Published as a conference paper at COLM 2025

SuperBPE: Space Travel for Language Models

*Alisa Liu”® *Jonathan Hayase"
Valentin Hofmann®" Sewoong Oh” Noah A. Smith”® Yejin Choi®
YUniversity of Washington *NVIDIA ¢ Allen Institute for Al

Abstract

The assumption across nearly all language model (LM) tokenization
schemes is that tokens should be subwords, i.e., contained within word
boundaries. Despite providing a seemingly reasonable inductive bias, we
question whether this common practice limits the potential of modern LMs.
Whitespace is not a reliable delimiter of meaning, as evidenced by multi-
word expressions (e.g., by the way), cross-lingual variation in the number
of words needed to express a concept (e.g., spacesuit helmet in German
is raumanzughelm), and languages that do not use whitespace at all (e.g.,
Chinese). To explore the potential of tokenization beyond subwords, we
introduce a “superword” tokenizer, SuperBPE, that incorporates a simple
pretokenization curriculum into the byte-pair encoding (BPE) algorithm
to first learn subwords and then superwords that bridge whitespace. This
modification dramatically improves encoding efficiency: when limiting
vocabulary size to 200k, SuperBPE encodes a fixed piece of text with up
to 33% fewer tokens on average than BPE. In experiments, we pretrain 8B
transformer LMs from scratch while fixing model size, vocabulary size, and
train compute, varying only the algorithm for learning the vocabulary. Our
model trained with SuperBPE achieves an average +4.0% absolute improve-
ment over the BPE baseline across 30 downstream tasks (including +8.2%
on MMLU), while simultaneously requiring 27% less compute at inference
time. In analysis, we find that SuperBPE produces segmentations of text
that are more uniform in per-token difficulty, perhaps because SuperBPE
tokens often capture common multi-word expressions that function seman-
tically as a single unit. In sum, SuperBPE offers a straightforward and local
modification to tokenization that improves both encoding efficiency and

downstream performance, yielding better LMs overall.!

1 Introduction

Tokenizers are the lens through which language models (LMs) view data: they segment a
stream of bytes into a sequence of tokens in the LM vocabulary. In the era of transformer
LMs, tokenization is done at the level of subwords, meaning that tokens consist of parts of
words (including complete words), but they cannot bridge whitespace. Intuitively, subword
tokens capture meaningful and composable semantic units.

Although seemingly reasonable, is this common practice a good one? Whitespace is an
unreliable delimiter of meaning (Martin, 2017); many groups of words (e.g., a lot of or
search engine) function semantically as single units, and English speakers store thousands
of such multi-word expressions in their mental lexicon (Church, 2011; Contreras Kallens &
Christiansen, 2022). Cross-lingually, there is considerable variation in whether a given
meaning is conveyed by a single word or several words. At the extreme, languages such
as Chinese and Japanese do not use whitespace at all, and tokens in these languages can
span multiple words or even entire sentences (e.g., the tokenizers of GPT-40 [OpenAl,
2024] or DEEPSEEKV3 [DeepSeek-Al, 2025]), but this has seemingly not hindered LMs from

“Equal contribution.
1Code and artifacts are available at https: //superbpe.github.io/.

https://superbpe.github.io/

Published as a conference paper at COLM 2025

BPE: [By| the| wayl,| I am| a| fan| of| the| Milky| Way].|

SuperBPE: By the way, I am|al fan of the| Milky Way,.

[e2)

o1
L

Bytes per token (1)
ns

5 —— BPE

BPE w/o pretok
5 Il SuperBPE

BPE upper bound

0 20k 40k 60k 80k 100k 120k 140k 160k 180K 200K
Vocabulary size

Figure 1: SuperBPE tokenizers encode text much more efficiently than BPE, and this
advantage grows with larger vocabulary size. Encoding efficiency (y-axis) is measured
in bytes-per-token, the number of bytes encoded per token over a large corpus. In the 40
bytes of text shown on the top of this figure, SuperBPE uses 7 tokens while BPE uses 13, so
the methods’ efficiencies are 40/7 = 5.7 and 40/13 = 3.1 bytes-per-token, respectively. In
the graph, the encoding efficiency of BPE plateaus early because it exhausts the valuable
whitespace-delimited words in the training data. In fact, it is bounded above by the gray
dotted line, which shows the maximum achievable encoding efficiency with BPE if every
whitespace-delimited word were in the vocabulary. In contrast, SuperBPE has dramatically
better encoding efficiency that continues to improve with increased vocabulary size, as
it can continue to add common word sequences to treat as tokens in the vocabulary. The
different gradient lines show different transition points from learning subword to superword
tokens, which always yields an immediate improvement. SuperBPE also encodes text more
efficiently than a naive variant of BPE that does not use whitespace pretokenization at all.

performing well on these languages. In fact, including multi-word tokens promises to
be beneficial in many ways: it may shorten token sequences, lowering the costs of LM
training and inference, and offer representational advantages by segmenting text into more
semantically cohesive units (Salehi et al., 2015; Otani et al., 2020; Hofmann et al., 2021).

In this work, we introduce a superword tokenization algorithm that produces a vocabulary of
both subword and “superword” tokens, which we use to describe tokens bridging more than
one word. Our method, SuperBPE, introduces a pretokenization curriculum to the popular
byte-pair encoding (BPE) algorithm (Sennrich et al., 2016): whitespace pretokenization is
initially used to enforce learning of subword tokens only (as done in conventional BPE),
but it is disabled in a second stage, where the tokenizer transitions to learning superword
tokens. Notably, SuperBPE tokenizers scale much better with vocabulary size: BPE quickly
hits a point of diminishing returns and begins adding increasingly rare subwords to the
vocabulary, while SuperBPE continues to discover common word sequences to treat as single
tokens and improve encoding efficiency (see Figure 1).

In our experiments, we pretrain English LMs at 8B scale from scratch. When fixing the
model size, vocabulary size, and training compute—varying only the algorithm for learn-
ing the vocabulary—we find that models trained with SuperBPE tokenizers consistently
and significantly improve over counterparts trained with a BPE tokenizer while also being
27% to 33% more efficient at inference time. Our best SuperBPE model achieves an average
improvement of +4.0% over 30 downstream tasks, including +8.2% on MMLU, and wins on
25 of the 30 individual tasks (Table 1).

Published as a conference paper at COLM 2025

In analysis, we find that SuperBPE tokenizers produce segmentations that are more evenly
distributed in difficulty. This makes sense from a qualitative linguistic analysis: SuperBPE
tokens often correspond to multi-word expressions in English, i.e., word sequences that func-
tion as a single semantic unit (see Table 3 for examples). For instance, many prepositional
phrases (e.g., by accident or in the long run) are essentially fixed and require memorization.
The individual words in these expressions have very little possible variation in context,
leading to very low-loss predictions under BPE models.

SuperBPE is a straightforward and local modification to tokenization, requiring no changes
to the model architecture, training framework, or decoding strategy. Under the same
training setup, SuperBPE provides a remarkable boost in both encoding efficiency and
performance, yielding better language models overall.

2 SuperBPE

We first explain the standard byte-pair encoding (BPE; Sennrich et al., 2016) tokenization
algorithm (§2.1), and then introduce SuperBPE, which extends BPE to superwords (§2.2).

2.1 Background on BPE

BPE is a tokenization algorithm that greedily learns a subword vocabulary given training
data.? The algorithm takes a sample of text and a target vocabulary size T as input.?

The first step of BPE is pretokenization, which splits the text into chunks that limit the extent
of tokenization; merges cannot bridge these chunks, so the final learned tokens are parts of
these chunks. Canonically, pretokenization in BPE consists of splitting on whitespace so
that common word sequences do not become a single token. This made sense given the
historical context of Sennrich et al. (2016), which aimed to improve word-level tokenization
by segmenting words into morphologically meaningful subwords.

After pretokenization, the iterative learning algorithm begins. Training text is first split into
bytes; the starting vocabulary is the set of all bytes. Then, the frequencies of all pairs of
neighboring tokens are recorded, and the most frequent pair is merged into a single, new
token at every position in the text where it occurs. The newly merged token is added to the
vocabulary. For instance, if the merge is (t, he), then all instances of the token sequence [t,
he] will be replaced with the, which is added to the vocabulary. The token pair frequencies
are then updated, and the next most frequent pair is again merged into a new token. This
continues until the vocabulary reaches the target size T.

2.2 SuperBPE tokenization

SuperBPE introduces a simple intervention in the pretokenization step, separating tokenizer
training into two discrete phases, wherein the tokenizer (1) first learns subwords (by using
pretokenization to prevent merges across whitespace) and then (2) learns superwords
(by lifting this restriction). Stage 1 is equivalent to regular BPE training and continues
up to a certain vocabulary size t, which we call the transition point (t < T). In stage 2,
tokenizer training resumes from the vocabulary learned thus far, but this time whitespace
pretokenization is skipped. As a result, token pairs that bridge whitespace are considered,
enabling superwords to be added to the vocabulary. Intuitively, we intend for our tokenizer
to first learn base units of semantic meaning, then combine these units into common
sequences for a much more efficient vocabulary. Note that t = T corresponds to BPE, and
t = 0 corresponds to a naive revision of BPE that foregoes whitespace pretokenization at
any point in training.

We note that training tokenizers requires more system memory and CPU time when done
without whitespace pretokenization (as in stage 2 of SuperBPE). This is because the training

2The algorithm originated in 1994 in the field of data compression (Gage, 1994).
3Note that although the creation of a tokenizer is referred to as “learning,” there are no parameters
involved in the case of BPE, and the algorithm is completely deterministic given the data.

Published as a conference paper at COLM 2025

Category Task BPE SuperBPE A
Knowledge ARC-Easy o) 46.6 67.1 +205*
ARC-Challenge (vc) 35.1 50.6 +155*
Jeopardy &w 421 418 -03
MMLU M) 36.5 44.7 +8.2%*
OpenbookQA o) 33.2 54.4 421.2*
TriviaQA Em) 60.6 61.3 +0.7
WikidataQA Em) 69.7 70.9 +1.2*
Math Arithmetic Em) 54.8 59.3 +4.5
& Reasoning GSMSK m) 6.4 6.7 103
LSAT-AR o) 21.3 23.0 417
Operators (Em) 35.5 33.6 -1.9
Repeat-Copy-Logic Em) 3.1 6.2 431
Coding HumanEval (pass@10) 15.9 134 25
MBPP (pass@10) 27.5 28.3 +0.8
Reading BoolQ o) 59.7 64.6 +49™
Comprehension CoQA Em) 12.6 13.2 +0.6
DROP &m) 31.3 31.4 +0.1
HotpotQA &w) 53.5 55.2 +1.7*
SQuAD Em) 75.1 75.8 +0.7
Commonsense CommonsenseQA Mc) 33.5 53.8 +20.3*
COPA o) 77.0 85.8 +8.8*
PIQA o) 55.2 59.8 +4.6"
Winograd c) 50.4 53.1 +2.7
Winogrande o) 47.3 52.6 +5.3"
Language HellaSwag o) 29.7 33.7 +4.0%*
Understanding ~LAMBADA &wm) 77.0 70.6 —64*
Language Identification (Em) 8.8 9.0 +0.2
String CS Algorithms &Em) 46.1 48.6 +2.5
Manipulation CUTE ¢&m) 31.3 32.6 +1.3
Dyck-Languages (Em) 15.9 142 -17
Average 39.8 43.8 440

Table 1: Performance of BPE and SuperBPE models (with transition point t = 180k) on
30 downstream tasks. The two models are fixed in model parameters (8B), vocabulary
size (200k), and training FLOPs (corresponding to ~330B tokens), differing only in their
algorithm for learning the vocabulary. The SuperBPE model outperforms the baseline on 25
of 30 tasks and requires 27% less compute at inference time. See Figure 3 for the moving task
average during pretraining and §A .4 for further evaluation details. *p < 0.05, **p < 0.005
under a McNemar test.

data is typically represented by a dictionary of “words” along with their counts. With
whitespace pretokenization, the “words” are whitespace-separated chunks (e.g., common
words) stored once along with a large count, conferring substantial savings in memory.
Without whitespace pretokenization, the “words” are extremely long (e.g., entire training
documents), leading to minimal deduplication of the text and excessively large dictionaries.
Fortunately, tokenizer training must be done only once; in our experiments, SuperBPE
tokenizers train in a few hours on 100 CPUs, a negligible cost compared to LLM pretraining.

2.3 Encoding efficiency

A tokenizer’s encoding efficiency can be measured in bytes-per-token, i.e., how many UTF-8
bytes are encoded, on average, in each token over a large corpus of text (see calculation
in Figure 1). We train a series of tokenizers on a 10 GB subset of data from OLMO 2’s
pretraining corpus and evaluate encoding efficiency on a held-out subset.

Published as a conference paper at COLM 2025

Shown in Figure 1, SuperBPE scales much better with vocabulary size than does BPE.
BPE quickly plateaus around a vocabulary size of ~50K, achieving 4.45 bytes-per-token
at a vocabulary size of 200k. In fact, even with infinite vocabulary size (namely, if every
whitespace-delimited word were in the vocabulary), BPE cannot exceed 4.68 bytes-per-
token, i.e., the average word length in the held-out subset. SuperBPE exceeds this upper
bound with a mere ~12k vocabulary size and reaches 5.55 bytes-per-token at 50K and 6.63
at 200k.

Surprisingly, SuperBPE is also more efficient than

BPE with whitespace pretokenization completely dis- 66
abled. Since BPE is a greedy algorithm, completely <
disabling whitespace pretokenization may causeitto ¢ °]
make highly suboptimal choices early on. In partic- & ¢,
ular, tokens in this setting often consist of the end of &
the previous word and start of the next word, as op- & 7]
posed to sequences of complete words. By keeping £ 62|
whitespace pretokenization on at the beginning, we @
can avoid suboptimal choices while still obtaining a e

tokenizer with superwords. 20k 60k 100k 140k 180k

Transition point for 200K vocab size
Figure 2 shows how SuperBPE’s encoding efficiency
depends on the choice of transition point t. The re-
lationship is smooth, with t = 80k achieving the best
encoding efficiency. However, we will see in our ex-
periments that the optimal tokenizer for LM pretrain-

ing is not necessarily the most encoding-efficient.

Figure 2: Encoding efficiency varies
smoothly with the choice of transi-
tion point ¢ in SuperBPE’s pretok-
enization curriculum.

3 Experiments

In our main experiments, we pretrain models from scratch while fixing the total training
FLOPs and vocabulary size, changing only the algorithm for learning the vocabulary.

3.1 Setup

We first pretrain 8B models with BPE and SuperBPE tokenizers. We use the OLMO2 7B
(OLMo et al., 2024) training conﬁguration,4 including the model architecture, training
hyperparameters, and pretraining corpus, but reduce the total number of training steps
to correspond to ~330B tokens (compared to 4T). Following prior work (Pagnoni et al.,
2024), we also fix the effective context size (measured in bytes) for each model. This prevents
SuperBPE models from gaining an advantage by seeing more textual context for the same
next-token prediction (we provide analysis on this in §B.1). Since more efficient models have
a shorter context length in tokens, the training steps are adjusted accordingly to match the
total train FLOPs at the end of training.”> Note that in this setting, a same-sized SuperBPE
model uses fewer inference FLOPs than the BPE model.

We fix the vocabulary size of all tokenizers to 200,000 (in the same ballpark as, e.g., GEMMA
at 250k [Google, 2024], GPT-40 at 200k, and LLAMA3 at 130k [Meta, 2024]). We consider
three transition points for SuperBPE: t = 80k, which has the best encoding efficiency, and
two later transitions, t = 160k and t = 180k. All tokenizers are trained on the same 10 GB
subset of OLMO2’s pretraining mix. §A.1 provides further details about tokenizer training.

*OLMO2 7B has 7.30B parameters, while our 8B BPE and SuperBPE models have 8.12B parameters
due to their increased vocabulary size.

5In practice, models using our more efficient tokenizers could shift some or all of the “saved”
context FLOPs to longer effective contexts instead of more training steps.

5For 8B models, a 200k vocabulary size is close to the recommendation of Tao et al. (2024) based on
primarily English data. We fix the vocabulary size to simplify comparisons between models.

Published as a conference paper at COLM 2025

45 4

o~
o
L

()]
[6)]
L

F
</ = BPE 8B
SuperBPE 8B (t = 80K)
—— SuperBPE 8B (t = 160K)
—— SuperBPE 8B (t = 180K)
SuperBPE 118 (t = 180K)

Avg Task Performance (1)
3

R
S

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175
Train FLOPs 1e22

Figure 3: Average task performance on 30 downstream tasks, evaluated at every 5000
steps in model pretraining. We see that SuperBPE models consistently outperform the
baseline that uses a BPE tokenizer. All compared models share the same vocabulary size
and train budget; f denotes the transition point in SuperBPE’s pretokenization curriculum.

We also train a slightly larger 11B SuperBPE model with t = 180k, which approximately
matches the 8B BPE baseline in total bytes of training data seen as well as both train and
inference compute. See Table 2 for exact specifications for all runs.

3.2 Results on downstream tasks

We evaluate SuperBPE on 30 benchmarks covering knowledge, math & reasoning, coding,
reading comprehension, common sense, language understanding, and string manipulation.
The full evaluation suite is shown in Table 1 and evaluation details are in §A 4.

Figure 3 shows the task average during pretraining. All SuperBPE models substantially
outperform the BPE baseline at the end of training. The strongest 8B SuperBPE model,
which has transition point t = 180k (the latest one we consider), outperforms the baseline
by 4.0% on average and wins on 25 of 30 individual tasks. Table 1 shows the per-task
performance for this model (see §A.4 for results for the other models). The largest gains
are on multiple choice tasks; when considering these alone, the performance improvement
grows to +9.7%. The only task on which SuperBPE loses in a statistically significant way is
LAMBADA; here, we observe that SuperBPE is actually ahead for the majority of training
checkpoints, but accuracy dips at the end from 75.8% to 70.6% (see Figure 12).

Notably, while the choice of transition point affects the performance of the resulting model,
all reasonable choices are significantly stronger than the baseline. When using the most
encoding-efficient transition point, i.e., t = 80k, we see a +3.1% task improvement over BPE
and inference compute reduced by 35%. Later transition points empirically cede some gains
in encoding efficiency in exchange for further improvements in performance.”

4 Analysis

4.1 Language modeling

Following prior work (Biderman et al., 2023; Xue et al., 2022; Yu et al., 2023; Wang et al., 2024),
we evaluate language modeling performance using bits-per-byte (BPB), which normalizes the
loss by the tokenizer’s encoding efficiency to fairly compare models with different tokenizers.

"This finding adds to the ongoing debate about the relationship between tokenization compression
and LM performance (Gallé, 2019; Goldman et al., 2024; Schmidt et al., 2024), providing further
evidence that higher compression does not necessarily improve performance.

Published as a conference paper at COLM 2025

BPE 8B SuperBPE 8B SuperBPE 11B
SuperBPE transition point t=80k t=160k t=180k t =180k
Parameter count (pillion) 8.12 8.12 8.12 8.12 11.30
Train steps 76,543 118,419 112,722 107,982 77,525
Average context length (ytes) 18,262 18,272 18,263 18,268 18,268
Vocabulary size 200k 200k 200k 200k 200k
Context length (tokens) 4,096 2,756 2,884 3,000 3,000
Encoding efficiency (ytes/token) 4.46 6.63 6.33 6.09 6.09
Train compute (10> FLOPs) 17.2 17.2 17.2 17.2 17.2
Inference compute (10° FLOPs/byte) 3.75 242 2.54 2.65 3.75

Table 2: Training setup for the models we compare. We fix the vocabulary size and
effective context size (measured in bytes) for each model and adjust the total number
of training steps accordingly so that each model has the same total train budget (in FLOPs).
The 8B SuperBPE models match the 8B BPE model in train compute but use less inference

compute; the 11B SuperBPE model matches the 8B baseline in both train and inference
compute. Numbers fixed across model settings are highlighted in the same color.

This is necessary because longer tokens, on average, contain more information and therefore
are more difficult to predict. Bits-per-byte is defined as BPB(x) = Lcg(x)/(In(2) - npytes),
where 71p,y1e5 is the length of the text in bytes and Lcg(x) is the sum of the cross-entropy loss
over the entire text.® We find that BPE 8B, SuperBPE 8B (¢ = 180k), and SuperBPE 11B attain
0.7465, 0.7482, and 0.7445 BPB, respectively, at the end of training. Although these numbers
do not differ appreciably, the ranking of models according to BPB and downstream task
performance are not consistent.

10' 4 BPE
4.2 Loss distribution analysis 100] < SuperBPE

Why does the SuperBPE 8B model achieve > '
slightly higher normalized language modeling 2 10°2;
loss (§4.1) than the baseline BPE model despite &

1073
outperforming it on a wide variety of down- .
stream tasks (§3.2)? To investigate this, we plot 10
the distribution of per-token BPB? for both mod- 1071
els on data sampled from the pretraining data ;) 7 ? : p
mixture in Figure 4. Per-Token Bits-per-Byte

Although the BPE and SuperBPE models have
very similar BPB on average, we see that loss
is distributed very differently over the training
data. Compared to the baseline, the SuperBPE
model makes fewer predictions with either very
high or very low loss.

Figure 4: Histogram of per-token losses
for both models from Table 1, measured
over a large corpus of text. We observe
that the SuperBPE model is a more consis-
tent performer, making fewer predictions
with very high or very low loss.

Low-loss tokens. We find that the reduction in low-loss tokens is attributable to a small
set of extremely common words that the BPE model can easily predict, but are not available
to SuperBPE as they are merged into larger superword tokens. For instance, the tokens _the,
_of, and _to (the three most common words in the corpus) appear an order of magnitude
more often under BPE than SuperBPE in the same corpus of text. When excluding these three
token types alone, the BPB ranking reverses, with SuperBPE achieving 0.02 lower BPB than BPE.

8Bits-per-byte of different models are considered comparable because total cross-entropy loss is a
universal quantity representing the number of additional bits required to reconstruct the text given
the model. This quantity is normalized by the number of bytes for easier interpretation.

9The per-token BPB is the per-token loss (in bits) divided by the average encoding efficiency.

Published as a conference paper at COLM 2025

POS tag # Example Tokens

NN, IN 906 _case_of, _hint_of, _availability_of, _emphasis_on, .distinction_between
VB, DT 566 _reached_a, _discovered_the, _identify_the, _becomes_a, _issued_a

DT, NN 498 _this_month, _no_idea, _the_earth, _the_maximum, _this_stuff

IN, NN 406 _on_top, _by_accident, _in_effect, _for_lunch, _in_front

IN, DT 379 _on_the, without_a, _alongside_the, _for_each

IN, DT, NN 333 _for_a_living, _by_the_way, _into_the_future, _in_the_midst

NN, IN, DT 270 _position_of_the, _.component_of_the, _review_of_the, _example_of_this
IN, DT, JJ 145 _like_any_other, with_each_other, _for_a_short, _of_the_entire

VB, IN, DT 121 _worked_as_a, _based_on_the, _.combined_with_the, _turned_into_a

IN, DT, NN, IN 33 _at_the_time_of, _in_the_presence_of, _in_the_middle_of, _in_a_way_that
,, CC, PRP, VB 20 ,_and_it_was, ,_but_I_think, ,_but_I_have, ,_but_I_am
IN, DT, JJ, NN 18 _in_the_long_run, _on_the_other_hand, _for_the_first_time, _in_the_same_way

Table 3: The most common POS tags for tokens of 2, 3, and 4 words in SuperBPE, along
with random example tokens for each tag. NN = noun, IN = preposition, VB = verb, DT =
determiner, CC = conjunction, JJ = adjective, and PRP = pronoun.

The reduction in low-loss tokens also makes sense from a qualitative linguistic analysis
of SuperBPE tokens. In Table 3, we show the most common POS tags among superword
tokens in SuperBPE along with random examples for each tag. The tokens often capture
common multi-word expressions (by accident, of course, for a living) that function as a single
semantic unit (Schneider et al., 2014). As an example, prepositions (IN) figure prominently
in superword tokens (e.g., depend on, distinction between) and require lexeme-specific memo-
rization. The individual words in these fixed expressions are often semantically vacuous
and have little possible variation in context, so they are easy to predict once memorized.

High-loss tokens. On the other hand, the much thinner tail of very high-loss tokens shows
that, in the worst case, the SuperBPE model consistently puts more probability mass on the correct
token. On average, we expect models to suffer high loss on tokens that are difficult to
predict. This may explain why SuperBPE can outperform BPE on downstream tasks but
have higher average BPB: the tokens scored in task evaluations tend to be among the hardest
to predict. This is consistent with prior findings that models generally continue to improve
in downstream tasks even as their overall loss plateaus due to improving on a narrow and
difficult slice of the distribution (Liu et al., 2023).

4.3 Scaling

To characterize the scaling behavior of SuperBPE, we also perform experiments at smaller
scales.!” We train baseline models at 680M and 1.9B and scale the base number of training
tokens proportionately to the number of parameters. We also perform runs at 0.5x, 2%, and
4x the base number of tokens to observe the trend with respect to training duration. Then,
we train two SuperBPE models that match the training budget of each baseline BPE model,
one that matches the baseline in parameter count (analogous to SuperBPE 8B) and a larger
model that matches in both train and inference compute (analogous to SuperBPE 11B). We
focus on the t = 180k tokenizer to reduce complexity.

We plot BPB at the end of training for each run in Figure 5. In the under-trained regime,
both SuperBPE models achieve lower BPB than the baseline. In the over-trained regime, the
ranking from worst to best is SuperBPE (matching parameter count), BPE, and SuperBPE
(matching inference compute). Additionally, the separation between the models increases
with further over-training. We provide additional results and comments on scaling in §B.4.

10For scaling, we focus on BPB since our downstream evaluations are too noisy for our small models
to make meaningful comparisons.

Published as a conference paper at COLM 2025

1.00 4 —e— BPE 680M 0.90 —e— BPE1.9B
—e— SuperBPE 680M ' —e— SuperBPE1.9B
o 0.98 - SuperBPE 912M o 0.89 1 SuperBPE 2.5B
@ @ 0.88
a; 0.96 B
a Q 087
2 2
5 0947 5 0.86 1
0.92 1 0851
084 1
1020 2x10% 3x10%4x10%0 Bx10% 6102 1070 2x10%'
Train FLOPS Train FLOPS
(a) 680M model size (b) 1.9B model size

Figure 5: Scaling results for 680M and 1.9B baseline model sizes. Compared to the BPE
baseline, SuperBPE with matching parameter count achieves lower BPB in the under-
trained regime, while SuperBPE with matching inference compute achieves lower BPB
than the baseline at every model size and every training budget tested. Note that BPB
comparisons between BPE and SuperBPE models do not track downstream task accuracy due to
differences in how BPE and SuperBPE models distribute loss over tokens (§4.2).

5 Related Work

Tokenization beyond subwords Prior work has explored processing text at multiple
levels of granularity (Lai et al., 2021; Zhang et al., 2021) or creating multi-word tokens
through frequency-based identification of n-grams (Gee et al., 2023; Kumar & Thawani,
2022). However, these were explored in limited experimental contexts (mainly for machine
translation) and had mixed effectiveness. Naively disabling pretokenization in BPE has been
found to severely degrade model performance (Dagan et al., 2024; Schmidt et al., 2024; Kudo,
2018), although this approach may be more promising for unigram tokenization (Kudo
& Richardson, 2018), as adopted by JURASSIC (Lieber et al., 2021) and BLOOMBERGGPT
(Wu et al., 2023). In concurrent work, Huang et al. (2025) disentangle input and output
vocabularies, expanding only the former to include n-gram tokens. Their method requires
significant modifications of the LM input component and considers fixed length of n-grams.

Multi-token prediction Multi-token prediction (MTP) equips LMs with some extra pa-
rameters to predict multiple tokens in a single time step (Qi et al., 2020; Gloeckle et al.,
2024) and was recently adopted by DEEPSEEK-V 3, though the MTP module is discarded
at inference-time. MTP’s effectiveness corroborates that LMs are capable of predicting
more than one subword in a forward pass. However, these approaches fix the number of
tokens predicted in each time step and require modifications to the architecture and training
objective. We note that the benefits of MTP and superword tokens may be orthogonal.

Tokenizer-free language modeling Some works have explored the possibility of com-
pletely removing tokenization from LMs and directly modeling text as a sequence of bytes
(Clark et al., 2022; Xue et al., 2022; Wang et al., 2024). To overcome the increased compute
requirement due to expanded sequence lengths, alternative architectures have been pro-
posed that either segment bytes into fixed-length patches (Tay et al., 2022; Yu et al., 2023) or
dynamically predict patch boundaries with sub-modules (Nawrot et al., 2023; Pagnoni et al.,
2024; Ahia et al., 2024; Hwang et al., 2025); these dynamic patches have been qualitatively
observed to span multiple words.

Tokenizer transfer Many methods have been proposed to adapt models after training
to use a different tokenizer. These may rely on intervention during pretraining (Chen
et al., 2023), continued training for a subset of layers (Marchisio et al., 2023), or leveraging
self-distillation (Minixhofer et al., 2025), heuristic, (Minixhofer et al., 2022; Gee et al., 2022;
Tran, 2020; Liu et al., 2024b; Dobler & De Melo, 2023), or hypernetwork-based (Minixhofer

Published as a conference paper at COLM 2025

et al., 2024) initialization of a fresh embedding matrix, optionally followed by fine-tuning.
These methods may be used to upgrade existing models to use SuperBPE tokenizers, with
the goal of reducing inference cost while maintaining performance. We leave this direction
to future work.

6 Conclusion

Although tokenization lies at the foundation of language modeling, acting as the lens
through which models view text, the algorithms in use have remained largely unchanged
over the past decade. SuperBPE builds on the observation that tokens need not be limited to
subwords, extending the BPE algorithm to superword tokens. When replacing subword BPE
tokenizers with SuperBPE tokenizers in pretraining, we find that language models perform
better over a large suite of downstream tasks, while also being substantially more efficient
at inference time. These benefits are achieved without modifying the underlying model
architecture, making SuperBPE a compelling alternative to BPE that seamlessly integrates
with modern language model ecosystems.

Acknowledgments

We would like to thank Alex Fang for pretraining advice, Vivek Ramanujan for helping
debug our distributed training setup, Ian Magnusson for helpful comments on LM eval-
uation, and Zhaofeng Wu, Alexander Fang, and Xiaochuang Han for feedback on drafts.
We are also grateful to Luca Soldaini, Gongalo Faria, Shrimai Prabhumoye, Matt Jordan,
Artidoro Pagnoni, Mike Lewis, Doug Downey, Shannon Shen, and the UW NLP community
for valuable conversations about this work. Both co-first authors, AL and JH, are supported
by the NSF Graduate Research Fellowship Program. JH and SO are supported in part by
the Microsoft Grant for Customer Experience Innovation. This work was partially funded
by NSF DMS-2134012, NSF CCF-2019844, ONR N00014-24-1-2207, and NSF 2113530 as
well as with NVIDIA resources provided through the National Al Research Resource Pilot
(NAIRR).

References

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith,
and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 9904-9923,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.614. URL https://aclanthology.org/2023.emnlp-main.614.

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Valentin Hofmann, Tomasz Limisiewicz,
Yulia Tsvetkov, and Noah A. Smith. MAGNET: Improving the multilingual fairness of
language models with adaptive gradient-based tokenization. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=1e3MOWHSIX.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021. URL https://arxiv.org/abs/2108.07732.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for
analyzing large language models across training and scaling, 2023. URL https://arxiv.
org/abs/2304.01373.

BIG-bench. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

10

https://aclanthology.org/2023.emnlp-main.614
https://openreview.net/forum?id=1e3MOwHSIX
https://openreview.net/forum?id=1e3MOwHSIX
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://openreview.net/forum?id=uyTL5Bvosj

Published as a conference paper at COLM 2025

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language
models in machine translation. In Jason Eisner (ed.), Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pp. 858-867, Prague, Czech Republic, June 2007. Association
for Computational Linguistics. URL https://aclanthology.org/D07-1090/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. 2020.

Anthony Chen, Pallavi Gudipati, Shayne Longpre, Xiao Ling, and Sameer Singh. Evaluating
entity disambiguation and the role of popularity in retrieval-based NLP. In Chengging
Zong, Fei Xia, Wenijie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 4472—-4485, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.345. URL
https://aclanthology.org/2021.acl-1long. 345.

Y Chen, K Marchisio, R Raileanu, DI Adelani, P Stenetorp, S Riedel, and M Artetxe. Im-
proving language plasticity via pretraining with active forgetting. In Advances in Neural
Information Processing Systems. NeurIPS, 2023.

Kenneth Church. How many multiword expressions do people know? In Proceedings of
the Workshop on Multiword Expressions: From Parsing and Generation to the Real World, pp.
137-144, Portland, Oregon, USA, 2011. Association for Computational Linguistics. URL
https://aclanthology.org/W11-0823/.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins,
and Kristina Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no
questions. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924-2936, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1300. URL https://aclanthology.org/N19-1300.

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. Canine: Pre-training an
efficient tokenization-free encoder for language representation. Transactions of the As-
sociation for Computational Linguistics, 10:73-91, 2022. doi: 10.1162/tacl-a_-00448. URL
https://aclanthology.org/2022.tacl-1.5.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL
https://arxiv.org/abs/2110.14168.

Pablo Contreras Kallens and Morten H. Christiansen. Models of language and multiword
expressions. Frontiers in Artificial Intelligence, 5, 2022. doi: 10.3389/frai.2022.781962.
URL https://www.frontiersin.org/journals/artificial-intelligence/articles/10.
3389/frai.2022.781962.

11

https://aclanthology.org/D07-1090/
https://aclanthology.org/2021.acl-long.345
https://aclanthology.org/W11-0823/
https://aclanthology.org/N19-1300
https://aclanthology.org/2022.tacl-1.5
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.781962
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.781962

Published as a conference paper at COLM 2025

Gautier Dagan, Gabriel Synnaeve, and Baptiste Roziere. Getting the most out of your
tokenizer for pre-training and domain adaptation. In Proceedings of the 41st International
Conference on Machine Learning, ICML'24. JMLR.org, 2024. URL https://dl.acm.org/doi/
10.5555/3692070.3692457.

DeepSeek-Al. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.
19437.

Konstantin Dobler and Gerard De Melo. Focus: Effective embedding initialization for
monolingual specialization of multilingual models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 1344013454, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning
over paragraphs. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2368-2378,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1246. URL https://aclanthology.org/N19-1246.

Lukas Edman, Helmut Schmid, and Alexander Fraser. CUTE: Measuring LLMs’ under-
standing of their tokens. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pp- 3017-3026, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.177. URL https://aclanthology.org/
2024 .emnlp-main.177.

Philip Gage. A new algorithm for data compression. The C Users Journal archive, 12:23-38,
1994. URL https://api.semanticscholar.org/CorpusID:59804030.

Matthias Gallé. Investigating the effectiveness of BPE: The power of shorter sequences.
In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMINLP-IJCNLP), pp. 1375-1381, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
D19-1141. URL https://aclanthology.org/D19-1141.

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini, Paolo Torroni, et al. Fast vocabulary
transfer for language model compression. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing: Industry Track, pp. 409—-416. Association for
Computational Linguistics (ACL), 2022.

Leonidas Gee, Leonardo Rigutini, Marco Ernandes, and Andrea Zugarini. Multi-word
tokenization for sequence compression. In Mingxuan Wang and Imed Zitouni (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing:
Industry Track, pp. 612-621, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-industry.58. URL https://aclanthology.org/
2023.emnlp-industry.58.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=pEWAcejiU2.

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao, Idan Szpektor, and Reut Tsarfaty.
Unpacking tokenization: Evaluating text compression and its correlation with model per-
formance. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 2274-2286, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.134.
URL https://aclanthology.org/2024.findings-acl.134.

Google. Gemma: Open models based on gemini research and technology, 2024.

12

https://dl.acm.org/doi/10.5555/3692070.3692457
https://dl.acm.org/doi/10.5555/3692070.3692457
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://aclanthology.org/N19-1246
https://aclanthology.org/2024.emnlp-main.177
https://aclanthology.org/2024.emnlp-main.177
https://api.semanticscholar.org/CorpusID:59804030
https://aclanthology.org/D19-1141
https://aclanthology.org/2023.emnlp-industry.58
https://aclanthology.org/2023.emnlp-industry.58
https://openreview.net/forum?id=pEWAcejiU2
https://openreview.net/forum?id=pEWAcejiU2
https://aclanthology.org/2024.findings-acl.134

Published as a conference paper at COLM 2025

Jonathan Hayase, Alisa Liu, Yejin Choi, Sewoong Oh, and Noah A. Smith. Data mixture
inference: What do BPE tokenizers reveal about their training data? In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=EHXyeImux®.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, et al. Training compute-optimal large language models. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, pp. 30016-30030, 2022.

Valentin Hofmann, Janet Pierrehumbert, and Hinrich Schiitze. Superbizarre is not su-
perb: Derivational morphology improves BERT’s interpretation of complex words.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 3594-3608, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.279. URL https://aclanthology.org/2021.acl-1long.279.

Hongzhi Huang, Defa Zhu, Banggu Wu, Yutao Zeng, Ya Wang, Qiyang Min, and Xun
Zhou. Over-tokenized transformer: Vocabulary is generally worth scaling, 2025. URL
https://arxiv.org/abs/2501.16975.

Sukjun Hwang, Brandon Wang, and Albert Gu. Dynamic chunking for end-to-end hierar-
chical sequence modeling, 2025. URL https://arxiv.org/abs/2507.07955.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzi-
lay and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1601-1611, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147.

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. From tokens to words: On the
inner lexicon of LLMs. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=328vch6tRs.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Pride Kavumba, Naoya Inoue, Benjamin Heinzerling, Keshav Singh, Paul Reisert, and
Kentaro Inui. When choosing plausible alternatives, clever hans can be clever. In Simon
Ostermann, Sheng Zhang, Michael Roth, and Peter Clark (eds.), Proceedings of the First
Workshop on Commonsense Inference in Natural Language Processing, pp. 3342, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/
D19-6004. URL https://aclanthology.org/D19-6004.

Taku Kudo. Sentencepiece experiments. https://github.com/google/sentencepiece/blob/
master/doc/experiments.md, 2018.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Eduardo Blanco
and Wei Lu (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 66—71, Brussels, Belgium, November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL
https://aclanthology.org/D18-2012.

13

https://openreview.net/forum?id=EHXyeImux0
https://openreview.net/forum?id=EHXyeImux0
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/2021.acl-long.279
https://arxiv.org/abs/2501.16975
https://arxiv.org/abs/2507.07955
https://aclanthology.org/P17-1147
https://openreview.net/forum?id=328vch6tRs
https://aclanthology.org/D19-6004
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://github.com/google/sentencepiece/blob/master/doc/experiments.md
https://aclanthology.org/D18-2012

Published as a conference paper at COLM 2025

Dipesh Kumar and Avijit Thawani. BPE beyond word boundary: How NOT to use multi
word expressions in neural machine translation. In Shabnam Tafreshi, Jodo Sedoc, Anna
Rogers, Aleksandr Drozd, Anna Rumshisky, and Arjun Akula (eds.), Proceedings of the
Third Workshop on Insights from Negative Results in NLP, pp. 172-179, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.insights-1.24.
URL https://aclanthology.org/2022.insights-1.24.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of
inference?, 2024. URL https://arxiv.org/abs/2406.19384.

Yuxuan Lai, Yijia Liu, Yansong Feng, Songfang Huang, and Dongyan Zhao. Lattice-BERT:
Leveraging multi-granularity representations in Chinese pre-trained language models. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy,
Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 1716-1731, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.137. URL https:
//aclanthology.org/2021.naacl-main.137.

Sander Land. A short introduction to pre-tokenization weirdness, 2024. URL https:
//tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization.

Sander Land and Max Bartolo. Fishing for magikarp: Automatically detecting under-
trained tokens in large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 11631-11646, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.649. URL https:
//aclanthology.org/2024.emnlp-main.649.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema chal-
lenge. In Proceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning, pp. 552-561. AAAI Press, 2012.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff,
Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman,
Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh,
Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt,
Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu
Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song,
Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin
El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca
Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon,
Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-Im: In search of the next
generation of training sets for language models, 2024. URL https://arxiv.org/abs/2406.
11794.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and
evaluation, 2021. URL https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/
61138924626a6981ee@9caf6_jurassic_tech_paper.pdf.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better
downstream: Implicit bias matters for language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 22188-22214. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/1iu23ao.html.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-
gram: Scaling unbounded n-gram language models to a trillion tokens. In First Conference
on Language Modeling, 2024a. URL https://openreview.net/forum?id=u2vAyMeLMm.

14

https://aclanthology.org/2022.insights-1.24
https://arxiv.org/abs/2406.19384
https://aclanthology.org/2021.naacl-main.137
https://aclanthology.org/2021.naacl-main.137
https://tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization
https://tokencontributions.substack.com/p/a-short-introduction-to-pre-tokenization
https://aclanthology.org/2024.emnlp-main.649
https://aclanthology.org/2024.emnlp-main.649
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf
https://proceedings.mlr.press/v202/liu23ao.html
https://openreview.net/forum?id=u2vAyMeLMm

Published as a conference paper at COLM 2025

Yihong Liu, Peigin Lin, Mingyang Wang, and Hinrich Schiitze. Ofa: A framework of
initializing unseen subword embeddings for efficient large-scale multilingual continued
pretraining. In Findings of the Association for Computational Linguistics: NAACL 2024, pp.
1067-1097, 2024b.

Scott Lundberg. The art of prompt design: Prompt boundaries and to-
ken healing, 2023. URL https://medium.com/towards-data-science/
the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38.

Kelly Marchisio, Patrick Lewis, Yihong Chen, and Mikel Artetxe. Mini-model adaptation:
Efficiently extending pretrained models to new languages via aligned shallow training.
In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023.

Haspelmath Martin. The indeterminacy of word segmentation and the nature of morphology
and syntax. Folia Linguistica, 51(s1000):31-80, 2017. doi: doi:10.1515/flin-2017-1005. URL
https://doi.org/10.1515/f1in-2017-1005.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 17359-17372. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference. pdf.

Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias Gallé,
Arun Raja, Chenglei Si, Wilson Y. Lee, Benoit Sagot, and Samson Tan. Between words and
characters: A brief history of open-vocabulary modeling and tokenization in nlp, 2021.
URL https://arxiv.org/abs/2112.10508.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of ar-
mor conduct electricity? a new dataset for open book question answering. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 2381-2391, Brus-
sels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1260. URL https://aclanthology.org/D18-1260.

Benjamin Minixhofer, Fabian Paischer, and Navid Rekabsaz. Wechsel: Effective initialization
of subword embeddings for cross-lingual transfer of monolingual language models.
In Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 3992—-4006, 2022.

Benjamin Minixhofer, Edoardo Ponti, and Ivan Vuli¢. Zero-shot tokenizer transfer. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Benjamin Minixhofer, Ivan Vuli¢, and Edoardo Maria Ponti. Universal cross-tokenizer
distillation via approximate likelihood matching. arXiv preprint arXiv:2503.20083, 2025.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient trans-
formers with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 6403—-6417, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL
https://aclanthology.org/2023.acl-1long.353.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of trans-
formers with simple arithmetic tasks, 2021. URL https://arxiv.org/abs/2102.13019.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk,
Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Ji-
acheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison,

15

https://medium.com/towards-data-science/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://medium.com/towards-data-science/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://doi.org/10.1515/flin-2017-1005
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2112.10508
https://aclanthology.org/D18-1260
https://aclanthology.org/2023.acl-long.353
https://arxiv.org/abs/2102.13019

Published as a conference paper at COLM 2025

Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam
Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer,
Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2024. URL
https://arxiv.org/abs/2501.00656.

OpenAl. Hello GPT-40, 2024. URL https://openai.com/index/hello-gpt-4o/.

Naoki Otani, Satoru Ozaki, Xingyuan Zhao, Yucen Li, Micaelah St Johns, and Lori Levin.
Pre-tokenization of multi-word expressions in cross-lingual word embeddings. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 4451-4464, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.360. URL https://aclanthology.org/2020.emnlp-main. 360.

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Mar-
garet Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike
Lewis, Ari Holtzman, and Srinivasan Iyer. Byte latent transformer: Patches scale better
than tokens, 2024. URL https://arxiv.org/abs/2412.09871.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The
LAMBADA dataset: Word prediction requiring a broad discourse context. In Katrin
Erk and Noah A. Smith (eds.), Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1525-1534, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1144.
URL https://aclanthology.org/P16-1144.

Jackson Petty, Sjoerd van Steenkiste, Fei Sha, Ishita Dasgupta, Dan Garrette, and Tal Linzen.
The impact of depth and width on transformer language model generalization. 2023.

Buu Phan, Marton Havasi, Matthew Muckley, and Karen Ullrich. Understanding and
mitigating tokenization bias in language models, 2024. URL https://arxiv.org/abs/
2406.16829.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. BPE-dropout: Simple and effective
subword regularization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp- 1882-1892, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653 /v1/2020.acl-main.170. URL https://aclanthology.org/2020.acl-main.170.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang,
and Ming Zhou. ProphetNet: Predicting future n-gram for sequence-to-SequencePre-
training. In Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 2401-2410, Online, November 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.217. URL
https://aclanthology.org/2020.findings-emnlp.217.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019. URL https://cdn.openai.com/
better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras
(eds.), Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp- 2383-2392, Austin, Texas, November 2016. Association for Computational Linguistics.
doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Siva Reddy, Dangi Chen, and Christopher D. Manning. CoQA: A conversational question
answering challenge. Transactions of the Association for Computational Linguistics, 7:249-266,
2019. doi: 10.1162/tacl_a_00266. URL https://aclanthology.org/Q19-1016.

Marco Tulio Ribeiro. A guidance language for controlling large language models, 2023. URL
https://github.com/guidance-ai/guidance?tab=readme-ov-file#text-not-tokens.

16

https://arxiv.org/abs/2501.00656
https://openai.com/index/hello-gpt-4o/
https://aclanthology.org/2020.emnlp-main.360
https://arxiv.org/abs/2412.09871
https://aclanthology.org/P16-1144
https://arxiv.org/abs/2406.16829
https://arxiv.org/abs/2406.16829
https://aclanthology.org/2020.acl-main.170
https://aclanthology.org/2020.findings-emnlp.217
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language- models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/D16-1264
https://aclanthology.org/Q19-1016
https://github.com/guidance-ai/guidance?tab=readme-ov-file#text-not-tokens

Published as a conference paper at COLM 2025

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible
alternatives: An evaluation of commonsense causal reasoning. In Proceedings of the
Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium, 2011.

Jessica Rumbelow and Matthew Watkins. Solidgoldmagikarp (plus, prompt
generation), 2023. URL https://www.lesswrong.com/posts/aPeJE8bSo6rAFolLqg/
solidgoldmagikarp-plus-prompt-generation.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an
adversarial winograd schema challenge at scale. Commun. ACM, 64(9):99-106, August
2021. ISSN 0001-0782. URL https://doi.org/10.1145/3474381.

Bahar Salehi, Paul Cook, and Timothy Baldwin. A word embedding approach to predicting
the compositionality of multiword expressions. In Rada Mihalcea, Joyce Chai, and
Anoop Sarkar (eds.), Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 977-983, Denver,
Colorado, 2015. Association for Computational Linguistics. doi: 10.3115/v1/N15-1099.
URL https://aclanthology.org/N15-1099/.

Craig W Schmidt, Varshini Reddy, Haoran Zhang, Alec Alameddine, Omri Uzan, Yuval
Pinter, and Chris Tanner. Tokenization is more than compression. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 678702, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.40.
URL https://aclanthology.org/2024.emnlp-main.40.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily Danchik, Michael T. Mordowanec,
Henrietta Conrad, and Noah A. Smith. Comprehensive annotation of multiword expres-
sions in a social web corpus. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck,
Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Ste-
lios Piperidis (eds.), Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC'14), pp. 455-461, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA). URL https://aclanthology.org/L14-1433/.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Katrin Erk and Noah A. Smith (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1715-1725, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
10.18653/v1/P16-1162. URL https://aclanthology.org/P16-1162.

Anya Sims, Cong Lu, Klara Kaleb, Jakob Nicolaus Foerster, and Yee Whye Teh. Stochastok:
Improving fine-grained subword understanding in LLMs. In ICLR 2025 Workshop on
Building Trust in Language Models and Applications, 2025. URL https://openreview.net/
forum?id=PZnDZdkGsE.

Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on
arithmetic in frontier llms, 2024. URL https://arxiv.org/abs/2402.14903.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 4149-4158, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.
org/N19-1421.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo,
Min Lin, and Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger

17

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://doi.org/10.1145/3474381
https://aclanthology.org/N15-1099/
https://aclanthology.org/2024.emnlp-main.40
https://aclanthology.org/L14-1433/
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=PZnDZdkGsE
https://openreview.net/forum?id=PZnDZdkGsE
https://arxiv.org/abs/2402.14903
https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421

Published as a conference paper at COLM 2025

vocabularies. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung,
Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently:
Insights from pre-training and fine-tuning transformers. arXiv preprint arXiv:2109.10686,
2021.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen
Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. Charformer: Fast character
transformers via gradient-based subword tokenization. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=JtBRnr10EFN.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro Szekely. Representing numbers in NLP:
a survey and a vision. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 644-656, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.53. URL
https://aclanthology.org/2021.naacl-main.53.

Ke Tran. From english to foreign languages: Transferring pre-trained language models.
arXiv preprint arXiv:2002.07306, 2020.

Menan Velayuthan and Kengatharaiyer Sarveswaran. Egalitarian language representation
in language models: It all begins with tokenizers. In Owen Rambow, Leo Wanner,
Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
(eds.), Proceedings of the 31st International Conference on Computational Linguistics, pp. 5987—
5996, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL
https://aclanthology.org/2025.coling-main.400/.

Bandhav Veluri, Justin Chan, Malek Itani, Tuochao Chen, Takuya Yoshioka, and Shyamnath
Gollakota. Real-time target sound extraction. In ICASSP, pp. 1-5, 2023. URL https:
//doi.org/10.1109/ICASSP49357.2023.10094573.

Tim Vieira, Ben LeBrun, Mario Giulianelli, Juan Luis Gastaldi, Brian DuSell, John Terilla,
Timothy] O’Donnell, and Ryan Cotterell. From language models over tokens to language
models over characters. arXiv preprint arXiv:2412.03719, 2024.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M Rush. Mam-
babyte: Token-free selective state space model. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?id=X1xNsuKssb.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers:
State-of-the-art natural language processing. In Qun Liu and David Schlangen (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38-45, Online, October 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/
2020 .emnlp-demos. 6.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann,
Prabhanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large
language model for finance, 2023. URL https://arxiv.org/abs/2303.17564.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. ByT5: Towards a token-free future with pre-trained
byte-to-byte models. Transactions of the Association for Computational Linguistics, 10:291-306,
2022. doi: 10.1162/tacl_a_00461. URL https://aclanthology.org/2022.tacl-1.17.

18

https://openreview.net/forum?id=JtBRnrlOEFN
https://aclanthology.org/2021.naacl-main.53
https://aclanthology.org/2025.coling-main.400/
https://doi.org/10.1109/ICASSP49357.2023.10094573
https://doi.org/10.1109/ICASSP49357.2023.10094573
https://openreview.net/forum?id=X1xNsuKssb
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2303.17564
https://aclanthology.org/2022.tacl-1.17

Published as a conference paper at COLM 2025

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhut-
dinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable
multi-hop question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 23692380, Brussels, Belgium, October-November 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https:
//aclanthology.org/D18-1259.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike
Lewis. MEGABYTE: Predicting million-byte sequences with multiscale transformers.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=JTm02V9Xpz.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp- 47914800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Xinsong Zhang, Pengshuai Li, and Hang Li. AMBERT: A pre-trained language model with
multi-grained tokenization. In Chengging Zong, Fei Xia, Wenjie Li, and Roberto Navigli
(eds.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 421-
435, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.findings-acl.37. URL https://aclanthology.org/2021.findings-acl.37.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai
Wang, Jian Yin, Ming Zhou, and Nan Duan. Analytical reasoning of text. In Marine
Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of
the Association for Computational Linguistics: NAACL 2022, pp. 2306-2319, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-naacl.177. URL https://aclanthology.org/2022.findings-naacl.177.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating
foundation models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings
of the Association for Computational Linguistics: NAACL 2024, pp. 2299-2314, Mexico City,
Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.149. URL https://aclanthology.org/2024.findings-naacl.149.

A Experimental setup details

A1 Tokenizer training

We use the HuggingFace tokenizers (Wolf et al., 2020) library for tokenizer training.

A.1.1 Tokenizer training data

We produce the tokenizer training data by sampling documents uniformly at random from
the OLMO2 stage 2 pretraining data, referred to as olmo-mix. We use a 10 GB subset because
early experiments showed that data beyond even ~10 MB does not make a difference in the
resulting tokenizer’s encoding efficiency.

We found that olmo-mix had several extremely long documents, with the longest 1% of
documents making up 15% of the data. In particular, a full academic paper (specifically
Veluri et al., 2023) is duplicated 2,224 times back-to-back inside one document (as delimited
by special EOS tokens). Because our tokenizers are trained on small sets of data, these
extremely long documents can take up a large proportion of the data, resulting in unusual
tokens like _chunk-based_processing. To circumvent possible data duplication issues, we
truncate the longest 1% of documents in the tokenizer training data to the 99% percentile of
document lengths. As future practitioners train SuperBPE tokenizers, we encourage especial
attention to deduplication, which may have an outsized impact on SuperBPE tokenizers.

19

https://aclanthology.org/D18-1259
https://aclanthology.org/D18-1259
https://openreview.net/forum?id=JTmO2V9Xpz
https://openreview.net/forum?id=JTmO2V9Xpz
https://aclanthology.org/P19-1472
https://aclanthology.org/2021.findings-acl.37
https://aclanthology.org/2022.findings-naacl.177
https://aclanthology.org/2024.findings-naacl.149

Published as a conference paper at COLM 2025

A.1.2 Limit on the size of superword tokens

Even after truncating the longest 1% of documents, we found that SuperBPE tok-
enizers can still have extremely long tokens consisting of highly duplicated boiler-
plate text such as the Project Gutenberg license or common internet phrases such as
You_are_commenting_using_your. This issue is already present in BPE tokenizers trained
on Chinese, which contain sentence-long tokens clearly taken from pornographic content.
For instance, tokens in GPT-40’s tokenizer include F#T=1{E /o5 = latest HD uncensored and
BRIR M4 = entertainment website. To prevent concerns about the tokenizer directly revealing
parts of the training data (Hayase et al., 2024), we enforce an upper bound of 4 words in
our tokens. Empirically, we found that this had no measurable impact on the encoding
efficiency of the tokenizers or the resulting trained LMs.

A.1.3 Pretokenization rules

We implement whitespace pretokenization with the default regex string from tokenizers
which was adopted by the GPT-2 tokenizer.

Np{LI*+] ?2L°\s\p{LI\p{NII+|\s+(?!\S) |\s+

Note that the original GPT-2 pretokenization regex string also splits on contractions, e.g.,
splitting I’minto [I, ’m]. Since this choice is not universal among commercial tokenizers and
is not related to whitespace pretokenization (and furthermore creates plenty of undesirable
edge cases [Land, 2024]), we do not include this rule.

Independently of whitespace pretokenization (i.e., for both BPE and SuperBPE tokenizers),
we follow recent convention (as introduced by GPT-3.5 and borrowed by LLAMA3, OLMO02)
and pretokenize digits into blocks of 3. We make one modification, by grouping digits into
3 from the right rather than from the left, so that, e.g., 1000 would be pretokenized as [1,
000] instead of [100, @]. This choice was recently found to yield improved performance on
math benchmarks, even when applied solely at inference time (Singh & Strouse, 2024). Digit
pretokenization is enforced with the following regex.

C=(\d{3H)H+(?!\d))

A.1.4 Special casing of colon

In order to make our tokenizer compatible with the common question-answering format
where the prompt ends with a colon and the continuation is expected to start with a space,
we “special-case” colon by preventing the algorithm from learning any tokens that contain
“: " as a substring. Without this fix, common question/answer prompts might produce
distorted distributions over completions. Please see §C.3 for further discussion. This affects

the resulting tokenizer minimally in terms of the learned vocabulary.

A.2 Scaling model configurations

When matching inference compute, the goal is to match the average flops per byte of
generated text between two models with different tokenizers. To do so, we scale the model
up to cancel the effect of longer tokens, which requires precise control over the model’s size.
To produce a model config with an arbitrary inference compute cost, we first represent the
inference flops per token as a polynomial in terms of the model dimension, MLP hidden
dimension, and number of layers. Conveniently, once the model dimension and number of
layers are chosen, the flops are affine in the MLP hidden dimension, so we can easily solve
for the MLP hidden dimension that gets us closest to the desired budget. We fix the head
dimension to that of the base model.

To find the best config overall, we grid search over the hidden dimension (which must
remain a multiple of the head dimension) and number of layers, solving for the MLP hidden
dimension at each step. We choose the config which expands the transformer by the most
uniform factors. This is measured by taking the ratios of the current parameters with the

20

Published as a conference paper at COLM 2025

base config’s parameters, applying the logarithm, and taking the standard deviation. While
prior work has explored the best way to scale transformer models (Tay et al., 2021; Petty
et al., 2023), we believe that scaling all parameters uniformly is reasonable since we are only
increasing the model size by a small amount.

We present the exact model hyperparameters for all model sizes used in our experiments in
Table 4.

680M 910M 1.9B 2.5B 8B 11B
Parameter count 678.2M 912.5M 1.893B 2.536B 8.115B 11.30B
Model dimension 1024 1,216 2,048 2,304 4,096 4,608
MLP hidden dimension 8,192 9,728 16,384 18,432 22,016 24,704
Head dimension 64 64 128 128 128 128
Number of heads 16 19 16 18 32 36
Number of layers 16 18 16 19 32 37
Vocabulary size 20,0005 20,0005 20,0005 20,0005 20,0005 20,0005

Table 4: Model parameters for all model sizes. Model sizes 910M, 2.5B, and 11B are scaled
versions of 680M, 1.9B, and 8B respectively. All other parameters match those of OLMO
300M (from the OLMO model ladder) for sizes 680M and 910M, OLMO 1B for sizes 1.9B and
2.5B, or OLMO2 7B for sizes 8B and 11B, respectively. Maximum sequence length values for
various tokenizers are listed in Table 2.

A.3 Compute used for model training

All models were pretrained on 32 8 x H100 nodes.

A.4 Evaluation Suite

Our evaluation suite builds on DataComp-LM’s core evaluation of 22 tasks (Li et al., 2024),
which was found to provide low-variance signal of learning. We add 8 more popular tasks
(e.g., MMLU, GSMS8K) while also covering string manipulation tasks (e.g., CUTE), which
are known to be challenging for LMs due to their tokenizers.

All evaluations are based on decoding from the model and scoring the generation by either
comparing it to the ground truth or evaluating its functional correctness (in the case of
coding tasks). For multiple choice (MC) tasks, we check whether the predicted answer
choice is an exact match (EM) to the target (we observe that effectively 100% of model
generations are valid answer choices, especially for later checkpoints). For open-ended
tasks, we check whether the generated output contains the ground truth answer exactly,
and for coding tasks, we report pass@10.

We provide 5 in-context examples for all tasks, except for CoQA, which naturally contains
in-context examples in the conversational context, and the coding tasks (HumanEval and
MBPP), which are evaluated zero-shot following prior work. We use a maximum of 5,000
examples from each dataset, though some datasets contain much fewer examples. BB below
stands for BIG-Bench.

ARC consists of 4-way MC questions from grades 3-9 science exams. It contains two
splits, ARC-Easy, which require knowledge of basic science, and ARC-Challenge, which
require some procedural reasoning (Clark et al., 2018).

Arithmetic contains simple arithmetic problems (Brown et al., 2020).!1 We use the 2da,
2dm, and 2ds splits for addition, multiplication, and division of (up to) 2-digit numbers.

BoolQ contains naturally occurring yes/no questions paired with passages that provide
an answer (Clark et al., 2019).

Hhttps: //huggingface.co/datasets/EleutherAI/arithmetic

21

https://huggingface.co/datasets/EleutherAI/arithmetic

Published as a conference paper at COLM 2025

CommonsenseQA contains 5-way MC questions that require commonsense knowledge
to answer (Talmor et al., 2019).

COPA contains two-way MC questions about cause and effect (Roemmele et al., 2011;
Kavumba et al., 2019).

CoQA consists of passages with a series of conversational questions about the passage
Reddy et al. (2019). Each question requires the prior conversational context, due to possible
coreference across questions. Because these contextual questions naturally serve as in-
context examples, we do not provide additional in-context examples.

BB CS Algorithms consists of two subtasks, determining whether a given series of paren-
theses is balanced and identifying the longest common subsequence in two letter strings
(BIG-bench, 2023).

CUTE contains questions that require the model to understand and manipulate spelling,
such as replacing all instances of a particular letter in a word with another letter (Edman
et al., 2024).

DROP contains questions about passages, potentially requiring reasoning over multiple
pieces of information in the passage (Dua et al., 2019).

BB Dyck Languages consists of a sequence of parentheses and requires the model to
predict the correct sequence of closing parentheses so that the entire sequence is well-
balanced.

GSMS8K contains grade school math word problems that require between 2 and 8 steps to
solve. In the in-context examples, we provide the answer passage that contains intermediate
steps with calculator annotations removed. The model is expected to provide the final
numerical answer after four hashtags (####) that delimit the reasoning and final answer
(Cobbe et al., 2021).

HellaSwag contains 4-way MC questions which ask for the most natural continuation
given the context (Zellers et al., 2019).

HotpotQA contains questions along with a corresponding passage from Wikipedia con-
taining the answer (Yang et al., 2018).

HumanEval contains programming problems where the model is tasked with completing
a Python function given its docstring (Chen et al., 2021). We use “\nclass,” “\ndef,” “\n#,”
“\nif,” as stop tokens. Following the original paper, we sample 20 continuations with top
p = 0.95 and temperature = 0.8. Models are allowed to generate for a maximum of 128 new
tokens. The functional correctness of generations is automatically evaluated using test cases.
We use the 20 generation to make an unbiased estimate of the pass@10 rate, i.e., how likely
at least one of 10 sampled solutions for a problem is correct.

Jeopardy contains open-ended questions from the “Jeopardy!” quiz show.!?

Lambada contains narratives without the last word, which is inferrable given the context
(Paperno et al., 2016). This task requires models to attend to the full narrative instead of
only the local context.

BB Language Identification contains sentences in different languages, and the task is to
choose the language of the sentence from a long list of options.

Lhttps: //www. kaggle.com/datasets/tunguz/200000- jeopardy-questions

22

https://www.kaggle.com/datasets/tunguz/200000-jeopardy-questions

Published as a conference paper at COLM 2025

LSAT-AR contains MC questions that evaluate the analytical reasoning (AR) ability of
LMs (Zhong et al., 2022; 2024). Test questions are drawn from the Law School Admission
Test (LSAT) from 1991 to 2016.

MBPP contains Python programming problems where the model is given a description
of the desired function and a series of unit tests. We use the same evaluation setup as
HumanEval.

MMLU contains 4-way MC questions covering 57 different domains, covering both world
knowledge and problem-solving abilities (Hendrycks et al., 2021). Note that we report a
straight average over the 5000-example sample, rather than a macro-average over subjects.

OpenbookQA contains 4-way MC questions that require multi-step reasoning and com-
monsense knowledge (Mihaylov et al., 2018).

BB Operators contains questions where the model is given a function definition and asked
to compute the output of that function given a particular input.

PIQA contains MC questions that require physical commonsense reasoning (Bisk et al.,
2020).

BB Repeat-Copy-Logic contains instructions that ask the model to produce a particular
string (Austin et al., 2021).

SQuAD contains passages paired with questions about the passage (Rajpurkar et al., 2016).
The answer is always a span from the passage.

TriviaQA contains open-ended questions about world knowledge (Joshi et al., 2017).

BB WikidataQA require models to complete factual statements with the correct continua-
tion.

Winograd contains binary MC questions where the model is given a context and asked to
determine which entity a pronoun refers to, between two options (Levesque et al., 2012).
Correctly answer the question requires commonsense knowledge and contextual reasoning.

Winogrande contain questions with the same schema as Winograd, but increases both the
scale and difficulty of the dataset (Sakaguchi et al., 2021).

B Additional Results

B.1 How BPB varies with context length

In our main experiments (§3), we adjust the context size of SuperBPE models to match the
effective context size of the BPE model in raw text. To justify this design choice, we show
that the next token becomes easier to predict as a function of the preceding context in bytes
(not tokens). Figure 6 shows the average BPB at every token index (left) vs byte index (right)
— when measured at fixed token indices, SuperBPE has an advantage from seeing more
context (achieving lower loss on average at the same token index), whereas at fixed byte
indices, this advantage goes away.

B.2 Task evaluation

We report the individual task performance of BPE and all SuperBPE models in Table 5 (this
an expansion of Table 1). We also show a subset of task-specific performance curves during
pretraining in Figure 12.

23

Published as a conference paper at COLM 2025

131 131
[0) 0} —— SuperBPE
g 121 g 124
3 3 —— BPE
ERRE NEERE
(] [0}
& 10 & 10+
()]
+ +
3 09 3 09
S 08 S 08+
@© @®
— —_
O 07 O 07+
> >
< 06 < 061
0 20 40 60 80 100 0 200 400 600
Tokens of context Bytes of context

(a) BPB vs tokens of context (b) BPB vs bytes of context

Figure 6: When comparing the normalized loss of the next token, controlling for preceding
tokens of context gives SuperBPE an advantage, while controlling for bytes of context gives

a close match between BPE and SuperBPE.

Category Task BPE 8B SuperBPE 8B SuperBPE 11B
t=80k t=160k =180k

Knowledge ARC-Easy (MC) 46.6 60.8 63.6 67.1 60.6
ARC-Challenge (MC) 35.1 46.4 439 50.6 439

Jeopardy (EM) 421 40.2 41.8 41.8 422

MMLU (MC) 36.5 419 42.6 44.7 41.0

OpenbookQA (MC) 33.2 49.8 49.4 54.4 46.4

TriviaQA (EM) 60.6 59.7 61.9 61.3 62.3

WikidataQA (EM) 69.7 68.2 69.5 70.9 70.9

Math Arithmetic (EM) 54.8 63.2 58.6 59.3 56.9
& Reasoning GSMSK (EM) 6.4 6.9 6.7 6.7 74
LSAT-AR (MC) 21.3 23.9 24.3 23.0 20.9

Operators (EM) 35.5 32.2 35.5 33.6 37.9

Repeat-Copy-Logic (EM) 3.1 6.2 6.2 6.2 31

Coding HumanEval (pass@10) 15.9 15.0 144 13.4 15.9
MBPP (pass@10) 27.5 25.3 28.4 28.3 29.4

Reading BoolQ (MC) 59.7 65.2 62.3 64.6 64.7
Comprehension CoQA (EM) 12.6 12.8 12.5 13.2 13.1

DROP (EM) 31.3 28.6 32.8 314 33.1

HotpotQA (EM) 53.5 52.5 54.7 55.2 54.6

SQuAD (EM) 75.1 74.3 76.2 75.8 77.2

Commonsense CommonsenseQA (MC) 33.5 50.0 52.3 53.8 50.5
COPA (MC) 77.0 86.6 87.6 85.8 97.0

PIQA (MC) 55.2 57.7 61.8 59.8 59.2

Winograd (MC) 50.4 52.5 55.2 53.1 52.3

Winogrande (MC) 47.3 51.2 51.6 52.6 50.2

Language HellaSwag (MC) 29.7 31.2 30.3 33.7 36.6
Understanding LAMBADA (EM) 77.0 72.8 75.1 70.6 75.8

Language Identification (EM) 8.8 10.2 9.7 9.0 10.1

String CS Algorithms (EM) 46.1 47.3 42.6 48.6 49.1
Manipulation CUTE (EM) 31.3 322 32.8 32.6 35.7

Dyck-Languages (EM) 15.9 23.2 18.8 14.2 16.7

Average 39.8 429 43.4 43.8 43.8

Table 5: Performance of BPE and SuperBPE models on 30 downstream tasks. This is an

expansion of Table 1 with more models.

B.3 BPB evaluation

See Figure 7 for the bits-per-byte during pretraining of all models we compare.

24

Published as a conference paper at COLM 2025

0.90
—— BPE 8B
0.88 1 SuperBPE 8B (t =80K)
086 —— SuperBPE 8B (t =160K)
' —— SuperBPE 8B (t = 180K)
0.84 SuperBPE 11B (t =180K)
it
>
© 0821
©
o
g 0.80 1
m
0.78
0.76
0.74
0.00 0.25 0.50 0.75 1.00 125 150 175
Train FLOPs le22

Figure 7: Bits-per-byte of BPE and SuperBPE models during pretraining. The BPE 8B,
SuperBPE 8B (t = 180k), and SuperBPE 11B attain 0.7465, 0.7482, and 0.7445 BPB respectively
at the end of training.

B.4 Additional scaling experiments

Our tokenizer has several interesting interactions with LM scaling, purely due to its in-
creased efficiency. For the purpose of this section, let & denote the ratio of our tokenizer’s
efficiency to the efficiency of a normal BPE tokenizer. (For example, we have « ~ 1.49 for
our most efficient tokenizer.)

The primary advantage of a more efficient tokenizer is a reduction of the context length (in
tokens) for the same effective context length (in bytes). All other things being equal, this
gives:

1. A 1/a? reduction in attention compute.
2. A 1/a reduction in non-attention compute.

3. A 1/a reduction in activation memory during training and KV-cache size during
inference.

Thus, if the context length is short, the total compute savings will be close to 1/«. For longer

contexts, the compute savings may approach 1/a2. Given a fixed training budget, there are
two natural ways to convert these savings into improved performance.

B.4.1 Matching model parameter count

In many applications of language models, such as deployment to consumer or edge devices,
it is crucial to keep the model’s size under control. In this regime, we will assume the model
size fixed. This directly grants the aforementioned benefits, and we will turn to increasing
the number of training steps to match the training budget.

Since the amount of text seen per step is remains the same due to the fixed effective context
length, a more efficient tokenizer allows the model to see more text during training for
the same budget. This may lead to improved performance on downstream tasks since the
model is more likely to have seen relevant training examples during training. Additionally,
although the model is the same size, it requires less compute and memory at inference
time to perform the same tasks. In some settings, these gains can be used to amplify
inference-time scaling (Snell et al., 2024), leading to further potential gains.

25

Published as a conference paper at COLM 2025

—o— BPE
0.95 1 —o— SuperBPE: 1.4x steps
SuperBPE: 1.4x model

0.90 1

0.85 1

Bits per Byte

0.80 1

0.75 1

107 102
Train FLOPS

Figure 8: Results for scaling both model parameters and train tokens proportionally. Com-
pared to the BPE baseline, we consider a SuperBPE model that matches parameter count
and a SuperBPE model that matches inference compute. Here we see the spread between
the three settings decreases with scale.

B.4.2 Matching inference compute

In other applications of language models, model size is less critical compared to inference
compute. In these situations, it may be more desirable to scale the model size up to absorb
the extra compute.

Changing the model size has a strong impact on scaling. Depending on the context length,
we may scale the model by a factor of anywhere between a and a? in order to match
inference compute. Since each training step involves 1/« as many tokens, the ratio of tokens
to model parameters per step may be reduced by as much as 1/a3. Prior work on LM
scaling (Hoffmann et al., 2022; Kaplan et al., 2020) reports diminishing gains once the ratio
of the numbers of train tokens and model parameters becomes too large. An « times more
efficient tokenizer allows us to train for up to a® times longer while maintaining the same
token/parameter ratio and without increasing inference compute, delaying the regime of
diminishing gains.

B.4.3 Experiments

We train 680M and 1.9B sized BPE models on various numbers of tokens—ranging from
~ 20 to ~ 80 tokens per parameter—to establish a baseline scaling trend. We then train two
models with SuperBPE tokenizers for each baseline model: one with matching parameter
count and one with matching inference compute cost.

There are a couple interesting ways to visualize these results: in Figure 5, we hold the model
size fixed and increase the number of training tokens, and in Figure 8, we hold the ratio of
train tokens to model parameters fixed (inference compute matched will be fixed 0.7 times
lower) and vary both the model size and the number of training tokens. The general trends
observed from these results are that matching inference compute is almost universally the
best, while matching parameter count tends to be worse than the baseline except in the
undertrained regime, where it is better than the baseline. The differences between the
different settings increases with overtraining, but decreases when scaling both model size
and training tokens at the same time.

26

Published as a conference paper at COLM 2025

(2] .
S BOKL - Max possible 180K | 183686
Aé 160K A
+ 140K 160K A
s 140K 1
S 12011 2 120K
q%')_ 100K 1 3 100K
80K O 80K 1
i
g 60K - 60K 1
2 40K+ 40K
20K 1 11407
Z 20K o 4189 22
20K 40K 60K 80K 100K120K140K160K 180K 1 2 3 4
Transition point Number of words in token
(a) Superword density (b) Superword length distribution

Figure 9: (Left) The number of superword tokens in a SuperBPE tokenizer, as a function
of the transition point. A superword token is any token that violates the whitespace
pretokenization rule from Stage 1. With an early transition point of t = 60K, about 85% of
the tokens learned in Stage 2 are superword tokens. For t > 100k, close to 100% of Stage
2 tokens are superwords. (Right) The distribution of superword token lengths in terms of
number of words, for t = 180k.

C Analysis of SuperBPE Tokenizers

C.1 Superword token analysis

How many superword tokens are in SuperBPE tokenizers? While the second stage of the
pretokenization curriculum allows learning of superword tokens, subword tokens can still
be learned. Shown in Figure 9a, for transition points f < 80k, the number of superword
tokens is relatively steady around 120k. Past ¢t > 100k, almost all tokens learned in Stage 2
are superword tokens. Figure 9b shows the number of whitespace-delimited words in the
superword tokens of SuperBPE with ¢ = 180k.

C.2 Analysis of token frequencies in encoding

We also analyze token frequency statistics under BPE versus SuperBPE tokenizers. Fig-
ure 10a shows the relation between token rank (in frequency) and frequency. While tokens
in BPE demonstrate a standard Zipfian relation, the slope of SuperBPE curves have a more
shallow slope, meaning that the rate of decay in token frequency is smaller. The smaller
proportion of tokens with very low counts may reduce prevalence and severity of glitch
tokens (Rumbelow & Watkins, 2023; Land & Bartolo, 2024).

Figure 10b shows the minimum number of tokens from the vocabulary needed to cover any
given proportion of data. For BPE, the relation is striking—only 57% of tokens are needed to
encode 99% of the data! The remaining tokens make up a long tail of infrequent tokens. In
contrast, SuperBPE tokenizers make better use of the vocabulary. For = 80k and t = 180k,
this statistic is 90% and 70% of tokens, respectively.

C.3 Distributional Distortion at the Prompt Boundary

Prior work (Lundberg, 2023; Phan et al., 2024) has shown that LMs using BPE tokenizers may
produce distorted generations due to the forced partition in tokenization between a prompt
and its completion. This issue stems from the fact that users typically desire completions
conditioned on a text prompt. The natural approach to obtaining such completions is to
take the prompt, tokenize it with the proper tokenizer, and then sample a completion of the
resulting token sequence from the LM.

27

Published as a conference paper at COLM 2025

107]
101 — Bgpe
W SuperBPE
106 S 0381 (t = 80K, 160K, 180K)
o}
2 ® 061
S 105 S
@) c
3 S 0.41
S
1044 —_ BPE F on.
Il SuperBPE '
(t = 80K, 160K, 180K)
103 . . . 0.0 1
10° 10° 10° 02 04 06 08 1.0
Tokens ordered by freq Data coverage
(a) Token frequency distribution (b) Data covering

Figure 10: (Left) Token counts when ordered by frequency. The rate of decay in token
frequency is smaller. (Right) The minimum number of tokens needed to cover a given
proportion of the data. SuperBPE tokenizers make better use of the vocabulary, while BPE
tokenizers have a long tail of infrequent tokens.

For a simple example of how this can go wrong, consider a tokenizer with base vocabulary
of A and B and a single merge forming the token AB. Let’s suppose we trained a model using
this tokenizer on the strings “AA”, “AB”, and “BB” with equal proportions. If we condition
on the text prefix “A”, there are two equally probable continuations: “A” and “B”. However,
A is the only valid completion of the token prefix A, since the token B never follows the
token A during training. In other words, the prompt-completion pair (A, B) is canonically
tokenized using a token that crosses the boundary between the prompt and the completion.

While this problem is shared by all BPE tokenizers, it can be partially mitigated by pre-
tokenization: if the prompt and the completion are separated during the pretokenization
step, then it is impossible for a token to cross the boundary. This fix tends to work well for
English, where the completion is typically expected to begin with whitespace, so whites-
pace pretokenization would apply. However, there are many settings where whitespace
pretokenization cannot fix the underlying issue, including natural languages that do not
use whitespace to separate words (like Chinese and Japanese), programming languages,
and constrained generation (Lundberg, 2023; Ribeiro, 2023).

Several fixes for this issue have been proposed: at training time, token merges can be
randomly dropped (Provilkov et al., 2020; Sims et al., 2025; DeepSeek-Al, 2025) to expose
LMs to the internal makeup of tokens; at inference time, options include token healing
(Lundberg, 2023), algorithmic correction (Phan et al., 2024), and enumeration of all relevant
segmentations of the prompt (Vieira et al., 2024). We leave a detailed comparison of these
techniques to future work.

Additionally, the issue does not apply at all to models that separate the user’s input from
the model’s response using special tokens, as is typical for chat models.

D Other Related Work
Please see Mielke et al. (2021) for a survey of subword tokenization.

Pretokenization Pretokenization defines how the text is split in order to prevent certain
pairs of tokens from being merged. GPT-2 (Radford et al., 2019) introduced a regular
expression (regex) which defines the pretokenization pattern. These regex strings have
gained complexity over time; GPT-3.5 limits the number of digits in numerical tokens to
3, and allows single punctuation to be merged with the start of words (presumably to
accommodate code, as it allows . get to be a single token). Prior work has shown that, for

28

Published as a conference paper at COLM 2025

109 4

— BPE
—— SuperBPE (t = 80K)

107<

Count

atldali G R
103<

10"

g A

('] 25600 50600 75000 100000 125000 150000 175000 200000

Token ID

Figure 11: Token counts when ordered by token ID, which reflects the order in which tokens
were learned in tokenizer training.

instance, digit pretokenization choices (Nogueira et al., 2021; Thawani et al., 2021; Singh
& Strouse, 2024) can significantly impact arithmetic performance. It is also likely that
pretokenization affects different languages differently (Velayuthan & Sarveswaran, 2025;
Ahia et al., 2023), due to natural statistics of the average word length, which acts as an upper
bound on encoding efficiency in that language under subword tokenization. Nonetheless,
the effectiveness of many pretokenization choices have not been thoroughly studied.

n-gram language models Our work is loosely related to n-gram LMs, which incorporate
n-gram statistics into the next-word prediction (Brants et al., 2007; Liu et al., 2024a).

Internal representation of semantic units Previous work has showed that the early layers
of the LM may “aggregate” information over multi-token entities (e.g., [-New, _York]) into
the last token’s (e.g., -York) hidden representation (Meng et al., 2022; Kaplan et al., 2025;
Lad et al., 2024). This suggests that LMs naturally learn multi-word representations, and
segmentating text into more semantically cohesive units at the input level (e.g., having
_New_York as a single token) may simplify this process.

29

Published as a conference paper at COLM 2025

MMLU

ARC-Challenge

45

SuperBPE (t = 80K) 50 SuperBPE (t = 80K)
——— SuperBPE (t = 160K) ——— SuperBPE (t = 160K)
401 —— SuperBPE (t =180K) 45{ —— SuperBPE (t = 180K)
—— SUperBPE (11B, t = 180K) —— SUperBPE (11B, t = 180K)
< Cuw
> 35 >
(8] (8]
Y Y
3 33
Q Q
< 30 <
30
25 25
0.00 025 0.50 0.75 1.00 125 150 175 0.00 0.25 0.50 0.75 1.00 125 150 175
Train FLOPs Te22 Train FLOPs Te22
MBPP Lambada
30
75
25 70
—~20 _. 85
yn <
= g 60
® 15 s
g 8 55
& <
0 BPE © —— BPE
SuperBPE (t = 80K) SuperBPE (t = 80K)
——— SuperBPE (t = 160K) 45 ——— SuperBPE (t = 160K)
° —— SuperBPE (t = 180K) —— SuperBPE (t = 180K)
~— SuperBPE (11B, t = 180K) 40 ~— SuperBPE (11B, t = 180K)
0

0.50 0.75 1.00

Train FLOPs

125 1.50 175

1e22

0.50 0.75 1.00

Train FLOPs

1.25 150 175

1e22

Figure 12: Performance during pretraining for a subset of tasks in our evaluation suite.

30

