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We study the inference of communities in stochastic block models with a growing number of

communities. For block models with n vertices and a fixed number of communities q, it was pre-

dicted in Decelle et al. (2011) that there are computationally efficient algorithms for recovering

the communities above the Kesten–Stigum (KS) bound and that efficient recovery is impossible

below the KS bound. This conjecture has since stimulated a lot of interest, with the achievability

side proven in a line of research culminating in work of Abbe and Sandon (2018). Conversely,

the hardness side of the conjecture has been supported by recent progress based on the low-degree

paradigm.

In this paper we investigate community recovery in the regime q → ∞ where no such predic-

tions exist. We show that efficient inference of communities remains possible above the KS bound.

Furthermore, we show that recovery of block models is low-degree-hard below the KS bound when

the number of communities q ≪
√
n. Perhaps surprisingly, we find that when q ≫

√
n, there

is an efficient algorithm based on non-backtracking walks for recovery even below the KS bound.

We identify a new threshold which we conjecture is the threshold for weak recovery in this regime.

Finally, we show that detection is easy and identify (up to a constant) the information-theoretic

threshold for community recovery as q diverges. Our low-degree hardness results also naturally

have consequences for graphon estimation, improving results of Luo and Gao (2023).

In the figure below, the blue regions represent computationally efficient regimes, the red regions

represent low-degree hardness, the gray regions represent information-theoretic impossibility, and

the yellow regions are still unknown. The left plot shows κ vs χ where q ≍ nχ and λ ≍ d−κ. The

middle and right plots show d vs λ for q = n1/3 and q = n2/3 respectively.1
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1. Extended abstract. Full version can be found at [arXiv:2503.03047, v2].
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graphs: community detection and non-regular ramanujan graphs. In Foundations of Computer

Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1347–1357. IEEE, 2015.

Stanley Chan and Edoardo Airoldi. A consistent histogram estimator for exchangeable graph mod-

els. In International Conference on Machine Learning, pages 208–216. PMLR, 2014.

Sourav Chatterjee. Matrix estimation by universal singular value thresholding. The Annals of Statis-

tics, 43(1):177–214, 2015. ISSN 00905364. URL http://www.jstor.org/stable/

43556512.

2



BLOCK MODELS WITH MANY COMMUNITIES

Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and sub-

matrix localization with a growing number of clusters and submatrices. J. Mach. Learn. Res.,

17:Paper No. 27, 57, 2016. ISSN 1532-4435. URL https://mathscinet.ams.org/

mathscinet-getitem?mr=3491121.

A. Coja-Oghlan. Graph partitioning via adaptive spectral techniques. Combinatorics, Probability

and Computing, 19(02):227–284, 2010.

A. Condon and R.M. Karp. Algorithms for graph partitioning on the planted partition model. Ran-

dom Structures and Algorithms, 18(2):116–140, 2001.

C. Daskalakis, E. Mossel, and S. Roch. Optimal phylogenetic reconstruction. In Proceedings of the

thirty-eighth annual ACM symposium on Theory of computing (STOC 2006), pages 159–168,

2006. URL http://www.stat.berkeley.edu/˜mossel/publications/log_

stoc.pdf. See the journal version for proofs. The proofs required an additional assumption

of discretized branch length.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block
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