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Abstract

Language model (LM) benchmarking faces several challenges: comprehen-
sive evaluations are costly, benchmarks often fail to measure the intended
capabilities, and evaluation quality can degrade due to labeling errors and
benchmark saturation. Although various strategies have been proposed to
mitigate these issues, they tend to address individual aspects in isolation,
neglecting broader questions about overall evaluation quality. Here, we in-
troduce FLUID BENCHMARKING, a new evaluation approach that advances
LM benchmarking across multiple dimensions. Inspired by psychometrics,
FLUID BENCHMARKING is based on the insight that the relative value of
benchmark items depends on an LM’s capability level, suggesting that
evaluation should adapt to each LM. Methodologically, FLUID BENCH-
MARKING estimates an item response model based on existing LM evaluation
results and uses the inferred quantities to select evaluation items dynamically,
similar to computerized adaptive testing in education. In our experiments,
we compare FLUID BENCHMARKING against the common practice of ran-
dom item sampling as well as more sophisticated baselines, including
alternative methods grounded in item response theory. We examine four
dimensions—efficiency, validity, variance, and saturation—and find that
FLUID BENCHMARKING achieves superior performance in all of them (e.g.,
higher validity and less variance on MMLU with fifty times fewer items).
Our analysis shows that the two components of FLUID BENCHMARKING
have distinct effects: item response theory, used to map performance into
a latent ability space, increases validity, while dynamic item selection re-
duces variance. Overall, our results suggest that LM benchmarking can be
substantially improved by moving beyond static evaluation.

() Codeand Data github.com/allenai/fluid-benchmarking

1 Introduction

The field of language model (LM) evaluation is experiencing a moment of crisis. With new
benchmarks being released by the day, it becomes increasingly difficult to decide which
benchmark(s) to pick for a certain evaluation goal (Ni et al., 2024; Perlitz et al., 2024b). At
the same time, evaluating LMs on ever-growing sets of benchmarks leads to substantial
computational—and, consequently, financial and environmental—costs (Liang et al., 2023),
all while producing brittle results that fluctuate due to evaluation noise (Madaan et al., 2024;
Mizrahi et al., 2024). More alarmingly, it is often unclear whether a specific benchmark in
fact measures the capability that it purports to evaluate (Liao et al., 2021; Saxon et al., 2024),
a problem exacerbated by labeling errors (Northcutt et al., 2021; Gema et al., 2024; Vendrow
et al., 2025) and benchmark saturation, when many LMs are scoring near the maximum on
a benchmark (Vania et al., 2021; Xia et al., 2024).

These challenges have spurred various efforts to improve benchmarking, by increasing
efficiency (Perlitz et al., 2024a; Polo et al., 2024; Vivek et al., 2024; Kipnis et al., 2025),
detecting and correcting mislabeled items (Gema et al., 2024; Vendrow et al., 2025), reducing
evaluation variance (Madaan et al., 2024), and enhancing benchmark difficulty (Suzgun
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Figure 1: (a) Given a benchmark Q, we on publicly available LM

evaluation results, providing useful information about individual items (specifically, about
difficulty and discrimination). The figure illustrates this with results for four LMs and
difficulty, symbolized by item darkness. In practice, we use more than a hundred LMs.
(b) FLUID BENCHMARKING leverages the in two ways: it uses
item difficulty and discrimination to (i) dynamically select an item subset Q* that matches a
given LM’s capability profile—easier items are routed to the weaker LM m,, more difficult
items to the stronger LM mj;—and (ii) represent a given LM’s performance in a latent ability
space rather than standard accuracy space. (c, d) Compared to baselines such as evaluating
on a random subset of items (RANDOM), FLUID BENCHMARKING improves benchmarking
in various ways: it substantially decreases step-to-step evaluation variance, exemplified by
training curves of Pythia-2.8B evaluated on ARC Challenge with 30 items (c), while at the
same time increasing the external validity of evaluation, shown as the mean rank distance
between an LM’s predicted and true rank (d). See text for more details.

et al., 2023; Gupta et al., 2024; Paech, 2024). However, most of these studies have addressed
individual aspects of evaluation quality in isolation, sometimes with unintended negative
consequences—for example, Madaan et al. (2024) showed that efficient benchmarking
methods can increase evaluation variance between training runs with different random
seeds, thus reducing benchmarks’ practical utility.

In this paper, we propose FLUID BENCHMARKING, a new benchmarking method that
improves evaluation across multiple relevant dimensions. FLUID BENCHMARKING is based
on the insight that the relative value of benchmark items depends on an LM’s capability
level; for example, a hard question might be too difficult for a weak LM, but informative for
a strong LM. FLUID BENCHMARKING integrates item response theory (IRT; Lord, 1980; van
der Linden & Hambleton, 1997; DeMars, 2010), which represents performance in a latent
ability space, with methods from computerized adaptive testing used in education (Meijer
& Nering, 1999; Chang, 2015; Magis et al., 2017): IRT draws upon existing LM evaluation
results to enrich benchmarks with information about item difficulty and discrimination,
which is leveraged to dynamically select items that match an LM’s capability level (Figure 1).
This contrasts with the until now universal practice of what we call static benchmarking,
which assumes a globally optimal set of evaluation items for all LMs.

In our experiments, we investigate how different methods for improving evaluation affect
the efficiency, validity, variance, and saturation of benchmarks. We specifically focus on LM
evaluation during pretraining, a key application of benchmarking. We evaluate six LMs on six
benchmarks, comparing FLUID BENCHMARKING against a broad set of methods proposed
in prior work. We find that FLUID BENCHMARKING consistently outperforms all baselines
across all dimensions of evaluation quality. For example, compared to the common practice
of random item sampling, FLUID BENCHMARKING improves validity and lowers step-to-
step variance on MMLU using fifty times fewer items. Our analysis attributes these gains
to the complementary effects of the two key components of FLUID BENCHMARKING: IRT
enhances validity, while dynamic item selection reduces variance.
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2 Preliminaries: Benchmark Refinement

In this paper, we introduce benchmark refinement as the problem of improving benchmark-
ing by optimizing (i) the selection of evaluation items as well as (ii) the aggregation of their
results into benchmark-level scores. We argue that many existing efforts in LM evaluation,
previously considered in isolation, can be productively unified under this umbrella.

2.1 Evaluation is Selection, Scoring, and Aggregation

Let m; be an LM that is to be evaluated on a benchmark Q. We refer to the elements q; € Q
as items. In a general form, evaluating m; on Q can be expressed as

EVALUATE(m;, Q) = AGGREGATE (SCORE(m;,q;)), 1)
quSELECT(Q)
benchmark-level item-level
aggregation scoring

where SELECT is a selection function that determines the set of evaluation items, SCORE is
a scoring function that quantifies LM performance on each item in the evaluation set, and
AGGREGATE is an aggregation function applied over the item-level scores. For notational
convenience, we denote the evaluation set as Q*, which may be a subset, superset, or
identical to Q. If SCORE € {0,1} is a binary function, AGGREGATE returns the mean
of the item-level scores, and SELECT(Q) = Q, we recover the standard accuracy metric
commonly used in LM benchmarking, which we denote as ACCURACY (m;, Q).

With Equation 1, we can break down LM evaluation into two components: item-level scoring
and benchmark-level aggregation. While evaluation quality can be improved at both levels,
many studies take item-level scores as given and focus on improving benchmark-level
aggregation. The present line of work asks: how can we improve LM evaluation through
the choice of both (i) the selection function SELECT and/or (ii) the aggregation function
AGGREGATE? We refer to this problem as benchmark refinement.

2.2 Dimensions of Evaluation Quality

What aspects of evaluation can be improved through benchmark refinement? In this paper,
we focus on four dimensions, each motivated by prior work:

— Efficiency. Evaluation can be made more efficient by selecting a small evaluation set Q*,
with |Q*| < |Q|. Prior work has explored random sampling (Perlitz et al., 2024a), item
clustering (Polo et al., 2024; Vivek et al., 2024), heuristic filtering (Gupta et al., 2024), and
information filtering (Kipnis et al., 2025). Several studies have paired this with modifying
AGGREGATE (Polo et al., 2024; Kipnis et al., 2025).

— Validity. As a means of measuring an underlying capability in LMs, a benchmark should
be predictive of LM behavior beyond the benchmark itself. Prior work has explored
different ways to increase benchmark validity via SELECT—for example, by removing
and replacing items in Q that trivially fail to measure the intended capability, such as
mislabeled items (Northcutt et al., 2021; Gema et al., 2024; Vendrow et al., 2025).

— Variance. If evaluation results on a benchmark fluctuate significantly due to evaluation
noise (e.g., metric instability), the benchmark becomes less useful in many practical
settings, such as tracking progress during training. While it has been shown that removing
items with low discriminative power from Q can reduce variance, attempts to modify
AGGREGATE have so far proven less effective (Madaan et al., 2024).

— Saturation. Given the rapid improvement in LM capabilities, frontier models often
solve most items in benchmarks within a short time, limiting their practical value (Vania
et al., 2021; Liang et al., 2023). This saturation has motivated the development of more
challenging benchmark variants by choosing SELECT such that it focuses on more difficult
items (Suzgun et al., 2023; Gupta et al., 2024; Paech, 2024).

In §4.2, we operationalize each of these dimensions into metrics.
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3 Methodology: FLUID BENCHMARKING

We introduce FLUID BENCHMARKING, a new method for benchmark refinement that departs
from prior work (i) by changing AGGREGATE such that LM performance is represented
in a latent ability space rather than the standard accuracy space (§3.1), and (ii) by choosing
SELECT to dynamically adjust the subset of evaluation items to an LM (§3.2).

3.1 Measuring Language Model Performance in Latent Ability Space

Over the past several decades, research in psychometrics has developed a suite of methods
to address the challenges discussed in the previous section, which arise in a similar form
in human testing. We argue that psychometric methods can be fruitfully applied to the
evaluation of LMs. In particular, we draw upon item response theory (IRT; Lord, 1980; van
der Linden & Hambleton, 1997; DeMars, 2010), which represents test takers in a latent ability
space. The specific IRT model we use is a two-parameter logistic (2PL) model (Lord, 1952;
Birnbaum, 1968). Before providing a formal definition, we begin with a quick overview of
the advantages of IRT-based ability estimates over accuracy.

The key property that distinguishes IRT-based ability estimates from accuracy is that IRT
takes item characteristics into account, whereas accuracy treats all items equally. In the 2PL
model that we consider here, the two item characteristics are:

— Item difficulty. Correctly answering an easy item has a different impact on ability esti-
mates than correctly answering a difficult item.

— Item discrimination. Items exhibit varying rates at which the likelihood of a correct

response increases with ability. Low-discrimination items are often problematic—for
example, we find empirically that many of them are mislabeled (see §6).

These features might be beneficial for benchmark refinement. In terms of efficiency, item
parameters provide a principled basis for selecting Q*. Item discrimination potentially
offers dual benefits: it could enhance validity by reducing the impact of mislabeled items,
while simultaneously decreasing variance by placing less weight on items that inconsistently
differentiate between similar LMs. Finally, the fact that difficult items affect ability estimates
differently than easy items could delay saturation effects, as differences in performance
among strong LMs on difficult items are better captured than by accuracy.

Formulation. Let M = {my,..., m;} be a set of LMs that have been evaluated on a bench-
mark Q. Assuming items with two outcomes, the probability that an LM m; answers item g;
correctly can be modeled as a Bernoulli random variable u;;, where u;; = 1 (success) iff the
LM’s answer is correct. The probability that u;; = 1 is modeled as

p(ujj = 1) = logistic (a;(6; — b;)), ()
where the parameter 6; corresponds to the ability of LM m;, and the item g; is characterized
by parameters a; > 0 (discrimination) and b; (difficulty). Equation 2 is commonly visualized

using so-called item characteristic curves (see Appendix A for examples). For model esti-
mation, we assume local independence and maximize the probability of the full response

matrix U € {0, 1}le using Markov chain Monte Carlo (Junker et al., 2016), with hierarchical
priors on all parameters as suggested by Natesan et al. (2016).

Given a fitted 2PL model, the item parameters a; and b; can be used to estimate the ability
0; of a previously unevaluated LM m; by maximizing

—

0 = mgaxH [logistic (a;(8 — b;))]" [1 — logistic (a;(6 — b;))] 1wy 3)
j=1
Here, the item parameters 4; and b; are treated as fixed. We use maximum a posteriori

estimation (Birnbaum, 1969) to determine 6;. Equation 3 defines a benchmark-level ag-
gregation as in Equation 1, with SCORE(m;, q;) = u;; and AGGREGATE(m;, Q) = 0;. We
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denote this form of model evaluation as ABILITY (m;, Q), which constitutes one of the two
methodological pillars of FLUID BENCHMARKING.

So far we have only modified AGGREGATE, not SELECT, but IRT allows for a principled
way to dynamically adapt Q* to an LM. Next, we present a method how to do so.

3.2 Dynamic Selection of Evaluation Items

Benchmarks are used to monitor performance during pretraining, when LMs are undergoing
rapid development. Can the same Q* be optimal for both a near-random word predictor
(early in training) and a highly capable model?

One way to approach this question is by examining the informativeness of items with respect
to the ability estimate for a given LM, which can be formalized using Fisher information
(Reckase, 2009). In the case of the 2PL model, this is given by

1(91', a;, b]) = ajz logistic (aj(G,» — b])) [1 — logistic (aj(G,» — b])>] . (4)

It can be shown that items with higher Fisher infor-
mation yield more precise ability estimates (Reckase,
2009), and they should be prioritized in Q*.

To analyze how the informativeness of items change
as a function of LM ability, we examine HellaSwag
(Zellers et al., 2019). We consider the scenario of pre-
training mentioned above and simulate a training
run with 50 checkpoints. In Figure 2, we show how
the Fisher information distributes over HellaSwag
items as a function of training progress. The subset
of items with the highest Fisher information substan-
tially changes over the course of the training run,
from very easy items at the beginning of training,
to very difficult items at the end of training. These Figure 2: Fisher information (Equa-

findings suggest that adapting Q" to the capability on 4) of HellaSwag items as a func-
level of an LM could result in more precise ability tjon of training progress. Lower

Fisher information 1(6}, a;, b;)
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draw upon methods developed in the education- Figher information of HellaSwag
research context of computerized adaptive testing jtems. The HellaSwag items with
(Meijer & Nering, 1999; Chang, 2015; Magis et al., highest Fisher information change
2017) to adapt Q* to the capability level of an LM drastically during training (see Ap-
m;. Specifically, we evaluate the LM by iteratively pendix B for more details).

selecting the item from Q with the highest Fisher

information given the current ability estimate,

Qi (0)=@; Qi(t)=Qj(t—1)Uq argmax I (ABILITY(m;, Q;(t—1)),a;b;) . (5)
7;€Q\Q; (¢-1)
We repeat this procedure until the total number of administered items has reached the

budgeted size for Q*, at which point we let Q7 = Q7 (t). Using Equation 5 for SELECT, we
compute EVALUATE (m;, Q) = ABILITY (m;, Q} ) as the final evaluation score.

Dynamically selecting items based on Fisher information is expected to reinforce the very
properties that make IRT-based methods promising for LM evaluation to begin with. For

example, given that [ o a}z (Equation 4), low-discrimination items are unlikely to be included
in Q*. Similarly, because I is maximized when 6; = b; (where I = a]Z /4), dynamic selection

naturally adapts to the capability level of an LM, evaluating weaker LMs on easier items
and stronger LMs on more difficult ones.
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4 Experiments

4.1 Experimental Setup

In this paper, we focus on LM evaluation during pretraining. While the four dimensions of
benchmark refinement, introduced in §2, are relevant across evaluative settings, pretraining
provides a particularly suitable testbed, as it allows for straightforward quantification and
measurement of each dimension (see §4.2).

More specifically, we examine the pretraining runs of six LMs with publicly available
checkpoints. Our main focus lies on 7B LMs, for which we pick Amber-6.7B (Liu et al,,
2023), OLMo1-7B (Groeneveld et al., 2024), OLMo2-7B (OLMo et al., 2025), and Pythia-6.9B
(Biderman et al., 2023). We also examine a smaller LM, specifically Pythia-2.8B (Biderman
et al., 2023), as well as a larger LM, specifically K2-65B (Liu et al., 2025). For each LM, we
evenly select between 61 and 94 checkpoints (see Appendix C for more details).

In terms of benchmarks, we focus on the Open LLM Leaderboard (Beeching et al., 2023),
which comprises ARC Challenge (Clark et al., 2018), GSM8K (Cobbe et al., 2021), HellaSwag
(Zellers et al., 2019), MMLU (Hendrycks et al., 2021), Truthful QA (Lin et al., 2022), and Wino-
Grande (Sakaguchi et al., 2020). For the IRT models underlying FLUID BENCHMARKING, we
fit 2PL models to the evaluation results of LMs contained in the Open LLM Leaderboard. We
exclude the six test LMs and related models (e.g., OLMo1-1B), as well as posttrained models,
since our experiments focus on evaluation during LM pretraining. This results in a final set
of 102 LMs used for IRT model training (see Appendix D for the full inclusion criteria). We
fit separate unidimensional IRT models for each benchmark; we initially experimented with
multidimensional models as well as a single unidimensional model across all benchmarks,
but these approaches yielded worse results (see Appendix E for details).

We then evaluate all checkpoints of the six selected LMs on the six benchmarks and vary
the evaluation strategy (see §4.3). In total, we examine 2,802 checkpoint-benchmark combi-
nations, resulting in over 13 million item-level evaluations.

4.2 Evaluation Measures
We operationalize the four dimensions of evaluation quality introduced in §2 as follows:

— Efficiency. We measure efficiency by systematically varying the number of items used
for evaluating on a benchmark (i.e., the size of Q*). We explore a range of subset sizes,
varying from 10 to 500 items per benchmark.

— Validity. We evaluate validity by testing how well estimated performance on one bench-
mark predicts performance on a different benchmark that targets the same capability.
Specifically, we compute the distance between an LMs’ predicted ranks on the two
benchmarks. We always calculate the rank for the second benchmark based on accuracy.
We examine ARC Challenge and MMLU, which assess knowledge and reasoning, and
HellaSwag and WinoGrande, which assess commonsense reasoning.

— Variance. We measure the step-to-step variance of the training curve for a combination of
LM and benchmark. Specifically, let x!(Q) = EVALUATE(m!, Q) represent the measured
performance (e.g., accuracy) on benchmark Q for model m; at a certain checkpoint f. We
measure the normalized total variation,

n_ Lo 16TH(Q) — x(Q)]
n—1 x(Q) —xH Q)]

where a lower value means lower variance and hence better evaluation quality.

Tv(mir Q) =

(6)

— Saturation. To measure the saturation of a benchmark under a given evaluation strategy,
we compute the monotonicity of the training curve, defined as the absolute Spearman
rank correlation between the sequence of checkpoints and the predicted performance
values (e.g., accuracies). More monotonic training curves indicate that increased pretrain-
ing consistently yields better performance, suggesting that the benchmark has not yet
saturated (at least for LMs within the considered capability range).
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Baselinejiems per benchmark

Measure Method APlO AP50 TBlOO MB143 SM460 MA1,848
Validity BASELINE 20.0 15.2 9.8 8.7 159 14.5
Rank distance | FLUID BENCHMARKING 10.1 8.8 8.7 8.6 14.0 8.3
Variance BASELINE 28.3 19.1 30.5 17.9 10.0 20.4
Total variation | FLUID BENCHMARKING 10.7 6.5 6.1 5.5 2.8 4.8
Saturation BASELINE 0.48 0.62 0.69 0.79 0.88 0.64
Rank correlationt  FLUID BENCHMARKING 0.76 0.86 0.85 0.85 0.97 0.77

Table 1: Comparison against baseline methods. AP: ANCHOR POINTS (Vivek et al., 2024);
TB: TINYBENCHMARKS (Polo et al., 2024); MB: METABENCH (Kipnis et al., 2025); SM: SMART
(Gupta et al., 2024); MA: MAGI (Paech, 2024). The table shows the results averaged across
six benchmarks, six LMs, and between 61 and 94 checkpoints per LM, totaling 2,802 values
contributing to each mean. For METABENCH, the number of items is an average across
benchmarks, and we exactly match the benchmark-level numbers for the comparison.

4.3 Baselines

We compare against several previous benchmark refinement methods. First, we examine
ANCHOR POINTS (Vivek et al., 2024), a method for efficient evaluation based on item
clustering. We use the Open LLM Leaderboard to cluster the benchmarks and consider
two subset sizes in the range examined by the authors (10 and 50). We also examine two
IRT-based methods, TINYBENCHMARKS (Polo et al., 2024) and METABENCH (Kipnis et al.,
2025), and compare directly against their subsets and evaluation tools. In terms of methods
for increasing difficulty, we include the hard versions of ARC Challenge and MMLU from
SMART (Gupta et al., 2024) and MAGI (Paech, 2024), respectively.

FLUID BENCHMARKING differs from prior methods through its AGGREGATE (§3.1) and
its SELECT (§3.2). To disentangle these factors, we consider a baseline in which we ablate
SELECT and compute an ability estimate based on a random subset of items (RANDOM IRT).
In addition, we consider a baseline in which we ablate both SELECT and AGGREGATE,
using a random subset of items to compute accuracy (RANDOM), a popular approach for
efficient evaluation (Liang et al., 2023; Gu et al., 2024; Perlitz et al., 2024a).

5 Results

FLUID BENCHMARKING outperforms all baselines across all dimensions and sample sizes,
often by a wide margin (see Appendix F for breakdowns by benchmark and LM).

Validity. Table 1 (top panel) shows that FLUID BENCHMARKING leads to smaller rank
distances than all baselines. It outperforms ANCHOR POINTS, SMART, and MAGI by wide
margins, almost halving the mean rank distance of ANCHOR POINTS. The IRT-based
methods are better, but FLUID BENCHMARKING still outperforms them.

Table 2 (top panel) shows that ablating the dynamic selection of items (FLUID BENCH-
MARKING vs. RANDOM IRT) results in lowered validity, but the gap diminishes with more
items. This is expected since (dynamic) Q; approximates (static) Q* as the number of items
increases, resulting in converging ability estimates. Ablating the IRT-based ability estima-
tion (RANDOM vs. RANDOM IRT) leads to a much bigger drop in validity (see Figure 1d),
suggesting that the information provided by IRT is particularly beneficial for improving the
predictiveness of performance estimates. This is also supported by the high validity of the
two IRT-based baselines TINYBENCHMARKS and METABENCH.

Variance. Table 1 (mid panel) shows that FLUID BENCHMARKING outperforms all base-
lines in terms of step-to-step variance. This trend holds consistently across LMs, benchmarks,
and subset sizes (see Appendix G for details). Figure 1c illustrates this with the evaluation
of Pythia-2.8B on ARC Challenge, using 30 items. Interestingly, the gap between TINY-
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Items per benchmark

Measure Method 10 50 100 500
Validity RANDOM 20.0 152 169 9.1
Rank distance | RANDOM IRT 14.1 11.1 106 8.4

FLUID BENCHMARKING 10.1 8.8 8.7 8.3
Variance RANDOM 29.0 19.1 19.8 10.2
Total variation | RANDOM IRT 182 15.7 178 10.9

FLUID BENCHMARKING 10.7 6.5 6.1 4.9
Saturation RANDOM 047 0.62 0.64 0.79
Rank correlation t RANDOM IRT 0.48 0.69 0.71 0.85

FLUID BENCHMARKING 0.76 0.86 0.85 0.88

Table 2: Comparison against ablated methods. See caption of Table 1 for more details.

BENCHMARKS and METABENCH on the one hand, and the remaining baselines on the other,
is much less pronounced than for validity—the two methods even lead to worse results for
variance (e.g., TINYBENCHMARKS /100 items: 30.5 vs. RANDOM /100 items: 19.8).

Table 2 (mid panel) reflects this trend: the gap is smaller between RANDOM and RANDOM
IRT than between RANDOM IRT and FLUID BENCHMARKING—on 500 items, RANDOM
IRT even leads to a higher variance than RANDOM. This suggests that the key to FLUID
BENCHMARKING's low variance lies in its dynamic item selection, which is consistent with
psychometric theory: since the variance of ability estimates is inversely proportional to
test information (Lord, 1983), and since FLUID BENCHMARKING selects highly informative
items, the resulting measurement error is substantially reduced.

Saturation. Tables 1 and 2 show that FLUID BENCHMARKING consistently outperforms
all baselines in terms of saturation as well (see Appendix G for details). SMART and MAGI
perform better than some of the other baselines, suggesting that these methods partially
mitigate the saturation problem, yet FLUID BENCHMARKING addresses it more effectively.

Efficiency. Taking a global look at the results, we observe that FLUID BENCHMARKING
leads to improvements across all subset sizes, but is especially effective for small sample
sizes. For example, with 500 items FLUID BENCHMARKING improves the mean rank distance
(validity) of RANDOM by 0.8, but with 10 items by 9.9.

In Appendix H, we show that FLUID BENCHMARKING can improve evaluation quality even
when efficiency is not a concern, outperforming full-benchmark accuracy.

6 Analysis and Discussion

FLUID BENCHMARKING Avoids Mislabeled Items. To test whether FLUID BENCHMARK-
ING indeed avoids problematic instances such as mislabeled questions, we leverage MMLU-
Redux (Gema et al., 2024), a recent effort that annotated MMLU questions for label errors.
We compute the average number of mislabeled items in FLUID BENCHMARKING and RAN-
DOM (]Q*| = 100) across all LMs and checkpoints, finding that it is nearly two orders of
magnitude smaller in the former (0.01) than in the latter (0.75)—in other words, while it takes
roughly 100 benchmarking sessions for a mislabeled item to appear with FLUID BENCH-
MARKING, one occurs in nearly every session with RANDOM. This suggests that FLUID
BENCHMARKING is highly effective at avoiding mislabeled items.

FLUID BENCHMARKING Adapts Items to Language Model Capability. To test whether
item selection indeed dynamically adapts to the capability level of a given LM, we analyze
how item selection changes as an LM gets better over the course of pretraining. Figure 3
visualizes the items selected for FLUID BENCHMARKING (|Q*| = 50) with OLMo1-7B
evaluated on HellaSwag. We observe a substantial shift in the selected items: initially, items
are very easy, but they get gradually more difficult as the LM improves.



Published as a conference paper at COLM 2025

50

40

30

20

Ttem difficulty b;

40 50
Checkpoint

Figure 3: FLUID BENCHMARKING of OLMo1-7B (HellaSwag/50 items). The figure shows
items (stacked along y-axis) selected for FLUID BENCHMARKING as a function of different
checkpoints. Items are ordered by difficulty b;. Items selected for FLUID BENCHMARKING
are colored by time of selection; brighter colors reflect earlier appearance during evaluation.
The bright line close to y = 0 represents the first item, which is always the same. Depending
on how the LM responds, the next item is either easier (incorrect response, see first few
checkpoints) or more difficult (correct response, see checkpoints after 11).
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Figure 4: Training curves of OLMo2-7B (HellaSwag/500 items) with RANDOM (a) and
FLUID BENCHMARKING (b). The figures plot the final 30% of training. While performance
in accuracy space shows no meaningful improvement (a), performance in ability space
continues to provide a clear learning signal through the end of training (b).

FLUID BENCHMARKING Delays Onset of Benchmark Saturation. To test whether FLUID
BENCHMARKING indeed delays the onset of benchmark saturation, we focus on HellaSwag
(|Q*| = 500). Figure 4a shows OLMo2-7B’s performance during the final 30% of the
training run, measured with RANDOM. Performance is already high by the 70% mark and
does not show a consistent upward trend thereafter, instead fluctuating around the same
level. By contrast, with FLUID BENCHMARKING (see Figure 4b), performance continues
to improve steadily through the end of training, suggesting that FLUID BENCHMARKING
effectively mitigates early benchmark saturation. This difference is captured by our measure
of saturation: for the entire training run, the monotonicity of the HellaSwag curve is 0.91 for
RANDOM, compared to 0.99 for FLUID BENCHMARKING.

Dynamic Stopping. A further advantage of FLUID
BENCHMARKING is its support for dynamic stopping.
In Figure 5, we demonstrate this with OLMo1-7B and
HellaSwag, where we use the standard error of the
ability estimate as the stopping criterion (Magis et al.,
2017). Specifically, we terminate the evaluation once
the standard error falls below the average ability : - p - p
gap between two rank-adjacent LMs on the Open Checkpoint

LLM Leaderboard. The number of items required to

reach this precision varies substantially over training, Figure 5: FLUID BENCHMARKING
from around 20 at the beginning to over 80 midway, with dynamic stopping on OLMol-
indicating that the common practice of using a fixed 7B/HellaSwag (see text for details).
number of evaluation items is suboptimal.
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The False False Promise of Item Response Theory. Madaan et al. (2024) criticized IRT-
based benchmark refinement methods for increasing variance, speaking of a “false promise
of item response theory” for LMs. Our findings contextualize this in crucial ways. On the
one hand, we confirm Madaan et al. (2024)’s observation that IRT-based methods (Polo
et al., 2024; Kipnis et al., 2025) increase step-to-step variance. On the other hand, our results
demonstrate that the issue is not intrinsic to IRT itself, but rather arises from the fact that
prior IRT-based methods have not fully leveraged a central strength of IRT: dynamically
adapting items to the LM’s capability. We find that exploiting this potential substantially
reduces variance compared to accuracy-based evaluations.

Extension to Other Settings. While we focus on LM evaluation during pretraining in this
paper, where efficiency is especially critical due to high computational costs and the need for
frequent in-loop evaluations, FLUID BENCHMARKING is not inherently limited to this phase
and holds potential value for posttraining as well. Furthermore, FLUID BENCHMARKING
is readily extendable to other languages and modalities, provided that evaluation results
are available to fit an IRT model. For example, applying FLUID BENCHMARKING to vision-
language models could leverage leaderboards such as VHELM (Lee et al., 2024).

Generalization Beyond Train Language Models. While IRT ability estimates are not in-
herently upper bounded by the abilities of the train LMs (i.e., the LMs used to estimate
item parameters), the utility of FLUID BENCHMARKING still depends on having stable and
up-to-date IRT models, especially given the rapid pace of LM development. Consider the
subset of benchmark items that were not answered correctly by any train LM. These items
are effectively assigned the same maximum difficulty. If we conduct FLUID BENCHMARK-
ING with a new LM that is better than any train LM, evaluation will quickly move to those
most difficult items. However, a fixed IRT model cannot distinguish finer levels of difficulty
among them. Therefore, IRT models used for FLUID BENCHMARKING should be regularly
updated with fresh evidence. We hope that the IRT models released as part of this paper
can serve as a starting point for such an extensible reference standard.

7 Related Work

Our study adds to the growing body of work on benchmark refinement (see §2 for details).
Besides providing a formal definition of this emerging field, we introduce a method that
improves benchmarking across multiple dimensions.

Prior work has used IRT models in natural language processing (Lalor et al., 2016; 2018;
2019; Lalor & Yu, 2020; Rodriguez et al., 2021; Vania et al., 2021; Rodriguez et al., 2022;
Lalor et al., 2024). Recently, there have been several attempt to use IRT in the context of
benchmark refinement, to improve efficiency (Polo et al., 2024; Kipnis et al., 2025) and
mitigate benchmark saturation (Paech, 2024). Our work differs by considering a wider set of
criteria and focusing on evaluation during pretraining; we also show that static benchmarks
forego the full potential of IRT, which lies in the possibility of adaptive testing.

So far, uses of adaptive testing in natural language processing have been confined to
improving the cold start problem (Rodriguez et al., 2021).

8 Conclusion

In this work, we unify disparate lines of research to introduce the general problem of
benchmark refinement. We define four key dimensions along which benchmark refinement
methods should be evaluated: efficiency, validity, variance, and saturation. We introduce
FLUID BENCHMARKING, a new benchmarking method that combines item response theory
with adaptive testing, improving over prior approaches along all dimensions. In a recent
perspective, Zhuang et al. (2024) argued that adaptive testing “will become the new norm in
Al'model evaluation,” but so far a large-scale analysis of its potential as a general evaluation
method has been missing. Our study is the first to provide this analysis and establishes a
foundation for new, exciting research in Al evaluation methodology.
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the value of 6; at which p(u;; = 1) = 0.5, reflected by the location of the curve (compare q;
vs. g3). The discrimination parameters indicates how sharply p(u;; = 1) changes when 6; is
close to b;. a; is proportional to the slope of the curve (compare g1 vs. 2). When the curve is
flat (i.e., low a;), this implies that even some high-ability LMs failed on this item.
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Figure 7: Fisher information of HellaSwag items halfway through the simulated training
run, when 6! = 0. The figure corresponds to the distribution obtained by taking a vertical
slice through Figure 2 at 6! = 0. In line with Equation 4, Fisher information is highest for
items whose difficulty b]- is close to Bf. It also increases with item discrimination 4;, an effect
that is particularly pronounced when b; ~ 6!. By contrast, when b; is far from 6!, higher
discrimination has an only modest effect on Fisher information.

A Ttem Characteristic Curves

We provide example item characteristic curves in Figure 6.

B Fisher Information of HellaSwag Items

For illustrative purposes, Figure 7 shows the Fisher information of HellaSwag items halfway
through the simulated training run, when 6! = 0.

C Checkpoint Details

We provide details about the selected LM checkpoints. For Amber-6.7B, we select 73 check-
points. For OLMo1-7B, we select 83 checkpoints. For OLMo02-7B, we select 94 checkpoints.
For Pythia-6.9B, we select 78 checkpoints. For Pythia-2.8B, we select 78 checkpoints. For
K2-65B, we select 61 checkpoints. For all LMs, checkpoints are selected to ensure even
coverage throughout the entire training run.
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Benchmark

Measure Method ARC GSM HS MMLU TQA WG
Validity RANDOM 21.9 — 129 20.5 — 124
Rank distance | RANDOM IRT 15.9 — 50 13.4 — 82

FLUID BENCHMARKING 14.5 — 4.5 10.7 — 49
Variance RANDOM 102 222 3.8 49.7 181 14.6
Total variation | RANDOM IRT 7.9 28.9 120 20.8 15.1 221

FLUID BENCHMARKING 3.3 9.1 2.0 6.3 9.8 5.8
Saturation RANDOM 0.75 0.66 0.88 0.51 043 0.61
Rank correlation t RANDOM IRT 0.82 0.60 0.88 0.56 0.63 0.76

FLUID BENCHMARKING 0.95 0.86 0.98 0.67 0.71 0.93

Table 3: Comparison against baselines, split by benchmark. ARC: ARC Challenge; GSM:
GSMSK; HS: HellaSwag; TQA: Truthful QA; WG: WinoGrande.

D Language Model Inclusion Criteria

We used the following criteria when selecting LMs for IRT model training:

— We only included pretrained LMs. Finetuned, merged, fused, distilled, or continually
pretrained LMs were excluded, as they can lead to clusters of highly similar models,
potentially skewing the IRT model.

— In the rare cases where an LM appears on the Open LLM Leaderboard with multiple
checkpoints, we used only the final checkpoint listed.

— We excluded LMs trained solely on non-English data, but multilingual LMs were included
as long as English data were part of their training corpus.

— We removed any LMs from the same model family as the test LMs (e.g., OLMo1-1B).

E Item Response Model Details

In the main experiments, we fit separate unidimensional IRT models to each benchmark. Initially,
we also experimented with two alternative setups:

— We experimented with fitting a single unidimensional IRT model across all benchmarks,
following prior work suggesting that one latent trait can capture overall model behavior
(Kipnis et al., 2025). However, we found that this substantially reduced construct validity.
For example, the performance of Amber-6.7B on Truthful QA decreases during pretraining
(Liu et al., 2023); by contrast, when we evaluated Amber-6.7B using a unidimensional
IRT model trained across all benchmarks, the estimated ability increased—the IRT model
effectively emphasized Truthful QA items aligned with general trends, obscuring the fact
that Amber-6.7B actually becomes less truthful during pretraining.

— We experimented with fitting separate multidimensional IRT models (with two to five latent
traits) to each benchmark. These models, however, did not yield consistent improvements
in model fit compared to the unidimensional IRT models.

Ultimately, fitting separate unidimensional IRT models to each benchmark offered the best

trade-off in our experiments. That said, multidimensional IRT models may offer greater
advantages in other settings (e.g., when evaluating multimodal models).

F Breakdown of Results by Benchmark and Language Model

Table 3 breaks the comparison against baselines down by benchmark. Table 4 breaks the
comparison against baselines down by LM. We examine the ablated baselines here, fixing
the number of items per benchmark to 100.
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Language model

Measure Method A-7B K-65B O1-7B 0O2-7B P-3B P-7B
Validity RANDOM 25.5 5.1 10.7 71 231 281
Rank distance | RANDOM IRT 20.2 52 8.0 6.1 83 153

FLUID BENCHMARKING 19.3 2.1 6.7 3.4 8.1 11.6
Variance RANDOM 21.8 14.7 10.2 154 35.7 209
Total variation | RANDOM IRT 16.2 27.0 114 124 261 137

FLUID BENCHMARKING 5.5 7.1 5.8 68 65 45
Saturation RANDOM 0.47 0.65 0.77 0.63 0.62 0.71
Rank correlation T RANDOM IRT 0.66 0.73 0.83 0.63 0.67 0.73

FLUID BENCHMARKING  0.82 0.89 0.91 0.80 0.81 0.87

Table 4: Comparison against baselines, split by LM. A-7B: Amber-7B; K-65B: K2-65B; O1-7B:
OLMol-7B; O2-7B: OLMo2-7B; P-3B: Pythia-2.8B; P-7B: Pythia-6.9B.

G Variance and Saturation Plots

Figure 8 provides a more detailed comparison of FLUID BENCHMARKING and RANDOM in
terms of variance (Figure 8a) and saturation (Figure 8b). FLUID BENCHMARKING improves
on RANDOM for almost all combinations of benchmark, subset size, and LM.

H Comparison Against Full-Benchmark Accuracy

We have shown that FLUID BENCHMARKING improves evaluation quality in terms of
validity, variance, and saturation, compared against alternative evaluation methods using
the same number of items. Do these advantages persist when evaluation cost is not a
concern (i.e., when it is feasible to evaluate on the full set of benchmark items)? To test this,
we compare FLUID BENCHMARKING (|Q*| = 500) with full-benchmark accuracy, using the
same LMs and benchmarks as in our main experiments (see §4).

We find that full-benchmark accuracy performs worse than FLUID BENCHMARKING across
all three evaluation dimensions, despite using substantially more items. This holds for
validity (9.1 vs. 8.3 for FLUID BENCHMARKING), variance (23.8 vs. 4.9 for FLUID BENCH-
MARKING), and saturation (0.85 vs. 0.88 for FLUID BENCHMARKING). Notably, even FLUID
BENCHMARKING with only 50 items outperforms full-benchmark accuracy on all three
dimensions (cf. Table 2). These results suggest that FLUID BENCHMARKING can improve
evaluation quality even in settings where efficiency is not a limiting factor.
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Figure 8: Variance and saturation results. The figure shows pairwise comparisons measuring
the total variation (a) and monotonicity (b) of training curves based on RANDOM and
FLUID BENCHMARKING. For variance, lower total variation is better. For saturation, high
monotonicity is better, as it indicates that increased pretraining consistently yields better
performance, suggesting that the benchmark has not yet saturated. Thus, for variance, points
in the lower right triangle indicate that FLUID BENCHMARKING is better than RANDOM, and
for saturation, points in the upper left triangle indicate that FLUID BENCHMARKING is better
than RANDOM. FLUID BENCHMARKING improves on RANDOM for almost all combinations
of benchmark, subset size, and LM.
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