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Abstract—Image compression for humans and machines
(ICHM) requires balancing machine vision performance with
human visual quality. Recent methods introduce text-assisted
compression to improve perceptual quality, but they often lack
explicit optimization for downstream machine vision tasks. To
address this, we propose a novel dual-layer codec that jointly
considers semantic accuracy and visual fidelity. The base layer
is optimized for object detection and encodes semantic-aware
features, while the enhancement layer refines visual quality by
leveraging both the base-layer output and text guidance during
encoding—without requiring text at decoding. Experiments on
COCO2017 demonstrate that our method achieves superior
rate-accuracy trade-offs for both object detection and image
reconstruction compared to prior ICHM methods.
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I. INTRODUCTION

Traditional image codecs maintain high visual quality for
human perception but fail to achieve high recognition accuracy
for for machine tasks such as object detection [1] and instance
segmentation [2]. Since machine vision tasks only require
task-specific semantic information rather than complete image
reconstruction, image coding for machines (ICM) [3]–[10] has
been developed to compress images with lower bit rates while
preserving essential features for accurate analysis. However,
many real-world scenarios still require image compression for
both machine and human interpretation, such as traffic moni-
toring [11], human–machine interaction [12], and autonomous
underwater vehicles [13]. Therefore, image coding frameworks
for humans and machines (ICHM) are developed to address
this dual requirement.

Recent ICHM work falls into three categories: one encoder-
multiple decoders [14]–[16], adaptive prompts [17]–[19], and
scalable coding [20]–[24]. One encoder-multiple decoders
methods compress images into unified representations pro-
cessed by task-specific decoders. Adaptive prompt methods
freeze a backbone codec and add prompts for other tasks, sav-
ing model parameters. Scalable coding compresses images into
layered bitstreams: base layers for basic tasks and enhancement
layers for sophisticated tasks.

Recent advances in text-guided image compression show
great potential for enhancing reconstructed image perceptual
quality [25], [26]. Modern text-guided generative models can
synthesize realistic images from text prompts, typically lever-
aging pre-trained large vision-language models like CLIP [27].
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In this paper, we propose a dual-layer text-guided im-
age codec supporting both human and machine vision tasks.
Our framework combines scalable coding with text-guided
compression, in which a base layer optimized for object
detection provides semantic conditional information to a text-
assisted enhancement layer for image reconstruction. Exper-
iments demonstrate that our approach outperforms existing
methods in object detection accuracy, as well as objective
and perceptual image reconstruction quality. The rest of the
paper is organized as follows: Section II reviews related work,
Section III presents the proposed method, Section IV provides
experimental results and analysis, and Section V concludes the
paper.

II. RELATED WORK

A. Image Coding for Humans and Machines (ICHM)

The one encoder-multiple decoders architecture approach,
exemplified by VNVC [16], encodes video frames into latent
representations that are subsequently decoded by task-specific
decoders for human perception, super-resolution, and machine
analysis. This approach faces two primary limitations: diffi-
culty in learning unified intermediate features that effectively
serve multiple downstream tasks, and the complexity of joint
training where combined loss functions make it challenging to
balance performance across tasks [14], [15].

In contrast, adaptive prompt methods modify existing archi-
tectures by injecting learnable parameters. TransTIC [17] in-
jects learnable tokens into Swin Transformer input sequences,
while Prompt-ICM [18] applies similar token-based adaptation
to classification models. While these methods achieve parame-
ter efficiency, they cannot share compressed bitstreams across
different tasks, resulting in bit rate redundancy when multiple
tasks require the same input data.

Scalable coding approaches address multi-task scenarios
through layered compression. HMI-IC [20] compresses feature
residuals between enhancement and base layer representa-
tions using residual coding techniques. Similarly, SICHM [23]
shares encoders between compression layers but encounters
similar multi-task optimization challenges as the one encoder-
multiple decoders approaches.
B. Text-Guided Image Compression

Text-guided image compression methods can be catego-
rized based on where textual information is integrated within
the compression pipeline: encoder-side or decoder-side ap-
proaches.

Encoder-side integration incorporates text prompts during
the encoding phase to guide feature extraction and compres-
sion. TACO [25] exemplifies this approach by using text



Fig. 1. The overall architecture of the proposed model. AE and AD are the
arithmetic encoder and arithmetic decoder. Q represents quantization. SC-AR
FCM represents a spatial-channel auto-regressive feature context model.

prompts to inform the encoder’s representation learning, en-
abling the creation of text-aware compressed features. A key
advantage of this method is that it enables text-free decod-
ing—once the text-informed features are compressed, no addi-
tional textual information needs to be transmitted, eliminating
bit rate overhead while preserving image reconstruction quality
through the learned text-conditioned representations.

Decoder-side integration [26], conversely, treats text
prompts as conditional inputs during image reconstruction.
These methods typically employ diffusion models or similar
generative approaches to synthesize high-quality images from
both the compressed visual features and accompanying text
descriptions. While this approach can achieve superior recon-
struction quality by leveraging powerful text-to-image gen-
eration capabilities, it introduces two significant drawbacks:
additional bit rate costs for transmitting textual information
alongside compressed features, and increased computational
requirements due to the need for large language models to
process text embeddings during decoding.

III. THE PROPOSED METHOD

A. Overall Architecture

Figure 1 illustrates the architecture of our proposed codec,
which employs a dual-layer hierarchical structure: a base layer
optimized for object detection tasks and the enhancement
layer designed for high-quality image reconstruction for human
perception. The base layer (top pipeline in Fig. 1) compresses
the input image x using a main encoder that generates a
compact latent representation yobj . The corresponding main
decoder reconstructs intermediate features ĥobj , which are
subsequently fed into an intermediate layer of the Faster
R-CNN [1] architecture to perform object detection. The
enhancement layer (bottom pipeline in Fig. 1) focuses on
reconstructing high-quality images for human observation.
This layer incorporates two key conditioning mechanisms: (1)
a conditional signal xP

obj extracted from the base layer that

Fig. 2. The top figure is the architecture of the extractor block. c⃝ : channel
concatenation, Conv(3 × 3, s): convolution with a 3 × 3 kernel and a stride
of s, ↑: upsampling, ↓: downsampling, ResBlock: a residual block consisting
of two convolutional layers with a skip connection. The bottom figure is the
architecture of the text-guided conditional coding as the enhancement layer
for image reconstruction.

provides semantic guidance to both the encoder and decoder,
and (2) textual prompts in the form of image captions that
guide the main encoder during the compression of x. This
dual conditioning approach enables the enhancement layer to
leverage both visual semantic information from the base layer
and textual descriptions to achieve superior reconstruction
quality.

B. Base Layer for Object Detection

Our base layer employs a teacher-student network structure
[9]. The teacher network is a Faster R-CNN with ResNet50
backbone that performs object detection on uncompressed
images. The student network has two components: Part 1
compresses semantic features relevant to object detection, and
Part 2 replicates the teacher network’s remaining pipeline
to generate object class probabilities oobj and bounding box
coordinates p̂.

The feature codec in Part 1 comprises a main en-
coder/decoder pair, hyper encoder/decoder pair, and a spatial-
channel auto-regressive feature context model (SC-AR FCM)
[28]. The base layer is optimized by minimizing the following
composite loss function Lobj,

Lobj = λ · LR + LMSE + LKL + LBCE + Lb, (1)

where LR represents the bit rate of the quantized main and
hyper latent representations ỹobj and z̃obj . LMSE is the mean



squared error between the teacher network’s semantic feature
h and the student network’s decoded feature ĥobj . LKL is
the Kullback-Leibler divergence (KL) between the object class
probabilities predicted by the teacher network and the student
network. LBCE is the cross-entropy loss of the predicted
object class probability. Lb is the MSE between the ground-
truth bounding box coordinates pn and the predicted bounding
box coordinates p̂n.

C. Enhancement Layer for Image Reconstruction

The enhancement layer reconstructs high-quality images
for human perception by leveraging both conditional informa-
tion from the base layer and textual guidance during encoding.
The extractor block (left panel of Fig. 2) derives conditional
information from the base layer by first processing the base
layer features h̃obj to obtain an initial image prediction
xP
obj ∈ RH×W×3. A U-Net architecture then processes xP

obj to

generate multi-scale conditional features c1obj , c
1
2

obj , and c
1
4

obj ,
where the superscripts denote full, half, and quarter spatial
resolutions of the input image x, respectively.

The conditional encoding strategy begins by computing the
residual x− xP

obj and concatenating it with the full-resolution
conditional feature c1obj along the channel dimension. This
representation is processed through successive Swin Trans-
former blocks, with corresponding conditional features c

1
2

obj

and c
1
4

obj fused at each scale to provide multi-scale guidance.
To incorporate semantic information, CLIP text embeddings
are integrated into the encoder backbone through three cross-
attention layers, enabling the injection of textual knowledge
into intermediate visual features. The cross-attention mecha-
nism operates through an alternating query-key-value assign-
ment pattern: the first cross-attention block uses text latent
features as both key and value while visual features serve
as the query, enabling visual features to attend to relevant
textual semantics. The second cross-attention block reverses
this configuration, with text features as the query and visual
features as both key and value, allowing textual information
to selectively focus on relevant visual content. The third
cross-attention block returns to the original assignment. This
bidirectional attention mechanism facilitates comprehensive
information exchange between textual and visual modalities.

The decoder operates without textual input, eliminating
transmission overhead, and progressively upsamples the quan-
tized latent features ŷimg . At each stage, upsampled features
are concatenated with corresponding conditional information
from xP

obj , facilitating accurate image reconstruction guided
by base layer semantic information.

We train the enhancement layer with the following loss
function Limg:

Limg = λ · LR + LMSE + LLPIPS + LCLIP , (2)

where LMSE accounts for the MSE between the input image x
and the decoded image x̂. The LPIPS loss LLPIPS measures
perceptual similarity by computing feature distances in a pre-
trained deep network, typically AlexNet. Specifically, it is

Fig. 3. The rate-accuracy performance of object detection. “Non-
compression” represents directly feeding uncompressed images into Faster
R-CNN.

computed as:

LLPIPS =
∑
l

wl ·
1

HlWl

∑
h,w

∥∥∥∥∥ f lh,w(x)− f lh,w(x̂)

∥f lh,w(x)∥2 + ϵ

∥∥∥∥∥
2

2

, (3)

where f lh,w(·) represents the feature activations at layer l
and spatial location (h,w) of the pre-trained network, wl are
learned linear weights for layer l, Hl and Wl are the spatial
dimensions at layer l, and ϵ is a small constant for numerical
stability. The CLIP loss LCLIP measures the semantic sim-
ilarity between the original and reconstructed images in the
CLIP feature space:

LCLIP = ∥fCLIP(x)− fCLIP(x̂)∥22, (4)

where fCLIP(·) represents the feature vector extracted by the
pre-trained CLIP vision encoder. This loss ensures that the
reconstructed image maintains semantic consistency with the
original image in the high-level feature space learned by CLIP.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Model Training

In the first stage, we train and test the proposed base layer
of Fig. 1 for object detection using the COCO2017 dataset
[29]. We adopt Faster R-CNN as the teacher network, which
remains frozen during the training process. In the second stage,
we train the enhancement layer for image reconstruction on the
OpenImages dataset [30] using loss function (2), and test it on
the COCO2017 test set. Both the base layer and the CLIP text
encoder are frozen.

B. Object Detection Results

For object detection, we use the mean average precision
of object bounding boxes (mAP-bbox) to evaluate the perfor-
mance. First, we measure the average precision (AP) for object
class c is then calculated as APc =

∫ 1

0
pc(r) dr where pc(r) is

the precision-recall curve plotted by varying IoU threshold τ .
Finally, the mAP-bbox is computed as the mean of APc over
all C object classes:

mAP-bbox =
1

C

C∑
c=1

APc. (5)



Fig. 4. The rate-distortion PSNR (↑), MS-SSIM (↑), FID (↓) and LPIPS (↓) curves of image coding for image reconstruction on the COCO2017 test dataset.

Fig. 3 presents the base layer’s object detection perfor-
mance compared to conventional codecs (BPG [31], VVC-Intra
[32]), learned compression (STF [33], TACO [25]), and ICHM
methods (TransTIC [17], SICHM [23]). For conventional and
learned baselines, decompressed images are processed by
Faster R-CNN for object detection. Our method consistently
outperforms all baselines, achieving the highest mAP-bbox
values.

C. Image Reconstruction Results

Fig. 4 presents the image reconstruction quality, showing
PSNR, MS-SSIM, FID, and LPIPS curves across varying bit
rates. Our image reconstruction layer consistently achieves
the highest PSNR and MS-SSIM values among all com-
pared methods, demonstrating superior pixel-level accuracy
and structural similarity preservation. Furthermore, our model
attains the lowest FID and LPIPS scores, indicating exceptional
performance in both distributional alignment and perceptual
quality metrics. Although STF achieves PSNR and MS-SSIM
values comparable to ours, its FID and LPIPS scores are
significantly worse. Similarly, while TACO yields FID scores
similar to ours, its PSNR, MS-SSIM, and LPIPS metrics are
noticeably inferior. These results indicate that our proposed
image reconstruction layer achieves a better balance between
objective fidelity and perceptual quality.

Figure 5 displays enlarged regions from one representa-
tive images, enabling detailed visual comparison of recon-
struction quality across methods. Our approach demonstrates
clear superiority in preserving fine-grained details and textural
information while maintaining sharp edges and minimizing
compression artifacts.

V. CONCLUSION

In this work, we propose a novel text-assisted dual-layer
image codec that supports both machine vision and human per-
ception tasks. Our approach consists of a base layer optimized
for object detection using a teacher-student framework and
an enhancement layer for high-quality image reconstruction.
The enhancement layer integrates textual guidance through
cross-attention mechanisms while leveraging conditional in-
formation from the base layer, enabling text-guided encoding
without transmission overhead. Experimental results on the
COCO2017 dataset demonstrate state-of-the-art performance
in both object detection and image reconstruction.

Fig. 5. The visual result of image reconstruction on the COCO2017 test set.
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