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ABSTRACT

Score-based diffusion models have emerged as powerful techniques for generat-
ing samples from high-dimensional data distributions. These models involve a
two-phase process: first, injecting noise to transform the data distribution into a
known prior distribution, and second, sampling to recover the original data distri-
bution from noise. Among the various sampling methods, deterministic samplers
stand out for their enhanced efficiency. However, analyzing these deterministic
samplers presents unique challenges, as they preclude the use of established tech-
niques such as Girsanov’s theorem, which are only applicable to stochastic sam-
plers. Furthermore, existing analysis for deterministic samplers usually focuses on
specific examples, lacking a generalized approach for general forward processes
and various deterministic samplers. Our paper addresses these limitations by in-
troducing a unified convergence analysis framework. To demonstrate the power
of our framework, we analyze the variance-preserving (VP) forward process with
the exponential integrator (EI) scheme, achieving iteration complexity of O(d? /e).
Additionally, we provide a detailed analysis of Denoising Diffusion Implicit Mod-
els (DDIM)-type samplers, which have been underexplored in previous research,
achieving polynomial iteration complexity.

1 INTRODUCTION

Score-based diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020a;c) have
emerged as a powerful class of generative models, achieving significant success in image genera-
tion tasks, such as DALL-E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), Imagen
(Saharia et al., 2022), and SDXL (Podell et al., 2023). Beyond that, these models have also demon-
strated effectiveness in diverse applications, including structure-based drug design (Corso et al.,
2022; Guan et al., 2024), text generation (Austin et al., 2021; Zheng et al., 2023; Chen et al., 2023c¢),
and reinforcement learning (Wang et al., 2022; Lu et al., 2023). At the core of the score-based diffu-
sion models is a forward Stochastic Differential Equation (SDE) to diffuse the data distribution into
a known prior distribution, and a neural network is trained to approximate the score function. Scal-
able score-matching techniques, such as denoising score matching (Vincent, 2011) and sliced score
matching (Song et al., 2020b), enable efficient learning of the score function. Once learned, we can
use numerical samplers to simulate the backward process and recover the original data distribution
from noise.

To improve the sampling quality and efficiency of diffusion models, it is crucial to use efficient
samplers in addition to an accurate score estimator. Early developments of diffusion models, such
as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) applied stochastic samplers.
Later, empirical studies showed that diffusion models with deterministic samplers, such as Denois-
ing Diffusion Implicit Models (DDIM) (Song et al., 2020a) can still generate high-quality samples
while achieving better efficiency. For instance, DDIM is more than 10 times faster than DDPM.
Beyond DDIM, many novel fast ODE solvers have been developed for diffusion models, further
improving the efficiency of the sampling processes (Lu et al., 2022; Zhou et al., 2024).

The remarkable success of diffusion models has inspired extensive research interest in the math-
ematical analysis of these powerful generative models (Block et al., 2020; De Bortoli et al., 2021;
De Bortoli, 2022; Lee et al., 2023; Pidstrigach, 2022; Chen et al., 2022; 2023a;b; Li et al., 2024a;b;c;
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Benton et al., 2024; Huang et al., 2024a). Notably, many prior works studied the convergence of
diffusion models with stochastic samplers (Chen et al., 2022; 2023a; Benton et al., 2024; Li et al.,
2024b). A key tool in their analysis is Girsanov’s theorem, which helps control the distance be-
tween the distributions of two stochastic processes. However, it relies on the smoothing effect pro-
vided by stochasticity and therefore do not apply to deterministic samplers. To address this, (Chen
et al., 2024) introduced an additional corrector into the Langevin dynamics, which incorporates
randomness to help smooth the distribution. Meanwhile, Chen et al. (2023b) assumed the access
to the exact score function and provided a discretization analysis for the probability flow ODE in
Kullback-Leibler (KL) divergence. Moreover, under extra conditions, Li et al. (2024b) proved a
non-asymptotic convergence rate for a specific deterministic sampler based on the probability flow
ODE with elementary analysis. Huang et al. (2024a) considered the Ornstein—Uhlenbeck (OU) for-
ward process with the Runge-Kutta integrator and provided error bounds for both continuous- and
discrete-time settings. However, all of these works focus on specific forward processes and sam-
plers. Therefore, a natural question arises:

Can we develop a unified framework for the convergence analysis of diffusion models with deter-
ministic samplers that accommodates those common forward processes and sampling algorithms?

In this paper, we provide an affirmative answer to this question. We summarize our contributions as
follows:

* We develop a key technical tool (Lemma 3.2), which enables us to bound the time derivative
of the total variation (TV) distance between the final states of two ODE processes, through the
difference in their drift terms and the divergence. As a direct application, we establish convergence
guarantees for the continuous-time reverse ODE in the case of the OU forward process.

* We provide a unified convergence analysis framework for diffusion models with deterministic
samplers. For general forward processes and sampling algorithms, our framework decomposes
the error of diffusion models into five distinct terms: two arising from score estimation and three
from time discretization. This decomposition enables a divide-and-conquer approach, allowing
for improved analysis of each error component while maintaining the consistency of the unified
framework.

* To demonstrate the generality and effectiveness of our framework, we apply it to two typical
diffusion model settings: we achieve O(d?/e) iteration complexity for the Variance Preserving
(VP) forward process with exponential integrator (EI) numerical scheme. This theoretical guar-
antee matches Li et al. (2024b), where a similar but different sampling algorithm is considered.
Moreover, we establish polynomial iteration complexity for the Variance Exploding (VE) forward
process with the DDIM numerical scheme. To the best of our knowledge, this is the first con-
vergence result for diffusion models employing DDIM-type samplers that can handle estimated
scores, whereas prior works, such as Chen et al. (2023b), only considered cases with access to
accurate score function.

Notation: In this work, we use lowercase letters a, b to represent scalars, lowercase bold letters x, y
to represent vectors, uppercase italic bold letters X, Y to represent random variables, and uppercase
bold letters A, B to represent matrices. For a vector x € R% and matrix A € R%*?, we denote by
||| the Euclidean norm of x and ||A||2 the operator norm of A. We use f; < fa to denote that
there is a universal constant C' such that f; < Cf,. For two sequences {a,} and {b, }, we write
a, = O(b,) if there exists an absolute constant C' such that a,, < Cb,,, and we use O(-) to further
hide the logarithmic factors. For vector operations, we use V to denote the gradient, V- to denote
divergence, and V2 to denote the Jacobian matrix.

2 PROBLEM BACKGROUND

The primary objective of diffusion models is to generate new samples given a set of examples drawn
from the data distribution. In this section, we introduce the fundamentals of ODE-based diffusion
models with deterministic samplers.

2.1 ODE-BASED DIFFUSION MODELS

A diffusion model typically consists of a forward process that perturbs the data distribution into
noise, followed by a denoising backward process. In general, the forward process can be modeled
as an Ito SDE:

dXt = f(t, Xt)dﬁ + g(t)th 5 XQ ~ qo, (2])
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where W, is a Brownian motion in R%, f(¢,-) is called the drift coefficient, g(¢) is called the dif-
fusion coefficient (Song et al., 2020c). It begins by sampling X, from the data distribution ¢, and
evolves according to the forward process (2.1). The law of X; is denoted by ¢;(x). Under mild reg-
ularity conditions on gy, we can construct a family of reverse processes (Yt)‘) te(0,1)’ which evolve
according to the following SDE:

1+ A2
2

AV = = (B(7 = £,Y,)) = — " g(T = £)*Viogar (¥;"))dt + Ag(T — )AW,, Y ~ qr.

(22)

These processes hold the same marginal distribution as g7 (x) at time ¢ (Chen et al., 2023b). As a
special case when A = 0, the backward process is deterministic, i.e.,

1
dY; = = (£(T'—,Y;) = 59(T' = )*Vlogqr_o(Y)) )dt. Yo ~ar, 23)

which is called the probability flow ODE (Song et al., 2020c).

The goal of ODE-based diffusion model is to simulate (2.3). However, we must make several ap-
proximations. First, as we do not have access to the true score V log ¢(t,x), we learn an approxi-
mation sy (¢, x) by minimizing

T
L(so) = / E,. [Iso(t, X2) — Viogar(X,)|?] dt. 24)
0

When f(¢,-) is affine, the transition is Gaussian, allowing for the closed-form solution of
Vlogq(t,x). By applying integration by parts, (2.4) can be reformulated into tractable objec-
tives, specifically through the methods of denoising score matching and implicit score matching
(Hyvérinen & Dayan, 2005; Vincent, 2011). For more general forward processes, these objectives
can be estimated using samples drawn from the forward process. Then, using the estimated score
function sy, we have the simulate reverse process:

~ ~ 1 . ~
ay; = —(f(T —t,¥1) = 39(T —1)%so(T - t,Y,;))dt, Yo ~ qr. 2.5)

Second, since the initial distribution g7 of the reverse process is not directly accessible, we instead
initialize the reverse process with a given Gaussian distribution 74, which is assumed to be a good
approximation of gr.

Third, in practical implementations, the continuous-time process is typically simulated using time
discretization. Specifically, we choose time steps 0 = tg < t; < --- < ty < T, sample lA’O ~ Ty
and iteratively calculate ?t ppa TrOm l/;} . using a particular numerical scheme. In this way, we only

need to have access to the value of the estimated score function sy (tx, Yz, ),k = 0,1, ..., N, which
can reduce the computational complexity of the sampling process. Common numerical schemes in-
clude the Exponential Integrator scheme, the Euler-Maruyama scheme, and the DDIM-type sampler
scheme, as we will discuss in Section 4.1.

For non-smooth data distributions, the score function V log ¢; can be unbounded as t — 0, which
will happen especially when the data distribution is supported on a lower-dimensional submanifold
of R?. This will lead to difficulty when considering the distance to the data distribution. For this
reason, we consider an early stopping scheme, selecting ¢ y = T — § for some small §. Our analysis
focuses on the distance between the final distribution of the sampling process and gs. When §
is sufficiently small, the Wasserstein-p metric between gs and qg is small. This shows that it is
reasonable to approximate gs instead of qq.

In this paper, we propose a unified framework that can handle different time schedules. The choice
of the time schedule is crucial for obtaining good results when analyzing the convergence of specific
samplers. In this paper, we follow the time schedule used in Benton et al. (2024). This allows us to
provide more refined control over the discretization error. We will always assume 7" > 1 and § < 1.
In the first stage when ¢ € [0, T — 1], we use uniform time steps, with step size nx = tx+1 —tp < 1.
In the second stage for t € [T'— 1, T — ¢], we assume time steps satisfying 7 < (T —tx41), which
results in an exponential decay at a rate of (1 + 1) ~!. Using this schedule, we have

Nk < nmin{l, T— tk+1}. (26)

It’s worth noting that similar first-uniform-then-exponential schedules have also been utilized in
Chen et al. (2023a); Li et al. (2024b;c).
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2.2 DIFFICULTIES IN CONVERGENCE ANALYSIS OF ODE FLOW

Compared with the convergence analysis of SDEs, the convergence analysis of ODEs is more chal-
lenging. For SDE, the prior results either apply Girsanov’s Theorem (Chen et al., 2022) or rely on
a chain-rule-based argument (Chen et al., 2023a). Using these methods, we can see that for SDEs,
when the drift term is slightly perturbed, it is possible to bound the distance between the final iter-
ates or, more strongly, the entire distributions over the trajectories. Therefore, the assumption of the
score estimation is sufficient. However, as the following theorem illustrates, this fails in the ODE
case.

Theorem 2.1. Consider the 1-dimensional OU process (z¢)¢c[o,7) Which starts at NV (0, 1). It satis-
fies the following SDE

dz; = —xdt + \/ith, To ~ N(O’ 1)'

Let the law of x; be denoted by ¢;. Its reverse process (y:):c[o,r] (see (2.3)) can be represented with
the following ODE:

dy, = (yt + Vlog (T — tyyt))dt, Yo ~ qr-

For arbitrarily small € > 0, there exists sy (¢, ), which is smooth, and anywhere e-close to the true
score function, i,e,

’se(T —t,x) — Viogq(T — t,x)‘ <e, Vt, Vzx,

such that the corresponding simulated reverse process (ﬂt)te[O,T] (see (2.9)) satisfies

. 1
TV(yr,yr) =2 —,
4T
which indicates that the TV-distance of the final states is larger than a constant no matter how small
the score estimation error is.

Remark 2.2. For the construction of the counter-example, we consider a specific scenario where
the data distribution is standard Gaussian, and the OU process maintains the distribution. In this
case, adding an arbitrarily small perturbation to the drift term of the reverse ODE can result in a
12 . .
sampling probability density function ¢(T — t,z) = ﬁefT (1 4+ 5 sin(2n7z)) with severe

22
oscillations (n can be arbitrarily large), instead of a Gaussian distribution ¢(¢, z) = \/%677. For

details, please refer to Section B. This demonstrates that the score estimation error assumption is
insufficient, even when ignoring the discretization error. For a similar purpose, an example has been
given in Li et al. (2024b) for the discrete-time sampling algorithms. Notably, our constructed sy
is smooth while theirs is not. This indicates that adding the score function’s smoothness condition
alone is insufficient to guarantee the desired properties.

3 CONVERGENCE OF CONTINUOUS TIME REVERSE PROCESS

In this section, we focus on the OU forward process, where f(t,x) = —x and g(t) = /2. Temporar-
ily, we ignore the discretization error and focus on the true reverse process (2.3) and the simulated
reverse process (2.5) starting at mg4. Specifically, we want to study the TV-distance between the
following ODEs.

dY; = (i + Viegar «(Y)))dt, ¥y ~ar, (3.1)
aYi = (Vi+so(T—,¥))dt, Yo~ ma. (32)

We make the following standard assumption regarding the score estimation error.
Assumption 3.1 (Score estimation error). The estimated score function sy (-, -) satisfies:

2
Et,Yt”SG(T —t, K) — Vlog q(T - tvift)H < €

score *

This assumption guarantees that the drift terms in (3.1) and (3.2) will be close. However, as dis-
cussed in Remark 2.2, this condition alone is insufficient for ODE flows. To address this problem,
we introduce the following lemma. It states that the time derivative of the TV distance between two
ODE flows is determined by the distance between their drift terms and the divergence of these drift
terms. Its proof is left to Appendix C.
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Lemma 3.2. Suppose X; and Y; are stochastic processes in R? driven by ODEs:
dXt = b(t; Xt) dt ) XO ~ Po,
dY; = b*(t,Y,)dt, Yy~ qo.

Let p(t,x) be the law of X and ¢(t, x) be the law of Y. If the drift terms b, b* : [0, 00) x R? — R¢
are continuously differentiable with respect to x € R?, then the time-derivative of the total variation
distance between X; and Y; satisfies the following equation:

% _ _/Qt (V- b(t,x) — V- b*(t,x))q(t, x) dx

- /Q (b(t,x) — b*(t,x)) - Vlogq(t, x)q(t,x)dx,

where Q; := {x € R? | p(t,x) > q(t,x)}.

In the application of this lemma to diffusion models, we can choose the true reverse ODE and sam-
pling process ODE. Let p; be the distribution of the sampling process, and ¢; be the distribution
of the true reverse process. Several works (Chen et al., 2023b; Albergo et al., 2023), considered
the time derivative of KL divergence, deriving expressions that involve scores of the sampling pro-
cesses V log p(t,x). However, as shown in Theorem B.1, the score of the sampling process can
still explode given sufficiently small score estimation error (see Assumption 3.1) and divergence
estimation error (see Assumption 3.3). The crucial aspect of this lemma is that it enables us to avoid
the occurrence of the sampling process score V log p(¢,x). We apply Gauss’s theorem to transfer
the integral to 0€);, where we can replace p; with ¢; because p; = ¢; on 0€2;. Then, we apply
Gauss’s theorem again to convert it back to a volume integral. This allows us to eliminate the depen-
dence on V log p(t, x). Motivated by this lemma, we make the following assumption on divergence
estimation error.

Assumption 3.3 (Divergence estimation error). For any ¢ € [0, T — 4], the estimated score function
sg(t, -) is second-order continuously differentiable. Moreover, it satisfies:

Eiy,|V-sg(T —t,Y;) =V -Vliegq(T —t,Y;)| < €div-

Similar assumptions regarding the difference between the derivatives of true and estimated scores
have been made Li et al. (2024b;a;c). In comparison, those studies assumed the closeness of the
entire Jacobian matrix, while we only require assumptions on the divergence. Under Assumptions
3.1 and 3.3, we have the following theorem.

Theorem 3.4. Let the true and simulate reverse process be defined as (3.1) and (3.2). Under As-
sumptions 3.1 and 3.3, if we further assume that X has finite second-order momentum, then we

have:
~ ~ / 1
TV(Y;&N7X6) < TV<Y07YO) + dT+d10g gescore + €div-

See Appendix D for the proof of this theorem.

Remark 3.5. Huang et al. (2024a) proves a similar bound on the TV-distance for continuous-time
processes. Their result differs from ours in that, unlike Assumption 3.3, they do not assume the
divergence estimation error to be small. Instead, they require the first two derivatives of the estimated

score function to be bounded. Their estimation error term scales as O(d*/4T3/4§ _1630/0%@), which

is strictly worse than our O(d"/2(T/2 + 1og'/?(671))€seore). Moreover, their results rely on extra
assumptions regarding the compact support of the data distribution. For a detailed comparison with
Huang et al. (2024a), regarding the settings and results, please refer to Appendix A.1.

4 UNIFIED ANALYSIS FOR DISCRETE-TIME REVERSE PROCESS

In this section, we conduct convergence analysis for the discrete-time reverse process. Specifically,
we consider a sequence of time steps 0 = tg < t; < ... < ty < T. Starting from Yy ~ 7y, we

iteratively apply a deterministic sampler {Tk}]kvz})l to generate subsequent iterations. For any k, the
sampling process can be expressed as:

2k+1 =T (ﬁk)’
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where T}, acts as a discrete-time simulation of the transition in the reverse ODE process (4.1). We
will present our results in three steps. In Section 4.1, we introduce some commonly used numerical
schemes for diffusion models. In Section 4.2, we provide a unified framework encompassing these
numerical schemes. We then employ an interpolation method to transform the discrete-time sam-
pling into an equivalent continuous-time ODE, enabling us to leverage Lemma 3.2 from the previous
section. In Section 4.3, we present the convergence analysis for this general framework.

4.1 NUMERICAL SCHEMES

Recall that for general forward process (2.1), the continuous-time reverse process with the estimated
score function sy can be written as

N N 1 N N
dY; = —(£(T —1,¥,) = 59(T = t)so(T = .¥0) )t Yo~ ar. @.1)

Forward Euler Scheme. The simplest method is the forward Euler scheme, which directly replaces
t € [tk, tx+1] with the start point ¢ in the equation above, i.e.,

. . 1 .
ay; = f(f(T — 10, ¥i,) = 59(T = te)?s(T — tk,Ytk))dt, for ty < t < tpy1.

Or equivalently, we have the following discrete-time sampling algorithm, with n; = 541 — tg:

. ~ ~ 1 ~
Kk+1 = Y;tk - nkt (f(T - t}m thk) - ig(T - tk)259<T - tk7 thk)) . (42)

Exponential Integrator (EI) Scheme. When f(¢,y) = Ly is a linear function, we can apply the
Exponential Integrator (EI) scheme by keeping Y; in the linear part, i.e., the ODE becomes

N -1 N
dY; = —(LY; — §g(T — tk)2SQ(T — tk,YVtk))dt, fort, <t <tpyi1.

In this way, we can integrate the linear part exactly. As a result, we have the following discrete-time

sampling algorithm, with 7, = 511 — tx:

e~ Lbme —1
2L

DDIM-type Scheme. Song et al. (2020a) introduced a deterministic sampler for the probability flow

ODE by considering a non-Markovian diffusion process. As interpreted by Chen et al. (2023b), it

can be viewed as a two-step process involving a restoration step that provides a rough estimate for
a past step and a degradation step that simulates the forward process by progressively adding the

estimated noise. Specifically, starting from }A’t ,» the restoration step provides an estimate of Y3, 4
for some y > 0, where t;11 — tx <7, i.e.

Yi,,, =e Y, + g(T = t1)%so(T — i, ¥3,). (4.3)

Yip1y = Y, — V[f(T —t4, Ys,) — 9(T — ty)?s9(T — tkvﬁk)} =z

Next, the degradation step simulates the forward process during ¢t € [T' — t;, — v, T — tg+1], which
can be expressed as

i}tk+1 =2z+ (tk +'.Y*tk#-l)f(j—‘ftk 7’Yaz)+g(T7tk 77)\/tk+77tk+167

where € represents the noise estimated from ﬁk By substituting the form of € and making some
approximations, we can get the following sampling algorithm, with n; = tx4+1 — tx:

where | = /(tg+1 — t). Please refer to Chen et al. (2023b) for more details about the DDIM-type
sampler. For linear diffusions, we can set v = T" — t;. Then, with our selection of time schedule, by
(2.6), we have I > (T — t11)/(tp41 — ti) > min{1, T — tp11}/(tps1 — tr) > 1/7.

4.2 INTERPOLATION METHODS

At the core of our analysis is to apply Lemma 3.2, which analyzes the divergence between two
ODEs. However, two main challenges arise. First, the discrete-time nature of the samphng algorithm
precludes direct appllcatlon of the lemma. Second, the sampling process Y}k = Tk(Ytk) depends

on the position Y} . at time t, while the proof of Lemma 3.2 utilizes the Fokker-Planck equation,



Published as a conference paper at ICLR 2025

which requires the drift term to be a function solely of time and the current position. To solve
these problems, we first introduce a unified framework encompassing all the numerical schemes
in Section 4.1. Next, we present an interpolation method to transform the sampling process into a
continuous-time ODE, enabling the application of Lemma 3.2.

For the numerical schemes defined in (4.2), (4.3) and (4.4), we naturally extend the definition to
a continuous interval ¢ € [tg,tx+1] by replacing t5; with . More concrete examples of F; can
be found in Section 5. This yields a continuous-time interpolation operator F}, _,:(-), or simply F}
when no confusion arises. Moreover, let Y; = Fi(Y;,) = F(t, Yz, ). It is also equivalent to the
following ODE:

oF
ot
Moreover, if we further assume Fj} is invertible, which holds for many examples when sg is Lipschitz
and the time step 1 = tr+1 — T is small enough. Then we have the following ODE:

dY; = b(t,Y,)dt, 4.5)

dY; = =—(,Y;, )dt.

N -1
where b(t,x) = 2L (¢, F ' (x)).
4.3 MAIN RESULTS FOR GENERAL DIFFUSION PROCESSES

Using the interpolation method presented in the last section, we can now provide a general conver-
gence analysis for the discrete-time reverse process. Consider the time step ¢ € [tg,tx+1]. Recall
that for general forward process (2.1), the true reverse process is defined as

dY; = b(t,Y;)dt,
where b(t,x) = — (f(T — t,x) — 3g(T — t)*V log g7_¢(x)). While the simulated reverse process
is given by:
dY; = b(t, Y;)dt,
where b(t X) = 8F C(t Fy '(x)).
Definition 4.1. At each step [tg,tr+1], let the interpolation operator of the sampling algorithm be

F}, —+. The estimation-error operator is defined by:

0
Dy (t,
w(tx) = &
As we will show in the next section, it reflects the error between true score V log gr_;, (x) and
so(T — t,x). Similarly, we can define the divergence-error operator, which reflects the error be-
tween V2 log g7y, (x) and Vsg (T — tg,x).

F 1
= —tx)+f(T —t,F, i (x)) — 5g(T —t)*Vlog gr_s, (x).

Definition 4.2. At each step [ty,tr+1], let the interpolation operator of the sampling algorithm be
F}, —+. The divergence-error operator is defined by

Wi(1,3) = V[ 2P (130T + VaF(T — 1, ()] — 30(T — 1V ogar o, ().

Using these definitions, the next theorem shows the convergence for the general diffusion process
with any numerical schemes.

Theorem 4.3. Consider the true reverse process (Y;);co,r] and reverse sampling process
(thk)kG[N] Then9

TV(Yr_5, Y1) < TV(qr, 74)

+ Z/t ) [\/E |®x(t, ¥i)|)’] \//ngq _t<X)>th H PR,

th(Yt

(I) Score estimation error

2
+ \/E tr (Ui(t,Ys,)) \// _pw(x) th(Ytk)(X)dx

PFri(v3,)

(IT) Divergence estimation error
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1
+59(T —1)? / |(V1ogqr—¢,(2) — Viog qr—i(x)) - Vlog (T — t,x)|q(T — t,x)dx

(IIT) Score discretization error

1
+ §g(T —1)? / |tr(V? log q(T — ti,z) — V?log q(T — ¢,x))|q(T — t,x)dx

(IV) Divergence discretization error

+ max
xX

tr {V[;F} (t, F7 N (x)) + VL [F(T — ¢, Ft(z))ﬂ (VE '(x) - 1) ’ ] dt,

(V) Bias error
_ -1
where z = F;, " (x).

Other than the distance between the initial distribution of the reverse process and Gaussian noise,
our upper bound of TV distance is divided into five terms.

For (I) and (II), these terms rely on the expectation of the defined estimation-error operator and
divergence-error operator over the true reverse process. Moreover, they depend on the density ratios
between py; (x), representing the distribution for the true reverse process at time ¢, and pr, (v, ) ().
As the interpolation operator F} acts as a simulation of the true reverse process, we expect that the
ratio will be close to 1, thus bounded. Consequently, these terms are expected to scale with the score
and divergence estimation errors. For (IIT) and (IV), these terms depend on he distance between
score functions and divergence evaluated at ¢ and ¢y, originating from the time-discretization algo-
rithm. They will decrease as the time step §ets smaller. For (V), we observe that F} is close to the
identity when ¢ — t;. This results in VF,” " (x) — I converging to the zero matrix when ¢t — ¢.

5 APPLICATION TO SPECIFIC DETERMINISTIC SAMPLERS

In this section, we apply Theorem 4.3 to analyze specific diffusion processes. We focus on the Vari-
ance Preserving (VP) forward process with EI schemes and the Variance Exploding (VE) forward
process with the DDIM sampler. While prior work has shown that VP and VE can be connected
through reparametrization (Karras et al., 2022), such equivalence does not account for initialization
and discretization errors. Therefore, we provide separate detailed analyses for both VP and VE
processes. The analysis method can be easily extended to other forward processes and numerical
schemes.

We specifically focus on data distributions with compact support, as outlined in the following as-
sumption.

Assumption 5.1 (Bounded Support of Data). For a constant R, the data distribution g satisfies:
qgo(x) =0, Vx| >R,
or equivalently, P(|| Xo|| > R) = 0.

This assumption has also been made in De Bortoli (2022); Chen et al. (2022). In particular, we
do not assume the smoothness of the data distribution. Therefore, it includes the setting where the
data distribution is supported on a lower-dimensional submanifold of R?, which, notably, does not
possess a smooth density.

Additionally, we make the following assumptions on the estimated score function.

Assumption 5.2 (Score Estimation Error).

anEHS9(T — t, Y;fk) — Vlog q(T — tg, Ytk)||2 < €520(>re'
k

Assumption 5.3 (Divergence Estimation Error).

2
an\/]Etr(Vsa(T — 15, Ye,) — V2log g(T — 1, ¥3,))” < eai-
k

In addition, to deal with the discretization error for the ODE reverse process, we need the following
regularity conditions for sg.

Assumption 5.4 (s is Lipschitz and bounded at 0). For all ¢, we have:
so(T" — ti,x1) —so(T — tg,x2)[| < L [x1 — x|,
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HSQ(T - tku O)H S c,

for some constant L and c. Without loss of generality, we assume L > 1 and ¢ < L to simplify
later derivation. Similar assumptions on sy have been made in Huang et al. (2024a). Note that we
only need the Lipschitzness and boundness at 0, while they require the boundness of high-order
derivatives w.r.t ¢ and x.

5.1 VP+EI

In this section, we focus on the VP process where f(,x) = —x and g(t) = v/2. As is discussed in
Section 4.1, the sampling algorithm is given by:

}Aftkﬂ = eltrt1 =t IA’;k + (e —1)s(T — tk,f’tk).

At each step [ty,, tpq1], Fi(x) = e x+ ('~ —1)sg(T — t, x). Therefore, the estimation-error
operator (Definition 4.1) can be computed as

Dp(t,x) = %—j(t,x) + f(T - t,Ft(x)) - %g(T — )2V log g7, (x)

= so(T — tx,x) — V1og qr—t, (x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:

Up(t,x) =V [%F] (t, %)L+ Vi [£(T — t, Fy, 1 (x))] — %Q(T —1)*V?log g1+, (x)

= Vso(T — t1,x) — V2log gr_s, (X).

Now, using Theorem 4.3, we have the following convergence analysis for VP + EIL. See Appendix F
for proofs of the following results.

Theorem 5.5. Consider a VP forward process with EI numerical scheme. Under Assump-
tions 5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size 1 satisfies
n <min{1/(12L?d?),1/(24L?R*d) }, then the following bound holds:

~ 1 RS
TV(Y:,, X5) < TV(qr, 7q) + €aiv + Vdr/nNegore + 12N {LR“ (d2 + 5—2) + L2d + 5} .

Lemma 5.6. Assumes the data distribution satisfies Cov(gg) = I;. Then for the VP process, we
have TV (qr, 74) < V/de™T. At VP forward process case, we take 74 ~ N (0,1,).

Corollary 5.7. Forall T > 1,6 < 1 and N > log(1/6), there exists n = O((T +log 5)/N)
and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(qo) = I;. When § = 1/d and d > R/L + L/R*,
if we take T' = log(d/€?)/2 and N = LR*O(d*(T + log(1/5))?/e) for some e < 1/L, we have
TV(Y:,, X;) < e assuming O(e/v/d) score estimation error and O(¢) divergence error. Hence
the diffusion model requires at most O(LR*d?/€) steps to approximate gs within e < 1/L in TV
distance.

Remark 5.8. We note that the e-dependence in iteration complexity of our deterministic sampler is
¢!, while stochastic ones usually exhibit a slower iteration complexity proportional to ¢~2(Chen
etal., 2023a; 2022; Li et al., 2024b; Benton et al., 2024). This aligns with general observation in dif-
fusion model practice: deterministic samplers demonstrate higher efficiency compared to stochastic
samplers.

5.2 VE+DDIM

In this section, we focus on the process where f(¢,x) = 0 and g(¢) = 1, which corresponds to the
VE forward process with o7 = t. As discussed in Section 4.1, the sampling algorithm is given by:

~ ~ ~ T — 1t
Ytk+1 =Y, + (L1 — tk)l(l V1= 1/l)59(T - tk>Y;fk)’ l= ﬁ
+1 —
Let ¢, = (1 —+/1—1/1) < 1. Ateach step [tg, tit1], Fi(x) = x + ¢i(t — t)se(T — tr, %)
Therefore, the estimation-error operator (Definition 4.1) can be computed as

D (t,x) = aa—lz(t, x) + f(T —t, Ft(x)) — %g(T — )2V log g7+, ()
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1
=ase(T — ty,x) — §Vlog qr—t, (x).

Similarly, the divergence-error operator (Definition 4.2) can be computed as:
0 1
(%) = V|2 F| (#3) 1+ Vo [£(T = . By 0(x))] = 59(T = )*V? Dog g7, ()
1
- clv50 (T - tk7 X) - §v2 IOg qT—t,, (X)

Now, using Theorem 4.3, we have the following convergence analysis for VE + DDIM. See Ap-
pendix G for proofs of the following results.

Theorem 5.9. Consider a VE forward process with DDIM numerical scheme. Under Assumptions
5.1, 5.2, 5.3, and 5.4, suppose the time schedule satisfies (2.6). If the step size 7 satisfies n <
min{1/(12L?Td?),1/(24L*>R*d)}, then the following bound holds:

- LR*
TV(Yr_5,Yr_5) S TV(7a, ar) + €aiv + Vdr/nNeseore + n* N [LR4d2 + L%+ 52

Lemma 5.10. Assume the data distribution satisfies Cov(qp) = I4z. Then for the VE forward
process, we have TV (qr, m4) < v/d//T. At VE forward process case, we take 74 ~ N (0, T1).

Corollary 5.11. Forall T > 1,6 < 1 and N > log(1/4), there exists n = O((T +log 5)/N)
and a time schedule satisfying (2.6). Under the same assumptions as Theorem 5.5, we additionally
assume that the data distribution satisfies Cov(go) = I;. When § = 1/d and d > L/R*, if we take
T =d/e® and N = LR*O(d*(T + log(1/6))?/¢) for some ¢ < 1/L, we have TV(Y;,, X5) < ¢,
assuming sufficiently small score estimation error and divergence error. Hence the diffusion model
requires at most O(LR*d*/e%) steps to approximate gs within e < 1/L in TV distance.

Remark 5.12. Compared to Corollary 5.7, VE SDE has larger iteration complexity, primarily due

to the slow 1/+/T decay in the distance between g and 74, compared with the exponential decay
(Lemma 5.6) for VP SDE.

6 CONCLUSION

In this work, we introduce a unified convergence analysis framework for deterministic samplers.
We start by presenting a counter-example to illustrate the main challenge in analyzing deterministic
samplers compared to stochastic ones. Additionally, we provide a technical lemma that allows us
to bound the distance between distributions using score estimation error and divergence error. With
this approach, we directly established convergence guarantees for the continuous-time reverse ODE.
Moreover, we extend our analysis to the convergence of discrete-time deterministic samplers with a
unified framework. Finally, we demonstrate its effectiveness by applying it to two widely adopted
sampling methods.

Limitation and Future Work. First, for the VP process with EI schemes, our current results have
a quadratic dependence on d, which leaves room for improvement compared to the d-linear state-
of-the-art bounds in ODE analysis (Li et al., 2024c). This discrepancy stems from two factors:
our different assumption that requires control of the divergence error rather than the full Jacobian
error, and our directly estimated Lipschitz constants in the discretization error analysis. We believe
that through more delicate methods for analyzing the discretization error and potentially stronger
conditions, we could achieve linear dimension dependence within our unified framework. Second,
since adding the divergence assumption can guarantee the convergence of the ODE sampler, an
interesting future direction may be to design training methods that can obtain both small score
error and small divergence error. One potential approach would be to incorporate regularization
terms corresponding to divergence error in the loss function, potentially leading to more effective
diffusion model training algorithms. Third, for the VE process, we obtain only polynomial bounds
due to the slow 1/+/T decay in the distance between g7 and 74. It’s important to note that this is not
a limitation of the DDIM sampler, as applying DDIM to the VP processes yields results comparable
to those obtained with the EI scheme. We leave an improved analysis for the VE forward process
as future work. Finally, the discrete-time analysis currently relies on a bounded support assumption
for the data distribution, which may be relaxed to less restrictive conditions, such as light-tailed
distributions.

10
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A  RELATED WORK

Convergence Analysis of Stochastic Samplers. Early theoretical studies for diffusion models were
either non-quantitative (De Bortoli et al., 2021; Liu et al., 2022; Pidstrigach, 2022), or exhibited ex-
ponential dependence on the dimension or other problem parameters (Block et al., 2020; De Bortoli,
2022). Later, Lee et al. (2022) proved the first result with polynomial complexity, with the assump-
tions Ly-score estimate and log-Sobolev inequality (LSI). However, the LSI condition on the data
distribution is restrictive, prompting further studies to relax this assumption. Chen et al. (2022)
utilized Girsanov’s theorem, and proved polynomial convergence bounds, assuming either the Lips-
chitzness property of the forward process score function or bounded support of the data distribution.
Lee et al. (2023) relaxed the smoothness condition to apply only to the data distribution rather
than the whole trajectory, and replaced the bounded support assumption with sufficient tail decay.
Chen et al. (2023a) proved a result with both the advantages of these two works, achieving a better
convergence rate while assuming only the smoothness of the data distribution. Furthermore, they
provided results for the non-smooth setting using appropriate early stopping and decreasing step
size. Benton et al. (2024) improved the dependency of the dimension d to linear via the stochas-
tic localization method. Compared with the analysis of reverse SDE, Li et al. (2024b) utilized an
elementary approach to analyze a DDPM-type stochastic sampler. It also proposed an accelerated
stochastic sampler with better iteration complexity. More recently, Huang et al. (2024b) decom-
posed the entire sampling process into several reverse transition kernel subproblems and proposed
novel fast sampling algorithms.

Convergence Analysis of Deterministic Samplers. The first non-asymptotic bounds for determin-
istic samplers were derived by Chen et al. (2023b), which assumes access to the ground truth score
function. Subsequently, Chen et al. (2024) proved the first polynomial-time convergence guarantees
of probability flow ODE with estimation error, by incorporating an additional corrector Langevin
dynamics. While this improved upon prior results, it introduced randomness, making the sampling
processes non-deterministic. Li et al. (2024a;b) applied an elementary analysis framework to study
the convergence of a specific deterministic sampler with a given learning schedule, requiring an ad-
ditional assumption on the Jacobian estimation error. Later, Li et al. (2024c) applied the same frame-
work and achieved improved iteration complexity, which is linear in the dimension. Recently, Huang
et al. (2024a) examined the Ornstein-Uhlenbeck (OU) forward process, removing the assumption of
Jacobian estimation error. However, they introduced higher-order boundedness assumptions on the
derivatives of the estimated score function concerning time and space. They proved an upper bound
for the total variation between the target and generated data at the continuous-time level while also
analyzing the convergence rate for the Runge-Kutta integrator. Further expanding the scope, Gao
& Zhu (2024) studied the Wasserstein distance using general forward SDE with log-concavity data
assumptions. Additionally, research has started to explore other deterministic generation methods,
such as flow matching (Benton et al., 2023).

While we prepared our manuscript, we noticed the concurrent work in (Li et al., 2024¢). They ana-
lyzed a specific discrete-time sampling algorithm that can be viewed as a deterministic counterpart
of DDPM (Ho et al., 2020), achieving a better O(d/€) iteration complexity. The improvement arises
from their fine-grained analysis of discretization error through an elementary approach. The focus of
their paper is orthogonal to ours, as they provide an improved analysis of a specific algorithm, while
our work aims to develop a unified analysis framework. We conjecture that their techniques can be
adapted into our framework, potentially achieving improved results. Nevertheless, it is beyond the
goal of our paper and we will leave it for future work.

A.1 COMPARISON WITH HUANG ET AL. (2024A)

Huang et al. (2024a) is the most related work to ours. It studied the convergence properties of
diffusion models with deterministic samplers based on probability flow ODEs.

Theorem A.1 in Huang et al. (2024a) is similar to our Lemma 3.2, where they applied the charac-
teristic line method for ODEs, while we used the Fokker-Planck equation and the Gauss’s theorem
twice. However, we use different methods when dealing with the divergence term

V- [((b(t,x) — b*(t,x))q(T — t,x)].
We decompose it into score estimation error and divergence estimation error (see Lemma 3.2). In
contrast, they applied the Gagliardo-Nirenberg inequality to bound the integral of first-order deriva-
tives using integrals of second-order and zero-order derivatives of sy. This led to different assump-
tions regarding the convergence analysis of the continuous-time reverse process. In addition to
the standard estimation error assumption, we require a small divergence error, while Huang et al.
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(2024a) assumed the boundedness of up to the second order derivatives of sg. Furthermore, they re-
quired a bounded support assumption, which is not necessary for our continuous-time analysis. As
a result, Huang et al. (2024a) proved an upper bound on the TV distance: O(T3/*d%/*(1/ 6)6;;/0%6).
In comparison, our result is O(y/dT + dlog(1/d) - €score ), NOtably only log-dependent on 4.

For the discrete-time analysis, Huang et al. (2024a) studied the p-th Runge-Kutta discretization
method. When p = 1, it becomes the forward Euler method. In comparison, we study the EI
scheme. Our analysis can be easily applied to the forward Euler method, yielding similar results.
In the discrete-time case, we assumed bounded support of the data distribution and the Lipschitz
condition of sy, which was already required in Huang et al. (2024a) in the continuous-time analysis.
Additionally, they assumed that the mixed second-order derivatives of sg with respect to ¢ and x
are bounded by a constant L. For the forward Euler method, Huang et al. (2024a) proved iteration
complexity of O(L?R?d?*¢~"), while our result for EI scheme is O(LR*d?*¢ ") for § = 1/d. We
remark that the constant L in their result may be very large. For example, the derivatives of the
true score function can depend on higher-order terms of 1/§ (see Lemma H.2). Moreover, we also
consider the VE forward process with the DDIM numerical schemes.

A.2 COMPARISON WITH OTHER WORKS ON DETERMINISTIC SAMPLERS

In this section, we consider different works on convergence analysis of diffusion models with de-
terministic samplers and provide a detailed comparison in Table 1. The comparison focuses on
three key aspects: major assumptions required by these works, the metrics used, and the iteration
complexity in terms of dimension d and accuracy e.

Major Assumptions ‘ Metric ‘ Complexity ‘ Reference
Score Estimation Error ! o ( &2 n & ) Li et al. (2024b)
Bounded Support € Ve Theorem 1
N PP TV(p1,q1)

1 ~rd Li et al. (2024¢)
=3 E ||Vse(t, X) — V2log a(t, X)|| < €sacon 0(7)

N ;XMRH ol ) gal )H facob € Theorem 1
Access to Exact Score

V log g and V2 log ¢ Lipschitz KL(po, o) | Polynomial Chen et al. (2023b)
19105 2 o) < Bt = si°(1+ [l + [ Vau ()1 Theorem 4.1
S

Score Estimation Error
k o (7) e/
sup  max max |070%sy’ (t,x)| < L TV(ps, q5) 0<7) Huang et al. (2024a)

xeRd 1<k+|a<p+11<5<d el/p
Bounded Support Theorem 3.10
Bounded Support: Assumption 5.1 )
Score Estimation Error: Assumption 5.2 TV(ps,q5) | O (i) This Work:
€
Divergence Error: Assumption 5.3 Corollary 5.7

Table 1: Comparison of convergence analysis for diffusion models with deterministic samplers
B PROOF OF THEOREM 2.1
Proof of Theorem 2.1. Since x; starts at N(0,1), we can easily show that z; ~ N(0,1) for all
1 e

t. Recall that we use ¢(t,x) to denote the law of z;, then we have ¢(t,z) = ¢ 7 and

1/2 .
Vlogq(t,x) = —zx. Define g(T — t,z) = \/%677 (1 4 55 sin(2n7x)), and construct our es-
timated score as:

s ﬁe‘f sin(2n7y) (57) dy
so(T —t,2) = q(T —t,x) o

M

!"This assumption is slightly different from ours. While it assigns uniform weights to estimation errors
across all time steps, our approach applies smaller weights to time steps with smaller step sizes.
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Without loss of generality, we can assume x > 0. Then we have:

2w

LY sin(2nmy) (55) dy'
‘SO<T - t,$) - Vlqu(T - t,$)| =

ﬁe*% (14 L sin(2nm2))

—a2 N .
_ T gy, | sinimy)dy
- L5l
Ven 2
11
< —
= Tnr

Taking n > 1/(T'me), we have [sg(T — t,z) — Vlogq(T —t,z)| < e. Moreover, since we have

w = —a%((s@(T —t,x)+x)-q(T - t,x)), q(T —0,z) ~ N(0,1),

which satisfies the Fokker-Planck equation. Therefore, we know that ¢(¢, x) is the law of yr_;.
Hence the law of yr is

1

2 1
qo(z) = me_T (1 +3 sin(2n7rm)).

The TV distance between yr and 7 is:

~ 1 1.2 1 1 .2
TV(yr,yr) = 5/ —e 2 (1 + 2sm(2nm;)> — ¢ 2

R | V2T V2T
1 1 2

= — | —e” 2 |sin(2nnx)|dx. B.1
1| e Fsin(anmo) (B.1)

To calculate the last integral, we consider the Fourier expansion

4k
|sin(2nrz)| = — — — Z C(jlka m{x

dz

For any k£ > 1, we have:

’I‘2 > 7‘2
/e_T s(4knma)dz| = 2 / e” 2 cos(dknmx)dx
R 0
N
< 2 sup / cos(4knmr)dx
N>0|Jo
1
< —.
= 2knm

Therefore, we can plug these integrals into B.1 and obtain

112 4
TV - — = E
(yr,yr) = 4 [ 4k2 1

m‘“

cos(4knmx)dx

|

27r

12 4 1 1

4[7r ;4k21f2km}

172 2 1
zib 27mz3k3}

By taking n large enough, we can easily show that TV (yr, yr) > ﬁ. This completes the proof of
Theorem 2.1. O

Theorem B.1. Consider the same 1-dimensional OU process (7)¢c[o,7] and its reverse process
(Yt)tefo, 1) defined in Theorem 2.1. Recall that we denote the law of z; by g;. Then for arbitrarily
small ¢ > 0 and arbitrarily big N > 0, there exists sy (¢, z), which is smooth, anywhere e-close to

16
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the true score function, and its divergence is anywhere e-close to the divergence of the true score
function, i.e.,

|59(T —t,z) — Viegq(T — t,x)’ <e, Vit Vz,
|V ~sg(T —t,x) — V- Vlogq(T — t,x)| <e, Vit Vz,
such that the law p; of the corresponding simulated reverse process (ﬂt)te[O’T] (see (2.9)) satisfies
sup |Vlogpr(z)| = N,
which indicates that the score of the sampling process can be unbounded no matter how small the

score estimation error and divergence error is.

Proof of Theorem B.1. Substitute the oscillate term sin(2n7z) in the proof of Theorem 2.1 by

22
m sin(2n?mz). In this case, we still have (¢, z) = \/%e*T and Vlogq(t,z) = —z. Now

T2 .
q(T —t,x) becomes ﬁe_ T (14 4% m sin(2n?mx)), and now our estimated score becomes:
o 1 ¥ : 2 1
fx Voradiez=uy sin(2n?mx) (ﬁ) dy
q(T —t,x)

Without loss of generality, we can assume x > 0. Then we have:

so(T —t,z) = -,

2Tr & n(y;H) sin(2n?7y) (%) dy’

ﬁ *%(1—&— 2T 771(” Y sm(2n27ry))

‘SH(T - tvx) - VIqu(T - t,l‘)|

2

_zZ N .
\/%e p %(yzlﬂ)sup]\bw I %sm(2n2ﬁy)dy‘
= 121
V2 2
11
= Twn ©2

Further more, we consider the divergence estimation error. Since this example is one-dimensional,
taking divergence is the same as taking a derivative with respect to . Hence we have:

0 J2° Je” by sinl2ney) ()

so(T — -V Vi T — =7
V- so(T —t,2) = V- Viogq(T — t,z)| = | - oI —t,x)

22

o 2 e et (o) 1)

q(T —t,x)?
y2 . ~,
s ﬁe_T m sin(2n?7my) (55) dy - 2q(T — t, )
+ — 5 . (B.3)
Q(T - t,.’E)
Firstly, we have
11 o2 1 2
- e 7 <|g(T—t,x)| < e 7
Moreover, we know that
0 1 22 t 1
2T -t *7(— 1+ ———sin(2n?
&Bq( x \/ge z(1+ T n( +1) sin(2n’mz))
t1 2n2m cos(2n?mx)(z? + 1) — 2z sin(2n’mx)
)| (B.4)
2T n (,732 +1)2
< =% (Ja] + —— +nm + i)
T V27 4Tn 2Tn
1 2
< e 2 (|x|+2n7
L (jo] + 20m).

17
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2

Since \/%76_% m is strictly monotonically decreasing when y > x > 0, we have
* 1 y2 1 1
ez sin(2n2m — | d
[ 7% e (5p)
1 .2 1 1 N
< e — su sin(2n2my)d
T 2T n(x2 —+ 1) 2T NZI; /m ( y) 4
1 2 1 1 1
< e -
- Vor 2+ 1n3w 2T
Substituting back to B.3, we have
1V 86(T — t,2) = V- Vlog g(T — £,2)] < 57— + d————L_(|a] + 2nr)
. S —_— — . o — [ e —
0 - 84 =5 2+ 1n37 2T . nr
1 1 4

= 2Tn + Tn3m * Tn2’ (B-5)
For any € > 0, using (B.2) and (B.5), for n large enough, the score estimation error and the diver-
gence estimation error are less than € for every ¢ and z. Same as in the proof of Theorem 2.1, using
Fokker-Planck equation, we know that q is the law of the sampling process. However, by (B.4), the
score of the sampling process is clearly unbounded (there is a coefficient proportional to n, and our
n is arbitrary large). O

C PROOF OF LEMMA 3.2

Proof of Lemma 3.2. We begin by computing total variance distance between X, and Y; for any
tel0,1:

V(XY = [ pltx) — altx) dx, .
Q
where Q; == {x € R? | p(t,x) > ¢(t,x)}. Now we proceed to compute the time-derivative

of (C.1). By Theorem K.1, we have

ITV(X:, Y1) _/
Q

57 g (p(t, x) — q(t, x)) dx +/ (p(t, x) — q(t, x)) v(t,x) -n(t,x)ds.

‘ 8t GIoR

Il 12
(C.2)

For term I, by Fokker-Planck equation, we have

9
ot
Therefore, we have

(p(t,x) - q(t,x)) =-V. (b(t,x)p(t,x) - b*(t,x)q(t,x)).

I = / =V - (b(t,x)p(t,x) — b*(t,x)q(t, x))dx.
Q

For term I, by the definition of ; := {x € R? | p(t,x) > q(¢,x)}, we have p(t,x) = ¢q(t,x) on
0€);. Hence I = 0.
Therefore, by substituting I; and /5 into (C.2), we obtain

w = /m -V (b(t,x)p(t,x) —b* (Lx)q(t,x)) dx
= / —(b(t,x)p(t,x) — b*(t,x)q(t,x)) - n(t,x)dS
%,
= / —(b(t,x)q(t,x) — b*(t,x)q(t,x)) - n(t, x)dS
%
- / v ((b(t,x) - b*(t,x))q(t,x)) dx
Q¢

18
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= —/Q (V-b(t,x) — V-b*(t,x))q(t,x) dx — / (b(t,x) — b*(t,x)) - V q(t, x) dx,

Q
where in the second equation we use Gauss’s theorem to compute the integration of divergence,
the third equation uses the fact that p(¢,x) = ¢(t,x) on 9, the forth equation holds by Gauss’s
theorem again. This completes the proof. O
D PROOF OF THEOREM 3.4

In this section, we provide a proof of Theorem 3.4. The core of the theorem’s proof is Lemma 3.2,
which allows us to represent the time-derivative of TV distribution between distribution by score
estimation error and divergence estimation error.

Proof of Theorem 3.4. Recall Y; andAﬁ are ODE flows determined by (3.1) and (3.2). Define
b(t,x) = x + Vlogq(T — t,x) and b(t,x) = x + s¢(T — t,x), then we have:

dY; =b(t, Y)dt, Yo~ qr.

dY, =b(t, Y,)dt, Yy~ 7.
By Lemma 3.2, recall that the law of Y; is denoted by ¢(T — t, x), we have:

ITV(Y;,Y))

x :_/Q (V- B(tx) 7+ b(t,%) )a(T — 1, %) dx

- /Q (B(t, x) — b(t,x)) - Vlogq(T —t,x)q(T — t,x)dx

= /Q (V~Sg(T—t,x) -V Vlogq(T—t,x))q(T—ux)dx

I

- / (so(T — t,x) — Vlogq(T — t,x)) - Vlog q(T — t,x)q(T — t,x)dx.
Q4

Iy
(D.1)
For I, we know that:
L] < / \V.SG(T#,X) V. Vlogq(T—t,x)’q(T—t,x)dx
Q
gE‘V-SG(T—t,Yt)—V-Vlogq(T—t,Yt)‘. (D.2)
For I, using the Cauchy-Schwartz inequality, we know that:
‘12| < \// ||SQ(T - t,X) - VIqu(T - t,X)qu(T - t,X)dX
Q
. \// HVIogq(T - t,x)HZq(T —t,x)dx
Q
2 2
< \/EHs@(T —1,Y;) = Viogq(T —t,Y3)||” - \/EIIVlog (T -, Y3)||". (D.3)

Substituting (D.2) and (D.3) back to (D.1), and taking the integral with respect to ¢ on [0, T — §], we
have:

T—6
TV(Yr_s, X5) STV(YO,YOH/ (1] + | Io])dt
0

T—6
<TV(Yy, Yo) +/ E|V - 8(T—1,%;) = V- Viega(T — 1, ¥;)|at
0

T—46 3 3
+/ VEIso(T - £,%3) — Viogg(T — 1, Y)|* - \/EIV log (T — 1, ¥i)|*at
0
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< TV(Y, Yo) + / E‘V-Sg(T—LYt)—V-Vlogq(T—t,Yt) dt

T-6 T-6
\// E|lsg(T —t,Y;) — Vlogq(T —t,Y;) H dt - \// EHVIogq(T—t,Yt)HZdt.
0

(D.4)
Since X has finite second-order momentum, using Lemma K.2, we have that:
EqllVlogq(T —,Y)||* < d(1 — e 2T-0)~
Thus we know that:
T-6 ) T-6 d
/ E||Viogg(T —t,Yy)| dt S/ mdt
0 0
T
1
= d/ 72dt
5 1-— e t
1 2T 1 25
= d<flog (e — 1) — —log (e — 1))
2 2
1
- 0(dT+dlog 5). (D.5)
Substituting (D.5) into (D.4) and using Assumptions 3.1 and 3.3, we can conclude with
BN BN / 1
TV(YT,J, XJ) S, TV(}an }/0) + dr + leg gﬁscore + €diy-
O]

E PROOF OF THEOREM 4.3

Proof of Theorem 4.3. In the time step ¢ € [ty,tr11], we can compute the time derivative of the
total variation distance between Y; and Y; using Lemma 3.2:

oV, Yi) _ _/ (V-b(t,x) — V- b(t,x))q(T — t,x)dx
Q¢

at
Iy
—/ (B(t,x) —b(t,x)) V(T — t,x)dx.. (E.1)
Q4
Iy

Recall that b(t,x) = — (F(T — t,x) — 2g(T — t)*Vlog gr_¢(x)), B(t,x) = %—f(t,F;l(x)).
For I, we decompose tr[Vb(t, x) — Vb(t, x)] as follows:

tr[Vb(t,x) — Vb(t, x)] = [V [%F] (t, F ' (x))VE (%) + VE(T — t,x)
- %Q(T —1)*V?log gr 4, (Ftl(x))]
— S0 = 0[P logar1(x) = V2 logar o, (F; (0|

—W(tz) + (v[gt F(t.2) + Va[£(T t,Ft(z))])(VFt_l(x)I)

1
- 59(T —1)? [Vz log gr—1(x) — V*log gr—y, (Z)},

where z = F, '(x). Therefore, we have

|11 S/
Q4

tr [Vb(t, x) — Vb(t,x)] ’q(T ~t,x)dx
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< / | tr Wy (t,2)|q(T — t,x)dx

o/

+ / %g(T - t)2| tr [V?log gr—¢(x) — V*log gr—s, ()] lg(T — t,x)dx
() [trw(uz)fppt(y,,k)(x)dx);( / (mﬁmkxxmx);
r {V[;F] (t, F;7 1 (%)) + Vo [£(T — t,Ft(z))ﬂ (VE (x) - I)’

1
+ / §g(T — t)2| tr [VQ log gr_¢(x) — V?logqr_s, (z)] ‘q(T —t,x)dx

2 (@l ) ([ (20 o, o)

PF.(v;,) (X

tr [v [%F} (t,2) + V, [£(T —t, Ft(z))ﬂ (VF (x) — I)’q(T —t,x)dx

-+ max
X

+ max
xX

tr {V[;F} (t, Fy ' (x)) + VL [£(T - t,Ft(z))ﬂ (VE (%) - 1)’

1
+ / gg(T - t)2| tr [VQ log qr—+(x) — V2 1og qr_4, (z)] |q(T —t,x)dx. (E.2)

where (#) holds due to the Cauchy-Schwarz inequality. (i) holds due to the Jacobian transformation
th(y'tk)( x)dx = thk( z)dz for z = Ffl(x).

For I, we decompose B(t, x) — b(t, x) as follows:
~ [OF _ 1 _
b(t,x) — b(t,x) = N (t,Ft 1(x)) +£(T —t,x) — §g(T —1)°Vlogqr_s, (F; 1(x))]

_ %g(T —t)? [V log qr—i(x) — V1og gr—_4, (Ft_l(x))}

- " (t,2z) —I—f(T—t,Ft(z)) — %g(T—t)QVloqu_tk (z)}
_ %Q(T —t)? [V log qr—+(x) — V1og g4, (Ft_l(x))} )

= Oy (t,z) — %g(T —t)? [V log qr—¢(x) — Vog qr—_4, (Ft_l(x))}7

where z = F, '(x). Therefore, we have

|I5] < /Q |®k(t,2) - V(T — t,x)|dx
+ %g(T - t)2/ ‘ [V log gr—+(x) — Vlog qr_4, (F[l(x))] -Vq(T —t, x)}dx
Qy

@) Vg q(T — t,x)py,
< (S st i d") (/I Pivy) S o Goax
t tk

+ %Q(T - t)2/ ‘ [V log gr—+(x) — V1og gr—, (Ft_ (x))] -Vq(T —t, x))dx
Q

< (eonc v ) ([ Tt L P (X)dxf

Pr, (v,

[SIE

+ %g(T - t)2/ HV log gr—¢(x) — Vlog gr_y, (F, ' (x))] - Va(T — t,x)}dx. (E.3)
o

where (¢) holds due to the Cauchy-Schwarz inequality. (i¢) holds due to the Jacobian transformation
PF,(v,,)(x)dx = py,, (z)dz forz = F'(x). Substituting (E.2) and (E.3) into (E.1) and taking the
integral over ¢, we can complete the proof of Theorem 4.3. [
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F ANALYSIS OF VP+EI

In this section, we focus on the case where f(x) = —x and g(t) = v/2, i.e. the VP-SDE. Specifi-
cally, the forward process X satisfies:

dXt = —Xtdt + \/ith, XO ~ qo, (Fl)

and the true reverse process Y; satisfies:
aY; = (i + Viegar o(Yy) )dt, Yo~ ar-
Then, the forward process has the following closed-form expression:

Y,=Xr_,=e T VX)+V1-e20-0Z  Z ~ N(0,1). (E2)

Recall the exponential integrator provides a discretized version of the reverse process:
1 1 ~
Ytk+1 _e th (e’fik _1)2 (T_tk7Ytk)~
Therefore, we can define the following interpolation operator:
Fy(z) = ez 4 ("% — 1)so(T — ty, z), (F.3)

satisfying Fy, ., (Y,,) = lA’tk Under Assumption 5.4, we know sy(t, -) is Lipschitz. Therefore,
suppose 1) < 1/L, then we have 1 /2 < ||VFi|| < 3/2. In particular, F; is invertible.
Denote e'~** by a. Since t — t;, < n <1, we have a < 1 + 2(¢ — t5). Then we know that:

Izl = al F )]~ (a = 1) (LIF @) + )

> B ()| - 20t = ) (LIF ()] + )
1, 1
> JIE @I - 5
where the last inequality holds when we assume that ¢t — ¢, < 1 < min{1/4L,1/4c}. Thus we
know that:
IF7 (2] < 2llzl| + 1. (F4)

Before we start the proof, we introduce several important lemmas used in our proof. Let ¢; =
(1+d/2)4L? and c3 = (1 + d/2)(L + ¢)?. Using our assumption on 7, we know that

1111
< E5
= mm{lGd 2e1d’ e’ 4R2c1} E5)

The following two lemmas are related to the ratios py, (x)/p FL(Y,,)-

Lemma F.1. Let Y; and F}(z) be defined in (F.2) and (F.3). Under Assumptlons 5.4 and 5.1,

suppose our time schedule satisfies (2.6). Then, for n < mm{TH)d7 Tod» C%d, Ter E’ R2<1 1, we
have

PYi(X) o —texIH(t—tes
PFR,(v,,)(x) ~

2
X
/ (py"( ) ) PF,(v,,)(x)dx S 1.
Q. \PF(v;,)(X)

Lemma F.2. Let Y; and F}(z) be defined in (F.2) and (F.3). Under Assumptlons 5. 1 and 5.4,

suppose our time schedule satisfies (2.6). Then for n < mln{m, Ted ﬁ, Fors g, 4R201 1,

Moreover, we have

we have:
T—1t,x)2 d
dx < ———M —.
/H PR.(v,,) (X H PR (X)X S min{7T —¢,1}
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The following two lemmas show the upper bound of the derivatives of the true score function with
respect to ¢ and x separately.

Lemma F.3. When X is defined as in (F.1), under Assumption 5.1, we have:

5 ) d R (|[x]| + R)?
o <
ot (tr (V*logq(t, X))>‘ ~ min{t, 1}? " min{t, 1}4

9 x|+ R (x| +R)*R* (x| +R)*
_ <
H@t (V logq(t’x))H S min{t,1}2 ' min{t,1}2 | min{t,1}®

Lemma F.4. When X is defined as in (F.1), under Assumption 5.1, we have:

x| + R
1 t S —
IViogq(t. ) 5 PR,
1 R?
*logq(t,
IV*loga(t, x)]], < min{¢, 1} mln{t 1}2’
R3

| Vir(V2log g(t,x)) || < min{t, 113

The proofs of the above lemmas can be found in later sections.
F.1 PROOF OF THEOREM 5.5

Proof of Theorem 5.5. From the discussion in Section 5.1, we know that:

(bk(t, X) = S@(T — tk, X) — Vlog qT—1t4 (X)7 (F6)
Uy (t,x) = Vso(T — tg,x) — V21og qr_¢, (x), (E7)

in this specific case. Recall that g(¢) = v/2 and f(T — t,x) = —x = —F}(z). From (F.3) we have:

0
aF(t,x) = Fi(x) + so(T — tg, X).

Thus we know that
0
v[atF} (t, F7 1 (%)) = [VE] () + Vso(T — ty, 2). (E8)
By Theorem 4.3, we know that:

TV(Yr_s,Yiy) < TV(qr,m4)

pgs Vg q¢(T — t,x)py, (x N
3 [ [ Vellode T WH T

pr(Yf

J1: Score estimation error

2
+ \/E tr \Ilk (t, Y}k \// th th(Ytk)(X)dx

PF,(vi,

Ja: Divergence estimation error

+ / |(Viogqr—1,(z) — Vlog qr—4(x)) - Viegq(T — t,x)|q(T — t,x)dx

J3: Score discretization error

+ / |tr(V?log (T — tx,2) — VZlog ¢(T — t,x)) lg(T — t,x)dx

J4: Divergence discretization error

tr {VS@(T — tg, z)} (VE (%) - 1)

+ max
xX

]dt. (E9)

J5:Bias error
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Bounding the Score Estimation Error .J;. We can easily verify that our 7 is small enough to
satisfies the condition of Lemma F.2. Therefore, using Lemma F.2 and (F.6), we have=

d
RABSEY min{T—tl}\/EQHse(T —tr, ¥y, ) — Viogar—e, (Yy,)

Bounding the Divergence Estimation Error Js.

Similarly, our 7 is small enough to satisfies the condition of Lemma F.1. Using Lemma F.1 and (F.7),
we have

‘ 2

(F.10)

2
|Jo| < \/EQ tr (VSQ(T —tr, Yz, ) — V21ogq(T — t, thk)) . (F11)
Bounding the Bias Term .J5. From (F.3), we know that:
_ _ -1
VE (%) = [(VE) (F (%))
= [e"" g+ (e — 1) Vs (T — ty, F, 1 (x))]
Using Assumption 5.4 and ¢t — t;, < n < 1, we have:

[(VE) (Fy (%)) = Lall2 < (" = 1) ||La + Vo (T — tx, Fy ' (x)]l2
<2(t—tg)(1+ L).

-1

Let A = (VF,)(F; ' (x)) — L. Then we have || A5 < 2(¢ — t;)(1 + L). Thus we know that:
IV(F (%)) = Lall2 = | (Ta + A) ™" = T4l

o0

Z(_l)nAn

n=1

(id) 2 N

< > lAl3
n=1

(? 4t —ty)(1 + L), (F.12)

here (7) holds because of the series expansion for ||A ||z < 1. (i¢) holds due to the Cauchy-Schwarz
inequality. (#7¢) holds due to our assumption 7 < 1/4(1 + L). Then we know that:

= mf,x ‘ tr [VSO(T — tk, Z) (V (Ftil(x)) N Id)} ‘

%) dmax HVSH(T — tk,z) (V(F;l(X)) h Id) H2

< dmax [|[Vso(T — ty, 2) 2|V (F; ' (x)) — Lall2

Q]

2

Js

(i)
< 4dL(t —t,)(1 + L),
where (7) holds due to tr(A) < d||All2. (i) holds due to Assumption 5.4 and (F.12). Thus we have:
|J5| < (t —tg)dL>. (F.13)
Bounding the Moments of Y;.
Before we start estimating J3 and J4, we first do some preparation. Since we have Y; = X7, =
e TVX5+ V1 —e20-0Z, here Z ~ N(0,1;). Our goal is to bound the moments of Y;.
When T —t < 1, we know that e~ ("~ = ©(1) and V1 — e=2(T-) = O(y/T — t). Thus we have:
E||Y; ]2 = ¢ 2T VR Xo|? + (1 — e 2 TD)E| Z||? + B~ T~0V/1 — —2T-0(X,, Z)
SE[Xol* + (T - H)E| Z]*
=R*+ (T —t)d. (F.14)
where the first inequality holds due to the independence of X and Z. When 7' — ¢ > 1, we have:
E|Y:|* S e T VE| Xo| + El|Z|?
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=e2T-HR2 1 g (F.15)
Combine (F.14) and (F.15) together, we know that:
E|Y:]|* £ R* + min{T — ¢, 1}d. (F.16)

After computing the second-order moment, using the inequality (E| Y;||) 2 < E||Y; ||, we can bound
the first-order moment as follows:

E|Y;|| < R+ /min{T — ¢,1}Vd. (F.17)
Moreover, we consider the fourth-order moment using similar methods. When T' — ¢ < 1, we have

e”(T=) = 9(1) and V1 — e=2(T—-1) = O(y/T — t). Thus we know that:
E|Y:]* SEIXol* + (T - )°E| Z]*
S RY4+ (T —t)2%d?, (F.18)

where the first inequality holds due to ||x — y||* < (||x]| + [ly]l) < C(|x[|* + [ly[|*) for some
constant C'. Same as what we did earlier, when 7' — ¢ > 1, we have:

E|Y:|* S e * T VE| Xo|* +E| Z||*

Se TR 4 g2, (F.19)
Putting (F.18) and (F.19) together, we have:
E[Y;|* < R* + min{T — ¢,1}%d>. (F.20)

After computing the fourth-order momentum, using the inequality E||Y;||? < \/E[Y;[]2- VE|[ V3|4,
we know that:

E||Y;]]® < R® 4+ min{T —t,1}3/24%/2. (F21)

Bounding Divergence Discretization Error J;. Let z = F, ' (x). We start by bounding ||z — x||.
We know that

Iz — x| = [[F5 (%) — x|
= (" = )| F7N(x) + 80 (T — ti, By (%)
< 2(t — t) [ B (%) + s0(T — i, B ()]
<2t — i) (L+ D[ )| + (= ta)e,

where the first inequality holds due to {—¢;, < 1. The second inequality holds due to Assumption 5.4.
From (F.4) we know that ||F, ! (x)|| < 2||x|| + 1. Hence we have:

lz = x|l S (t = te)(L+ DIx|[ + (¢ = te)(L + c+ 1)
@)

S (= tp) L(|Ix[] + 1). (F.22)

Using Lemma F.3 and Lemma F.4, we have

‘ / tr<V2 log ¢(T — tg,z) — V*log q(T — t, x))q(T —t,x)dx
Qq
d R*(||x| + R)? R’
< — _ _
~ /Q ((t t) (min{T 12 T mim(T =617 ) T mn{T — 1 z”>q(T b x)dx

(i) (e :
S /Q,, ((t ~ ) (min{Td— t,1}2 * TIjiIf{HTH__Eﬁ:JA)

R3
+ min{T —¢,1}3

d R?
t—ty)———————> t—1tg)—————
( k)min{T—t,l}Q + k)min{T—t,l}‘l

(t — t1) L(|1x]| + 1))q(T ~t,x)dx

S E(|Y|* + R?)
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b — T

k m E(]]Y:]| + 1)

R* + R?min{T — t,1}d

(i)
S (t—tr)

HminfT — 1,132 T (£ =) min{T — ¢, 1}4
+(t—t )L—RS(RJr\/Tft\/g+l)
M min{T — ,1}3 ’

where () holds due to (F.22). (i7) holds due to (F.16) and (F.17). Assuming R > 1, we can further
simplify its form:
R? R
——— 4+ (t—txy) (1 + Lmin{T — ¢, 1}) ————
min{T —¢,1}3 + (= 1) (1 + Lmin{ ’ })min{T —t,1}4

LR3
+(t— tk)\/&—min{T S

R? LR* LR3
min{T —¢,1}3 (- tk)min{T —t,1}4 - 7fk)\/gmin{T —t,1}5/2°
(F.23)

|Ja] S (t —tr)d

S(t—t)d

Bounding Score Discretization Error Js.
According to Lemma F.4, we know that:
x| + R
min{7 —¢,1}’
1 R?
)HQ 5 : o + : _ 2
min{T —¢,1} = min{T —¢,1}

Here (i) is because we assumed that R > 1. Using Lemma F.3, we have:

< IxlI+E (xll+Rr)?RrR* (k[ +R)°

~ min{T —¢,1}2  min{T —¢,1}2 min{T —¢,1}3
< Uxl+Rr2R* (x| +R)°
~ min{T —¢1}2  min{T —¢,1}3"

IVlog ¢(T —t,x)[| <

—
.
=

R2
min{7T —¢,1}2"

A

HV2 logq(T —t,x

H V log q(T x))

Thus we know that:

[ (Viozar-1,(a) = Viogar-) V1og (T ~ £ x)a(T — t.x)dx
(=l +r3°R*  (x[ + R)° x| + R
< t—t T—t,x)d
~ /Qt( k)(min{T—t,l}Q * min{T =1, 1}3)min{T—t,1}q( x)dx
R—QHX_Z”M
o, min{T" —¢,1}2 min{T — ¢, 1}
< i E(||Y; 3 !
N(t*tk)m (1Yl + R) +(t*tk)m
R? x| + R
L I B
o, min{7" —¢,1}2 (el + )min{T—t,l}
2

min{T —¢,1}3

(T —t,x)dx
E(|Y:| + R)*

+ (t —ty,) q(T' —t,x)dx

)

S (E—t)

—~
=

(R + min{T — ¢,1}*/2d%/?)

+(t—t1) R* + min{T — ¢,1}*d?)

PR
min{7T —¢,1}*
LR?

t -
k)min{T —t, 1}3(
where we use (F.20) and (F.21) to bound the third and fourth moments of Y;. (i) holds due to:

+ (t — R? + min{T — t,1}d), (F.24)

/ (Bl + D) (Il + R)a(T - t,x)dx S E(|¥:] + R)* £ R? + min{T — t,1}d.

t
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Reorganizing terms in (F.24), we have:

5 2 4
ol S (0= ) [ by
~ min{T —¢,1}3 min{T —¢,1}3/2  min{T —¢,1}*
1 LR* LR?
d? s +d : F.25
* min{7T —¢,1}? + min{T —¢,1}3 * min{T — ¢, 1}2} (£:25)

Putting J; and J, Together.
By (F.23) and (F.25), and since we assume R > 1 and L > 1, we have:

R? LR* LR3
Js| 41l St —ty)d—————— (t = tg) ————— +(t — tp) Vo
5]+ al 5 (8 = ) min{T — ¢, 1}3 HE—t) min{T — t,1}* + k)\fmin{T—t,l}W?
N———— —————

C1 Ca Cs
R’ R? R*

t—tp)| —————— +d*/?

=) mn{T —6,1° ¢ min{T -6, 1)%2  min{T —,1}3
C4 C5 CG
1 LR* LR?
2 d ]
+ min{T —¢,1}? + min{T —¢,1}3 + min{7T —¢,1}?
Cr Cy Cy

(i)
NS (t_tk)[cl+02+03+C4+C5+C7+09:|

1 ( R? LR?min{T —t,1} + R?
= (t —t},)|d? d3/? ’
( k)[ min{T —¢,1}? - min{T —t,1}3/2 +d( min{T —¢,1}3 )
LR3 R°min{T —¢,1} + LR*
d ’ F.26
Ty min{T — t,1}3 ] (26)

Here (ii) is because Cs < Co and Cs < Cs.

Combining Everything Together.

Plugging (F.10) (F.11) (F.13) (F.26) back to (F.9), and taking the integral, we can obtain the following
inequality:

TV(Yr_s5, Yr_5) < TV (74, q7)

2
+ Z(tk_H — tk) EQ tr <VS9(T — tg, }ftk) — V2 logq(T - tk,}ftk))
k

K1

‘ 2

d
P E H T—t.Y, ) — Viogqr_,. (Y,
+;( k+1 k)\/min{T—tkH,l} Q SG( ks tk) \4 ogqr tk( tk)

K>
+ ) (ter — tr)?dL?
k

K3

1 R2 LR?min{T —t,1} + R?
¢ ¢ 2 d2— d3/2 d d
+ Zk (teg1 = t) { min{T —¢,1}?2 + min{T —¢,1}3/2 * min{7" —¢,1}?

LR Rmin{T — t,1} + LR*
min{T —t,1}5/2 min{7T — ¢, 1}4 '

+Vd

Using Assumption 5.3, we have K; = eg;y. For K5, using the Cauchy-Schwartz inequality, we have

’ 2

d
Z(thrl - tk)\/min{T Y EQHSH(T — tg, Y3,) — Vloggr—, (Y2,)
k 9
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‘ 2

d
< \/ij(tkﬂ G \/Xk}tkﬂ ~ t)Eq|[so(T — 14, Y3,) — Viogar—r,(Y;,)

< nNdescore~
For K3, we know that:
> (tegr — te)*dL? < > NdL.
k
For K4, using our assumption on time schedule t;11 — tx < 1 (T — tx+1) , we have:

1
K4§n2N|:d2+d3/2R2+LR2d+R2d*

0
d 1 1
3 /¢ 51 4
+ LR \/;+R 5+LR —52}

(@) 1 1
< ’N [/:R‘*d2 +dPR + L4+ RS + LR';
(#i7) 1 1

S WAN|LRG+ RS+ LR,
where (ii) holds due to R%d3 < d* + L51§4 and 2LR3\/§ < LR?d 4+ LR*3;. (iii) holds due to

2d3/2R? < LR*d*> + LR*d and 2LR*d < LR*d*> + LR* ;. Putting K, K», K3 and K together,
we have

TV(}/}T—& YT—é) S TV(QT7 7Td) + €giv + \/a\/ NN €score

2 a2, L 2 R°
¥ N[LR (@+ )+ L d+7]
This completes the proof of Theorem 5.5. O
F.2 PROOF OF LEMMA 5.6 AND COROLLARY 5.7
Proof of Lemma 5.6. By proposition 4 in Benton et al. (2024), we have:
KL(gr||ma) < de " for T > 1.
Then by Pinsker’s inequality, we know that:
1 _

TV(qr, ma) </ 5KL(ar[|ma) < Ve
This completes the proof. O
Proof of Corollary 5.7. Please refer to Benton et al. (2024)’s Appendix D for a detailed deriva-
tion of the existence of such time schedule. Since we take 7 = log(d/e®)/2 and
N = LR'O(d*(T +log(1/6))*/e), using e < 1/L, we can easily show that n <

min{1/(12L2d?),1/(24L?R?d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

- 1 R
TV(Yr_s, Yr_s) < Vde T + eqy + Vdy/TNeswore + 72N [LR‘1 (d2 + ﬁ) +L2d+ 7]

Since we take § = 1/d and assumed that d > R/L + L/R*, we can further simply the bound of TV
to:

TV(Y7r_s, Yr_5) S Vde ™ + ey + Vdy/nNeseore + 1 NLR*d2.
Since T' = log(d/€?)/2 and N = LR*O(d*(T + log(1/8))?/€), we know that
Vde T <,
"’ NLR*d? = %(T +1log(1/6))*LR*d? < e.
Recall that we assume sufficiently small score estimation and divergence error, this completes the

proof of Corollary 5.7 ]
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G ANALYSIS OF VE+DDIM

In this section, we focus on the case where f(x) = 0 and g(t) = 1, i.e. taking o(¢)?> = ¢ in VE-SDE.
Specifically, the forward process X satisfies:

dX; =dW:,  Xo ~ qo, (G.1)

and the true reverse process Y; satisfies:
1
dY; = 5Vlog qr-+(Yy)dt, Yo~ qr. (G.2)
Then, the forward process has the following closed-form expression:

Y, = Xr_ = Xo+ VT —tZ, Z~ N(0,1,). (G.3)

Recall that we interpret DDIM as a numerical scheme, and it provides the following discretized
version of the reverse process:

~ ~ / 1 -~ T—1
thkJrl :}ftk'f'(thrl—tk)l(l— 1—>Sg(T—tk7Y;k), l: 7k (G4)
l trpy1 — g

Therefore, denoting (1 — /1 — 1/1) by ¢;, we have ¢; < 1. Then we can define the following
interpolation operator:

Fi(z) =2+ (t — tk)Cng(T — g, 2), (G.5)

satisfying Fy, ., (Y,,) = lAQk Under Assumption 5.4, we know sy(t, -) is Lipschitz. Therefore,
suppose 1) < 1/L, then we have 1/2 < ||VF|| < 3/2. In particular, F} is invertible.

Moreover, using Assumption 5.4 and F, '(x) — x = —(t — ty)c; - 89(T — tj, F; '(x)), when
n < L+ , we have
15746 = xl = (¢ = t)eallso (T — o, Fy ()|
< (¢ = tw) LIF, (x)] + (= ta)e
< Ix[l +1. (G.6)
Thus we know that
IF ol < 2l + 1. @)

Before we start the proof, we introduce several important lemmas used in our proof. Let ¢; =
(1+d/2)4L? and c3 = (1 + d/2)(L + ¢)?. Using our assumption on 7, we know that

111
< mi = . G.38
= mm{4cldT’ o' 4R%¢, } G-

The following two lemmas are related to the ratios py, (X)/pr,(v;, )-

Lemma G.1. Let Y; and F;(z) be defined in (G.2) and (G.5). Under Assumption 5.4 (Lipschitz
condition on sy), Assumption 5. 1 (bounded support) and suppose the time schedule satisfies (2.6),

1 1 1
assumlng ns < mln{a, T+cr m, aR%’ 07} we have

Py, (x) < elt=tr)er|lx|*+(t—ty)e:
PR.(vi)(X)

where ¢; = (14 d/2)4L? and ¢2 = (1 + d/2)(L + ¢)?. Moreover, we have

2
X
/ (pYr()) PR v, (x)dx S 1.
Q: \PFE,(v;,)(X)

Lemma G.2. Let Y} and Fi(z) be defined in (G.2) and (G.5). Under Assumption 5.4, 5.1 and 2.6,
suppose 1 < min{ L where ¢; = (1+d/2)4L? and ¢ = (1+ d/2)(L +c)2.
then, we have:

ca)? ('1R2’ 2(d+2)('1(T t)}

Vq(T —t,x) H d
_— dx < ——.
/ H PR (vi,) (X P DI S 77
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The following two lemmas show the upper bound of the derivatives of the true score function of the
VE forward process concerning ¢ and x separately.

Lemma G.3. When X is defined as in (G.1), then under Assumption 5.1, we have:

x|+ R n (x|l + R)®
12 3 '

H Vlogq(t, x)>H§

Moreover, we have:

0 d R*(|x||+R)?
g (tr (V*logq(t, X))) o) + — g

Lemma G.4. When X is defined as in (G.1), then under Assumption 5.1, we have:

[+ R
t )

<

[Vilogq(t,x)| <

1 R?
V2 log q(t, —
H 0g q X HQ - t + t
2 R’
HVtr(V logq(tx))” < 5
The proofs of the above lemmas can be found in later sections.
G.1 PROOF OF THEOREM 5.9

Proof of Theorem 5.9. From the discussion in Section 5.2, we know that:
1
Pi(t,x) = ase(T — ty,x) — §V log g1, (%), (G.9)

Uy (t,x) = ;Vso(T — tg,x) — %VQ log qr—¢, (X). (G.10)

The interpolation operator can be expressed as:
Fiy(x) =x4 ¢t —tg)so(T — t, x), (G.11)
in this specific case. Recall that g(t) = 1 and f(T' — ¢,x) = 0. Denote F; ' (x) by z. From (G.11)

we have:

0
&F(t, x) = ¢sg(T — tg, x).

Thus we know that

V[

By Theorem 4.3, we know that:
TV (Y75, Yiy) < TV(qr, 7a)

+Z/tk {\/]E @1t Ya) || ] \//Hvlogq —t(x))pn H pr v ()

th(Yt

F} (t, F7 1 (%)) = e, Vso(T — ty, 2). (G.12)

J1: Score estimation error

2
+ \/E tr \Ilk t Ytk \// th th(Ytk)(X)dX

PFi(v3,)

Ja: Divergence estimation error

1
t3 / |(V1og gr—+, () — Vg gr—¢(x)) - Vlog ¢(T — t,x)|q(T — t,x)dx

Js: Score discretization error

1
+ 5 / |tr(V2 log q(T — ty,z) — V*1og q(T — t, x)) |q(T —t,x)dx

J4: Divergence discretization error
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+ max
xX

tr {CNSQ(T — tg, z)] (VE (%) - 1) ‘ } dt. (G.13)

Js: Bias

Since we assumed 17 < min{1/(12L*Td?),1/(24L?R?d)}, we can easily verify that 7 is small
enough to satisfy the condition of Lemma G.1 and Lemma G.2.

Bounding the score Estimation Error J;. For the first square root in J;, we know that:

\/]E[H‘I)k(tvy;ﬁk)Hﬁ = \/EH|CZS@(T - tk7nk) - %VIquT—tk(YZk)HQ]

< [l 30T~ 1 %) - 29 hogar 0, (Vi) + (e 3)so(T — 1 Y3

1 L 1
< \/E[||2s9(T — 1, Yy,) = 5Viogar—o, (i) '] + \/E[(cl = 52 [lsa(T =t o).
(G.14)

Using Assumption 5.4, we have ||sg(T — t5, Yy, )|| < L||Y:, || + c. Since Yy, = X + VT — 4 Z,
we have:

|| ||” = &1 %o|* + (7 - t)E]| 2]
< R4 (T — ty,)d.

Moreover, recall that we take [ = (7" — t)/(tg+1 — tr) > 1/n. We can show that 0 < ¢; —
Hence we have:

1 1
\/E{(cl - 5)2H59( 10 Y )] S (e - 2)\/E[L2HYtkH2 + 62}
<nV/L2R2 + L2(T — t3,)d + 2. (G.15)

For the second term, since our 7 satisfies the condition of Lemma G.2 we can apply Lemma G.2 and
obtain

1
2 =0

d
H PF,(v,,)(¥)dx S T (G.16)

/ ‘Vlogq — t,X)py, (x
oy PF.(v,) (%)
Combining (G.15), (G.14) and (G.16), we have:

d
Jl 5 \/_\/E ||SG(T - tkv}/;fk) - VIquT—tk(nk)H?}

+ ) 7 \/L2R2+L2( —t)d + 2. (G.17)

Bounding the Divergence Estimation Error J,. For the first term in J5, we know that:

1
\/E {tr (aVso(T — tr, Yy,) — §V2 log g4, (thk))2:|

1 1 2 1\2
g\/]E{tr (QVSG(T—tk,Ytk)—2V210qu_tk(Y2k)> —1—(61—5) (tr Vso(T = t, Yy,))’

< \/]Ef[tr (Vso(T — 3, Yy,) — V2 loqu—tk(nk))2} + (e — %)\/E[(tYVSB(T - tk,Ytk))Q] .

K1

(G.18)

Using Assumption 5.4, we know that ||Vsg(T — tx,x)||2 < L, thus | tr Vsg(T — tx,x)| < dL.
Same as we did with J;, we have 0 < ¢; — % < 7. Moreover, K can be further bounded by

1
(@-3) VE[(tr Vso(T — 5, Y;,))?] < ndL. (G.19)
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For the second term, since our 7 satisfies the condition of Lemma G.1, we can apply it and obtain

Py, (x) 2
ey, ®)/) F x)dx < 1.
‘/Qt (th(S’tk)(X)) F’(Y-tk)( )

Combining (G.18), (G.19) and (G.20) together, we have:

2
Jo S \/EQ tr (Vse(T —t, Yy,) — V2 log q(T' — t, Yt’“)) ndL.

Bounding the Bias Term J;. We know that:
_ _ -1
VE (%) = [(VE) (F ' (x))]
_ -1
= [Ty +a(t —tp)Vse(T — ti, F, ' (x))] -
Using Assumption 5.4 and ¢t — £, < 1 < 1, we have:

N(VE) ()~ Talls < (¢~ ti)llexVso (T — te B (0|
< (t—ti)(1+L).

(G.20)

(G.21)

Here we use ¢; < 1. Let A = (VF,)(F; '(x)) — I;. Then we have ||Al|2 < (¢ — t4)(1+ L). Thus

we know that:
IV(F ' (%) = Lall2 = [(Ta + A) ™" — 142
(1)

oo

Z(_l)nAn

n=1

(i) &
< > Al
n=1

(i)

< 2(t—tg)(1+ L),

2

here (7) holds because of the series expansion for ||A ||z < 1. (¢¢) holds due to the Cauchy-Schwarz

inequality. (#i¢) holds due to our assumption n < 1/2(1 + L). Then we know that:

tr (CNSG(T — ty,2) (V(Ft_l(x)) - Id)> ‘

Js = max

(1)
< dmax ||Vse(T — tk,z)<V(Ft_1(x)) _ Id) I

< dmax [[Vso(T — 1. 2)[|2|V (" (x)) — Lz
< dL(t — t;)2(1 + L),

here (¢) holds due to tr(A) < d||A||2 and ¢; < 1. Thus we have:
|J5| < (t — ty)dL>.
Estimating z — x. By Assumption 5.4, we have:
Iz — x|l = [[F (x) — x|
= (t = tw)|[so(T — ti, ;' (%))
< (t—te)L||F7 ()] + (t = te)e

(G.22)

Since we assume that t —¢;, < n < min{;>-, L }. From (G.7) we know that || F;" ' (x)|| < 2||x]|+1.

Hence we have:

1z = x[| < (¢ = te) L2Ix[| + 1) + (¢ — t&)c

(i)
S (= t) L(|Ix]] + 1).
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Bounding the Moments of Y;.
Before we start estimating J3 and J4, we do some preparation work. Our goal is to estimate the
moments of Y;. Since we have Y; = Xp_; = Xo+ /T — tZ, here Z ~ N(0,1;). We have

E||Y:|]* = E[ Xo* + (T - t)E|| Z]*

< R+ (T — t)d. (G.24)

After computing the second order momentum, by the inequality (IEHYtH)2 < E|Y;||?, we know
that:

E|Y;| < R+ VT —tVd. (G.25)

Moreover, we consider the fourth order momentum as we will need to estimate it later: we have
E|Y|[* S B Xol* + (T - t)*E| Z||*
S RY 4+ (T —t)%d% (G.26)

After computing the foruth order momentum, by the inequality E||Y;|® < /E[[Y;]? - VE[Y3]/%,
we know that:

E|Y:|? < R® + (T — t)%/2a%/2. (G.27)

Bounding Divergence Discretization Error J,.
Using Lemma G.3 and Lemma G.4, we know that

9 > d R*(|lx[| + R)?
at(tr(v logq(T—t,x)))‘ < T 17 T—17
3
HVtr(V2 logq(tx))” < (T]iitﬁ

Thus we know that:

/ tr(V2 log ¢(T — ty,z) — V*log q(T — t,x))q(T —t,x)dx
Q

g/ﬂ ((t—tk)((Tiit)2

t

R%(|Ix|| + R)? R3

T—t)4 )+ (T —t)3 HX_ZH)Q(T—tx)dx

—~|—

(2) 2 x 2 3

S /Qt ((t _tk)((Tdt)2 + R E|T|‘t“)f) ) + (TIE nE (t —tr) L(||Ix|| + 1)>q(T— t,x)dx
< (t— tk)(T_dt)2 + (t — tk)(TR_21§)411<:(IIYt||2 +R?) + (t — tk)(T_gt)gL E(|Y:|| + 1)
(i 4 2 _

5) (t—tk)(Tdt)QJr(t—tk)R Jr(f(:;4 ) +(t—tk)%(R+\/T—t\/&+ 1).

Here (%) is due to (G.23) and (i4) is due to (G.24) and (G.25). Assuming R > 1, we can further
simplify its form:

1 R? R*
|J4|§(t—tk){d(T_t)2+d(T_t)3+(1+L(T—t))(T i +f( )5/2 (G.28)

Bounding the Score Discretization Error Js.
Using Lemma G.4, we know that:

1V logq(t, ) < PLEE

1 R?
2
HV log q(t,x ||2 < - ; +t—2.
Moreover, by Lemma G.3, we have:
x|+ R n (Il + Rr)?
12 3 '

H Vlogq(t, X))H§
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Thus we know that:

/ (V log gr—+, (z) — Vlog qT_t(x))V log (T — t,x)q(T — t,x)dx
Qq

Ixl[+R | (x| +R)>\ x|+ R
A<J/Qt(t_t’“)((T—1t)2Jr (T — 1) ) 7o AT —tx)dx

| B ) =z I
o, Tt T T T-

S(t—tr)

; q(T — t,x)dx

|Y3]| + R)? + (t — ty) CE(| Y]+ R)*

1
T—0

+(t—tk)/m (T1 + (T}E t)Q)L(||x|| +1)HXH7+Rq(T—t,x)dx

1
T

—t T—t
(%)
S (t—ty)

(R* + (T —t)d) + (t — t1,)

T—1P DGR
LR?
(T —t)?

Here we use (G.26) and (G.24) to bound the second and fourth momentum of Y3, and (%) is due to:

+ (t—t1) (R4 (T —t)d) + (t — t3,) (R* 4+ (T — t)d). (G.29)

(T —1)?

/ (Il + V(x| + R)g(T — ,x)dx < E(|Yi ] + R)® S B + (T — t)d.

t

Reorganizing terms in (G.29), since we assume that . > 1 and R > 1, we have:

1 1 LR? L
< _ 2
|J3| < (¢ tk)[d T 1 +d(T7t)2 +d(T7t)2 +det
n R* n R? n LR? . LR* }
(T-t)t (T—t) (T—-t)? (T-t)p
1 LR? L R* LR* LR?
< (t —t.)|d? .
< (= w)d G A i A i s TR G (T—t)2}
(G.30)
Putting J; and J, Together.
Combining (G.30) and (G.28) together, we have
1 LR? L R* LR* LR?
< (t—ty) | d? d d
sl 1l 5 (0 = 1) | A A T T S [ s T (A (T—t)Z]
—_——— e Y~ Y Y
Cq Cs Cs Cy C5 C6
1 R? R* LR?
t—1tg)|d d 1+ L(T -t d
-0 Tz o T KT - ) +I(Tft)5/2}

—_— Y
C7 Cg CQ Cl 0

(i)
< (t—tk)[cl+02+03+c4+c5+08+010}
1 LR? L R*
= (t —ty)|d? d d
( ’“){ T2 T T T T
LR* R? LR?
T T T \/&(T—t)5/2}’
where (’L) isdueto C7 < (5, Cg = Cy + Cs, Cg < Cs.
Combining Everything Together.

Plugging (G.17), (G.21), (G.22) and (G.31) into (G.13), and taking the integral, we can obtain the
following inequality

(G.31)

TV(Yr_s5, Yr_s) < TV(ma, q7)
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2
+ Z(tk—i-l — tk-)\/]EQ tr (VSQ(T —tg, Yz, ) — V21logq(T — tg, Y}J)
k

R,y

+ Z(tk_H — tg)ndL
k

d
+ E (tk+1 — tr) \/EQHSG(T —ty, Yy,) — Viogqr—, (Y3,)
k_ T —trpy1
R3
d
+ ) (thyr — )y | ——VL2R2 + L2(T — ty)d +
k T —trs

[ V)

Ry
+ Z(tk+1 — tk>2dL2
k
Rs
1 LR? L R*
tho1 — t)? |d? d d
+Zk:<k+1 o[ T—02 Ym0z T T T
LR R? LR
d d .
Tao—mpt (T—t)3+f(T—t)5/2}

We further denote the last term by Rg. We know that R is egjy
inequality, we have:

d
R3 < \/Z L1 — tk

— \/Z(tk+1 - tk)EQHSo(T —tg, Y3,) — Viogqr—¢, (Y3,)
ey k

‘ 2

. For R3, by Cauchy-Shwartz

77Nd * €gcore -

Since we assume L > 1, for Ry + R5, we have

D (trrr — te)ndL + Y (trgr — te)’dL* S P NdL.
k k

For the R4, we have
d
(trsr — i)y | s/ TPRE + L2(T — t)d + &
T — g1
/ d
t —t —VIL2R2 L2(T —t,)d
nzk:(kﬂ k)[ T_thrl\/ +\/ ( k)]

(i)
<0y nVALR+ (t —t)Ld
k

A
= -]

A

< *N(VdLR + Ld),

here we omit ¢ in (¢), and (47) is because

T < 1+ n < 2. Hence we know that

Ro+ Ry + Rs < 772]\7 [L%l + LR\/&] .
Finally, for the Rg, we know that:

d+Ld+5—2+—+—d+LR3

4 4 2
Re <n’N|d* + LR? r f }2 \/g]
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R? d R* LR*
< p’N|d® + LR%d + —d LS\/7 = .
Nn[+R+5+Ré+52+5]

Putting together, we know that
TV(?T—& YT—(S) N Tv(ﬂ-d7 QT) + €dgiv + V1IN - €score

2 . d 4 L 4
+ PN [ + LR+ L2d + iy LRS\/7+ =i i}
1) o 62 1)
(348) 2 472 2 LR!

5 Tv(ﬂ-daqT>+6div+ nNd'escore'i'T/ N|:LR d +L d+ 572}’
here (iid) is due to 2LR2d < LRAd? + LB, 2224 < LRAd? 4 LE" V4 < LRA? 4 LB
(and 0 < 1 as well as R > 1 and L > 1). This completes the proof of Theorem 5.9. O
G.2 PROOF OF LEMMA 5.10 AND COROLLARY 5.11
Proof of Lemma 5.10. Since qy0(x;|x0) = N (x¢; Xo,t14), we have

B
KL(gz(o(+[z0) [N (0,T1q)) = 5T (G.32)
By the convexity of the KL divergence,
KLrV(0.71) =KL ( [ arplan)an(dzn)| NO.71,))
R
< [ Kilar(lzo)ma)an(dzo)
R,
1 2
= 5B [1Xo]]
d
= o7 (G.33)

where we have used that E,, [|| Xo||?] = d, since Cov(gy) = I;. Applying Pinsker’s inequality
to (G.33), we have:

Vd
TV(X + N(0,TL), N(0, TT ) < Ye G.34
0 ( ), N ( d) NoTa (G.34)
This completes the proof of Lemma 5.10. O
Proof of Corollary 5.11. Please refer to Benton et al. (2024)’s Appendix D for a detailed
derivation of the existence of such time schedule.  Since we take T = d/e?> and
N = LR'©(d*(T +log(1/5))*/e), using e < 1/L, we can easily show that n <

min{1/(12L2Td?),1/(24L*R?d)}. Hence by Theorem 5.5 and Lemma 5.6, we have:

~ Vd 1
TV(¥r 5, Y3) § 7+ o+ VAV iNesre 7N |LR'? + L2d+ LR ).
Since we take § = 1/d and assume that d > L/ R*, we can further simply the bound of TV to:
Vd 2 4 12
S et Vdy/nNewore + n° NLR*d®.
T + log(1/6))?/€), we know that
a*(

TV(Yr_5, Yr_5) <

Since T' = d/e* and N = LR*©(d

A

<€

SIS

1
nNLR'd? = ~T+ log(1/6))*LR*d* < e.

Recall that we assume sufficiently small score estimation and divergence error, this completes the
proof of Corollary 5.11. O

36



Published as a conference paper at ICLR 2025

H LIPSCHITZNESS OF SCORE FUNCTIONS

In this section, we consider the forward process by gradually adding noise to data distribution, i.e.,
X = (1) Xaaa + 9(t) Z, (H.1)

where Z ~ N(0, 1) is a standard normal random variable independent of X gy, and f(¢) and g(t)
are scaling functions determined by the forward process that modulate the influence of the data
and noise over time. Both VE and VP forward processes can be represented in this form. The
distribution of X is denoted by ¢(¢,x). We will show the Lipschitzness property of V log ¢(¢,x)
under Assumption 5.1.

H.1 GENERAL RESULTS
The following lemma regards the upper bound of the derivatives concerning x.

Lemma H.1. Suppose Assumption 5.1 holds. Let X be the forward process defined in (H.1), and
its distribution is denoted by ¢(t, x). We have the following inequalities:

|x[| + f(t)R
= g’

-
JaE (L ek

6£(t)°

2 X < 3.
[Vir(V*log q(t,x)) || < o (10 R
Proof of Lemma H.1. We prove the lemma by gradually computing the higher-order derivatives of
the score function step by step. A key point in our proof is that we bringing the terms involving x
outside of the integral and canceling them, resulting in an expression where x only appears in the
function’s evaluation. Firstly, we derive the form of our score function V In ¢(¢, x).
Expression of the Score Function.
To start with, using the expression of the forward process X; in (H.1), we represent ¢(¢,x) as the
convolution of the data distribution and Gaussian distribution. Specifically, we have:

|V 1og q(t, x)||

[V*log q(t,%)]|, <

q(t,x) = /]R L Proxo(Y)pgnyz(x —y)dy
1
= Jaa fOYFX0 (%)pg(ﬂz(x —y)dy

= /Rd pxo(Y)Pgtyz (x — f(t)y)dy

= /Rd q0(y)pz (X_g(ft()t)y> ﬁdy

_ x— f()yy 1
= [ oo () sy 12

where we represent the probability density function of standard Gaussian distribution as ¢(x) =

(e=I17/2) /(\/27)4. Besides, in the second and fourth equations, we use the change of variable
formula of the density function, i.e., p,x (X) = px (x/a)/a, where X is a random variable and a is
a constant. By directly taking the gradient, we have the following property of ¢(-):

Vo(x) = —p(x)x.

Moreover, by the chain rule, we can calculate the gradient with respect to x:

vx[qb(ﬂ)} __1[¢(X—f(t)y)x—f(t)y]

g(t) g(t) g(t) g(t)
x—f()y  (x—fQ)y
= — . H.3
o ) ()
Thus, we can express the score function as follows:
~ Vq(t,x)
VIOg q(t,X) - q(t,X)
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0) VfRd pdata()’)(b( g((;)y) 9t )d
fRd pdata(Y)¢( }E(;f )d
_ fdedata Y)V [ (x )] dy
fRd pdata ( a( t )
(ﬁ) fRd pdala ( - (f() (x f(t)y)
fRd pdala ( )) ) y
1 feapaly )(x FOY)o(L5)dy -
90 L) dy
where (7) holds due to (H.2), and (i¢) holds due to (H.3).
Under Assumption 5.1, we have pga(y) = 0 for ||y|| > R. Thus, we have
1 || o Pana () (¢ = £ (1)y) 6 (7 ) |
g(t)2 f]Rd pdata()’)(ﬁ(%)dy
1 g Paa(¥) 1% — FOYIl6 (7 ) dy
~9()? Jpa Paaia(3) S (5 ) dy
1 fo paaa) (11 + £ [y (2202 ) dy
N g(t)Q fRd pdata(}’)(b(%)dy
_ I+ fOR
= 2
9()

This shows that, under Assumption 5.1, the norm of the score function can be bounded by a linear
function.

First-order Derivative of the Score Function.

We proceed by computing the Jacobian matrix of V log ¢(t,x). Directly calculating the gradient
of (H.6), we have

K“'\_/

g<v

IVlog q(t, x)|| =

_ x—f(t)y
V2 log(t,x) = v[— 1 2 Jipa Paaa(y) (x f(t)y)fqzt() - )dy}
g(t) fRd pdata(y)(b(x a(t) y)dy

- | V([ pat )= 10w (FE ay ) 2o

I

() £0)0 (L Yy (v [ pdm(yw(x‘m’)dy)T |

\
S

Rd g(t) g(t)
I3
(H.5)
where we use the shorthand expression ®(z fRd Ddata y)¢(x;(()) )dy, and the last equation
holds due to the gradient formula of vector-valued functions, i.e., V% vgj(:(:)() f <";ch)§”
Firstly, we compute I;:
x— f(t)y
I = ata — f(t — = d
= ([ e ramio(* Y Yay )
_ x— f(t)y x— fOy\1"
= [ pous) (o (ZEE 4 (- a0 ()] ay
() B o x—ft)y\T
= /Rd Pdata(y) (¢I +(x f(t)Y)( ¢W) dy
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/R Dty ( (x — f(t)yQ)((;;— f(t)Y)T> oy

= ata d ﬁ ata d f(t) ata T d
/ded y)edy - POE /ded (y)o yJFg(t)gX/Rde (y)y ¢dy

11’1 11,2

ft) f(t)?
02 ( /R . pdata(Y)Y¢dY> x! RPOE /R ) Paaa(y)yy ' ¢dy, (H.6)

I3

where we use the shorthand expression ¢ = qb(x (()) ) and (¢) holds due to (H.3).
Next, we compute I5:

B={ [ x50y 7 [ pantsro (S )ay]

_ X — T
= [/dedam(y)(x—f(t)yw( g{t()t) ) y] [/dedata(Y)(_ g({)(f)y)cb( gé()t)y)dy]
= —ﬁ [ /R Paaa(y) (x = f(t)y) ¢dy] [ /IR Paaa(y) (x—f (t)y)Taﬁdy]
=20 [ 1oty [ puaty)oty + L [ vy Tty [ puty)oy

Iz 1 Iz o
+ ;(%)2 ( /R . pda[a(y)y¢>dy) x" /R Pawa(y)pdy — .]gc((gz /R Paa(y)yédy /R ) Paa(y)y " ody,

H.7)
where the second inequality holds due to (H.3), the third inequality holds due to the short-
hand expression ¢ = ¢( S)y). Substituting (H.6) and (H.7) into (H.5), notice that ®(x) =

fRd Pdata y)¢(x f(f)y)dy, Il 1 = 12 1, Il 2 = IQ 2 and Il 3 = Ig 3. Thus we have the followmg
equation:

VZlog q(t,x) = — ! 1) ( Jra Paa(Y)yy " ¢y

g(t) [I S 902\ Jra paaa(y)ddy

[ Jga Paaa(y)y¢dy] [ o Paaa(y)y T oy ﬂ
( fRd Pdata (Y )¢d}’)2 '

Using Assumption 5.1, when pau, (y) # 0, we have ||yy " ||z = |ly||? < R%. Moreover we have

‘/ pdata(Y)y¢dY'/ pdala( ¢dy H/ pdata ¢dy
R4 Rd

< ([ mutslloey)

2
§R2< / pdm<y>¢dy) .
]Rd
Substituting into (H.8), we have

2
HV2 log q(t,x ||2 ﬁ(l ;g; 2R2).

(H.8)

This implies that V log (¢, x) is Lipschitz.
Derivatives of the Divergence of the Score Function.
Next, we consider the divergence of the score function, i.e.,

V - [Vlogq(t,x)] = tr (V*logq(t,x)).
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To start with, using (H.8), we have:

d  ft)? (fRd Paaa(Y) Iy IP0dy | S pda‘a(y)y¢dY|2>’ (H.9)

tr(VZlogq(t,x)) = — +

9> g®* ' Jpa Paaa(y)ody ( fau Paata(y)pdly )
where we use the fact tr(xx ") = ||x||2. Directly computing the gradient, we have
t 2 d ata 2 d d ata d 2
Vr(V2log (1, %)) — /( )4 [vf]R PaaaYIP¢dy O || Jea Pawa(y)y 9 yIL ]
g(t) Ja Paaa (y) ¢y ( fru Paata(y) Sly)
J1 Jo

Firstly, for J;, we have

V Jia Paaa (V)Y Y - Joa Pasia(¥)PdY = V fipa Paaa(y)9Y - fpa Pawa(¥) Iy ¢y
(Jia Pawaly) pdly)”

Jp =
(H.10)

We calculate the two gradients separately. First, we have

v / Paaa(y) [y | 26dy = / Paaa(3) [y [V 5y
Rd Rd

- / Paa) 11 - X_g(f;(?y)wy

f@®)
g(t)

X

5 | )l |Pody +

/Rd Paa(Y) ¥y dy,
(H.11)

where the second equality holds due to (H.3). Next, we have

V [ paaa(y)ody = / Pdaa(y)Vody
Rd Rd

= [ ) (= 5 ) oay
x ft)

- /R  Pon(¥)6dy + 2

Substituting (H.11) and (H.12) into (H.10), we have
( - ﬁ f]Rd pdatd )||Y|| pdy + ft)2 fRd pdam )||YH2Y¢dY) : fRd pdata(Y)¢dy
(fRd Pdata (Y )de}’)
(_ T);)? fRd Paata(¥) oy + (t)z fRd Pdata( )y(de) : f]Rd pdata(Y)||Y||2¢dy

/Rd Pdaa (Y)Y oy (H.12)

Ji =

(fina Paia(y) bdy)”
f(t <‘fRd pddld )Hy||2y¢)dy _ f]Rd pddtd(y)yd)dy f]Rd pddtd )”y” d)dy)
JECANR ST (Jus Pona3)05)”

Next, for Jo, we have:

Iy = V| s Paoa )y SAY 12 - ( fina Paaa()0AY)* = V{ fora Paata (7)Y ) - || fia pdata(Y)y(édyHQ.

( Jipe Paaa(y)dy )
(H.13)

Again, we calculate the two gradients as follows. First, we have:

= VZ (/ pdata(y)yi¢dY>2

‘ ‘ / pddld Y¢dy
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=32 [ puaty - [ (v Veody

@) Xd:Q/Rd Paaa(¥)yiddy - /Rd pdata(Y)yi( == f(t)y)qbdy

P g(t)?
= g(t)2 - s Pdata\Y )Y AY g(t)2 2 Jea Pdata\Y ) Yi @AY o Pdata\Y )Yy @Ay
(i)  2x 2 2f(t) T
g(t)g /]Rd pdata(Y)y¢dy + g(t)2 /Rd pdala(y)yy ¢dy /]Rd pdata(y)y¢dy7 (Hl4)

where () holds due to (H.3), and (iz) holds due to the coordinate expression of matrix multiplication.
Moreover, we have

2
ata d = ata dy - ata d
V([ aatnoay) =2 [ panv)oty -9 [ pratyioay

i X !
ap) /R | Paaa(y)ody - (— FOE /R | Pawa(y)ody + gf((t))z /Rd pda‘a(Y)y¢dy>

2 S (
= _ﬁ (/]Rd pda[a(y)¢dy> + g{t()Q) Ad pdata(y)¢dy : ,/]Rd pdata(y)yd)dyv
(H.15)

where (i) holds due to (H.12). Substituting (H.14) and (H.15) into (H.13), we have

< 2
(= 52521 Joo Paaa )y 9 + 25} foa Daaa(¥)yY T 0Y s Paa ()Y 00V ) ( fa Paiay)6ly)

Jo =

(o Pana(y)dy)”
(— 7o (Ja Paaa(y)ddy)” + %@ Jpa Paaa(y)0AY [ga Paaa(Y)y¢dy) - || [pa Paaa(y)yddy||?
( frat Paa(y)ly )
_2f() ( Jpa Pasta(¥)yY " Ay [ Paaia(y)y ody N Jza Paaa(¥)y¢dy - || [z pdata(Y)Y¢dYH2>.
g(t)? (e Paaaly)0dy)” (fua Pasta(y)dy)”

‘We can conclude with

il < 210, (Jae OIS Pyl _ s )y fe o)l
=@ L paa(y)ody (fia Paa(y)pdy)”
0 2
< (R3+R-R )
o)
- g(t)QR '

Moreover, we have

17l < 2f(t) (II Jza Paaa(y)yy " Ay ll2|| [ Paaa(y)y ¢dy ||
g(t)? (fopa Pasia(y) ddy)”
Jra Paaa (W)Y [l ¢dy - || [za pdata(Y)Y¢dY||2>
(fina Daa(y) bdy)”
_ 2 ( Jza Paaa DYy 1204y [ra Paaa(y) |y |y
~g(1)? (St Poaa(y) by )
Jea Paa) Iy llody - ( fa pdam<y>||y|¢dy)2>
(fye Pasa(y)0dy)”

+

+
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W 2f(t) ( Jra Pasa WY 2 0dY [zu Daata(y) ly |l pdy
(t)? (fina Peaa(y) by )
e Paa @)1y 19y - (Jpo pdata<y>||y|¢dy)2>
(Jo Poaa(y)dy)’

@ 2f(t) (2 .27f()3
gg(t)Q(R R+R R) O

where (i) holds due to the fact |yy |l = |y||? for any y € R<, and (ii) holds due to Assump-
tion 5.1. Putting everything together, we know that

HVtr(V2 log q(t, x)) H < 6
This completes the proof of Lemma H.1. O

The following lemma considers the upper bounds for the time-derivative of our score function. We
use similar techniques to as we obtain in the proof of Lemma H.1.

Lemma H.2. Suppose Assumption 5.1 holds. Let X be the forward process defined in (H.1), and
its distribution is denoted by ¢(¢, x). Then we have:

9 29 t) If' ()R
s (Vioza(t.)) | < 200 (1 + (0i) + L0 |
g( )If’(t)l (IR + f(H)R2)® +2|¢' ()] - (IIx]| + F(t)R)®
(1)’ ’
9 ) 2d-|g'(1)] | AF() - |F'(0)g(t) - 2£ (D) ()]
‘m(tr(v logq(tx)))’ﬁ FOE + OE R
LF2 (g O] (IxIR+ F(6)R2) + g/ ()] - (Ix]| + f(£)R)?
sont il Ok )

Proof of Lemma H.2. To start with, we first compute the time-derivative of ¢( x;{g)y ). Using the
chain rule, we have

0 x—f(1) P s
i g(t)ty):at(w;?)de : )

e o
- (\/ﬂ)de_ ( )815"7}’“ (H.16)
Since we know that:
H yH 0 x> = 2f()x"y + f(t)? ]Iyl
ot g(t)?
_ ( —2f'(O)x"y +2f () S O)llyl*)9(t)* - 2]x — f()y|IPg(t)g' (t)
g(t)*
= —% (g(t)f’(t) (x"y = fDOlIyI*) +9'(B)]x ~ f(t)YIz) (H.17)

Substituting (H.17) into (H.16), and recall our shorthand expression ¢ = qS(x s (t)y ), we know that:

g f' () (x"y — FO)lyl?) + ' (®)]Ix — fF)yl?
g(t)?

g ¢ _ ®. (H.18)

Therefore, assuming ||y|| < R, we have

‘ ‘ ’ ') (x"y — FOllyI?) + ' ()] — F@©)yl?
8t g(t)3

¢
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< IO @1 (Ixlllyll + f@Olyl?) +1g' @) - Ix = fFO)yI?
- g(t)? ¢
< IO @) (IXI|R + F(OR?) + |g' ()] - (IIx]| + f(t)R)

- g(t)? o

Time-Derivative of the Score Function.
By (H.4), we know:

(H.19)

1 Jpa Pana(y) (x = f(8)y) o (10 ) dy
g(t)2 fRd pdma(y)¢(){—gf(‘g)y)dy .

Taking the derivative with respect to ¢, we have:
1o} 29/ fRd Pdata y) (X - f(t)y) d)dy
—(Vlogq(t,x)) =
g (Vlomatt0) = G e oy
1 ( 3] fRd pdata(}’) (X - f(t)Y)(bdy )
g(t)2\ ot fRd Paa(Y) Py .

Ly

\Y% IOg Q(t7 X) ==

Using Assumption 5.1, we can easily see that:

fRd pdata(y) (X - f(t)y) ody
fRd Pdata (¥) pdy

< X[+ [ (B[R (H.20)

For L, we have:

fRd pdata(Y) ((X - f(t)Y) o — f/(t)y(b> dy 3 f]Rd pdata(Y) (x — f(t)y) ody f]Rd pdata(Y)¢tdy
(Jia Paa(y)0dy) (s Paaa(y)dy)’ '
From (H.19) and Assumption 5.1, we know that:

/ (llx 2 ") (IIx 2
a0 (e JORY 0 U+ FORE ) + 01

(H.21)

1=

[a] <

Combining (H.20) and (H.21), we have:

|1 (V1osate.0) | = 228 (1) + 17017)
L g1 (IXIR + FOR) +1g'0)] - (Ix] + fOR)” ,
+ i (* o 2(Ix + [F(OIF) + | ()]R)
’ (lx 2) 2 / lx 3
200 (1) 1 1) + 200001 |R+f(t)1;(3)5+2lg (0] (Il + f(1)R)
Rov:
g9(t)?

Time-Derivative of the Divergence of the Score Function.
In this section, we consider the ¢-derivative of the divergence of the score function, i.e.,

%(V - [V1ogq(t,x)]) = %(“ (V105 (1)) )

To start with, using (H.9), we have:

tr(V2 logq(t,x)) _ d i f(t)? (fRd Paaa(Y) |y [P ody B l fRd Paaa(¥)y Py |2

. (H.22
fRd Pdata(¥) Py (fRd pdata(Y)¢dy)2 ) ( :
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Taking the derivative with respect to ¢, we have:

9 2 _2d-¢'(t)
a(tr (V log q(t,x))) BROE
L A OSDg) — 4/ ()9 () (fRd Paa) Y [P¢dy || [ pdm(.V)yﬂédyQ)
g(t)5 fRd pdata(Y)¢dy (f]Rd pdata(y)¢dy)2
K1
PAU <8qu PaaaY)YI*¢dy 0 || Jza pdata(Y)Y¢dY||2) (H23)
g(t)4 ot fRd pdata(y)¢dy ot ( f]Rd pdata(y)¢dy)2 - ‘
Ks P
For K, using Assumption 5.1, we have
/ _ 2,/ t) - f(t)g(t) —2f(t)g' (¢t
K| < 21 () f (t)g(gt()t)5 Af(t)%g'(t) (R 1 B?)| = ORI )585 )y )] R H4)
For K, Using the definition of K5 in (H.23) , we have
|K | _ ngd pdata(Y)|Y||2¢dYI
2 ot fRd Pdata (YY) Py
_ % fRd pdata(Y)”yHQquy _ fRd pdata(Y)||YH2¢dY' (% fRd pdata(Y)¢dY) ‘
Jooa Paaa(y) &y (fia Pasa(y)bdy)”
< fRd pdata(Y)||Y||2aat¢dY‘ fRd pdata(Y)HY||2¢dy : (fRd pdata(y)%ﬁﬁd}’) ‘
- f]Rd Pdata (Y ) pdy (fRd pdm(y)(bdy)2
! . 2 ’ . 2
< o OO (B + f(t)it;;r 9O (Il + FOR) .
where the last inequality holds due to (H.19) and Assumption 5.1.
For K3, we have
o 1o} ||fRd pdata(y)y(ﬁdsz
|Ks| = |5,
i (fRd pdata(Y)(bdy)Q
< %H fRd pdata(Y)y¢dy||2 _ || fRd pdata(}’)y¢dy”2 : %(fRd pdata(y)¢dy)2 ‘
B (f]Rd pdata(Y)¢dY)2 f]Rd pdata )¢dY)4
< %H fRd pdata(Y)Y¢dy||2 ’ H f]Rd Pdata (Y Y¢dYH Bt f]Rd Pdata (Y )¢dY)2 ‘ (H.26)
N (f]Rd Paata(¥) dy)? fRd Paata(¥) pdy)* . .

Moreover, we have:

‘;H /Rd Paata(¥)

B
2 | paaa(y)yiody / pdata(.Y)yiatqbdy’
R4 Rd

- ’gt S (/Rd pdata(Y)yi¢dY)2

i=1

d
<39 by - il| 50/
<32 [ oty [ pus(o)l 2 olay

2

2(g(t)lf’(t) ~(IxIR+ f(#)R?) + |g'®)] - (x|l + f(t)R) )
g(t)3

IN

d 2
> ( / pdata(Y)|yi¢dY> :
i=1 \/R?
Using the Cauchy-Schwarz inequality, we have

d

Z ( /R | Paaa(y) Iyz|¢dY> < Z < / Paaa(y ¢dy) ( /IR ) pdm(y)lin%dy)

i=1
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_ (/Rd pdala(y)(ﬁdy) (/dedata(Y)||yn2¢dY)
<1 [ naatoony)

where the last inequality holds due to Assumption 5.1. Therefore, we have

’ H / pddtd

(lx 5 (ol - (I 2 2
§232<9( )1 - (I |R+f(t)f(t23+ lg'@®)1- (IxIl + f(OR) )(/dedam(y)qbdy) .

(H.27)

Moreover, we have:
0 2 b
’at(/Rd pdata(y)d)dY) ’ =2 /Rd pdatd( )¢dy 8t/ pdata(y)gbdy’

0
<2 [ a1y [ puua)|gyofay
R R

/ . 2 / . 2 2
< IO O (IR + FOR) +1g )] (<] + SOR) ([ i)’ a2
g(t) Rd
where the last inequality holds due to (H.18). Substituting (H.27) and (H.28) into (H.26), and using
Assumption 5.1, we have:
gL @] (IxIR+ fF)R?) +1g'(®)] - (Ixl + f(t)R)2>
g9(t)? '
Combining (H.23), (H.24), (H.25) and (H.29), we have the following inequality:
2d - |g'(t)] )| ®)g(t) = 2f (D)9 #)]
R
a(t? = g<t>5
+6R? ft)? <g(t)|f’(t)| (xR + fO)R?) +1g' ()] - (Ix]l + f(H)R)
4 3
g(t) g(t)

This completes the proof of Lemma H.2. O

|K3| < 432< (H.29)

%(tr (V?logq(t, x)))‘ <

2

) . (H.30)

H.2 PRrROOF OF LEMMAS F.3 AND F.4

Proof of Lemma F.3. Since X; = ¢7' X + N (0, (1 — e ?")I;), we have f(t) = e* and g(t) =

V1 —e~2 in this case. When t < 1, we know that f(¢) = (1), f'(t) = O(1), g(t) = O(V1),
g'(t) = @(%) Hence by Lemma H.2, we have:

d RrR* 1 VHIxI+R)R+ (x| + R)?

0 2
J— <7 13 42
‘at<tr (V logQ(tvx)))‘ St 2 NG
d R RY(xll+R) , RA(Ix|+R)?
ettt s T g
@ d  R*(||x|| + R)?
SEtTp ottt
d M

. We next consider the case t > 1:

O(a). £(t) = O(a). g(t) = O(1), ¢(t) = O(a?). By,

Hereln()weuse2R <t +E <4+

<

= t2
Denote e~ by a, then we know tha t f(t)
Lemma H.2, we have:

‘gt(tr (VQ 1ogq(t,x)))’ < a’d + R%a? +R2a2<a(||x|| —&-aR)R—i—aZ(HxH +aR)2)
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(41)
< a?d+ R2a® + B2 (x| + R)R + (x| + B)*)
< a’d+a*R* + ®R?*(||x|| + R)?

(i)

< a’d+a®R*(||x|| + R)

<d+R*(|x[| +R)*, t>1
Here (i) is due to a < 1 and (#i4) is because 2R? < 1+ R* < d + R?(||x|| + R)?. This proves the
first inequality of Lemma F.3.

Same as above, When ¢ < 1, we know that f(t) = ©(1), f'(t) = ©(1), g(t) = O(V1), ¢'(t) =
6(%) Hence by Lemma H.2, we have:

||x|| +R (||x|| + R)’R (HxH +R)?® R
H Vlogq(t,x) H 2 P +?
IIXII +R (x| +R)?°R L Ul +R)
ST T e 3 t<1.

We next consider the case t > 1. Denote e~! by a, then we know that f(t) = O(a), f'(t) = O(a),
g(t) = (1), ¢'(t) = ©(a?). By, Lemma H.2, we have:

d
H@t (V log q(t, x)) H < a®(||x| + aR) + a(||x| + aR)?*R? + a*(||x|| + aR)® + aR

(4)
< alllxl| + R) + a(|x]| + R)*R* + a(|x]| + R)®
< (Il + RB) + (x|l + R)*R* + (||x|| + R)*, t>1.
Here (i) is due to a = e~* < 1 given ¢ > 1. This completes the proof of Lemma F.3. O

Proof of Lemma F4. Because X; = e 'Xo + N (0, (1 — e 2")I;), we havef(t) = e~ and g(t) =
v/ 1 — e—2t in this case. When ¢ < 1, we know that

Then by Lemma H.1, we can easily show the three inequalities are valid when ¢ < 1.
Moreover, when t > 1, we have

fy=0@"), f'(t)=6(e™"),g(t) = 6(1),4'(t) = O(c™™).

Then by Lemma H.1, we can easily show the three inequalities are valid when ¢ > 1. This completes
the proof of Lemma F.4. O

H.3 PROOF OF LEMMAS G.3 AND G.4

Proof of Lemma G.3. Since X; = X+ N (0,/t14), we have f(t) = 1and g(t) = v/t in this case.
Hence f'(t) = 0 and ¢'(t) = @(%) By Lemma H.2, we have:

E ||::|| l?’ (H:{H lg)g
v x <

9 2 d R R(|x|+R)?
9 <o A AU T )7
‘at (tr (Vv logq(t,x))>’ STt

t3 4
(4) 2 2
O d | R(lx| + R)
~ t2 t4 Y
here () is due to 23—3 <%+ If—f. This completes our proof. O

Proof of Lemma G.4. Since X; = X+ N (0,/t14), we have f(t) = 1and g(t) = v/t in this case.
Hence f/(t) = 0 and ¢'(¢) = @(%) Substituting into Lemma H.1, we completes our proof. O
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I PROOF OF REMAINING LEMMAS IN SECTIONS F AND G
1.1 PROOF OF LEMMAS F.1 AND F.2

We first present the following two technical lemmas.

Lemma L1. Let Y; and F}(z) be defined in (F2) and (F.3). Then forany 0 < k < N — 1,
t € [tr,try1] and x € RY, we have:

- —2(T—t
o) VR (1T ey e
PRy, ) (%) ~ a 1 _ e—2(T—0) ;

where a = e'~* and g(x) = aF; !(x) — x.

Lemma 1.2. Suppose Y; = e T Xy + N(0, (1 — e 2T=9) 1) and p(|| Xaaall2 < R) = 1.
Then for A < min{2, 1}, we have:

EYill3 <« AR?-1
Using these lemmas, we can start the proof of Lemma F.1:

Proof of Lemma F.1. To start with, we have the following lemma about the ratio: Firstly, using the
expression of the interpolation operator (F.3), we have

VEF(x) = e "Iy + ('™ — 1) Vso(T — ty, x).
The operator norm of V F}(x) can be bounded by
[VE,(x)|2 < e + (e — 1)L
=a+(a—1)L

4 we know that:

[VE(F )] < (a+ (=)L)
< (1+2n+2yL)"
<e

Here the last inequality is because < With our time schedule, by (2.6), we have

1
2(L+1)d"
t— tk S tk+1 — tk S nmin{l,T — t}.

We consider two cases whenT — ¢ > land T —t < 1.
First, when T' — t > 1, we have t — t;, < 7. Therefore, we have

1— 672(T*t) + 1(1—0?72_/1(1 d/2 (14 eg(t_tk) _1 d/2
1 —e2(T-1) - 1 —e2(T-1)

eQn -1 d/2
< (1 .
_( n 1_62)
Sincee® — 1< 2zwhenz < landl—e2 > %, when ) < 1/(8d), we have:
e2n — 1\d/2 d/2
1 ) < (1 7) <
( + 1—e2 - d ve.

Secondly, when T" — ¢t < 1, since 1 — e > xz/4 and e® — 1 < 2z when 0 < z < 1, when
n < 1/16d, we know that:

L= e 4 N2 A A
1— 672(T7t) - T — t

(ot

T—-1
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< (1+16n)Y% < (e,

Combining the two cases, we can summarize that when 7 < 1/16d, we have

1 — e 2T-1) 4 11127271 d/2
( gk /d) < Ve
Since g(x) = aF, *(x) — x, we have:
g(x) = aF, " (x) — x

= aFy (%) = aFy (%) = (a — D)se(T — t, Fy (%))

= —(a—1)sg(T — ty, F; ' (x)).
Hence,

(L+d/2)[g®)[5 _ (1+d/2)(a = Dliso(T — tx, F ' (X))

20a>—1) 2(a+1)
Using the assumption on sy and inequality (F.4), we have that:

(1+d/2)(a—D)lso(T —te, i (x)|* _ (L +d/2)(a—1)

(LIF ()l + ¢)?

2a+1) - 2a+1)
(1+d/2)(a—1) 2
< W@LHXH +L+c)
L (+d/2)a—1)
2(a+1)

< %4?”){”2 + %@ + C)2

< (t—tn) (1+d/2)4L° |x||* + (¢ — t) (1 + d/2)(L + ¢)?,
c1 Cc2

where the Ist inequality holds due to @ > 1 and @ — 1 < 2(t — t;). Thus, we know that:

Py, (x) <e(tftk)clHx|\2+(t7t;€)<:2.
PRy, ) (%) ~

This proves the first part of Lemma F.1.
Next we prove the second part, we know that:

/ (Mfﬂ?(lf )(X)dx</ elt=tmerlxl+(t=te)eay, o (x)dx
Q. \PF,(v,,)(X) s = Ja. t
S e(t—tk)CQEe(t_tk)clHY-tHQ

(é) e(tftk)c2e(t7tk)C1R271

(@)

S L
where the (7) holds due to Lemma 1.2 since our t — ¢, <7 < min{c%d, i} And (47) holds due to
t—t, <n< min{é, Rzlq}

By Lemma I.1, we know that:

2
pvi(0) e[ VR(F )| (1= + i\ P asamiseon
th(Yt,k)(X) N a 1 — e—2(T-1) e

<1

here @ = e!~** and g(x) = aF; ' (x) — x. This completes the proof of Lemma F.1. O

Next, we begin our proof of Lemma F.2.
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Proof of Lemma F.2. To start with, using Lemma F.1, we know that:

Py, (%) <e(t—tk)clHxl\z-&-(t—tk)c’g’
PF,(v,,)(x) ~

where ¢; = (14 d/2)4L? and ¢ = (1 +d/2)(L + ).
Thus, we have:

Vq(T —t,x) 2 ? X
o N T S
Q, th(Ytk)(X) Q: th(Y;:;C)(X>

2
5 / HVIOg q(T — t7x)H e’?(01|‘x”2+c2)pn (X)dx
Q
S, ]EQ |:HV log q(T _ t, K)HQenClHnHQ} 7

where the last inequality holds due to n < é Next, we select a constant M/ = 2R. We have the
following inequality:

Eo [vag o(T = t, YJH%WCHMH?}
=Eg MVIOg q(T —t, 1’2)|‘2€77C1\|1’t\|21\|1’t\|<1\4} +Eq [HVIogq(T —t, n)HQemle'lenHZM

<SEo||Viegg(T —,Y:)|* +Eq [HVIOg q(T —t, Yt)||ze"°'1”Y*”zl\muzM}7

I I

1 —

. . 1
where the last inequality holds due to ) < jz- = 7=

For I, using Lemma K.2, we have:

I =Eq|Vlegq(T —t,Y,)|?

1
< dl — o—2(T—1)
(4)
< #, (L.1)
min{7T —¢,1}
where (i) holds because 1 — e~ > z/2 whenz < land 1 —e 2% > 1/2 whenz > 1.
For I, using Lemma H.1 with f(t) = e=(T=%), g(t) = V1 — e=2(T—1), we have:
x| + R
[VIog (T —t,x)|| < 1 o201
I+ R
or—t '
here we denote 1 — e=2(T=%) by gp_,. Therefore, we have:
Y| + Ry2 f
Iy SEQ{(&) encll‘},tl‘zll‘y,tll>]\/1:|. (1.2)
oT—t -

Letao = e T=Y wehave Y; = X1_; = aXo + V1 — a2Z. Thus,
Hence, (I.2) becomes

1 2 P 2
1 a2 ne1(R+v1-a2||Z||)
I, < (UT_t)2EQ{(2R+ 1l -« ||Z||) e IHZHZ Ai:fz}
1

(o7—1)?

where the last inequality holds due to (a+b)? < 2a%+2b% andn < 1/c; R?. Let A = 2nc1(1—a?).
Then we have

Yi| < R+ VI-a?|z].

~

2 2 2\ g2ne1(1-a?)|| 2|2 _
Bo[(R? +(1 - o?)12])e iz s | 3

s / LNy dz
M—R
2~ (071)? Jra (Vor)d Iz > 22

K1
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2 1 2
/ e |z % LS TRV A (1.4)
or—t JRd /211 “V1i-a?
Ka
here we use that 1 — o? = 1 — e 20"t = g, Let ¢,2(x) = exp(—||x||?/202)/(270%)%/2.
When X smaller then 3, we have eMlI° ¢, (z) = ¢ (z)(ﬁ)% Therefore, we know that:
K, = L t 1 d
1= (1_%) o O ()L > 2t da
1 \¢ [, M-Rj,, 1
— > _—
(1 —2>\) P{”Z = ‘/7‘2 (0’ 1 —2A1d>}
1 g vat M — R)
_ ( )21P 1Z|| > ( ’Z N(0,1,)
1-2A V1-—
(@) 1 g 1—a?
< (=5) 7= - QEHZIIQ
1—27) (01— 20N (M —R)
_ ( 1 )%4'1 or_+d
N1 -2\ (M — R)2
@) gr_4d
S 72 (L5)
where (7) holds due to the Markov’s inequality. Since 7 < < 55m 1,c 5> we have A = 2nc (1 -

Zc d
a?) <1/(d+2). This 1mphes (1/(1 - 2)\))d/2 < e, thus (i¢) holds. Moreover, for K we have:

[ V)

HZ‘ 1 v-r dz
llz H>\/—

2
m) Ezrono,t 1012

1.6)

The last inequality holds due to (1/(1 — 2)))¥? < e when A < 1/(d + 2). Substituting (I.5)
and (1.6) into (I.2), we have

d
Iy 5
07—t
d
< — . 1.7
~ min{T — ¢, 1} (@7
Combining 1.1 and 1.7, we have:
q(T —t,x) d

YA B dx< — =

/Qt H PE,(v,,) (X H Py ()BS min{T —¢,1}’
which completes the proof of Lemma F.2. O

1.2 PROOF OF LEMMAS G.1 AND G.2
We first present three technical lemmas.
Lemma L.3. Let Y; and F;(z) be defined in (G.2) and (G.5). For any k, t € [t,t,+1] and x € R,
we have:
T—t+ 28 a2 ara2ie eo-xI3
pr(X) §e|th(Ft_1(X))| . ( 1+2/d) .ewz
PF,(v,,)(X) Tt

Lemma L4. Suppose Y, = X, + N(0,(T — t)I;) and p(||Xoll2 < R) = 1. Then for A <
min{m, 2z }» we have:

b

EMYel: < 1
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Lemma L5. Recall that X is our forward process defined in G.1 and we use ¢(t,x) to denote its
law, under Assumption 5.1, we have:

d
E||Vlogg(t, X0)||* <+

Proof of lemma G.1. By Lemma 1.3, we know that:
a2l oo-x13 T — ¢+ k| 42
L(X) <e |VFt (F;l(x)” | () = (7“%) ,
PF,(v,,)(X) T—t
Firstly, using the expression of the interpolation operator (G.5), we have
VE(x) =154 (t — tr)aVse(T — tg, x).
The operator norm of V F}(x) can be bounded by
||VFf(X)||2 S 1 + (t — tk)ClL
Using the fact that |A| < ||A||%, we know that:
- d
[VE(F00)] < (1 (- 1))
Since t — t, <n < 1, whenn < 1/(Ld), we have
\vm (Ft_l(x))‘ <(1+4nL)" <e.
With our time schedule, by (2.6), we have
t—tp < tk+1 — 1 < nmin{LT — t}.

We have t — t;, < 7. Therefore, we have
t—t,

T —t+ £ d/2< it d/2
Tt = T—t

< (L)%

When n < L we have:

(L+m)?? <1+ é)d“ < Ve.

Then we have:

At dDIEC) =xlf (L4 d/20E=t) oy py pot )2

2t — 1) )
e IR
L (Qd/2)—t) L]+ L+ )

2
< (t—tx)( (1 +d/2)aL? x| + (1 +d/2)(L + 0)2).

Cc1 C2

Putting together, we know that:

Py, (x) < e(t—tk.)cleHz—&-(t—tk)CQ.
Pr.(v:,) (x) ~

Moreover, since t — t, < 1 < 1/cy, we have:

[ Gy it = [ 2 e

PR.(v.,)( . PRy, (X
< Felt—twer Vi
(1)
<L
where (i) holds due to Lemma L.4 (we have (t — t;,)c; < min{m7 a7 D) O

51



Published as a conference paper at ICLR 2025

Proof of Lemma G.2. To start with, recall that we assume that L > 1, we can easily verify that n
satisfies Lemma G.1’s condition. Using Lemma G.1, we know that:

Py, (x) < elt=tu)er x|+ (t—tr)ea
PFR,(v,,)(x) ~
2
< (el ves)

where ¢; = (14 d/2)4L? and ¢y = (1 + d/2)(L + ¢)?. Thus we have:

V(T —t,x) |2 P prlx
/ HMH th(ytk)(X)dxg/ HVIogq(T—t,X)H ﬂpm(x)dx
Q, pr(}ffk)(x) Q th(Y’fk)(X)

2
S [ [[Frosatr — e ene ey, (xjax
Q

SEq [||V log ¢(T —t, 1@)||26ncmmu2} |
where the last inequality holds due to n < é Next, we select a constant M = 2R. We have the
following inequality:
Eo [HVlog (T —t, E)H%nmmn?}

112

=Eq [Hwog (T — 1, ;)| ereslle 1\|Ytu<M} +Eq [HVIogq(T — £, V3| Yy s 0

<SEo||Viegg(T —,Y3)|* +Eq [HVIOg q(T —t, 1@)||26"01”K”21\|m|21\4}7

I T
where the last inequality holds due to n < 01%. For I1, using Lemma 1.5, we have:

I =Eg||Viegq(T —t,Yy)|?

d
< T (L.8)
For I, using Lemma H.1 with f(¢) =1, g(t) = VT — t, we have:
x|l + R
1 T-t <=
IV 1ogq( — %)) < PIEE,

Therefore, we have:

psmal (P

Wehave Y; = X7, = Xo+ 1T —tZ. Thus,

: 1|m||zM]- (1.9)

Y:|| < R+ VT —t||Z||. Hence, (1.9) becomes

1 2 2
VT — ner(RHVT | Z|))
2= (T—t)?lEQ[(QRJr T—t]Z])) e 121> 242 |
1 _ 2
5 (T — t)QEQ |:(R2 + (T _ t)||Z||2)627701(T )| Z|| 1HZHZ MT__]%J’ (1.10)

where the last inequality holds due to (a + b)? < 2a® 4 2b, and ) < . Let A = 2ney (T — t).
Then we have

R? 1 Lz 2
Iy S, (¢ 2 GAHZH 1Hz||> vM-rdz
R 2

(T —t)? (v2r)d
Ky
2 L o123 2 el
T fa \/ﬂde 2 |lz [P L s an da, (L11)
K>
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Let ¢o2(x) = exp(—|x[|?/20?)/(2n0?)%/2. When X smaller then %

2 9
0] (z)(1255) % . Therefore, we know that:

we have eMzl’ ¢, (z) =

1
1-2X

1\
= P|||z’ ‘Z’ 0, ——1I
(172>\) {l ”—,/7 ( 1f2,\ d)}
1 g V1—-2\A(M — R)
= (%) ?|IZI = ( ]Z N(0,1,)
1—-2X VT —
(i) 1 \% T—t
< E||Z|?
= (1—2)\) a—ovar—re 2l
441 _
1-2x) (M- R)?
(T —t)d
< %. (L12)
where (¢) holds due to the Markov’s inequality. (i) holds because 7 < m, thus A <
1/(d + 2), then we know that (1/(1 — 2)))%/? < e. Moreover, for K5 we have:
Ky= (1 : ’1 d
2 = (1_2)\) Rd¢1jzk(z)||z|| |l2]| > 2=E %
1 \%
< (7=55) Bz lZ
- ( 1 )% d
C\1=20/ 1-2)
<d (1.13)

The last inequality holds due to (1/(1 — 2)))%/? < e. Substituting (1.12) and (I.13) into (L.11), we
have

P — (1.14)

Combining 1.8 and 1.14, we have:

Vq(T —t,x) H d
———— || PR, (X)X S =,
/Q H PE(v;, ) (X) R, (%) T—t

which completes the proof of Lemma G.2. O

J PROOF OF LEMMAS IN SECTION I

Proof of Lemma I.1. Using the Jacobian transformation of probability densities, we have
PRy, (X) = py,, (F, (%)) |V (F (%)) d.n
Moreover, the forward process indicates V;, = e~ (="%)Y, + Z,, , where Z;;, ~ N(0,1 —

e_Q(t_t’“)) is independent of Y;. Using the Jacobian transformation of probability densities, we
have

Py, (Ft_l(x)) =Dy, 4et—trz,,, (etftht_l(x)) etk

— bt /d q(t, ) Puzte—t) 4 (et—tht—l(X) - )’)dYa
R

where ¢,2(x) = exp(—||x||?/202)/(2ra?)%/? is the probability density function of Gaussian dis-
tribution with variance 2. The last equality holds due to the formula for the sum of independent
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variables. For simplicity, denote a = ef~** and we ignore the dependency of ¢ and ¢, when it will
not cause any confusion. Then we have

PY;, (Ft_l(x)) = a/]Rd q(T —t,y) a2 _1 (aFt_l(x) — y)dy. J.2)

Since aF; ! (x) —y = x —y + (aF; *(x) — x), with the shorthand notation g(x) = aF; *(x) — x,
we have

ba2—1(aF; (%) = y) = daz1(x —y + g(x))

1 _lIx—y+e)I3
e 2(a2-1)
(27 (a2 —1))4/2
1 =y +IsE) I3 +2(x—y,8(x))
- ¢ 2(a2-1)
(2m(a? — 1))4/2
1 (1+2/d)Ix—y |13+ (1+d/2) |g(x)113
> E—— 2(a2-1)
(2m(a? — 1))4/2
1 _ (+d/2)|e()l3

_ . B —v). 2(a?-1) 1.3
(1+2/d)d/2 ¢1aj2/b(x y) € ) ( )

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ¢,z (+) with 02 = (a® — 1)/(1 + 2/d). Combining (J.1), (J.2) and (J.3), we have

(+d/2)llg() 13

1 _ (+d/2)llgG) I3
th(Ytk.)(X) > |V(F;1(x))| a- /}Rd Q(tJ)W(? 21 (X—y)e 26@2-n dy

1+2/d

a _ (4d/2)lsCol3
> . x) - e 2(a2-1)
= e [VE (F 1(x) [ Yo, a2 (%)

where we use (1 +2/d)¥? < e, the fact that V(F; ' (x)) = [VE(F, ' (x))] ! and the formula
for the distribution of the sum of independent random variables. Then we have

i) _e[VE(F)| | crumseni  py(x)
PR (%) “ Pyn .20 )

Since Y; = e~ 7= Xy + N (0,1 — e~ 2(T1)), by Lemma K.3, we know that

— - a’—1
pY,(X) < (1—6 2(T t)+1+2/d)d/2
1— e—Q(T—t)

Py, N, 1‘;2%)(}()

Combining the above two inequalities and we can complete the proof of Lemma I.1 [

Proof of lemma 1.2. Since Y; = e~ (T=Y X4y, + N (0, (1 — e~ 2(T=9)1;), denote e~ (T~ by c and
use Z to represent standard normal distribution, we know that:

EMYel: — porleXuwtvI=cZ|3

(i)
2 BN Xul 341213

) G M Xaall? . geMIZI3
where (i) holds due to the Cauchy-Schwartz inequality. (i¢) holds due to the independency of X gu,

and Z.
Since p(|| Xgaall2 < R) = 1, then EeMXaullZ < AR For \ < 3, we know that:

2 2 d _HXHQ
EeA\|zu2:/ Ml3 (27~ % 0152 4
Rd

1 4 4~
:/Rd(gwl_%) S(1-2\)f%e " dx
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4
2

— (1— 20
When A < (1 — 20\) "% < 1, thus we have:

2 2
EMYill} < AR -1,

Proof of Lemma 1.3. Using the Jacobian transformation of probability densities, we have
pr,(Yf,k)(x) =Py, (Ftil(x))’v(Ftil(X))’- J.4)

Moreover, the forward process indicates Y;, = Y; + Z; 4, , where Z, ;, ~ N(0,t — t,) is indepen-
dent of Y;. Using the Jacobian transformation of probability densities, we have

py,, (F7 (%) = pvisz,,, (F7H(%)

= /qu(T—t,y)aSt—tk (F7 ' (x) —y)dy,

where ¢,2(x) = exp(—||x||?/202)/(2w0?)%/? is the probability density function of Gaussian dis-
tribution with variance o“. The last equality holds due to the formula for the sum of independent
variables. We have

b1t (F7 (%) —y) = di—t, (x—y+ F(x) — x)

1 Ix—y+F, () —xlI3
— 67 2(t—tg)
(27 (t — tg))4/?
1 =y 12+ 15,7 o) —x3+2(x—y, Fy H(x) —x)
— 67 2(t—tg)
(27 (t — ty))4/?
1 _(42/d) =y I3+ 0+d/2) | BT 0 —x113
e — 2(t—ty)
= (2 (t —ty))4/?
1 _a+a/2) IR o —xI13
= Pty (X—y) e 2(E—%) , d.5)

(1 +2/d)d/2 1+2/d

where the first inequality holds due to the Young’s inequality. In the last equality, we use the defini-
tion of ¢42(-) with 02 = (t — 1) /(1 + 2/d). Combining (J.4) and (J.5), we have

el T 1 _(+d/2) IR0 —xI13 d
> - . - b (x— —
1 _(+a/2) IR ) —xI13
t—tg (X) - € 2(t—1tg) y

* SR TG e

where we use (1 +2/d)¥/? < e, the fact that V(F; ' (x)) = [VF, (Ft_l(x))] " and the formula
for the distribution of the sum of independent random variables. Then we have

(1+d/2) 177 ) —x|13
_pvi(x) <e|VF,(F ' (x))] T G Py (x)
PF.(v;,)(X) Py, N (0, 5 (X

Since Y; = Xy + N(0,T — t), by Lemma K.3, we know that

t—t
Py, (%) < (T_H' 1+27d)d/2
anrN(Oqt-;zt/kd)(x) - T—t
Combining the above two inequalities and we can complete the proof of Lemma 1.3 O

Proof of lemma 14. Since Y, = Xy + 1T — tZ, we know that:
EeMY:ll3 < Ee2MXoll® | ge2MT-0)Z]?

2 2
< R 2MT-1)| 2|
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(2 PAT-DIZI*
here (i) is because we assumed A < 1/R?. Moreover, we have \ < m, this implies 2\(T" —
t) < %, thus we have

2

Ee2XT-DIZ13 :/ AAT=OlxIE (90)~ % o~ LT3
]Rd

lI=113
1 d p R -s— e—

= m— V2 (1 —4ANT —t)) " 2 T=2IX(T—%) (;

/Rd( ﬂlfwat)) 2 ( ( ) ze x

=(1—4ANT —1t)" ¢
<1

This completes the proof of Lemma 1.4 O

Proof of Lemma 1.5. By tweedie’s formula we know that:

1
VIOg q(tvxt) = _E (Xt - ECIO\t("Xt)X())'

1
E[|V log q:(X)||? Bl X — E[Xo|X]||”
1
-z [E| X - 2EX, - [Xo|X:] + E[E[Xo| X/]||”] -

Since X; = X + V/tZ, we have E|| X,||?> = E||X¢||?> + td. Here the second order momentum is
finite because our bounded support assumption. Moreover, we know that:

EX,-E[Xo|X:] =EX; - Xo=E (XO n \/Zz) - X = E|| X0l
We next consider the trace of the covariance matrix of X given X;:
tr ((Covy, (130 (X0)) = E [IXo21] — IELXo| X1,
Thus we know that:
E [IIE[Xol XJI*] = E|| Xo||* ~ Etr ( Covy,(ix,)(Xo))
< E[Xo]*

Putting together, we know that:

E|[Vlogq(t, Xy)||* <

|

K AUXILIARY LEMMAS

Theorem K.1 (Reynolds Transport Theorem Leal 2007). For a function F'(¢,x) : R X R4 — R that
is continuously differentiable with respect to both x and ¢, the following equality holds:

0

o o F(t,x)dx :/ QF(t, X) dx+/ F(t,x)v(t,x) n(t,x)dS,

o, Ot a0

where n is the outward-pointing unit normal vector, v is the velocity of the area element, and d.S'is
area element.

Lemma K.2 (Lemma 6 in Benton et al. 2024). Let X; be the OU forward process defined in (F.1).
When X has finite second moments, we have:

d
BV loga(t, X < -—

—e—2t '
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Proof of Lemma K.2. This lemma is the same as Lemma 6 in Benton et al. (2024). We provide a
proof for the completeness of our paper.

Denote 1 — e~2! by 0;. By Tweedie’s formula we know that:
1 _
Viogq(t, X) = — ( - Xite tEqmtuxt)XO)-
t
Taking the expectation of the square, we have
E|Vlogq:(X:)|* = o *Elle™ E[Xo| X¢] — X¢|?
=0, [E[| X, — 2 "EX, - [X0|X¢] + e *E|E[Xo| X,]|1%] .

Since X; = e~ X + /01 Z, we have E|| X;||? = e "2'E|| X,||?> + 0+d. Recall that we assume that
X has finite second moments. Moreover, we know that:

EX, E[Xo|X,] =EX; X0 =E (e 7" Xo+ 0, Z) - Xo = e "E[| X||>.
We next consider the trace of the covariance matrix of X given Xj:
i1 Covg 130 (X0)) = E [ Xol?1X0] — [ELXo| X.J]1,
Thus we know that:
E [IIE[Xol X.JI*] = Bl Xo||2 ~ Etr ( Covyy,ix,)(Xo))
< E[Xol*.

Putting together, we know that:

d
||V log o(t, X < ©

t

O

Lemma K.3. For any data distribution pg,, and positive parameters § and h. Let X, Zs5, Z), be
three independent random variables in R? satisfying X ~ pgaa, Zs ~ N(0,9) and Z;, ~ N(0, h).
Then we have:

Px+2z;5(X) < (5 + h)d/2
Px+2zs+2,(X) T 6

where we use py (x) to denote the probability density function of random variable Y.

||xn2

Proof of Lemma K.3. We define ¢,2(x) := me 202, which is the probability density func-

tion of normal distribution N (0, 021,).
First, we provide an upper bound of ¢5(x — y)/ds+n(X — ¥):

Ps(x—y) _ (6+h)d/2e<;;;g>2_(x*y>2 < (5+h)d/2.

D) 2 (K.1)
Ps+n(x—y) g g
Using the independence property, we have
Px+75 (X / Pdata(¥) @5 (x — y) dy,
PX 12542, (X / Pdata(¥) Ps+0(x — y) dy.
Then we have
Ps(x—y)
—y)dy = \ ——d
[ poss1stx =)y = ([ vty )onintx ) 25 say
0+ h\4/2
< [ pa)osentx—yay ()"
which completes the proof of Lemma K.3. O
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