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Abstract
Batteryless systems frequently face power failures, requiring ex-
tra runtime bu!ers to maintain inference progress and leaving
only a memory space for storing ultra-tiny deep neural networks
(DNNs). Besides, making these models responsive to stochastic
energy harvesting dynamics during inference requires a balance
between inference accuracy, latency, and energy overhead. Recent
works on compression mostly focus on time and memory, but of-
ten ignore energy dynamics or signi"cantly reduce the accuracy
of pre-trained DNNs. Existing energy-adaptive inference works
modify the architecture of pre-trained models and have signi"cant
memory overhead. Thus, energy-adaptive and accurate inference
of pre-trained DNNs on batteryless devices with extreme memory
constraints is more challenging than traditional microcontrollers.

We combat these issues by proposing FreeML, a framework to
optimize pre-trained DNNmodels for memory-e#cient and energy-
adaptive inference on batteryless systems. FreeML comprises (1)
a novel compression technique to reduce the model footprint and
runtime memory requirements simultaneously, making them exe-
cutable on extremely memory-constrained batteryless platforms;
and (2) the "rst early exit mechanism that uses a single exit branch
for all exit points to terminate inference at any time, making models
energy-adaptive with minimal memory overhead. Our experiments
showed that FreeML reduces the model sizes by up to 95→, supports
adaptive inference with a 2.03↑ 19.65→ less memory overhead, and
provides signi"cant time and energy bene"ts with only a negligible
accuracy drop compared to the state-of-the-art.

CCS Concepts
• Computer systems organization↓ Embedded software; •
Computing methodologies↓ Neural networks.
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1 Introduction

Advances in electronics and energy harvesting have given rise to
batteryless devices that exclusively rely on ambient energy [6, 12].
These devices compute intermittently due to extremely scarce and
transient ambient energy, creating signi"cant challenges in hard-
ware and software design [42]. Despite these challenges, the appli-
cation space of intermittent computing is rapidly expanding [3].

On-device intelligence has become increasingly important for
batteryless edge applications since it o!ers more e#cient, reliable,
timely, and secure computing solutions [14, 22]. Deep neural net-
work (DNN) inference is feasible on batteryless sensing platforms,
and it enhances the systems e#ciency and throughput consider-
ably [7, 22, 34]. However, deploying a pre-trained DNN model on
an extremely resource-constrained batteryless device and running
it intermittently pose signi"cant problems to tackle.
P1:Memory Scarcity.Batteryless platforms are extremelymemory-
constrained, often having kilobyte-sized nonvolatile memory, e.g.,
256KB FRAM [21], and only a few kilobytes of SRAM. FRAM is
mainly used to back up and recover program data and states for
power failure-resilient intermittent computation. Besides, inference
requires extra memory for backup and recovery since input and
output activations of the layers need to be preserved in FRAM [14].
Hence, only the remaining part of the FRAM (often less than half
of its total size) can be used to store the parameters of the model.
While traditional compression techniques can "t a pre-trained DNN
model in 256KB by preserving its precision [9, 16, 29], they are in-
su#cient when the memory available to store and execute the
model is signi"cantly smaller, as they result in a signi"cant drop
in accuracy [22]. On the other hand, existing works on batteryless
systems obtain small models in a rigid and costly way: generate sev-
eral compressed networks, retrain them, and perform an expensive
search to "nd the best network [14]. Besides, they do not consider
the energy dynamics and runtime memory requirements, which
require support for di!erent compression scales. Therefore, we
need a solution to deploy pre-trained DNNs on batteryless systems
smoothly by bridging the accuracy gap while matching the extreme
memory and energy requirements.
P2: Energy Dynamics, Memory, and Latency. Unstable and
sporadic availability of harvestable ambient energy can prevent
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executing inference intermittently with an acceptable latency. Ex-
isting works addressed this issue by adapting inference accuracy
concerning the available energy by – (1) maintaining multiple ver-
sions of the same model that o!er di!erent accuracies and laten-
cies [6, 7, 26], which is memory-ine#cient for a batteryless device;
or (2) constructing models with early exit branches [22, 34], en-
abling the early termination of inference and providing anytime
output with reasonable accuracy. Early-exit introduces signi"cant
memory overhead to maintain parameters for each exit branch and
needs to keep input activations of these networks to provide results
at any time. Besides, all these approaches require either changing
the model structure or retraining the whole model and thus do
not support working with pre-trained DNN models. Therefore, a
plug-and-play early exit solution that conforms to the extreme
memory constraints by introducing minimal memory overhead
without altering the baseline DNN model is required.

Contributions. To "ll this gap, we introduce FreeML—a system-
atic pipeline to optimize pre-trained DNN models for memory-
e#cient and energy-adaptive inference on batteryless systems.
FreeML comes with the following speci"c features:
(1) Sparsity-imposed DNN Compression (SparseComp) is a new
iterative algorithm that compresses selective layers of a pre-trained
DNN by retraining and imposing sparsity constraints simultane-
ously. SparseComp minimizes accuracy degradation due to com-
pression by retraining only the selected layers using a small percent
of the training data. SparseComp does not employ expensive so-
lutions, such as neural architecture search [14, 33], that require
retraining of the whole model and "ne-grained search within a
large con"guration space. In addition, SparseComp employs layer
separation to reduce the amount of runtime memory space needed
to store layer activations during intermittent inference.
(2) Global Early Exit Network (gNet) is the "rst plug-and-play early
exit architecture that uses a single exit branch to exit from any
layer of the network, introducing minimal memory overhead and
eliminating the need to retrain or restructure the model. It is a one-
architecture-"ts-all network, which inserts only a single exit branch
into the pre-trained model instead of one branch for each layer.
This single exit branch takes the output from all intermediate layers
as input using a unique pooling mechanism that handles missing
intermediate outputs from the later layers. Therefore, it is possible
to terminate DNN inference at any time by providing inference
results without bu!ering previous layer outputs. Finally, gNet is the
"rst early-exit model that removes joint-training of exit branches
and the DNN model, or alternating base DNN architecture, which
makes it suitable for pre-trained networks.

Our experiments show that SparseComp can achieve even 95→
compression rates on pre-trained DNN models, i.e., reducing their
sizes from MBs into a few KBs without a signi"cant accuracy drop.
gNet reduces memory overhead 2.03𝐿 ↑ 19.65𝐿 times by replac-
ing multiple exit branches of traditional early-exit models with a
single global branch. Moreover, gNet reduces the inference time
by 10.84% ↑ 16.19% with a median accuracy gain of 2% compared
to the traditional early-exit models. Thanks to SparseComp and
gNet, FreeML provides signi"cant time and energy bene"ts during
intermittent inference by terminating ultra-tiny DNN inference
anytime and providing timely outputs.

We release FreeML as an open-source framework via [1] to facil-
itate the automatic deployment and intermittent execution of DNN
models, similar to the popular end-to-end frameworks Tensor$ow-
Micro and EdgeImpulse [19], which do not support the microcon-
trollers [13, 21] commonly used in batteryless systems. Our pipeline
automatically converts the adapted and compressed DNN model
into a set of portable source "les. These "les are linked with our
DNN and intermittency control libraries that can execute the model
intermittently and adaptively on batteryless devices.

2 DNN Inference on Intermittent Power
Batteryless devices use energy harvesters to capture ambient en-
ergy and store it in their small capacitors. Due to capacitors’ limited
capacity and ambient energy variability, these devices experience
frequent power failures. Therefore, they perform computes inter-
mittently by saving their computational state when power fail-
ure is imminent and restoring it when su#cient energy becomes
available for resumption [2, 8, 11, 32, 41, 43]. Several works have
demonstrated the intermittent execution of custom and manually-
optimized tiny DNN models in batteryless platforms [14, 22, 26, 33,
34]. However, instead of resorting to these handcrafted DNN mod-
els, we need a systematic approach to adapt existing pre-trained
models to conform to the severe memory and energy limitations of
batteryless systems and to execute them intermittently.

2.1 SOTA: Deploying Pre-trained DNN Models
Model Compression: Several studies proposed DNN compression
techniques to reduce their memory footprint and computational
overhead to make them run e#ciently on mobile systems with MB-
sized memory and power-hungry MCUs. These techniques include
threshold-based pruning connections with weights [16, 17] or using
Fisher Information to prune unimportant connections [27, 28, 30],
sparsifying fully-connected layers and separating convolutional ker-
nels with tensor decomposition and low-rank approximation [9, 24].
Some studies compress DNNs to reduce their execution time and
energy consumption [39, 40]. Unfortunately, these techniques ig-
nore the additional memory requirement for intermittent operation,
resulting in considerable accuracy drops when obtaining ultra-tiny
models deployable on batteryless platforms [10].

Several intermittent systems [22, 26, 34] have utilized similar
compression techniques on shallower and relatively smaller pre-
trained DNNs by employing lower compression ratios to prevent
accuracy degradation. Gobieski et al. [14] proposed a neural ar-
chitecture search (NAS)-based approach that creates several com-
pressed con"gurations of a DNN (through separation and pruning)
to select the most accurate and energy-e#cient con"guration to "t
the target device. However, the NAS requires exhaustive retrain-
ing and "ne-grained search within a large search space, which
is time-consuming and computationally expensive. Additionally,
the search space, search algorithm, and performance estimation
strategy should be well-de"ned to obtain promising results. In sum-
mary, we need a customizable compression technique to deploy
pre-trained DNNs on batteryless systems smoothly by bridging the
accuracy gap while matching the extreme memory requirements.
Early Exit: Early-exit models [36] allow dynamic reduction of
inference time without sacri"cing performance by introducing mul-
tiple exit branches in the network. Later works [22, 23, 34] expands
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Table 1: A comparison of prior works on DNN compression and adaptive execution in batteryless systems.
Prior Works DNN Model Compression DNN Model Adaptation

Rehash [8], AdaMICA [4],
Camaroptera [12], ImmortalThreads [43],
Neuro.ZERO [26], LiteTM [7], Protean [6]

No ✁ No ✁

HarvNet [23] No ✁
Memory ine#cient early exit branches, separate models for

each branch

SONIC & TAILS [14]
Compressing handcrafted small models via post-facto

pruning, separation for only reducing model parameters,
NAS for searching the best tiny model

No ✁

Zygarde [22] Compressing handcrafted small models via post-facto
pruning and separation for reducing model parameters

Memory ine#cient early exit branches, separate models for
each branch

ePerceptive [34] Compressing handcrafted small models via post-facto
pruning and separation for reducing model parameters

Memory ine#cient early exit branches, separate models for
each branch

FreeML (this work)

Compressing any pre-trained DNN models via sparsity
imposed retraining for reducing model parameters and
layer separation for reducing model runtime memory

requirements↓ Ultra-tiny DNN models✂

Plug-and-play early exit branches via a single global exit
layer that supports anytime output without altering the

baseline model↓Memory-e!cient early exit✂

early-exit to address the energy sporadicity of batteryless systems
by trading o! the accuracy, latency, and energy constraints and
integrating energy as one of the deciding parameters for early-
exit models. However, these works require storing multiple exit
branches, increasing the memory overhead with the number of ex-
its. Though Zygarde [22] reduces the overhead by using clustering
as an exit branch instead of a neural network, this still adds memory
requirement for 𝑀 clusters and changes the network architecture to
a Siamese network. HarvNet [23] uses NAS to "nd the optimum
number of exit points, which still requires storing the parameters
of multiple exit branches. Therefore, we need to consider memory
as one of the constraints in designing these early-exit models.

Besides, having multiple exit branches also requires either "n-
ishing the execution of an exit branch or storing the entire output
required to execute the previous exit branch in a bu!er if any
interruption occurs. This introduces additional computation and
memory overhead to provide "any-time output." Thus, a solution
is needed to support any-time output without storing the entire
output in bu!ers or always executing the previous exit branches.

Moreover, all these works (both batteryless and non-batteryless)
require either solving a joint optimization to retrain the exit branch
and the baseline neural network [34, 36] or changing the baseline
architecture [22] which is computationally expensive and requires
access to training dataset is not always accessible. Such retraining
hinders us from using pre-trained models that are gaining popular-
ity. Therefore, a "plug and play" early exit mechanism is needed to
introduce dynamic inference without altering the baseline DNN.

2.2 Unique Features of FreeML
Table 1 compares FreeML with previous studies that demonstrated
intermittent DNN inference on batteryless systems. FreeML is the
"rst that provides a systematic pipeline to generate energy-aware
adaptive and ultra-compressed accurate models from pre-trained
DNNs, facilitating the deployment and intermittent execution of
these models on real batteryless hardware platforms. Prior works
are limited to the e#cient intermittent execution of a few hand-
crafted and optimized small DNNs. FreeML addresses two main
concerns simultaneously: memory footprint and energy awareness.

FreeML introduces SparseComp, a new approach that casts prun-
ing into a constrained optimization problem, which aims to maximize
the model accuracy while meeting the memory constraints. This
is accomplished by automatically but selectively retraining large

layers using only a small subset of the training data while simulta-
neously imposing sparsity. This strategy avoids exhaustive NAS to
"nd the optimal model that meets the memory footprint require-
ments. SparseComp is not a trivial algorithm since it (1) imposes a
di!erent sparsity constraint for each layer to achieve minimal accu-
racy degradation and (2) reduces the runtime memory requirements
needed to execute the model on the device.

In traditional early exit models, multiple exit branches need to
be stored. FreeML employs gNet, the !rst one-architecture-!ts-all
early-exit network where a single network branch works as the exit
point for all or selected [23] layers in the network. It is a "plug and
play" exit model that supports "any-time output" with negligible
overhead by extracting and storing the signi"cant components of
all or selected layer outputs in a single input bu!er. gNet does not re-
quire altering the baseline model and is the "rst work that supports
inserting exit layers on any pre-trained network. However, develop-
ing and training gNet is non-trivial for three reasons: (1) di!erent
layers’ outputs vary in shape, making a one-"t-all model harder to
achieve; (2) the output of later layers is not present when exiting
from a previous layer; and (3) the memory, time, and computation
overhead of the exit branch needs to be minimal.

3 FreeML for DNN Intermittent Inference
The FreeML pipeline follows a two-phase work$ow. In the "rst
phase, a given pre-trained DNN model is compressed to an ultra-
tiny model (SparseComp) to "t into the target device’s memory.
Then, a global early exit network is augmented to the ultra-tiny
model (gNet) to create an energy-aware and adaptive model. The
second phase involves converting the compressed adaptive DNN
model into C code that is linked with the FreeML ML library, which
facilitates power-failure-resilient inference on the target platform.

3.1 Sparsity-imposed Compression of Models
SparseComp proposes a unique approach by treating DNN model
compression as a constrained optimization problem. The goal of this
optimization is to reduce the model’s memory footprint so that it
can "t into the limited memory of the target device while minimiz-
ing the accuracy drop that occurs due to compression. To solve this
optimization problem, SparseComp selectively retrains the large
layers of the pre-trained DNN model while imposing autonomously
identi!ed sparsity constraints during training. In addition to reduc-
ing the number of parameters, SparseComp minimizes the model’s
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(a) Trained
Network

Fully Connected Layer 
to be compressed Stronger

connections

(b) Apply sparsity
constraint

(c) Re-train
layer

ITERATE UNTIL DESIRED ACCURACY

Fully Connected Layer 
to be compressed

Fully Connected Layer 
to be compressed

Figure 1: The SparseComp compression scheme. Smaller
weights are pruned after imposing the sparsity constraint.
The pruned weights can appear in the next epoch again dur-
ing re-training. After several iterations, the layer is com-
pressed with a minimal drop in the model accuracy.

runtime memory requirements during intermittent inference by
reducing the memory needed to store intermediate results.
3.1.1 Overview. SparseComp includes two main components:

(1) Runtime-Aware Separation of Layers: To enable failure-atomic
intermittent execution of DNN inference, FreeML maintains an in-
ternal working bu"er in nonvolatile memory whose size is su#cient
to keep the corresponding layer’s both input and output activations.
This is mandatory to make inference computations idempotent
so that FreeML never reads and then writes to the same memory
location, eliminating memory inconsistencies due to write-after-
read (WAR) dependencies [43]. SparseComp applies separation
techniques [9, 14] to split the layers that increase working bu!er
requirements, decreasing their runtime memory overhead with a
minimal drop in model accuracy.

(2) Iterative Unstructured Pruning: After separating the layers
of the pre-trained DNN model and reducing its runtime memory
requirement, the next step is systematic pruning to compress and "t
thatmodel into the target device’smemory. To achieve this, SparseC-
omp follows a process where it selects the largest fully connected or
convolutional layer in the model and de"nes a sparsity constraint
for it. To compress the selected layer, we freeze all the preceding
layers, i.e., their weights, biases, or "lters are not modi"ed, and
only retrain the selected layer and the following ones by imposing
the selected sparsity constraint only on the layer to be compressed.
We impose the sparsity constraint using projected gradient descent
that employs iterative hard-thresholding [15], allowing the mem-
ory constraints to always be respected on the selected layer during
retraining. Once the selected large layer is retrained to achieve the
desired sparsity with minimal degradation in the model accuracy,
we start a new re-training iteration and repeat the process until the
desired model size requirements are met.
3.1.2 Runtime-Aware Separation of Layers During deep neural net-
work (DNN) inference at runtime, a common step of executing these
layers is the multiply-and-accumulate (MAC) operation, which in-
volves computing the product of two numbers and adding that
product to an accumulator (𝐿+ = 𝑁 ↔ 𝑂). However, performing

MAC operations can cause anti-dependencies (i.e., WAR dependen-
cies) [11, 14] since they need to read and write to the same memory
locations in non-volatile memory, i.e., the accumulator x. If these
operations are repeated due to power-failure interruptions, they
can lead to di!erent results due to anti-dependencies, making them
inherently non-idempotent (i.e., not power-failure-resilient).

To address this issue, the FreeML library has a dedicated work-
ing bu!er in non-volatile memory to maintain input and output
activations of layers separately during inference at runtime. This
separation ensures that FreeML never reads and then writes to the
same memory locations, thereby enabling power-failure-resilient
execution of each layer. The runtime memory requirement of a
layer is the sum of its input and output activations. Therefore, the
layer with the maximum runtime bu!er size requirement speci"es
the size of the FreeML working bu!er. FreeML employs the separa-
tion of layers to decrease their input/output sizes and, in turn, to
reduce the working bu!er size.

To reduce the working bu!er requirements, SparseComp uses
separation techniques to separate convolution layerswith the Tucker
tensor decomposition and fully connected layerswith singular value
decomposition [9, 14]. Previous approaches have mainly focused
on reducing the number of multiplications and improving compu-
tational e#ciency, but our approach also considers working bu!er
sizes. SparseComp starts with the layer that requires the largest
bu!er and separates it. For instance, a fully connected layer with
dimensions 𝑃 → 𝑀 is factorized into two layers with dimensions
𝑃 → 𝑄 and 𝑄 → 𝑀 layers where 𝑄 < 𝑃. In the prior case, the working
bu!er requirement for the layer is𝑃 + 𝑀, while in the latter, it is
𝑃 + 𝑄 if we assume𝑃 > 𝑀. Separating layers reduces the working
bu!er size and energy requirements, but this comes at the cost of
a drop in accuracy. We used Bayesian matrix factorization [35] to
estimate and select the dimension of the inserted layer (i.e., 𝑄).

3.1.3 Iterative Unstructured Pruning After reducing the working
bu!er requirements of the model through the separation of the
layers, SparseComp starts compressing the pre-trained DNN model
layer by layer. Instead of pruning all layers non-selectively, SparseC-
omp applies a speci"c compression rate to each layer and removes
the risk of over-pruning the most meaningful layers. The compres-
sion of a layer is a two-step iterative process: First, a sparsity ratio is
automatically selected for the layer to be compressed, and then the
model accuracy is optimized by retraining that layer and subsequent
layers in the model by continuously imposing the selected layer spar-
sity. These steps are repeated until the best sparsity ratio that does
not signi"cantly degrade model accuracy is selected to compress
the layer. SparseComp then proceeds to the next layer that con-
tributes the most to memory requirements and employs the same
steps until the desired compression rate is achieved. Throughout
the compression process, only one layer changes in size with each
compression iteration. This approach allows SparseComp to assess
the impact of compression on accuracy and adjust the compression
rate for layers that exhibit signi"cant accuracy drops.
(1) Automatic Selection of Sparsity.When choosing the sparsity
value for compression, i.e., the number of zero-valued elements
divided by the total number of elements, SparseComp considers the
size of the layer to be compressed, the overall model size, and the
target size of the compressed model. To prune larger layers, which
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contribute more to the model size, SparseComp sets the initial spar-
sity to 0.9 (the percentage of non-zero model parameters), resulting
in a 90% weight pruning. For smaller layers, SparseComp selects a
higher initial sparsity value. After retraining the layer, SparseComp
evaluates the model’s accuracy. If the drop in accuracy is negligible,
it increases the compression rate on the layer and repeats the pro-
cess. When the accuracy drop exceeds a certain threshold (usually
3-5%), SparseComp reduces the compression rate for the next itera-
tion by increasing the sparsity value and moves to the next largest
layer. If the accuracy drops signi"cantly, SparseComp de"nes the
layer as fragile and excludes it from future compressions. As the
desired compression ratio is approached, SparseComp selects less
signi"cant sparsity values to avoid over-pruning.

Algorithm 1: C!"#$%&&’!( !) * F+,,- C!((%./%0 L*-%$
Inputs: M—pre-trained DNN model, W—weight matrix of the FC
layer, S—sparsity value, D— dataset of (X=value, Y=label) pairs.
Parameters: 𝐿—SGD epochs, 𝑀—batch size, 𝑁—learning rate.

1 repeat
2 pick 𝑀 samples randomly from dataset 𝑂
3 𝑃 = forward(M, B) 𝐿 forward pass to get predictions

4 W ↗ W ↑ 𝑁
(∑𝐿

𝑀=0 ↘WL𝑀 (𝑄𝑀 , 𝑄̂𝑀 )
)

𝐿 compute gradient

5 W ↗ hardThreshold(W, S) 𝐿 apply sparsity constraint
until e epochs

(2) Constrained Optimization with Re-training. The formu-
lation of the problem is presented in eq. (1). Given input 𝐿 and
the set W of the layers’ weights, the main objective is to minimize
the empirical error E𝐿𝑅𝑆 of the model prediction 𝑅 (𝐿,W) where
≃W≃0 is the number of zero entries in W ⇐ W and 𝑆W is the
sparsity constraint associated to that layer.

min
⇒W⇐W: ≃W≃0

≃W≃ ⇑𝑇W
E𝐿𝑅𝑆 (𝑅 (𝐿,W)) . (1)

For simplicity, we presented Algorithm 1 that optimizes the sparsity
of a given fully connected (FC) layer while maintaining the accuracy
of the model. The weight matrix of an FC layer with 𝑀 input nodes
and𝑃 output nodes is stored as a matrixW of shape 𝑀 →𝑃. The
algorithm takes as input a pre-trained DNN model, the weight
matrix of the FC layer to be compressed, the required sparsity
constraint, and a small part of the training dataset of the original pre-
trained DNN. Additionally, it has standard hyper-parameters such
as the number of epochs, batch size, and learning rate. To reduce
memory requirements, we can store the weight matrix as sparse by
setting weights to zero conforming to the sparsity constraint. The
algorithm follows the standard training procedure by selecting a
batch of samples from the given data set and employing the forward
pass (Lines 2-3). Then, it applies the projected gradient descent
(lines 4-5). Firstly, the gradients concerning the weights of the FC
layer are calculated, and the weight matrix is updated by moving
in the direction of the negative gradient (line 4). Then, the weight
matrix is projected onto the feasible set, i.e., the sparsity constraint
is imposed on the FC layer via hard thresholding procedure. Note
that, to minimize accuracy degradation, the layers following the
FC layer are also re-trained jointly (not presented in Algorithm 1).
For these layers, the compression is employed by considering their
pre-recorded sparsity values, if any. Retraining the layers of pre-
trained DNNs can often result in over"tting. To address this issue,

SparseComp introduces a regularization term and freezes the layers
preceding the currently compressed layer.
Hard thresholding procedure. To impose a sparsity constraint,
two thresholds, an upper and lower limit, are calculated. Theweights
between these thresholds—ones with smaller absolute values—are
set to zero. As shown in "g. 1, which summarizes the compression
process for an FC layer, weaker weights are pruned to satisfy the
sparsity constraint. However, the pruned weights may reappear in
the next epoch of the re-training procedure. With iterative pruning
and retraining, the weights become more stable over time. Spar-
seComp employs an identical procedure to compress the "lters
and biases of convolutional layers. The main idea is imposing spar-
sity via hard thresholding, allowing SparseComp to apply a single
compression method regardless of layer types in the model.

3.2 Global Early Exit for Pre-Trained Networks
gNet is a single network architecture that replaces multiple exit
branches of the traditional early-exit architectures with a single
global exit layer that supports anytime output from any layer of
any pre-trained model. It introduces minimal memory overhead
for early exit, which is crucial since memory is extremely scarce in
batteryless embedded systems. This architecture not only signi"-
cantly reduces the memory overhead of storing the parameters of
the exit branches but also eliminates the need to store previous exit
points output separately, which further reduces memory footprint.

3.2.1 Overview of gNet Instead of inserting one exit branch after
each intermediate layer, gNet takes the output from all intermedi-
ate layers as input. Developing such a ubiquitous exit architecture
comes with 2 unique challenges. (1) When exiting from an earlier
exit point of the baseline DNN, the outputs of the following exit
points are missing. Unlike traditional exit branches, where indi-
vidual exit branches process the output from each exit point, gNet
requires a single "xed dimension input to the global exit branch.
Thus, there is a need to compensate for the missing information
from the future exit points. (2) The dimension of the output from
each layer of the DNN varies, making it challenging to concate-
nate them directly. Besides, simply $attening all layers and then
concatenating them is insu#cient as it may create a bias towards
the earlier layers where the output dimensions are usually larger.
Moreover, a simple concatenated vector will be extremely large to
store and process and will require a large fully connected layer for
classi"cation, defeating the purpose of early exit.

Figure 2 shows the general overview of gNet, which addresses
these challenges with three major components – (1) augmentation
with zero-padding, (2) concatenation with pooling, and (3) classi"ca-
tion with a linear layer. First, the augmentation with zero-padding
handles the missing output from the layers yet to be inferred by
padding them with zero to compensate for dynamic input length
to the exit branch. Next, the concatenation with pooling resizes all
intermediate output layers to a prede"ned size and concatenates
them across the channel dimension. It also shrinks features across
channel dimensions and extracts meaningful features when zero-
padded features exist. Finally, during classi"cation with a linear
layer, the concatenated data passes through a fully connected layer
and estimates which class the input belongs to. We describe the
details of each of these components in the following sections.
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Figure 2: General overview of gNet. In this example, early
exit occurs at layer 2; hence 𝑇1 and 𝑇2 are available, and the
later features are zero-padded.

3.2.2 Augmentation with Zero-Padding The "rst challenge is that
the output of later intermediate layers is not present while exiting
from a previous layer. To compensate, we introduce the Augmen-
tation with Zero-Padding layer, which performs zero-padding on
the missing information from the future layers of the baseline DNN.
Suppose the pre-trained network has 𝑀 convolution layers and only
exits from the convolution layer. Thus, there are 𝑀 exits that are pos-
sible in maximum. When exiting from the 𝑈𝑈𝑉 layer, where 𝑈 <= 𝑀,
then for 0 to 𝑈𝑈𝑉 layer, we have valid intermediate outputs, and
from (𝑈 + 1)𝑈𝑉 to 𝑀𝑈𝑉 layer, we add zeros of the required shape. The
following equation represents the resultant feature vector:

𝑇𝑉 = [F1, F2, ..., Fi, 0, ..., 0] (2)
Here 𝑇𝑉 is the feature set, Fi represents intermediate output from
𝑈𝑈𝑉 layer. The shape of Fi is𝑊𝑊 →𝑋𝑊 →𝑌𝑊 where𝑊𝑊 , 𝑋𝑊 , and𝑌𝑊 stand
for the number of channels, height, and width of the feature.

3.2.3 Concatenation with Pooling The second challenge is that the
number of layers and the shape of the output tensor from each
intermediate layer vary for di!erent networks. Thus, developing a
one-architecture-"t-all model is challenging. To address this, we
accumulate the output of all intermediate layers to a "xed prede-
"ned shape using pooling (shown in Figure 2). This prede"ned
shape is chosen based on the size of all intermediate outputs and
the available memory of the microcontroller. We use 3D Maxpool-
ing to convert each output vector to a prede"ned shape because
3D pooling preserves the channel information which is crucial for
extracting important information. Simply using the same pooling
parameters for all the layers is insu#cient as the earlier layers’
output tensor size has a larger height and width than the later layer
counterparts and can create a bias towards earlier layers. We made
all layers’ output the same shape to reduce bias towards any speci"c
layer on gNet by using larger pooling kernels on the earlier layers
and smaller kernel sizes for later layers. However, we do not pool
the channel dimension of all the layers to the same shape because
the information content in the later layers is richer over multiple
channels than the earlier ones. Therefore, we use pooling kernels of
various sizes for each layer, where the kernel sizes are determined
based on the memory of the target microcontroller. Once all the
intermediate features are the same size, we concatenate them along
the channel axis and feed this fused feature to the gNet.

3.2.4 Classification with a Fully-Connected Layer The classi"cation
layer consists of a FC layer that maps the $attened vector coming
from the previous layer into the prede"ned classes. As the FC layer
performs multiplication and accumulation (MAC) operations before
going into the activation layer, the order of the $attened feature
set does not matter here. Over the training phase, this layer learns
to put more emphasis on the available ("real") features and discard
the zero-padded ("fake") features. This emphasis on real features
is attained by assigning larger weights to the real feature sections
and smaller weights to zero-padded sections.

3.2.5 Agile Training of gNet gNet requires maintaining the output
performance irrespective of the output availability from all the exit
layers. To achieve this goal, we propose an agile training procedure.
The gNet learns to adapt to di!erent early exit scenarios through
this training, which helps them generalize patterns, correlations,
and characteristics in the di!erent incoming data. We "rst develop
a simulated training dataset re$ecting the e!ect of an early exit. If
a network has 𝑀 layers to exit from, the probability of exiting from
the 𝑈𝑈𝑉 layer would be 1

𝑋 . When exiting from the 𝑈𝑈𝑉 layer, where
𝑈 <= 𝑀, then pad zeros from (𝑈 + 1)𝑈𝑉 to 𝑀𝑈𝑉 layer. The training pro-
cedure of 𝑍𝑎𝑏𝑐 is shown in algorithm 2. Thus, the internal network
parameters are iteratively updated depending on the discrepancies
between predicted and actual outputs during training to maximize
the network’s performance for all existing conditions. Since all the
exit scenarios are encountered in the training period, we reach a
global model capable of handling di!erent exit scenarios.

Algorithm 2: Training of gNet
Inputs: M—pre-trained DNN model, 𝑌𝑍𝐿𝑈—generalized early exit
model, D— dataset of (X=value, Y=label) pairs.
Parameters: 𝐿—SGD epochs, 𝑀—batch size, 𝑁—learning rate,
𝑎—validation threshold, L𝑁𝑂𝑃↑𝑄𝑅𝑆𝑇–best validation loss.

1 repeat
2 pick 𝑊𝑇𝑈 exit layer randomly with probability of 1

𝑉 from 𝑋 layers
3 𝑏𝑐 = forward(M, X) 𝐿 get intermediate results
4 𝑃 = forward(𝑌𝑍𝐿𝑈, 𝑏𝑐 ) 𝐿 get predictions

5 𝑌𝑍𝐿𝑈 ↗ 𝑌𝑍𝐿𝑈 ↑ 𝑁
(∑𝐿

𝑀=0 ↘𝑊𝑋𝑅𝑇 L𝑀 (𝑄𝑀 , 𝑄̂𝑀 )
)

6 L𝑁𝑂𝑃 ↗ L(𝑌𝑍𝐿𝑈 (𝑏𝑐𝑁𝑂𝑃 ),𝑃𝑁𝑂𝑃 )
7 if L𝑁𝑂𝑃 < L𝑁𝑂𝑃↑𝑄𝑅𝑆𝑇 then

save gNet
L𝑁𝑂𝑃↑𝑄𝑅𝑆𝑇 ↗ L𝑁𝑂𝑃 𝑑𝑒𝑓𝑋𝑈 ↗ 0

else
𝑑𝑒𝑓𝑋𝑈 ↗ 𝑑𝑒𝑓𝑋𝑈 + 1

8 if 𝑑𝑒𝑓𝑋𝑈 >= 𝑎 then
exit

else
continue

until e epochs

3.3 Energy-Aware Intermittent Execution
FreeML runtime executes ultra-tiny DNN models augmented with
gNET layer-by-layer by incorporating a set of optimizations.

3.3.1 Bu!er Reduction After executing a layer connected to an exit
branch, FreeML performs an additional max-pooling before storing
the output in a bu!er. This step reduces the required bu!er size by
not saving the entire layer output and optimizes memory utilization
while making the inputs of the early exit branch available at any
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time. However, max-pooling introduces a tolerable processing over-
head for these layers., which can be further reduced by in-position
max-pooling while calculating the output layer.

3.3.2 Compressed Computation Next, when gNET is executed
through an exit branch, the FreeML runtime uses a smart approach
to save time and energy by avoiding computations for zero-padded
inputs that belong to layers not yet executed. This method e#-
ciently skips MAC operations for zero-padded inputs, leading to
more e#cient execution of early exit branches. Unlike traditional
accelerators that only support structured compressed computing,
microcontrollers allow unstructured compressed computation, pre-
senting us with this unique opportunity.

3.3.3 Flexible Energy-Aware Execution Policies As a result, this
strategy leads to di!erent computational costs for each early exit in
a DNN model. Speci"cally, the exit layers linked to later branches
tend to have a higher computational overhead compared to the ear-
lier exit branches. However, they o!er enhanced accuracy in return.
This characteristic provides a unique opportunity for employing dif-
ferent policies. For instance, the application can decide to continue
DNN execution for optimal accuracy or stop by selecting an early
exit branch that can output a result with reasonable accuracy and
timing overhead. Pre-recorded time and energy overheads of each
layer can determine which early exit layer to choose. This gives
developers the $exibility to balance processing demands, energy
e#ciency, and accuracy based on their application’s requirements.

4 Implementation
We implemented the proposed algorithms SparseComp and gNet in
Python using the PyTorch framework.The adaptive and optimized
model is automatically converted into C headers per layer includ-
ing arrays holding the parameters of each layer. These platform-
independent headers are combined with the ML libraries supported
by existing intermittent computing runtimes, e.g., Alpaca [31] and
ImmortalThreads [43], to be executed intermittently.

4.1 General Early Exit (gNet) Implementation
We create the model according to the description in section 3.2.1
and train it according to section 3.2.5. We use a stochastic gradient
descent optimizer, Adam optimizer, with a default learning rate of
5→ 10↑3. While training, we monitored the validation loss (depend-
ing on the application and pre-trained network) to avoid over"tting.
We saved the model if the validation loss decreased, and if the vali-
dation loss kept increasing for 10 consecutive epochs, we stopped
the training. The best-saved model was used for the inference. To
be consistent with prior works [34, 36], we add exit points after the
convolutional layers only. However, our proposed gNet supports
optimal exit points described in [23].

4.2 SparseComp Implementation
SparseComp is implemented as a plug-and-play tool that takes a Py-
torch model and the di!erent datasets needed for training (training
and test sets). A validation set can optionally be used to evaluate the
model during compression and identify the best one. In the case of
over"tting, it is possible to specify a regularization term, which will
be used in the backpropagation phases. SparseComp automatically
excludes norm layers or biases from compression since they have a

low number of parameters and can have huge impacts on accuracy.
For gradient and backpropagation operations, SparseComp uses
PyTorch’s automatic di!erentiation engine Autograd, which allows
compressing and retraining of any Pytorch model. In the case of
models that require data preprocessing for the inferences or that
use unconventional forward functions, it is also possible to inject
both functions during the compression phase. The preprocessing
function is applied on each input batch before the forwarding phase,
while the forward function is applied on the input instead of the
standard one. These features allow unconventional models, such as
gNet, to be compressed without any changes.

4.3 Model Code Generation
After compressing and adding early exit layers, FreeML converts
the model parameters from Python into C headers per layer. To
store the weights of the model we used the CSR (Compressed Sparse
Row) representation, which allows computationally e#cient matrix
operations. In CSR representation, a matrix is $attened and only
the non-zero values are saved along with their column indices and
extent of rows. It is also possible to choose di!erent representations
e.g., pair representation (index, value), CSC (Compressed Sparse
Column), and COO (Coordinate Format) [16].

4.4 Intermittent Execution Runtime
There are recent works that provided basic ML library implementa-
tions that can be executed intermittently on MSP430FR [21] series
MCUs. Therefore, we did not implement an ML library from scratch
and relied on existing publicly available code targeting intermittent
systems. For instance, Sonic [14] provided a task-based implemen-
tation of ML operations based on Alpaca [31]. Similarly, Immor-
talThreads [43] has also a checkpoint-based ML library. We used
and modi"ed the ML library implementation of Sonic for ease of
portability since the ImmortalThreads library had some platform-
speci"c assembly code in its source. The SONIC ML library keeps
the model parameters in non-volatile memory by using speci"c
structures. We further process the C header outputs of SparseC-
omp and make them compatible with the SONIC ML library. We
implemented a small runtime on top of the Alpaca for Sonic to
execute models layer-by-layer and perform runtime optimizations
and decisions for gNet as mentioned in Section 3.3.

5 Evaluation
We consider neural network models of two sizes – (1) tiny models
that are suitable for constrained embedded systems , and (2)micro
models which can "t in extremely constrained systems. Table 2
shows the details of all networks. For training, we use batch nor-
malization and RELU activation after each convolutional layer for
all these models. To reduce over"tting, we use dropout between the
fully connected layers. We train these networks on a GPU machine
with two RTX 3090Ti. These models are considered the pre-trained
models for our evaluation.

We aim to test the e!ectiveness of FreeML on datasets from dif-
ferent domains. Firstly, we conduct all our experiments on an image
classi"cation dataset ( CIFAR-10 [25]), an acoustic dataset (Google
Keyword Spotting (KWS)[37]), and a motion-based human activity
recognition dataset (HAR [20]. We divide the training dataset into
a train set and a test set. After shu%ing all the training datasets, we
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Table 2: Pre-trained DNNs considered in this section.
CIFAR-10[25] KWS[37] HAR[20]

Micro Tiny Micro Tiny Micro Tiny

C:64 → 3 → 3 → 3 C:32 → 3 → 3 → 3 C:16 → 1 → 3 → 3 C:16 → 1 → 3 → 3 C:32 → 3 → 1 → 12 C:32 → 3 → 1 → 12
C:128 → 64 → 3 → 3 C:32 → 32 → 3 → 3 C:32 → 16 → 3 → 3 C:32 → 16 → 3 → 3 C:32 → 32 → 1 → 12 C:32 → 32 → 1 → 12
C:64 → 128 → 3 → 3 C:64 → 32 → 3 → 3 C:64 → 32 → 3 → 3 C:64 → 32 → 3 → 3 C:64 → 32 → 1 → 12 C:64 → 32 → 1 → 12

F:256 → 256 C:64 → 64 → 3 → 3 F:2304 → 64 C:64 → 64 → 3 → 3 F:1600 → 128 C: 64 → 64 → 1 → 3
F:256 → 64 C:128 → 64 → 3 → 3 F:64 → 10 F:256 → 128 F:128 → 128 C:128 → 64 → 1 → 12
F:64 → 10 C:128 → 128 → 3 → 3 F:128 → 64 F:128 → 6 C:128 → 128 → 1 → 12

F:2048 → 128 F:64 → 10 4→ F:128 → 128
3→ F:128 → 128 F:128 → 6
F:128 → 10 C: Convolution Layer F: Fully Connected Layer

put 90% data into the train set and the remaining 10% in the valida-
tion set. The test dataset remains unseen throughout the training
sessions and is only used for inference.

5.1 Evaluation of Compression (SparseComp)
5.1.1 Performance Metrics. To evaluate the performance of Spar-
seComp we report two metrics: accuracy and compression rate.
Accuracy is used to compare the performance of a model before
and after compression. The compression rate indicates how signif-
icant the pruning is, and it is calculated by dividing the original
number of parameters by the number of pruned parameters.
Table 3: Comparison between Genesis and SparseComp
Network Original Model Genesis SparseComp

Acc. Size. Acc. Size. Acc. Size

Image
Classi"cation
(MNIST)

99.06% 1905.3 kb 99% 34.6 kb
(55→) 98.6% 19.8 kb

(95.8→)
Human Activity
Recognition

(HAR)
91.93% 2100, 6

kb (8.2→) 88,0 % 256.8 kb
(8.2→) 88,55 % 29.8 kb

(70.3→)
Google Keyword
Spotting (KWS) 79.97% 1316,5 kb 84,0% 215.5 kb

(6→) 75.98% 59.2 kb
(22.2→)

5.1.2 Comparison against GENESIS We used Genesis [14], the de
facto model optimization tool in intermittent computing, as a base-
line. SparseComp uses a simple approach for each model and each
layer compared to Genesis, which employs a NAS-oriented ap-
proach with separation and post-facto pruning. We considered
the same datasets and model structures reported by authors of
Genesis [14, Table 2]. Table 3 shows the size and accuracy of the
uncompressed original models as well as the overall accuracy and
size together with the compression rate of the compressed versions.
On the MNSIT and HAR datasets, SparseComp achieves signi"-
cantly better compression while maintaining similar precision. For
KWS, even our uncompressed original model could not reach 84%
accuracy of the compressed model reported by the authors of Gen-
esis, prevented us from making a sound comparison against the
Genesis KWS model. When we "xed the size of our compressed
KWS model to the same size as the compressed KWS model in Gen-
esis, we achieved an accuracy of 79,97, which is 4% less than the
accuracy reported by Genesis. In this case, the accuracy drop from
the uncompressed model was only 1 %. We further compressed the
model and observed that SparseComp can compress the original
model almost 22 times smaller with under 4% accuracy drop. Our
evaluation showed that SparseComp is a signi"cantly better and
simpler approach compared to existing solutions.

5.1.3 General Evaluation We evaluated SparseComp using the
models shown in Table 2. We would like to highlight that Spar-
seComp can be applied to compress di!erent models and DNNs

without any modi"cation. Figure 3 represents the accuracy of the
models over several compression iterations. At each step, we de"ne
a memory size constraint, and SparseComp compresses the models
to meet that requirement. We observed that for most of the models,
SparseComp obtains promising results with a high compression
rate. The accuracy drop is almost linear even reaching kB-sized
models. Since SparseComp performs re-training, at some iterations,
we even observed better accuracy with a smaller model. It is worth
mentioning that uncompressed models with higher accuracy lead
to higher and more stable accuracy during the compression.

5.1.4 E!ect of Available Training Samples on SparseComp. In this
section, we evaluate the impact of using only a subset of the dataset
on the compression performance. Based on Figure 4, SparseComp
can compress a pre-trained model up to 64 kb without signi"cantly
a!ecting accuracy, even when using only a fraction of the train-
ing data. However, when compressing to 32 kb, the performance
loss is more noticeable, and a larger pool of training examples is
more e!ective. It’s worth noting that the dataset we considered
initially had a small number of examples. With larger datasets, the
percentage of usage can be even lower.

5.2 Global Early-Exit (gNet) Evaluation
We compare gNet with a variant of state-of-the-art e-Perceptive
[34], where we do not retrain the baseline model (compressed with
SparseComp) for a fair comparison and call this Not Re-Trained
e-Perceptive (NRT-eP). Finally, we provide an ablation with a re-
trained baseline model (BancyNet [36]).

5.2.1 Performance Metric. We used memory, throughput, and per-
formance as metrics to evaluate the performance of gNet from two
aspects. First, we compare the number of required parameters
between the baseline algorithm and gNet, which translates to the
model’s memory requirement. Next, we measure the time required
to infer the model to quantify throughput. Instead of reporting the
absolute time, we report the normalized inference time for a
more fair and device-agnostic comparison. To calculate the nor-
malized inference time, we normalize the inference times against
the inference time of the pre-trained models, which we consider
as 1. Smaller normalized inference time indicated high throughput
and less runtime overhead. Finally, to assess the performance, we
report the model’s accuracy.

5.2.2 Memory and Accuracy Trade-O!. Baseline individual early-
exit models (NRT-ep) store 𝑀 number of di!erent exit models for
a 𝑀 layered DNN, which makes it ine#cient in terms of memory
overhead. On the other hand, gNet is a single standalone model that
works regardless of the number of layers in the baseline model. This
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Figure 3: Accuracy of compression.
Amount of samples in training dataset used for training (%)
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Figure 4: E"ect of training dataset percentage on SparseComp compression.
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CIFAR10 (tiny) KWS (micro)

Figure 5: No. of parameters for gNet and NRT-eP. gNet requires fewer parameters than NRT-eP, reducing memory overhead.

CIFAR10 (micro)

Normalized Inference Time

HAR (micro)HAR (tiny)CIFAR10 (tiny) KWS (tiny) KWS (micro)

Figure 6: Accuracy and normalized inference time comparison of gNet and NRT-eP with 6 pre-trained models and 3 datasets.
Here, the dashed green line shows the baseline models’ accuracy.

Figure 7: E"ect of retraining
the baseline on gNet.

Amount of samples in training dataset used for training (%)

HAR KWSCIFAR10

Figure 8: E"ect of training dataset percentage on gNet with CIFAR-10, HAR, and KWS
dataset.

makes the gNet memory e#cient and more suitable for small and
edge device-level deployment. Figure 5 shows that gNet requires
2.13↑19.65 times fewer parameters thanNRT-ePswhilemaintaining
the accuracy distributions at di!erent existing layers. The models
with the HAR dataset have the highest memory overhead reduction
compared to the other datasets due to the smaller input size of
baseline HAR models (tiny, micro). As the input shape is smaller,
the intermediate feature sizes are smaller, too. Additionally, after
passing the augmentation with a zero-padding layer, the feature
shapes get a further reduction. This enables us to design a small
gNetmodel, which results in a very high gain in terms of parameters.
This satis"es our claim of one-model-"t for all.

5.2.3 Inference Time and Accuracy Trade-O!. Figure 6 shows the
accuracy vs the normalized inference time required for all dataset
and pre-trained model con"gurations described in Table 2. For all
three tiny models, gNet achieves 90𝑈𝑉 percentile accuracy gain of

0.12 ↑ ↑0.31% while reducing the inference time by 2.41% ↑ 3.17%.
However, for micro models, this accuracy gain reduces to 0.12 ↑
↑0.31% with a 2.52% ↑ 4.85% reduction in inference time. Due to
the larger depth of the tiny baseline models, the global exit branch
of tiny models has a larger input size, and thus, the reduction of
inference time is lower than in micro models. However, these more
comprehensive intermediate features result in higher accuracy gain.
On the other hand, micro baseline models are smaller, generating
smaller intermediate features as input to the exit branch, and thus,
we experience a higher reduction of inference time. In summary,
along with reducing the memory overhead by up to 19.65%, we
reduce inference time with negligible to no accuracy loss.

5.2.4 Comparison with Jointly-Trained BranchyNet. Figure 7 com-
pares gNet with the popular jointly trained early exit method,
BranchyNet [36] on the tiny model with CIFAR-10 dataset. Bran-
cyNet jointly trains the exit branches are trained alongside the
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Figure 9: Compression of Early Exit. gNet bene#ts and per-
formance are maintained during compression.

baseline model. Though BranchyNet gains accuracy by at least
3.65% compared to gNet, it required 4.42 times fewer parameters
than BranchyNet. We have also jointly retrained gNet, and the
accuracy increases by up to 6.5% than gNet.

5.2.5 E!ect of Available Training Samples. This section evaluates
the e!ect of available training data samples required to train gNet.
This analysis is crucial as, in real-world scenarios, the full training
dataset may not be available to train gNet. Figure 8 shows that
the accuracy of all models increases with the availability of more
samples in the training set. However, the gain from 10% available
samples and 100% samples is not that signi"cant. The median accu-
racy gain from 10% sample to 100% sample is only 4.0% ↑ ↑20.49%
for tiny models and 4.00% ↑ ↑19.99% for micro models over all
datasets. However, for micro models, this average gain is much
higher as intermediate features of micro are less comprehensive
than tiny models, gNet can achieve higher accuracy gain. More
complex datasets, e.g., KWS, require more training data to reach
higher accuracy, and thus the accuracy gain between 10% to 100%
training samples is up to 20.49%.

5.2.6 Evaluation of Early-Exit Compression We used the CIFAR10
dataset with the aim of compressing models to meet the memory
requirements for the MSP430FR device. The compression targets
both the baseline model and the gNet with, starting sizes of 246.9
KB and 53.9 KB, respectively. The "rst step is to compress the
baseline model, SparseComp is able to shrink the sizes to 49.7 KB
with 1% accuracy loss. Figure 9 on the left shows the performance
of gNet when relying on the original or the compressed baseline
model for the intermediate results. Without a retraining phase, the
gNet achieves accuracy comparable to the base model. When it
is retrained, however, it even surpasses the performance of the
original uncompressed models. On the right, instead, are shown
di!erent compressions applied on gNet. The intermediate results
are provided by the compressed model and it can be seen that the
key features of gNet are maintained during the compression phase
by SparseComp. The two compressed models outperform the base
model and reach the accuracy of the uncompressed versions, with
a total size reduced from 300.8 to 77.4 KB allowing their use on the
memory-constrained MSP device.

5.3 Model Execution on Real Hardware
We evaluated tiny versions of the gNet models for Cifar-10, HAR,
and KWS using MSP430FR5994 [21], the defacto MCU in batteryless
systems, con"gured to operate at 1 MHz. We report the memory
overhead of these models and their total energy consumption and

Table 4: Time and energy consumption during the continuous
and intermittent execution on MSP430FR5994.

Network Exec. Time (sec) Energy Cons. (mJ)
Cont. Int. E.E. Cont. Int. E.E.

Cifar-10 139.5 166.2 156.1 (E3) 264.9 320.1 297.3 (E3)
HAR 74.6 83.4 75.8 (E5) 135.8 152.3 137.2 (E5)
KWS 184.6 218.7 185.8 (E2) 355.2 419.9 356.5 (E2)

Table 5: Total memory overhead of FreeML and tiny models
FreeML Models

Cifar-10 HAR KWS

.text 12.5 kb 376 Byte 362 Byte 334 Byte
RAM 4 Byte 0 0 0
FRAM 12.8 kb 200.9 kb 30.4 kb 219.4 kb

Cifar-10
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Figure 10: Time overheads of the inference layers on contin-
uous power (C:Convolution, F:Fully Connected, M:Maxpool).

execution time under continuous and intermittent energy supply.
For energy harvesting, we used Powercast TX91501-3W-ID power
transmitter and P2110-EVB power harvester that includes a 1mF
onboard energy storage supercapacitor.

5.3.1 Time and Energy Performance. Table 4 shows the execution
time and energy consumption of these models on continuous power
(“Cont.” column) as well as under intermittent power without exit
branches (“Int” column), and with early exit branches (“E.E.” col-
umn). Our results indicate that early exit layers considerably im-
prove the time and energy overheads of intermittent execution (as
evident from the “Int” and “E.E.” columns of Table 4). For intermit-
tent execution with exit branches, we used the time it takes to run a
model continuously as a time constraint to trigger anytime outputs
to keep things simple. The idea was to make our models output
predictions as fast as their execution on continuous power. When
executing HAR and KWS, FreeML runtime used exit branches 5 (E5)
and 2 (E2) in these models, respectively, signi"cantly improving
their intermittent execution times. For Cifar-10, FreeML used a rela-
tively earlier exit branch 3 (E3), which led to intermittent execution
of the early exit branch taking even less time than intermittent
execution without using early exits. Figure 10 provides a detailed
view of the time overheads of each individual layer on continuous
power. It shows that the execution times of early exit branches
are relatively smaller than those of later exit branches, which is
consistent with our arguments in Section 3.3.

5.3.2 Harvested Power and Early Exits. To observe how ambient
power a!ects the exit branch taken, we emulated the energy har-
vesting process of the Powercast receiver to charge a 1mF onboard
supercapacitor with di!erent input power levels. We considered
the intermittent execution of our models with early exit branches
and imposed the same time constraint as in Section 5.3.1. Figure 11
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Figure 11: Selected exits based on the average harvested
power for the 1mF capacitor of the P2110-EVB RF harvester.
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Figure 12: Both SparseComp (left) and gNet (right) maintains
the performance for deeper ResNet34 network.

presents the exit branches taken with average input power values
ranging from 0 to 2 mW. With Cifar-10, FreeML runtime triggers
the "rst exit when the average input power is under 0.85mW to
produce results within the time constraint. As the input power in-
creases, model layers are executed faster due to faster charging time,
and FreeML runtime takes later exit branches for better accuracy.
When the average output power is higher than 1.5mW, the latest
exit branch is no longer bene"cial since the rest of the model can
be executed faster, and the best accuracy can be obtained. Similar
behaviors can also be observed for KWS and HAR models.

5.3.3 Memory Requirements Table 5 shows the memory require-
ments of our deployed models on MSP430FR5994 equipped with a
256KB FRAM and 8KB SRAM. As seen from this table, SparseComp
has e!ectively reduced the memory footprint of machine learning
models, enabling them to "t in memory-constrained devices. FRAM
allocation was always within the limit available to the device, which
depends on the number of parameters, the layer’s input/output sizes,
and the working bu!ers required to execute models intermittently.

5.4 Beyond Intermittent Computing
Though we focus on batteryless devices in this work, we envision
that the bene"t of our proposed SparseComp and gNet can go be-
yond intermittent computing and batteryless devices without any
modi"cation.We evaluate these algorithms on deeper ResNet34 [18]
pre-trained models with two datasets (CIFAR-10 and FashionM-
NIST [38]) suitable for mobile edge devices to validate our vision.
We assess the model’s e!ectiveness using the normalized infer-
ence time, the number of parameters (described in Section 5.2.1),
and accuracy. SparseComp applies pruning to the Residual Block
in the same way it does on conventional networks, making it a
one-for-all pruning method. Figure 12(left) shows that SparseComp
compresses the models up to 94 times without a signi"cant drop
in accuracy. Figure 12(right) demonstrates that gNet reduces the
inference time by 2%-52% and memory-overhead by 7.86 ↑ 3.93
times without signi"cantly sacri"cing the accuracy.

6 Discussion and Future Work
Other Platforms. We tested deploying compressed models to
Apollo 4 Blue Plus which has an ARM-Cortex M4 with a $oating

point unit and comes with an internal 2 MB MRAM (Magnetic
Random-Access Memory) thus providing an opportunity to speed
up complex computations. We were able to successfully deploy our
model on Apollo 4 using Ambiq’s NeuralSPOT [5] AI enablement
library. ML model deployment using a software development kit
prioritizes ease of use over runtime cost and memory footprint
optimization, resulting in computational overhead. Even with the
bare metal version, software support is required to save and restore
volatile data onto MRAM at runtime to ensure correct resumption
after power failure as, unlike MSP430, read and write variables
are not memory mapped and require explicit APIs for read/write
access; thus adding signi"cant overhead to the execution time. In
the future, we plan to explore this aspect more to show an end-to-
end evaluation of our technique on the Apollo4 platform.
Support forMoreComplexModels.Comparatively hard datasets,
e.g., CIFAR-100 require deeper and more complex networks (includ-
ing residual edge or recurrent layers) making them less suitable for
intermittent devices. SparseComp can compress these networks but
when they reach the desired memory footprint, the accuracy drop
is signi"cant due to the high number of pruned parameters. We
only used unstructured pruning to avoid changing the model archi-
tectures, even though structured pruning is required to reduce their
runtime bu!er requirements. In future work, we plan to explore
the performance of SparseComp in structured pruning as well.
Retraining the Baseline Model during Compression.While
SparseComp works on pre-trained models, it is also possible to
retrain all model layers at each compression iteration. We can also
train a model from scratch during the compression process. This
can be very e!ective for simple datasets, but for more complex
datasets, e.g., KWS, we found out that it is better to use pre-trained
models as it training converges with higher compression rates.
Reducing Input Size to gNet. One of the shortcomings of gNet
is the comparatively large input to the global exit branch. Though
we reduce the MAC operation and even memory overhead during
our MCU implementation by ignoring multiplication with zeros,
the input size to gNet is larger for the deeper layers. In the future,
we plan to implement attention-based max-pooling which can suc-
cessfully pool only the informative components from the output of
each layer making the input to the exit-branch even smaller. More-
over, we will be able to better di!erentiate between the ‘real’ and
‘zero-padded’ components in the earlier layers, resulting in a higher
accuracy for the earlier layers. This paper focuses on "ne-grained
early-exit with exit points after each convolution layer, but our
proposed gNet can be extended to coarse-grain early-exit with exit
points after selected layers [23]. Besides, we can further add exit
points after fully connected layers if the execution time of inferring
the fully connected layers is higher than the exit layer.

7 Conclusion
We proposed FreeML, a novel framework that complements a pre-
trained ML model with early exits to react to the power availability
compresses the model to "t into a modest memory footprint, and
generates C code for inference to run on a resource-constrained
embedded sensing devices sensor node. Our evaluation shows that
FreeML can achieve a 95→ compression rate on pre-trained DNN
models reducing their size from MBs to KBs so they can easily
be deployed on embedded sensing platforms, as demonstrated by
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our deployment on MSP430FR5994. Furthermore, FreeML achieves
memory overhead 59→while requiring 65% lesser time for inference
while bearing a minimal drop in accuracy.
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