve their own problems can enhance creativity, 
understanding, and positive attitudes towards mathematics (Kaur & Rosli, 2021; Kontorovich et 
al., 2012). Problem posing is seldom considered in relation to creating new mathematics, but 
some researchers have written about the experience of learning new ideas from their students’ 
activity. For instance, Norton and Flanagan (2022) described how the ideas they developed about 
nested number sequences and logarithms as maps between multiplicative worlds were informed 
by their research on children’s mathematics, and Ellis (2022) noted that her participants’ 
mathematics “served as a source of novel mathematics for me as a researcher, as it could also do 
for teachers” (p. 24). We propose that student authoring of mathematics can create opportunities 
for both students and their instructors to experience new ideas, and that one way to foster 
authoring is through playful math. By authoring of mathematics, we refer to students producing 
something original (Cheng et al., 2022), using their mathematical voices to “enquire, interrogate, 
and reflect upon what is being learned” (Povey et al., 1999, p. 243). This use of authoring draws 
on Povey et al.’s (1999) notion of author/ity, in which teachers and students consider themselves 
to be members of a knowledge-making community where they “meet as epistemological equals” 
(p. 234). This perspective positions students as creators, not just doers, of mathematics.  

Playful math describes the activities and features of an instructional environment that can 
facilitate mathematical play (Ellis et al., 2022). This can include task features, instructional 
moves, and engagement with artifacts. In playful math, students have agency to explore self-
selected goals and to author novel problems. We present two examples of student authoring that 
introduced new mathematics both for the students and for us. We distinguish two types of new 
mathematics that can emerge from these contexts, Unfamiliar Problem and Catalyst.  

Problem Posing and Mathematical Play 
Problem-posing tasks are ones that “require teachers or students to generate new problems 

and questions based either on given situations or on mathematical expressions or diagrams” (Cai 
et al., 2020, p. 2). Problem posing can counteract the belief that there is one right way to do 
mathematics, as there is no one “right” question to ask (Palmér & van Bommel, 2020). It can 
also promote a sense of agency (Brown & Walter, 2004) and can improve motivation and 
creativity (Kontorovich et al., 2012). We have developed playful math environments as a vehicle 
for fostering student agency and author/ity. When students experience author/ity, they author 



problems that raise new mathematics not only for them, but also for us as teacher-researchers.  
Defining and Designing for Mathematical Play 

We define mathematical play to include (a) agency in exploration, (b) self-selection of goals, 
(c) immersion, and (d) enjoyment (Ellis et al., 2022). Agency in exploration means that students 
choose whether and how to participate (Huizinga, 1955) and how to accomplish their goals 
(Jasien & Horn, 2018). Self-selection of goals acknowledges that a learner’s agency in 
determining goals (or sub-goals) is crucial for play (Dewey, 1916/1966). The final two traits are 
immersion and enjoyment. Mathematical play is imaginative and creative (Featherstone, 2000), 
and most accounts of students’ mathematical play mention enjoyment (e.g., Sukstrienwong, 
2018). Mathematical play can support experimentation, reflection, and persistence (Barab et al., 
2010; Gresalfi et al., 2018), and it can provide a productive route for exploring and conjecturing 
(Mason, 2019; Williams-Pierce, 2019). Given these benefits, we set out to see if we could 
encourage mathematical play for secondary and undergraduate students. 

We have established playful math five design principles to encourage (but not guarantee) 
mathematical play. They are (1) enable free exploration within constraints; (2) engender 
anticipation within the task; (3) provide a method for intrinsic feedback; (4) offer meaningful 
challenge while still being feasible; and (5) allow the student to act as both designer and player.  
As an example, we draw on an activity in which students investigate growing shapes, graphing a 
shape’s area compared to its length as it sweeps left to right. To playify the task, we created the 
Guess My Shape game, in which students create secret shapes of their choice (design principles 1 
and 5), construct graphs comparing length and area (principles 2, 4, and 5), and challenge each 
other to determine the shape based on the graph alone (or vice versa; principles 2, 3, and 4). Our 
principles are consistent with several features of problem-posing tasks, but the open nature of the 
Guess My Shape game offers greater agency than typical tasks to support author/ity and enable 
students to author problems reflecting their own mathematical interests. 

Data Examples: Sector Areas and Vertical Line Segments 
Unfamiliar Problem: Determining Areas in a Semicircle 

In the following example, Phyllis and Ryan (secondary pre-service teachers) decided to 
create a heart shape (Figure 2a). They imagined a line segment on the x-axis that swept 
counterclockwise, rotating 360° to sweep out the shape. The task for the other students was to 
graph the area swept as a function of the angle swept by the line segment. Phyllis and Ryan 
reasoned that the initial part of the graph, from 0° to 90°, would increase at a decreasing rate 
(Figure 2b). However, when the other students encountered the challenge, they thought that the 
area would first increase at an increasing rate from 0° to the peak of the semi-circle, and then 
increase at a decreasing rate from the peak to 90°. To determine this, they created equiangular 
partitions and reasoned perceptually about the rates of change (Figure 2c), deciding that the area 
should be “bigger and then smaller” (Figure 2d). 

 

                               
        (a)                 (b)                          (c)                              (d)                        (e) 
 

Figure 2: Heart shape (a), Phyllis and Ryan’s graph (b), partitioning the semi-circle (c), 



Meredith and Toby’s graph (d), and a semicircle with radius 1 (e) 
 

When the groups compared their solutions, they resolved the discrepancy by redrawing a 
more precise version of Figure 2c with smaller partitions. They concluded that the area indeed 
increased at a decreasing rate throughout the semi-circle, but they acknowledged that this 
decision was based on a perceptual judgement. The students’ disagreement led us to realize that 
we did not know how to directly compute the area of these equiangular portions. We wondered 
how to find the area between two non-radii chords without computing a double integral in polar 
coordinates. Thus, the students’ authoring led to a novel Unfamiliar Problem for us. An 
Unfamiliar Problem is a problem addressing a new mathematical idea or challenge for the 
problem-solver, in this case, us as the teacher-researchers. Certainly, the mathematical ideas in 
the problem are not novel, but we experienced them as unfamiliar in that we were not aware of a 
solution method. We solved the problem by drawing a semicircle whose radius is 1 (Figure 2e). 
Denote by A the area covered by ∠"#$, which can be decomposed as the sum of the area of 
triangle ⊿"#&, denoted by '⊿"#$, and the area of the sector corresponding to ∠"&$, denoted by 
Asec. If we take #& as the base of ⊿"#&, the length of the height is "()))), which is sin(2/). So, we 
find '⊿"#$ = %

& (1) sin(2/) and ''() = %
& 3

&4 = %
& (1)

&(2/) = /, hence ' = %
& sin(2/) + /. This 

function does indeed increase at a decreasing rate from 0 to *&. 
Unfamiliar problems can emerge when students have the freedom to explore directions of 

their own interest. They introduce genuine problem-solving experiences for one another and, in 
this case, also for us as teacher-researchers. Even though the mathematics was not novel from the 
perspective of the field, we found the problem to be interesting and worth exploring. Unfamiliar 
problems create problem-solving experiences, rather than problem-posing experiences. 
Catalyst: Vertical Line Segments 

The second example comes from teaching sessions with three middle-school students, 
Artemis, Apollo, and Francis, who had limited familiarity with graphing or linear functions. In 
this example, the students decided to create a Guess My Shape challenge for the teacher-
researcher (TR), inventing a shape that they called “waves” (Figure 3a). The students graphed 
the first “wave” correctly, but beginning with the second “wave”, they made an iconic translation 
of the vertical section of their shape directly into the graph, in which the vertical segment 
represented an increase of 2 square units with no change in the horizontal distance of the graph. 
They repeated this iconic translation for the final “wave.” 
 

                    
                    (a)                          (b)                    (c)                           (d)                          (e) 
 
Figure 4: The wave drawing (a), the associated area-length graph (b), TR1’s graph (c), up-

down square task (d), graph of up-down square task (e)  
 

The vertical line segments created a perturbation for the TR, who wondered how to represent 
an increase in area without gaining any horizontal length. She proposed a solution in the moment 



by setting up a new convention of a “bubble”, in which there is only one point on the line of 
horizontal sweeping that nevertheless generates an amount of area (in this case, 2 square units, 
Figure 3c). This task also resulted in establishing a new convention that any area generated in 
future tasks should be attached to the line of sweeping, to avoid the difference between the 
rectangular area in the first “wave” of Figure 3a with that seen in Figure 3c.  

The bubble was a spontaneous response to a puzzling situation, but it led us to wonder 
whether we could create a swept shape that would produce a legitimate vertical segment for its 
area / length graph. In this case, the students’ authoring resulted in an Unfamiliar Problem for 
themselves, as they tackled the challenge of creating the graph, but it also created a Catalyst for 
us, in that it provoked a new question: What if an area / length graph could have a vertical line 
segment? What shapes could produce such a segment? A Catalyst is a situation that challenges or 
reveals an ambiguity about an accepted (or implicit) convention or rule. It can thus engender 
problem-posing activity, such as the creation of novel sweeping shapes.  

We continued to wonder about this question and reasoned that the x-axis quantity would need 
to stop growing as the area continued to grow. This led to the shape in Figure 3d. In this shape, 
the square first grows both in length and height, producing area at a constantly changing rate of 
change (a quadratic graph). Once the square reaches 1 square unit, it then grows up to produce an 
additional square unit, but without sweeping additional horizontal length, resulting in a vertical 
line segment. The rectangle then sweeps to the right, producing an additional 4 square units of 
area at a constant rate (producing a linear graph, Figure 3e). In the graph, the x-axis quantity is 
the horizontal distance traveled by the dot. We also realized that once the dot stopped moving 
horizontally, the area could grow up and down multiple times. In creating this problem, we 
reflected on the fact that the shape of the graph and the trace of the graph are different. This 
realization led to further problem posing, creating related tasks that incorporated both linear and 
quadratic growth in the vertical line segments, which can only be distinguished by considering 
the graph’s trace. 

Discussion 
In both examples, the students experienced Unfamiliar Problems through authoring. 

However, the novel mathematics that we experienced as teacher-researchers differed. With the 
semicircle, we experienced an Unfamiliar Problem that required us to devise a solution method 
we had not previously encountered. The mathematical ideas were not new, but we were 
challenged to solve a novel (to us) problem. In contrast, the vertical line segment acted as a 
Catalyst to challenge us to imagine new mathematics. By asking “What if an area / length graph 
has a vertical line segment?”, we introduced new questions for ourselves, such as “Are there 
sweeping shapes that could produce such a graph, and if so, what would they look like?” This led 
to a novel set of problems inspired by up-down square, as well as a consideration of the ways in 
which two graphs can look identical even as their traces differ.  

Student authoring can raise unique challenges for teachers, who may be faced with 
navigating unfamiliar ideas or puzzling situations while interacting with their students. We 
acknowledge that this can be difficult. However, we envision author/ity environments in which it 
is allowable for teachers and students to occasionally shift roles, in which teachers experiencing 
puzzlement or new learning can be normalized and celebrated, and in which we see our students’ 
activity as sources of new learning for us, just as our instruction can be for them.  
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