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Harmonic Elastography Through
Time-of-Flight Calculations

Abstract— This work addresses the IUS challenge focused on
assessing the accuracy of various methods in providing
elastography images of soft tissue using shear wave elastography
(SWE) data, specifically from harmonic excitation. The challenge
is not necessarily aimed at developing new methodologies but
applying existing (or new) methodologies to assess their accuracy.
In this spirit, we illustrate that simple time-of-flight calculations
can provide useful first-order-approximate reconstruction of the
underlying structure.
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[. INTRODUCTION

For the harmonic challenge, 1Q data is provided over a
single plane of measurement for three separate phantoms, and
the objective is to reconstruct the elasticity map for each of the
phantoms. The first and third phantoms have inclusions, while
the second is a homogeneous phantom. The geometry of the
experimental setup is not provided, but the frequencies of
excitation are provided, which include 6 different frequencies,
100 Hz to 200 Hz, with a frequency increment of 20 Hz. The
data is provided on a grid of 0.431 mm spatial resolution and 1
ms temporal resolution.

II. METHODS

Complete geometric and excitation details would be
necessary, and sufficient, to perform robust full waveform
inversion (FWI, e.g. [1]) in the frequency domain which has
the potential to result in accurate images with sub wavelength
resolution. However the provided information is limited in this
regard and challenged us to build the image of shear wave
velocity without these details. Fortunately, visual observation
of the particle velocity data for all three phantoms indicate that
wave packets are propagating largely in the x direction, albeit
back and forth as expected. The response also included some
upward and downward propagating waves. The observation of
horizontal packet-like wave propagation led to the hypothesis
that simple time-of-flight (ToF) calculations with proper
attention to pertinent details can lead to reasonable
elastographs. This is the approach that we took in this effort.
The first step is to convert the IQ data into vertical particle
velocity distribution in the measurement plane as a function of
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time, using standard correlation approaches. The particle
velocity is then smoothed using moving average filter in the z
direction. The resulting data is then processed for each z
independently of each other (an example x-¢ representation of
the particle velocity for a specific z is shown in Fig. 1; this is
the data that is processed for building the shear velocity map
for that particular z) . Such an approach, while primitive and
ignores 2D scattering effects, is somewhat standard in many
approaches. We employed such an approximation keeping in
mind that the other approximations made in the remaining
steps, e.g. directional filtering discussed below, will be of
similar order. The steps entail directional and other filtering
followed by time-of-flight calculations (somewhat
unconventional given the harmonic data). These are illustrated
leading to the remainder of the section.
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Fig 1. Typical x-¢ plot of particle velocity illustrating both leftward and
rightward propagating waves as well as resonant modes and other spurious
artifacts.
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Fig 2. Right propagating waves highlighted after filtering out the left
propagative waves as well as resonant and other artifacts that appear in the
full wavefield shown in Fig, 1. Note that only a single cycle of Fig,! is
shown here.

A. Directional Filtering

Examining the example x-¢ representation of particle
velocity in Fig. 1, we note that the motion includes left and
right propagating waves, resonant vibrations as well as other
artifacts that appear as very slow and very fast propagating
waves. Considering this, we first isolate rightward propagating
waves by transforming the particle velocity to frequency-
wavenumber (f~k) domain, followed by muting negative phase
velocities (second and fourth quadrants in fk4 domain).
Additional windowing is performed to eliminate the upward
and downward propagating waves as well. In addition, any
resonant modes are removed by only including the response
associated with the provided excitation frequencies. These
additional processing steps lead to further highlighting of the
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Fig 3. Left propagating waves highlighted after filtering out the right
propagative waves as well as resonant and other artifacts.
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Fig 4. Spline smoothing of the directionally filtered wave associated with
dominant propagation in Fig. 2.

right propagating waves (see Fig. 2).

B. Left or Right Progagating Waves?

The above filtering is also performed to isolate leftward
propagating waves as well (see Fig. 3). Dominant propagation
direction is then chosen by comparing the respective energies
(least-squares norms) of the signal across the entire depth. The
next two steps are applied to the filtered particle velocities
highlighting the dominant propagation direction.

C. Time-of-Flight Calculations

For the wave packets, the ToF approach is applied not to
the peak locations of response, but to the zero locations next to
the peaks. This detail is particularly important given the coarse
temporal sampling necessitating interpolation; the resulting
error would be less in locating the zeros as opposed to the
peaks. Spline interpolation is performed given the coarse
temporal resolution of the data; apparently more natural
Fourier based interpolation did not work as well, potentially
due to the noise in the data.

D. Resonctructing the Shear Wave Velociy Map

For each z line, and at each x location, ToF is computed in
the x neighborhood of seven points. Least-squares averaged
slope of the local ToF curve is computed to obtain the local
slowness, which is then converted to result in an image of the
shear wave velocity.

III. RESULTS AND DISCUSSION

The resulting images for the three phantoms are shown in
Fig. 5 for the three phantoms, along with the regions of interest
related to inclusions (if any). sharpness of the images can be
improved by obtaining the particle velocity with high temporal
resolution associated with higher frequency excitation, leading
to lower wavelengths and higher resolution. In addition, or
even alternatively, details of global geometry and excitation
would enable the application of FWI, which is a focus of our
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real shear wave velocity maps.
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Fig 5. The resulting reconstructions from the employed ad hoc approach. The left is for phantom 1, middle is for phantom 2 and the right is for phantom 3. The
color scale represents shear wave velocity in m/s. The circles in the left and right figures are the regions of interest highlighted in the challenge, representing the

location of the inclusions. The images are understandably coarse and are expected to be improved significantly with the help of techniques such as full
waveform inversion.



