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Abstract

Reinforcement learning (RL) with delays is chal-

lenging as sensory perceptions lag behind the

actual events: the RL agent needs to estimate

the real state of its environment based on past

observations. State-of-the-art (SOTA) methods

typically employ recursive, step-by-step fore-

casting of states. This can cause the accumu-

lation of compounding errors. To tackle this

problem, our novel belief estimation method,

named Directly Forecasting Belief Transformer

(DFBT), directly forecasts states from obser-

vations without incrementally estimating inter-

mediate states step-by-step. We theoretically

demonstrate that DFBT greatly reduces com-

pounding errors of existing recursively forecast-

ing methods, yielding stronger performance guar-

antees. In experiments with D4RL offline datasets,

DFBT reduces compounding errors with remark-

able prediction accuracy. DFBT’s capability to

forecast state sequences also facilitates multi-

step bootstrapping, thus greatly improving learn-

ing efficiency. On the MuJoCo benchmark,

our DFBT-based method substantially outper-

forms SOTA baselines. Code is available at

https://github.com/QingyuanWuNothing/DFBT.

1. Introduction

Reinforcement learning (RL) has achieved impressive suc-

cess in various scenarios, including board games (Silver

et al., 2016; Schrittwieser et al., 2020), video games (Mnih

et al., 2013; Berner et al., 2019) and cyber-physical sys-

tems (Wei et al., 2017; Wang et al., 2023b;c; Zhan et al.,

2024). The timing factor is critical to enable RL in real-
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world applications, particularly the delays that occur in

the interaction between the agent and the environment due

to physical distance, computational processing, and signal

transmission. Otherwise, delays fundamentally affect the

system’s safety (Mahmood et al., 2018), performance (Cao

et al., 2020) and efficiency (Hwangbo et al., 2017). Un-

like rewards-delays-arising credit assignment issues that

have been well studied (Arjona-Medina et al., 2019; Wang

et al., 2024), observation-delays and action-delays disrupt

the Markovian property of the Markov Decision Process

(MDP), posing more challenges in RL. Most of the lit-

erature (Kim et al., 2023; Wang et al., 2023a; Wu et al.,

2024b) mainly focuses on observation-delays, which has

been proved as a superset of action-delays (Katsikopoulos &

Engelbrecht, 2003; Nath et al., 2021). Therefore, this work

mainly focuses on the RL with delays ∆ in observation: at

time step t, the agent can not observe the real environment

state st but only the history state st−∆ ∆ steps ago.

To enable RL in environments with delayed observations,

it is essential to restore the Markovian property (Alt-

man & Nain, 1992; Katsikopoulos & Engelbrecht, 2003).

Augmentation-based methods (Bouteiller et al., 2020; Kim

et al., 2023) are based on an observation that the infor-

mation state xt = {st−∆, at−∆:t−1}, augmented from the

last observable state and the sequential actions, carries the

equivalent information with st (Bertsekas, 2012). Thus, the

policy learning over the original state space S can be trans-

ferred to the policy learning over the augmented state space

X , which is memoryless and can be addressed by nominal

RL. However, as delays ∆ increase, the dimensionality of

the augmented state space X expands significantly, lead-

ing to a drastic deterioration in learning efficiency due to

the exponentially increased sample complexity (Wu et al.,

2024b).

To improve learning efficiency in augmentation-based meth-

ods, belief-based methods (Walsh et al., 2009; Chen et al.,

2021a) propose to conduct RL in the original state space

S , by estimating the instant unobservable state st from the

information state xt, of which the mapping is referred to

as belief. The belief function is commonly forecasted re-

cursively (Chen et al., 2021a; Karamzade et al., 2024): for

i = 1, . . . ,∆, st−∆+i is estimated by applying approximate

dynamic function with the previous state st−∆+i−1 and the
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previous action at−∆+i−1. Obtaining the estimation of the

instant state st, the delayed RL problem is effectively re-

duced to a delay-free RL problem without enlarging the

state space, mitigating the curse of dimensionality. How-

ever, this recursive process is evidently affected by the error

accumulation of the approximate dynamic function across

∆ steps: the compounding errors grow exponentially with

the delays ∆. This fundamental limitation of such recur-

sive methodology for belief forecasting leads to significant

performance degradation, especially in environments with

long-delayed signals.

This work aims to squarely address the compounding er-

rors in existing belief-based techniques with recursive strat-

egy, using a direct strategy in sequence modeling. Specif-

ically, we present the Directly Forecasting Belief Trans-

former (DFBT), a novel directly forecasting belief method

by reformulating belief forecasting as a sequence model-

ing problem. DFBT first represents the information state

xt and reward signals rt−∆:t−1 to ∆ tokens in the form

{st−∆, at−∆+i, rt−∆+i}
∆−1
i=0 . Unlike recursively fore-

casting belief methods that invoke the forward predic-

tion process ∆ times, DFBT simultaneously forecasts

the states st−∆+1:t without introducing accumulated er-

rors, effectively addressing the issue of compounding

errors. We then integrate DFBT with the Soft Actor-Critic

(SAC) method (Haarnoja et al., 2018) in online learning,

incorporating multi-step bootstrapping on accurate state

predictions generated from DFBT, which further improves

learning efficiency. Theoretically, we demonstrate how the

compounding errors in recursively forecasting belief affect

the RL performance and how it is alleviated by our direct

strategy. Empirically, using the D4RL benchmark (Fu et al.,

2020), we show that DFBT achieves significantly higher

prediction accuracy compared to other belief methods. On

the MuJoCo benchmark (Todorov et al., 2012), across var-

ious delays settings, we demonstrate that our DFBT-SAC

consistently outperforms SOTA augmentation-based and

belief-based methods in both learning efficiency and overall

performance.

In Section 3, we introduce the delayed RL problem and

the concept of belief representation. Section 4 presents

our proposed DFBT, which directly forecasts states from

delayed observations, avoiding the need for recursive single-

step predictions. Additionally, we develop DFBT-SAC by

leveraging multi-step bootstrapping on the states predicted

by DFBT. Through theoretical analysis in Section 5, we

show that DFBT effectively mitigates the compounding er-

rors associated with recursively forecasting belief methods,

ensuring superior performance. Finally, in Section 6, we

empirically demonstrate the superior prediction accuracy of

DFBT on the D4RL datasets and the remarkable efficacy

of DFBT-SAC compared to state-of-the-art approaches on

MuJoCo across various delays settings. Overall, our key

contributions are summarized as follows:

• We present Directly Forecasting Belief Transformer

(DFBT), a novel directly forecasting belief method

that effectively addresses compounding errors in recur-

sively generated belief.

• We propose DFBT-SAC, a novel delayed RL method

that further improves the learning efficiency via multi-

step bootstrapping on the DFBT.

• We theoretically demonstrate that our directly forecast-

ing belief significantly reduces compounding errors

compared to existing recursively forecasting belief ap-

proaches, offering a more robust performance guaran-

tee.

• We empirically demonstrate that our DFBT method

effectively forecasts state sequences with significantly

higher prediction accuracy compared to baseline ap-

proaches.

• We empirically show that our DFBT-SAC outperforms

SOTAs in terms of sample efficiency and performance

on the MuJoCo benchmark.

2. Related Works

In classical control theory, delays are modelled with de-

lay–differential equations (DDEs) (Cooke, 1963). A rich

toolbox is available for analysing their reachability (Frid-

man & Shaked, 2003; Xue et al., 2020), stability (Feng et al.,

2019), and safety (Xue et al., 2021). These techniques, how-

ever, assume fully known dynamics and become impractical

for high-dimensional systems. Delayed reinforcement learn-

ing (RL) is far closer to real deployments than the delay-free

setting that dominates the literature. Latencies are intrinsic

to robotics (Mahmood et al., 2018; Hwangbo et al., 2017),

high-frequency trading (Hasbrouck & Saar, 2013), intel-

ligent transportation (Cao et al., 2020), and many other

domains. Depending on the methodology of retrieving the

Markovian property, existing delayed RL approaches can be

mainly categorized as augmentation-based and belief-based

approaches.

Augmentation-based Approaches. Augmentation-based

approaches retrieve the Markovian property by augmenting

the original state with the sequence of actions within the

delays window, optimizing the policy in the resulting aug-

mented MDP to mitigate performance degradation caused by

errors in belief representation approximation. Specifically,

DIDA (Liotet et al., 2022) learns the delayed policy in the

augmented MDP by imitating the behaviours from the delay-

free expert policy in the original MDP; DC/AC (Bouteiller

et al., 2020) suggest using the delays correction operator
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to improve the learning efficiency in the augmented MDP;

ADRL (Wu et al., 2024b) introduces the auxiliary delayed

task with the smaller augmented MDP for bootstrapping the

larger augmented MDP; VDPO (Wu et al., 2024a) proposes

to learn the delayed policy through the lens of variational in-

ference, improving the learning efficiency via extensive op-

timization tools. However, augmentation-based approaches

still operate on an increasingly large augmented state space

as delays grow, inevitably suffering from the curse of dimen-

sionality and resulting in significant learning inefficiencies.

Belief-based Approaches. The belief-based approach re-

trieves the Markovian property by forecasting the unobserv-

able state through belief representation, then optimizing

policy within the original state space. Thus, correspond-

ingly, the prediction accuracy of approximated belief rep-

resentation is highly related to the overall performance.

DATS (Chen et al., 2021a) is the first to propose approximat-

ing the belief representation using a Gaussian distribution.

Inspired by the world models (Schmidhuber, 1990b;a; Ha &

Schmidhuber, 2018), D-Dreamer (Karamzade et al., 2024)

employ a recurrent neural network to capture temporal de-

pendencies in the belief through forward prediction in the

latent space, enabling adaptation to high-dimensional obser-

vations. D-SAC (Liotet et al., 2021) utilizes the attention

mechanism in the causal transformer to integrate the infor-

mation across the delays. Unfortunately, the approximation

errors of recursively forecasting belief accumulated at each

step finally lead to compounding errors, which hinder pre-

diction accuracy and performance.

Time Series Forecasting in RL. Time series forecasting

plays a critical role in predicting future states in RL, par-

ticularly within the context of world model learning (Ha

& Schmidhuber, 2018), which simulates the dynamics of

the environment, predicting future states and planning effec-

tively without directly interacting with the real environment.

World model learning often leverages time series forecast-

ing techniques to capture temporal dependencies, enhancing

the agent’s understanding of the environment. Applications

of world models include robotics, autonomous driving, and

gaming scenarios (Hafner et al., 2019). Additionally, the

RL problem can be treated as a sequence modeling problem,

which can be effectively solved by the transformer (Vaswani

et al., 2017). Directly predicting the action from the desired

outcomes (Schmidhuber, 2019), decision transformer (Chen

et al., 2021b) predict future actions based on historical tra-

jectories and desired outcomes. Similarly, trajectory trans-

former (Janner et al., 2021) models trajectories as sequences,

enabling policy optimization by leveraging autoregressive

modeling. Therefore, in this paper, we investigate how to

leverage the advanced time series forecasting approaches

in addressing the issue of compounding errors existing in

the recursively forecasting belief. We also present a com-

prehensive theoretical analysis of how compounding errors

seriously degenerate performance as delays are increased.

3. Preliminaries

3.1. From Delay-free RL to Delayed RL

A conventional delay-free RL problem is usually formal-

ized as a Markov Decision Process (MDP) represented as

a tuple ïS,A,P,R, Ä, µð, where S is the state space, A is

the action space, P : S × A × S → [0, 1] is the dynamic

function, R : S × A → R is the reward function, Ä is the

initial state distribution, and µ ∈ (0, 1) is the discount factor.

The agent selects an action at ∼ Ã(·|st) according to the

policy Ã : S × A → [0, 1] based on the current state st
at time step t. The agent will then observe the next state

st+1 ∼ P(·|st, at) and the reward rt = R(st, at) from

the environment. The objective of the agent is to find the

optimal policy Ã∗ that maximizes the expected discounted

return G := Eτ∼pπ(τ) [
∑∞

t=0 µ
tR(st, at)] where pπ(Ä) rep-

resents the distribution of trajectories induced by policy Ã.

A delayed RL problem can be formalized as an augmented

MDP by applying the augmentation technique (Altman &

Nain, 1992; Katsikopoulos & Engelbrecht, 2003) to re-

trieve the Markovian property. For a delayed RL problem

with constant delays ∆, the newly formed MDP is repre-

sented as ïX ,A,P∆,R∆, Ä∆, µð, where X := S × A∆

is the augmented state space, A is the original action

space, the delayed dynamic function is P∆(xt+1|xt, at) :=

P(st−∆+1|st−∆, at−∆)¶at
(a′t)

∏∆−1
i=1 ¶at−i

(a′t−i) where ¶

is the Dirac distribution, the delayed reward function is

defined as R∆(xt, at) := Est∼b(·|xt) [R(st, at)] where

b : X × S → [0, 1] is the belief representation mapping

from the augmented state space X to the original state space

S , Ä∆ = Ä
∏∆

i=1 ¶a−i
is the initial augmented state distribu-

tion.

3.2. Belief Representation in Delayed RL

Delayed RL can be viewed as a special form of a partially

observable RL problem where the observation is contami-

nated by noise, instead of being delayed. Therefore, similar

to partially observable RL, delayed RL also have the belief

representation defined as follows:

b(st|xt) :=
∫

S∆

∆−1∏

i=0

P(st−∆+i+1|st−∆+i, at−∆+i)dst−∆+i+1.
(1)

The belief representation can retrieve the Markovian prop-

erty via mapping the augmented state space X to S , recast-

ing the delayed RL problem in the original MDP without

augmenting the state space. The belief representation can be

viewed as the recursive forward prediction of the dynamics
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P . With the belief representation, the agent can directly

learn in the original state space S. In this work, we use s

and ŝ to represent the true state of the environment and the

predicted state of the approximate belief, respectively.

4. Our Approach

In this section, we present the Directly Forecasting Be-

lief Transformer (DFBT), a new directly forecasting belief

method. By framing belief forecasting as a sequence model-

ing problem, DFBT directly predicts the unobservable states.

Instead of recursively predicting the next state step-by-step,

DFBT can effectively capture the dependency across the de-

lays via the attention mechanism of the transformer model.

Therefore, our DFBT can effectively reduce the compound-

ing errors of the recursively forecasting belief, especially

in the long delays. Specifically, as summarized in Figure 1,

we train the DFBT using a pre-collected trajectory dataset,

latter deploying the trained DFBT in the environment with

delays to reconstruct the delay-free environment for training.

Furthermore, we integrate multi-step bootstrapping with the

predicted states of DFBT to improve learning efficiency.

4.1. Directly Forecasting Belief

The belief representation learning problem can be viewed

as a sequence modeling problem. Given a pre-collected

delay-free trajectory {si, ai, ri}
T
i=0, we sample the sub-

trajectory with ∆ timesteps {st−∆+i, at−∆+i, rt−∆+i}
∆
i=0.

We model the past reward signals rt−∆:t−1 into the aug-

mented state xt = {st−∆, at−∆:t−1} for considering more

dynamic information in belief. Then, we have reformed the

representation of the augmented state to ∆ tokens for se-

quence modeling: xtokens
t = {st−∆, at−∆+i, rt−∆+i}

∆−1
i=0 .

The Directly Forecasting Belief Transformer (DFBT) bθ
leverages the transformer architecture (Vaswani et al., 2017),

utilizing the attention mechanism to effectively capture

dependencies across long delays. Inputting with xtokens
t ,

DFBT simultaneously predicts the unobserved ∆ states

{st−∆+i}
∆
i=1 via autoregressive modeling with loss:

▽θ

[
∆∑

i=1

[

− log b
(i)
θ (st−∆+i|x

tokens
t )

]
]

, (2)

where b
(i)
θ (·|xt) represents the i-th prediction. In a determin-

istic environment with a deterministic belief function, we

typically replace Equation (2) with the Mean-Square-Error

(MSE) loss.

4.2. Multi-step Bootstrapping with DFBT

Next, we directly deploy the trained DFBT bθ in the online

environment with delayed signals to reconstruct the delay-

free environment where the agent can directly learn with

the original state space S instead of the augmented state

Algorithm 1 DFBT-SAC

Input: offline dataset D, DFBT bθ, critic Qψ , actor Ãφ;

# training DFBT on the offline dataset

for Epoch = 1, . . . do

Update bθ on the D via Equation (2)

end for

# learning with DFBT on the online environment

for Epoch = 1, . . . do

Update Qψ on via Equation (3)

Update Ãφ on via Equation (4)

end for

Output: bθ and Ãφ

space X , thus maintaining the superior sample complexity

in online learning.

Then, we present our practical delayed RL method, named

DFBT-SAC by incorporating the trained DFBT bθ with

Soft Actor-Critic (Haarnoja et al., 2018). To improve the

learning efficiency with the DFBT, the critic of DFBT-

SAC is bootstrapped on the states predicted by the DFBT

with the multi-step learning (Sutton & Barto, 2018; Hessel

et al., 2018) and delay-free training techniques (Wu et al.,

2024b; Kim et al., 2023). Specifically, given multi-step

data (xtokens
t , st−∆+1:t), the critic Qψ parameterized by È

is updated via:

▽ψ

[
1

2
(Qψ(st−∆, at−∆)− Y)

2

]

, (3)

where N -step temporal difference target Y is defined as:

Y :=
N−1∑

i=0

µirt−∆+i

+ µN
E

a∼π(·|ŝt−∆+N )

ŝt−∆+N∼b
(N)
θ

(·|xtokens
t

)

[Q(st−∆+N , a) + log Ã(a|ŝt−∆+N )] ,

and N(f ∆) is the bootstrapping steps on the DBFT. In

this work, we set N = 8 as default, and we also conduct the

ablation study (Section 6) to investigate bootstrapping steps

settings. The actor Ãφ parameterized by ϕ is updated by:

▽φ E
a∼π(·|ŝt−∆+N )

ŝt−∆+N∼b
(N)
θ

(·|xtokens
t

)

[log Ãφ(a|ŝt−∆+N )−Qψ(st−∆+N , a)] .

(4)

The pseudo-code of DFBT-SAC is provided in Algorithm 1.

5. Theoretical Analysis

In this section, we theoretically illustrate that performance

degeneration is rooted in compounding errors of recursively

forecasting belief (Section 5.1), which can be effectively

addressed by our DFBT, directly forecasting belief, thus

achieving a better performance guarantee (Section 5.2).
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(c) Multi-step Bootstrapping with the Direct Forecasting Belief
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Figure 1. Pipeline of DFBT-SAC. (a) Training DFBT on the trajectory dataset. (b) The agent can interact and learn with the delay-free

environment recovered by the DFBT as highlighted in the dashline box. (c) Multi-step bootstrapping on the forecasted states from DFBT.

Before starting the theoretical analysis, we introduce the

definition of the performance degeneration of the ground-

truth belief b as follows.

Definition 5.1 (Performance Degeneration of Ground-truth

Belief (Liotet et al., 2022)). For policies Ã and Ã∆ with

delays ∆. Given any xt ∈ X , the performance difference

of the ground-truth belief b is denoted as I true
∆ (xt)

I true
∆ (xt) =

1

1− µ
E

ŝ∼b(·|x̂)
â∼π∆(·|x̂)

x̂∼dπ
xt

[V π(ŝ)−Qπ(ŝ, â)] ,

where dπxt
is the augmented state distribution induced by

policy Ã with the initial state xt.

Furthermore, we also introduce the Lipschitz Continuity of

MDP (Definition 5.2) and value function (Definition 5.3),

which are common and mild assumptions in the literature.

Definition 5.2 (Lipschitz Continuity of MDP (Rachel-

son & Lagoudakis, 2010)). An MDP is LP -LC, if

∀(s1, a1), (s2, a2) ∈ S ×A, dynamic function P satisfies:

W (P(·|s1, a1)||P(·|s2, a2)) f LP(dS(s1, s2)+dA(a1, a2)),

where W is the L1-Wasserstein distance, dS and dA are

distrance measure of the S and A, repectively.

Definition 5.3 (Lipschitz Continuity of Value Func-

tion (Rachelson & Lagoudakis, 2010)). Consider a LQ-LC

Q-function Qπ of the Lπ-LC policy Ã, value function V π

satisfies that
∣
∣
∣
∣
∣
E

s1∼µ
s2∼υ

[V π(s1)− V π(s2)]

∣
∣
∣
∣
∣
f LV W (µ||Å) ,

where LV = LQ(1 + Lπ) and µ, Å are two arbitrary distri-

butions over S .

5.1. Recursively Forecasting Belief: Compounding

Errors Analysis

In this section, we show that the performance degenera-

tion of recursively forecasting belief is influenced by com-

pounding errors, which consist of the recursive error and

are exponentially increased with delays. We assume that the

recursively forecasting belief Pθ has the approximated error

bound as shown in Assumption 5.4.

Assumption 5.4 (Approximated Dynamic Difference

Bound). The distance between the approximated dynamic

function Pθ parameterized by ¹ and the ground-truth dy-

namic function P is bounded, it satisfies that ∀(s, a) ∈
S ×A,

W(Pθ(·|s, a)||P(·|s, a)) f ϵP .

Then, we demonstrate that the performance difference of

the recursively forecasting belief is determined by the com-

pounding errors (Theorem 5.5).

Theorem 5.5 (Performance Difference of Recursively Fore-

casting Belief, Proof in Theorem B.1). For the delay-free

policy Ã and the delayed policy Ã∆. Given any xt ∈ X , the

performance difference Irecursive(xt) of the recursively fore-

casting belief bθ can be bounded as follows, respectively.

For deterministic delays ∆, we have

∣
∣Irecursive(xt)

∣
∣ f |I true

∆ (xt)|+ LV

1− LP
∆

1− LP
ϵP

︸ ︷︷ ︸

compounding errors

.

And for stochastic delays ¶ ∼ d∆(·), we have

∣
∣Irecursive(xt)

∣
∣ f E

δ∼d∆(·)






|I true

δ (xt)|+ LV

1− LP
δ

1− LP
ϵP

︸ ︷︷ ︸

compounding errors






.

Theorem 5.5 tells that the compounding errors are exponen-

tially increased with the delays, seriously degenerating the

performance.

5.2. Directly Forecasting Belief: Errors Analysis

Next, we theoretically show that our directly forecasting

belief can effectively address the compounding errors. The
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Figure 2. Belief errors comparison on (a) HalfCheetah-v2, (b) Hopper-v2, and (c) Walker2d-v2.

sequence-modeling method estimates the states st−∆+1:t

based on the augmented state xt in parallel, instead of in-

voking ∆ times iteratively, which effectively alleviates the

source of compounding errors. Especially, the attention

mechanism in the transformer can selectively capture the

long-range relationships within the augmented state with

long delays. We assume that the belief error between the

directly forecasting belief and the ground-truth belief is

bounded (Assumption 5.6).

Assumption 5.6 (Directly Forecasting Belief Difference

Bound). The distance between the directly forecasting

belief belief bθ parameterized by ¹ and the ground-truth

belief b is bounded, it satisfies that ∀xt ∈ X , we

have W(b(·|xt)||bθ(·|xt)) f ϵdirect, where ϵdirect :=

maxi=1,...,∆ W(b(i)(·|xt)||b
(i)
θ (·|xt)).

From Theorem 5.5, we can derive the performance degener-

ation bound of directly forecasting belief as follows.

Proposition 5.7 (Performance Degeneration Bound of Di-

rectly Forecasting Belief, Proof in Proposition B.2). For the

delay-free policy Ã and the delayed policy Ã∆. Given any

xt ∈ X , the performance degeneration Idirect of the directly

forecasting belief bθ can bounded as follows respectively.

For deterministic delays ∆, we have
∣

∣Idirect(xt)
∣

∣ f |I true
∆ (xt)|+ LV ϵdirect.

For stochastic delays ¶ ∼ d∆(·), we have
∣

∣Idirect(xt)
∣

∣ f E
δ∼d∆(·)

[|I true
δ (xt)|] + LV ϵdirect.

Then, we have the performance degeneration comparison be-

tween directly forecasting belief and recursively forecasting

belief.

Proposition 5.8 (Performance Degeneration Comparison,

Proof in Proposition B.3). Directly forecasting belief could

achieve a better performance guarantee
∣

∣Idirect(xt)
∣

∣ f
∣

∣Irecursive(xt)
∣

∣, if we have

ϵdirect f
1− LP

∆

1− LP
ϵP

for deterministic delays ∆, and

ϵdirect f E
δ∼d∆(·)

[

1− LP
δ

1− LP

]

ϵP

for stochastic delays ¶ ∼ d∆(·).

Remark 5.9 (Empirical Validation of Proposition 5.8). It

is obvious that the belief errors of recursively forecasting

grows much faster than the directly forecasting, which is not

strictly related with the delay length. We also empirically

show that Proposition 5.8 is always held in Section 6.2.1.

In the future, we will theoretically investigate the sample

complexity of recursive and direct forecasting beliefs.

Remark 5.10 (General Error Distribution Case). In the con-

text of time forecasting, our theoretical results of perfor-

mance degeneration comparison have the potential to ex-

tend to the variance analysis commonly discussed in related

literature (Taieb & Atiya, 2015; Clements & Hendry, 1996;

Chevillon, 2007).

6. Experiments

6.1. Experimental Setting

We adopt D4RL (Fu et al., 2020) and MuJoCo (Todorov

et al., 2012) as the offline dataset and the benchmark re-

spectively to evaluate our DFBT-SAC. For the baselines,

we choose the SOTA augmentation-based methods (A-

SAC (Haarnoja et al., 2018), BPQL (Kim et al., 2023),

and ADRL (Wu et al., 2024b)) and belief-based methods

(DATS (Chen et al., 2021a), D-Dreamer (Karamzade et al.,

2024), and D-SAC (Liotet et al., 2021)). All of the belief-

based baselines and our DFBT-SAC are trained on the same

D4RL dataset. We first investigate the prediction accu-

racy of beliefs (Section 6.2.1), followed by the performance

comparison with deterministic and stochastic delays (Sec-

tion 6.2.2). Additionally, we conduct ablation studies on the

multi-step bootstrapping of our DFBT-SAC (Section 6.2.3).
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Table 1. Performance on MuJoCo with Deterministic Delays. The best performance is underlined, the best belief-based method is in red.

Task Delays
Augmentation-based Belief-based

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC(1) (ours) DFBT-SAC (ours)

8 0.10±0.01 0.40±0.04 0.44±0.03 0.08±0.01 0.08±0.01 0.12±0.06 0.38±0.03 0.35±0.12

HalfCheetah-v2 32 0.02±0.02 0.40±0.03 0.26±0.04 0.11±0.04 0.08±0.00 0.08±0.02 0.40±0.07 0.42±0.03

128 0.04±0.06 0.08±0.13 0.14±0.02 0.10±0.08 0.15±0.05 0.09±0.04 0.40±0.06 0.41±0.03

8 0.61±0.31 0.87±0.09 0.95±0.16 0.41±0.31 0.11±0.01 0.16±0.05 0.92±0.28 0.77±0.18

Hopper-v2 32 0.11±0.02 0.89±0.14 0.73±0.20 0.07±0.04 0.11±0.05 0.11±0.01 0.60±0.23 0.68±0.20

128 0.04±0.01 0.08±0.02 0.07±0.01 0.08±0.01 0.09±0.03 0.06±0.01 0.16±0.02 0.20±0.03

8 0.44±0.26 1.07±0.02 0.97±0.10 0.13±0.05 0.11±0.06 0.09±0.05 0.95±0.14 0.99±0.03

Walker2d-v2 32 0.10±0.02 0.37±0.25 0.16±0.08 0.02±0.03 0.08±0.05 0.08±0.02 0.57±0.21 0.64±0.10

128 0.06±0.00 0.07±0.08 0.08±0.01 0.02±0.02 0.08±0.05 0.11±0.06 0.38±0.11 0.40±0.08

Table 2. Performance on MuJoCo with Stochastic Delays. The best performance is underlined, and the best belief-based method is in red.

Augmentation-based Belief-based
Task Delays

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

U(1, 8) 0.09±0.01 0.21±0.07 0.17±0.07 0.09±0.03 0.02±0.01 0.03±0.01 0.37±0.12

HalfCheetah-v2 U(1, 32) 0.01±0.00 0.33±0.07 0.23±0.02 0.11±0.04 0.02±0.00 0.01±0.01 0.31±0.16

U(1, 128) 0.01±0.01 0.03±0.03 0.15±0.02 0.16±0.03 0.16±0.00 0.02±0.00 0.39±0.04

U(1, 8) 0.17±0.05 0.20±0.04 0.18±0.04 0.04±0.01 0.07±0.05 0.14±0.04 0.86±0.18

Hopper-v2 U(1, 32) 0.05±0.01 0.07±0.09 0.05±0.01 0.05±0.01 0.04±0.01 0.03±0.01 0.43±0.21

U(1, 128) 0.03±0.01 0.04±0.01 0.04±0.02 0.05±0.00 0.03±0.01 0.03±0.00 0.14±0.01

U(1, 8) 0.36±0.24 0.40±0.32 0.41±0.15 0.07±0.01 0.07±0.05 0.12±0.04 1.11±0.10

Walker2d-v2 U(1, 32) 0.12±0.03 0.16±0.04 0.11±0.05 0.09±0.04 0.12±0.04 0.05±0.02 0.67±0.15

U(1, 128) 0.06±0.01 0.06±0.06 0.04±0.02 0.10±0.04 0.15±0.07 0.03±0.04 0.30±0.13

6.2. Experimental Results

6.2.1. BELIEF PREDICTION ACCURACY

We first evaluate the state prediction accuracy of our DFBT

in D4RL offline datasets. Using the L1 norm as the belief

error, We report the error curves increasing with delays of

the belief of DATS, D-Dreamer, D-SAC and our DFBT-

SAC in Figure 2. All methods are trained on the D4RL

mixed dataset including random, medium and expert policy

demonstrations. The implementation details are provided in

Appendix A. From the results, we can tell that our DFBT

can address the compounding errors effectively via directly

forecasting delayed observations, thus maintaining the best

prediction accuracy with increased delays, which is con-

sistent with our theoretical results. We further provide the

belief qualitative comparison in Appendix E.

6.2.2. PERFORMANCE COMPARISON

We report the normalized return Rnorm :=
Ralg−Rrandom

Rsac−Rrandom
,

where Ralg, Rsac, Rrandom are the return of the algorithm,

delay-free SAC, and random returns, respectively. Each

method is evaluated across 5 random seeds, and the imple-

mentation details are provided in the Appendix A. Addi-

tional experiment results and learning curves for different

delays are provided in the Appendix C and Appendix D,

respectively.

Deterministic Delays. The performance of DFBT-SAC

and baselines are evaluated on MuJoCo with deterministic

delays (8, 32, and 128) reported in Table 1, showing that our

DFBT-SAC overall outperforms other belief-based methods

significantly. Specifically, DFBT-SAC shows comparable

performance with the SOTA augmentation-based methods

(BPQL and ADRL) on tasks with relatively short delays (8).

However, our DFBT-SAC yields a leading performance on

challenging tasks when the delays increase to long delays

(32 and 128). Additionally, we also compare DFBT-SAC(1),

the single-step bootstrapping version of DFBT-SAC. The

results imply that the multi-step bootstrapping technique

can further improve the performance effectively, validat-

ing our statement in Section 4.2. We will investigate the

bootstrapping steps in the later ablation study.

Stochastic Delays. We also evaluate DFBT-SAC on Mu-

JoCo with stochastic delays which follow the uniform dis-

tribution U . As shown in Table 2, our DFBT-SAC remark-

ably outperforms all belief-based baselines on all tasks with

all delays settings (U(1, 8), U(1, 32), and U(1, 128)). Es-

pecially for U(1, 128) delays, DFBT-SAC also performs

approximately 144%, 180%, and 100% better than the sec-

ond best baselines on HalfCheetah-v2, Hopper-v2, and

Walker2d-v2, respectively.

Learning Curves on MuJoCo with Challenging Delays.

As summarized in Figure 3, we report the learning curves

on MuJoCo with 128 and U(1, 128) delays. Our DFBT-
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(f) Walker2d-v2 (U(1, 128) Delays)

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

Figure 3. Learning Curves on MuJoCo with 128 Delays and U(1, 128) Delays.

SAC exhibits a leading learning efficiency across all these

challenging delays. Especially in the MuJoCo with 128

delays, DFBT-SAC can learn remarkably faster than all

baselines, resulting in 173.3% (HalfCheetah-v2), 122.2%
(Hopper-v2), and 263.6% (Walker2d-v2) final performance

improvement better than the second-best baselines.

Results Analysis and Discussion. Based on the above

experimental results, we can observe a general trend in

both deterministic and stochastic delays that DFBT-SAC

shows comparable performance with SOTA augmentation-

based methods under short delays scenarios, in which

augmentation-based methods generally have better perfor-

mance than other belief-based approaches. Since when

delays are short, the dimensionality of the augmented state

space is proper for learning, and without the approxima-

tion errors from belief representation. However, as delays

increase in both scenarios, DFBT-SAC unleashes its advan-

tages. This empirical finding validates our theoretical anal-

ysis in Section 5. For augmentation-based methods, as the

delays increase, the augmented state in augmentation-based

methods grows too rapidly, making efficient policy optimiza-

tion infeasible. For recursively forecasting belief methods,

the compounding errors in belief function approximation

grow exponentially with increasing delays, as demonstrated

in Figure 2 and Section 6.2.1. This results in inaccurate

predictions of delayed observations and undermines subse-

quent policy training. In contrast, DFBT’s prediction error

remains largely unaffected by the length of delays, enabling

DFBT-SAC to maintain strong performance even in scenar-

ios with long delays.

6.2.3. ABLATION STUDY ON BOOTSTRAPPING STEPS

As mentioned in Section 4.2, we conduct the ablation study

on the bootstrapping steps in DFBT-SAC. The result pre-

sented in Table 3 tells us that DFBT-SAC with 8 bootstrap-

ping steps achieves the averaged best performance compared

to other choices. It is also confirmed that bootstrapping with

the states predicted by the trained DFBT can effectively

improve performance.

Table 3. Final Performance on Walker2d-v2 of DFBT-SAC with

different bootstrapping steps. The best performance is underlined.

Delays
Bootstrapping Steps N

1 2 4 8

8 0.86±0.07 0.96±0.07 1.00±0.14 1.11±0.10

16 0.84±0.24 0.76±0.21 1.02±0.12 0.99±0.06

32 0.63±0.22 0.53±0.15 0.67±0.20 0.67±0.15

64 0.34±0.24 0.28±0.22 0.29±0.15 0.41±0.10

128 0.24±0.03 0.29±0.07 0.27±0.14 0.30±0.13

Table 4. Performance comparison of DFBT-SAC with different

belief training methods on MuJoCo tasks with 32 delays. The best

performance is underlined.
Task Online Offline Offline + Fine-tuning

HalfCheetah-v2 0.11± 0.39 0.42± 0.12 0.39± 0.04
Hopper-v2 0.10± 0.58 0.68± 0.20 0.84± 0.04

Walker2d-v2 0.09± 0.27 0.64± 0.10 0.96± 0.32

6.2.4. EVALUATION ON ADDITIONAL MUJOCO TASKS.

we conducted experiments on the Pusher-v2, Reacher-v2,

and Swimmer-v2 with deterministic 32 delays. The offline

datasets (500k samples) are collected from a SAC policy,

with other settings unchanged. The results are shown in

Table 5, showing that DFBT-SAC achieves superior perfor-

mance on these tasks.

8



Directly Forecasting Belief for Reinforcement Learning with Delays

Table 5. Performance comparison on additional MuJoCo tasks with 32 deterministic delays. The best performance is underlined.

Task A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

Pusher-v2 0.05± 0.00 0.93± 0.58 0.95± 0.24 0.92± 0.10 0.87± 0.18 0.94± 0.04 1.04± 0.24
Reacher-v2 0.89± 0.08 0.83± 0.06 0.85± 0.01 0.82± 0.13 0.84± 0.02 0.88± 0.07 0.93± 0.06

Swimmer-v2 0.27± 0.05 0.80± 0.14 0.60± 0.06 0.25± 0.05 0.21± 0.07 0.30± 0.07 1.01± 0.27

Table 6. Performance on stochastic MuJoCo with deterministic 128 delays. The best performance is underlined.

Task A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

HalfCheetah-v2 0.00± 0.03 0.01± 0.05 0.13± 0.04 0.13± 0.03 0.07± 0.01 0.00± 0.04 0.35± 0.04
Hopper-v2 0.03± 0.04 0.08± 0.05 0.06± 0.04 0.05± 0.06 0.04± 0.05 0.04± 0.05 0.13± 0.22

Walker2d-v2 0.06± 0.02 0.04± 0.01 0.08± 0.01 0.06± 0.03 0.10± 0.03 0.05± 0.02 0.30± 0.07

6.2.5. ABLATION RESULTS OF BELIEF TRAINING.

Some task-specific information may be missing if the belief

is frozen in the RL process, leading to limited performance

improvement. This issue can be mitigated by fine-tuning the

belief within the RL process. The results, shown in Table 4,

demonstrate that fine-tuning helps the DFBT capture the

task-specific information with better performance. Note that

there are many potential methods for capturing task-specific

information, not limited to fine-tuning DFBT. Belief learn-

ing from scratch in the online RL process always suffers

from instability issues. Therefore, in this paper, we separate

belief learning from the online RL process, which allows us

to investigate the belief component solely, eliminate poten-

tial influences from the RL side.

6.2.6. STOCHASTIC MUJOCO.

We conducted additional experiments on the stochastic Mu-

JoCo tasks with a probability of 0.001 for the unaware noise

and deterministic 128 delays. As shown in Table 6, the

results demonstrate that our DFBT-SAC achieves superior

performance in these stochastic MuJoCo tasks.

6.2.7. INFERENCE SPEED COMPARISON.

We conducted additional experiments on computational ef-

ficiency. As shown in Table 7, the results demonstrate that

directly forecasting belief maintains a consistent and stable

inference speed (around 4 ms) across different delays. In

contrast, the recursively forecasting belief experiences in-

ference speed issues as delays increase. In HalfCheetah-v2

with 128 delays, the training times of DATS and D-Dreamer

are around 10 hours and 15 hours, respectively, while those

of D-SAC and DFBT-SAC are both around 6 hours.

Table 7. Inference speed (ms) comparison in HalfCheetah-v2.
Delays DATS D-Dreamer D-SAC DFBT-SAC

8 1.10± 0.02 1.85± 0.01 4.03± 0.03 4.18± 0.04
32 3.85± 0.06 6.80± 0.04 4.03± 0.04 4.18± 0.04

128 14.97± 0.22 26.51± 0.19 4.03± 0.03 4.15± 0.05

6.3. Limitations and Challenges

In this work, we empirically validate that our approach can

address the compounding errors of recursively forecasting

belief with significant performance improvement. However,

there remain some limitations and challenges as follows.

Online Belief Learning. In this paper, we mainly con-

sider learning DFBT from the offline dataset, which means

the performance of the belief is subject to the quality and

quantity of the dataset. However, direct learning belief in

the online environment will introduce an auxiliary represen-

tation task, destabilizing the learning process.

Sample Complexity of Directly Forecasting Belief. Al-

though we have empirically demonstrated that directly fore-

casting belief can effectively reduce the compounding errors

of recursively forecasting belief. However, it is worth theo-

retically analysing the sample complexity of belief learning,

especially in online scenarios.

7. Conclusion

This work investigates the challenges of RL in environments

where inherent delays exist between actions and their cor-

responding outcomes. Existing belief-based approaches

usually suffer from the compounding errors issue of the

recursively forecasting belief as the delays are increased,

seriously hindering the performance. To resolve this issue,

we present DFBT, a new directly forecasting belief repre-

sentation method. Furthermore, we present DFBT-SAC,

which facilitates multi-step bootstrapping in learning the

value function via the state prediction from the DFBT, effec-

tively improving the sample efficiency. We demonstrate that

our DFBT greatly reduces compounding errors, yielding

stronger performance guarantees. Our empirical results val-

idate that DFBT has remarkable prediction accuracy in the

D4RL datasets. We also empirically show that our DFBT-

SAC not only effectively enhance the learning efficiency

with superior performance in the MuJoCo benchmark.
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A. Implementation Details

The implementation of DFBT and DFBT-SAC is based on CORL (Tarasov et al., 2022) and CleanRL (Huang et al., 2022).

The codebase for reproducing our experimental results is also provided in the Supplementary Material. We detail the

hyperparameter settings of DFBT and DFBT-SAC in Table 8 and Table 9, respectively.

Table 8. Hyper-parameters table of DFBT.

Hyper-parameter Value

Epoch 1e3

Batch Size 256

Attention Heads Num 4

Layers Num 10

Hidden Dim 256

Attention Dropout Rate 0.1

Residual Dropout Rate 0.1

Hidden Dropout Rate 0.1

Learning Rate 1e-4

Optimizer AdamW

Weight Decay 1e-4

Betas (0.9, 0.999)

Table 9. Hyper-parameters table of DFBT-SAC.

Hyper-parameter Value

Bootstrapping Steps N 8

Learning Rate (Actor) 3e-4

Learning Rate (Critic) 1e-3

Learning Rate (Entropy) 1e-3

Train Frequency (Actor) 2

Train Frequency (Critic) 1

Soft Update Factor (Critic) 5e-3

Batch Size 256

Neurons [256, 256]

Layers 3

Hidden Dim 256

Activation ReLU

Optimizer Adam
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B. Theoretical Analysis

Theorem B.1 (Performance Difference of Recursively Forecasting Belief). For the delay-free policy Ã and the delayed

policy Ã∆. Given any xt ∈ X , the performance difference Irecursive(xt) of the recursively forecasting belief bθ can be

bounded as follows, respectively.

For deterministic delays ∆, we have

∣
∣Irecursive(xt)

∣
∣ ≤ |I true

∆ (xt)|+ LV

1− LP
∆

1− LP
ϵP

︸ ︷︷ ︸

compounding errors

.

And for stochastic delays ¶ ∼ d∆(·), we have

∣
∣Irecursive(xt)

∣
∣ ≤ E

δ∼d∆(·)






|I true

δ (xt)|+ LV

1− LP
δ

1− LP
ϵP

︸ ︷︷ ︸

compounding errors






.

Proof. For deterministic delays ∆, the performance difference I recursive can be written as:

I recursive(xt) = E
st∼bθ(·|xt)

[V π(st)]− V π∆(xt)

= I true
∆ (xt) + E

st∼bθ(·|xt)
[V π(st)]− E

st∼b(·|xt)
[V π(st)] .

And recall that we have the Lipschitz continuity of the value function V π:

∣
∣
∣
∣ E
st∼bθ(·|xt)

[V π(st)]− E
st∼b(·|xt)

[V π(st)]

∣
∣
∣
∣
≤ LV W(bθ(·|xt)||b(·|xt)).

For W(bθ(·|xt)||b(·|xt)), we follow the proof sketch of (Asadi et al., 2018).

We use b(i)(·|xt)(i = 1, . . . ,∆) to note that the belief function with the specific delays i. For instance, b(∆)(·|xt) = b(·|xt)
and b(1)(·|xt) = P(·|st, at).

Then, we have

W(b
(∆)
θ

(·|xt)||b
(∆)(·|xt))

= W(Pθ(·|b
(∆−1)
θ

(·|xt), at−1)||P(·|b(∆−1)(·|xt), at−1))

≤ W(Pθ(·|b
(∆−1)
θ

(·|xt), at−1)||P(·|b
(∆−1)
θ

(·|xt), at−1)) +W(P(·|b
(∆−1)
θ

(·|xt), at−1)||P(·|b(∆−1)(·|xt), at−1))

≤ ϵP + LPW(b∆−1
θ

(·|xt)||b
∆−1(·|xt))

≤ (1 + LP)ϵP + LP
2W(b

(∆−2)
θ

(·|xt)||b
(∆−2)(·|xt))

≤ · · ·

≤ (1 + · · ·+ LP
∆−2)ϵP + LP

∆−1W(b
(1)
θ

(·|xt)||b
(1)(·|xt))

≤ (1 + · · ·+ LP
∆−1)ϵP

=
1− LP

∆

1− LP
ϵP .

Therefore, we have

∣
∣I recursive(xt)

∣
∣ ≤

∣
∣I true

∆ (xt)
∣
∣+ LV

1− LP
∆

1− LP
ϵP .
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The above theoretical results can be extended to the stochastic delays ¶ ∼ d∆(·) easily. The performance difference of the

ground-truth belief I true
δ

is defined as:

I true
δ (xt) =

1

1− µ
E

ŝ∼bδ(·|x̂)
â∼πδ(·|x̂)
x̂∼d

π

δ
(·|xt)

[V π(ŝ)−Qπ(ŝ, â)] .

Finally, we have

∣
∣I recursive(xt)

∣
∣ ≤

∆∑

δ=1

d∆(¶)

[

∣
∣I true

δ (xt)
∣
∣+ LV

1− LP
δ

1− LP
ϵP

]

.

Proposition B.2 (Performance Degeneration Bound of Directly Forecasting Belief). For the delay-free policy Ã and the

delayed policy Ã∆. Given any xt ∈ X , the performance degeneration Idirect of the directly forecasting belief bθ can bounded

as follows respectively.

For deterministic delays ∆, we have
∣
∣Idirect(xt)

∣
∣ ≤ |I true

∆ (xt)|+ LV ϵdirect.

For stochastic delays ¶ ∼ d∆(·), we have
∣
∣Idirect(xt)

∣
∣ ≤ E

δ∼d∆(·)
[|I true

δ (xt)|] + LV ϵdirect.

Proof. Applying Assumption 5.6 and the proof of Theorem B.1.

Proposition B.3 (Performance Degeneration Comparison). Directly forecasting belief could achieve a better performance

guarantee
∣
∣Idirect(xt)

∣
∣ ≤

∣
∣Irecursive(xt)

∣
∣, if we have

ϵdirect ≤
1− LP

∆

1− LP
ϵP

for deterministic delays ∆, and

ϵdirect ≤ E
δ∼d∆(·)

[

1− LP
δ

1− LP

]

ϵP

for stochastic delays ¶ ∼ d∆(·).

Proof. For deterministic delays ∆, if we have

ϵdirect ≤
1− LP

∆

1− LP
ϵP ,

then it is obvious that we have

∣
∣I true

∆ (xt)
∣
∣+ LV ϵdirect

︸ ︷︷ ︸

|Idirect(xt)|

≤
∣
∣I true

∆ (xt)
∣
∣+ LV

1− LP
∆

1− LP
ϵP

︸ ︷︷ ︸

|I recursive(xt)|

.

For stochastic delays ¶ ∼ d∆(·), if we have

ϵdirect ≤ E
δ∼d∆(·)

[

1− LP
δ

1− LP
ϵP

]

,

then it is obvious that we have

∣
∣I true

∆ (xt)
∣
∣+ LV ϵdirect

︸ ︷︷ ︸

|Idirect(xt)|

≤
∣
∣I true

∆ (xt)
∣
∣+ LV E

δ∼d∆(·)

[

1− LP
δ

1− LP
ϵP

]

︸ ︷︷ ︸

|I recursive(xt)|

.
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C. Additional Results on MuJoCo.

We report additional experimental results on MuJoCo, including more different patterns of deterministic and stochastic

delays in Table 10 and Table 11, respectively.

Table 10. Performance on MuJoCo with Deterministic Delays. The best performance is underlined, the best belief-based method is in red.

Augmentation-based Belief-based
Task Delays

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

8 0.10±0.01 0.40±0.04 0.44±0.03 0.08±0.01 0.08±0.01 0.12±0.06 0.35±0.12

16 0.06±0.03 0.42±0.02 0.29±0.10 0.08±0.01 0.08±0.01 0.11±0.10 0.40±0.05

32 0.02±0.02 0.40±0.03 0.26±0.04 0.11±0.04 0.08±0.00 0.08±0.02 0.42±0.03

64 0.01±0.01 0.15±0.12 0.16±0.02 0.12±0.05 0.11±0.05 0.12±0.07 0.39±0.06

HalfCheetah-v2

128 0.04±0.06 0.08±0.13 0.14±0.02 0.10±0.08 0.15±0.05 0.09±0.04 0.41±0.03

8 0.61±0.31 0.87±0.09 0.95±0.16 0.41±0.31 0.11±0.01 0.16±0.05 0.77±0.18

16 0.17±0.06 0.92±0.16 0.94±0.17 0.24±0.31 0.19±0.13 0.11±0.01 0.89±0.13

32 0.11±0.02 0.89±0.14 0.73±0.20 0.07±0.04 0.11±0.05 0.11±0.01 0.68±0.20

64 0.05±0.00 0.23±0.30 0.11±0.03 0.13±0.00 0.09±0.05 0.08±0.02 0.19±0.02

Hopper-v2

128 0.04±0.01 0.08±0.02 0.07±0.01 0.08±0.01 0.09±0.03 0.06±0.01 0.20±0.03

8 0.44±0.26 1.07±0.02 0.97±0.10 0.13±0.05 0.11±0.06 0.09±0.05 0.99±0.03

16 0.13±0.02 0.96±0.05 0.67±0.21 0.06±0.10 0.12±0.03 0.08±0.04 0.95±0.11

32 0.10±0.02 0.37±0.25 0.16±0.08 0.02±0.03 0.08±0.05 0.08±0.02 0.64±0.10

64 0.07±0.01 0.14±0.03 0.10±0.01 0.01±0.02 0.08±0.03 0.08±0.04 0.41±0.14

Walker2d-v2

128 0.06±0.00 0.07±0.03 0.08±0.01 0.02±0.02 0.08±0.05 0.11±0.06 0.40±0.08

Table 11. Performance on MuJoCo with Stochastic Delays. The best performance is underlined, and the best belief-based method is in red.

Augmentation-based Belief-based
Task Delays

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

U(1, 8) 0.09±0.01 0.21±0.07 0.17±0.07 0.09±0.03 0.02±0.01 0.03±0.01 0.37±0.12

U(1, 16) 0.04±0.04 0.31±0.08 0.24±0.04 0.13±0.03 0.03±0.02 0.01±0.01 0.37±0.06

U(1, 32) 0.01±0.00 0.33±0.07 0.23±0.02 0.11±0.04 0.02±0.00 0.01±0.01 0.31±0.16

U(1, 64) 0.06±0.11 0.23±0.06 0.17±0.02 0.16±0.03 0.04±0.03 0.01±0.00 0.40±0.06

HalfCheetah-v2

U(1, 128) 0.01±0.01 0.03±0.03 0.15±0.02 0.16±0.03 0.16±0.00 0.02±0.00 0.39±0.04

U(1, 8) 0.17±0.05 0.20±0.04 0.18±0.04 0.04±0.01 0.07±0.05 0.14±0.04 0.86±0.18

U(1, 16) 0.08±0.02 0.11±0.11 0.07±0.04 0.04±0.01 0.03±0.01 0.04±0.02 0.89±0.17

U(1, 32) 0.05±0.01 0.07±0.09 0.05±0.01 0.05±0.01 0.04±0.01 0.03±0.01 0.43±0.21

U(1, 64) 0.03±0.01 0.03±0.01 0.03±0.01 0.05±0.01 0.03±0.01 0.03±0.01 0.17±0.05

Hopper-v2

U(1, 128) 0.03±0.01 0.04±0.01 0.04±0.02 0.05±0.00 0.03±0.01 0.03±0.00 0.14±0.01

U(1, 8) 0.36±0.24 0.40±0.32 0.41±0.15 0.07±0.01 0.07±0.05 0.12±0.04 1.11±0.10

U(1, 16) 0.19±0.10 0.27±0.17 0.24±0.10 0.08±0.02 0.13±0.08 0.07±0.02 0.99±0.06

U(1, 32) 0.12±0.03 0.16±0.04 0.11±0.05 0.09±0.04 0.12±0.04 0.05±0.02 0.67±0.15

U(1, 64) 0.08±0.02 0.09±0.08 0.06±0.01 0.08±0.04 0.15±0.05 0.06±0.03 0.41±0.10

Walker2d-v2

U(1, 128) 0.06±0.01 0.06±0.06 0.04±0.02 0.10±0.04 0.15±0.07 0.03±0.04 0.30±0.13

16



Directly Forecasting Belief for Reinforcement Learning with Delays

D. Learning Curves on MuJoCo.

We report learning curves on MuJoCo with different patterns of deterministic and stochastic delays in Figure 4 and Figure 5,

respectively.

17



Directly Forecasting Belief for Reinforcement Learning with Delays

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(a) HalfCheetah-v2 (8 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

(b) Hopper-v2 (8 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

(c) Walker2d-v2 (8 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(d) HalfCheetah-v2 (16 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Re

tu
rn

(e) Hopper-v2 (16 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

(f) Walker2d-v2 (16 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(g) HalfCheetah-v2 (32 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

(h) Hopper-v2 (32 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
tu

rn

(i) Walker2d-v2 (32 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(j) HalfCheetah-v2 (64 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(k) Hopper-v2 (64 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Re
tu

rn

(l) Walker2d-v2 (64 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

Re
tu

rn

(m) HalfCheetah-v2 (128 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.00

0.05

0.10

0.15

0.20

Re
tu

rn

(n) Hopper-v2 (128 Delays)

0.0 0.2 0.4 0.6 0.8 1.0
Global Steps 1e6

0.0

0.1

0.2

0.3

0.4

0.5

Re
tu

rn

(o) Walker2d-v2 (128 Delays)

A-SAC BPQL ADRL DATS D-Dreamer D-SAC DFBT-SAC (ours)

Figure 4. Learning Curves on MuJoCo with Deterministic Delays.
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(j) HalfCheetah-v2 (U(64) Delays)
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(k) Hopper-v2 (U(1, 64) Delays)
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(l) Walker2d-v2 (U(1, 64) Delays)
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(m) HalfCheetah-v2 (U(1, 128) Delays)
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(n) Hopper-v2 (U(1, 128) Delays)
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(o) Walker2d-v2 (U(1, 128) Delays)
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Figure 5. Learning Curves on MuJoCo with Stochastic Delays.
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E. Belief Qualitative Comparison

We report the qualitative comparison of the beliefs on HalfCheetah-v2, Hopper-v2, and Walker2d-v2 in Figure 6, Figure 7,

and Figure 8, respectively.
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(a) Truth (8 Delays) (b) DATS (8 Delays) (c) D-Dreamer (8 Delays) (d) D-SAC (8 Delays) (e) DFBT (8 Delays)

(f) Truth (16 Delays) (g) DATS (16 Delays) (h) D-Dreamer (16 Delays) (i) D-SAC (16 Delays) (j) DFBT (16 Delays)

(k) Truth (32 Delays) (l) DATS (32 Delays) (m) D-Dreamer (32 Delays) (n) D-SAC (32 Delays) (o) DFBT (32 Delays)

(p) Truth (64 Delays) (q) DATS (64 Delays) (r) D-Dreamer (64 Delays) (s) D-SAC (64 Delays) (t) DFBT (64 Delays)

(u) Truth (128 Delays) (v) DATS (128 Delays) (w) D-Dreamer (128 Delays) (x) D-SAC (128 Delays) (y) DFBT (128 Delays)

Figure 6. Belief qualitative comparison on HalfCheetah-v2 with different delays.
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(a) Truth (8 Delays) (b) DATS (8 Delays) (c) D-Dreamer (8 Delays) (d) D-SAC (8 Delays) (e) DFBT (8 Delays)

(f) Truth (16 Delays) (g) DATS (16 Delays) (h) D-Dreamer (16 Delays) (i) D-SAC (16 Delays) (j) DFBT (16 Delays)

(k) Truth (32 Delays) (l) DATS (32 Delays) (m) D-Dreamer (32 Delays) (n) D-SAC (32 Delays) (o) DFBT (32 Delays)

(p) Truth (64 Delays) (q) DATS (64 Delays) (r) D-Dreamer (64 Delays) (s) D-SAC (64 Delays) (t) DFBT (64 Delays)

(u) Truth (128 Delays) (v) DATS (128 Delays) (w) D-Dreamer (128 Delays) (x) D-SAC (128 Delays) (y) DFBT (128 Delays)

Figure 7. Belief qualitative comparison on Hopper-v2 with different delays.
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(a) Truth (8 Delays) (b) DATS (8 Delays) (c) D-Dreamer (8 Delays) (d) D-SAC (8 Delays) (e) DFBT (8 Delays)

(f) Truth (16 Delays) (g) DATS (16 Delays) (h) D-Dreamer (16 Delays) (i) D-SAC (16 Delays) (j) DFBT (16 Delays)

(k) Truth (32 Delays) (l) DATS (32 Delays) (m) D-Dreamer (32 Delays) (n) D-SAC (32 Delays) (o) DFBT (32 Delays)

(p) Truth (64 Delays) (q) DATS (64 Delays) (r) D-Dreamer (64 Delays) (s) D-SAC (64 Delays) (t) DFBT (64 Delays)

(u) Truth (128 Delays) (v) DATS (128 Delays) (w) D-Dreamer (128 Delays) (x) D-SAC (128 Delays) (y) DFBT (128 Delays)

Figure 8. Belief qualitative comparison on Walker2d-v2 with different delays.
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