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ABSTRACT

Visual instruction datasets from various distributors are released at different times
and often contain a significant number of semantically redundant text-image pairs,
depending on their task compositions (i.e., skills) or reference sources. This
redundancy greatly limits the efficient deployment of lifelong adaptable multi-
modal large language models, hindering their ability to refine existing skills and
acquire new competencies over time. To address this, we reframe the problem
of Lifelong Instruction Tuning (LilT) via data selection, where the model auto-
matically selects beneficial samples to learn from earlier and new datasets based
on the current state of acquired knowledge in the model. Based on empirical
analyses that show that selecting the best data subset using a static importance
measure is often ineffective for multi-task datasets with evolving distributions,
we propose Adapt-co, a new multi-way and adaptive data selection approach that
dynamically balances sample efficiency and effectiveness during LilT. We first
construct pseudo-skill clusters by grouping gradient-based sample vectors. Next,
we select the best-performing data selector for each skill cluster from a pool of
selector experts, including our newly proposed scoring function, Image Ground-
ing score. This data selector samples a subset of the most important samples from
each skill cluster for training. To prevent the continuous increase in the size of the
dataset pool during LiIT, which would result in excessive computation, we fur-
ther introduce a cluster-wise permanent data pruning strategy to remove the most
semantically redundant samples from each cluster, keeping computational require-
ments manageable. We validate the effectiveness and efficiency of Adapt-co over
a sequence of various multimodal instruction tuning datasets with various tasks,
including (Knowledge) VQA, multilingual, grounding, reasoning, language-only,
and multi-image comprehension tasks. Training with samples selected by Adapt-
oo alleviates catastrophic forgetting, especially for rare tasks, and promotes for-
ward transfer across the continuum using only a fraction of the original datasets.'

1 INTRODUCTION

Multlmodal instruction tuning ( s ;
, ) has been actively explored to enhance v1sual reasonlng or the generatlon
ab1hty of Multlmodal Large Language Models (MLLMs) ( , ;

E}

) ; , ) followmg
user 1ntents by training models on human or machlne generated mu1t1 task visual instruction tuning
datasets ( R s ). While many distributors

continue to release new hlgh quahty 1nstruct10n tunlng tasks and datasets, continually adapting large
models to these massive datasets over time is prohibitively costly and inefficient. Given a pre-trained
MLLM and the continuous expansion of the dataset pool with a stream of instruction-tuning datasets,
as commonly observed in the research community today, the challenge lies in developing an ever-
evolving, instruction-following MLLM in the most data- and computation-efficient manner. This
research question poses a realistic, sustainable instruction tuning scenario for MLLMs, distinct from

*Equal contribution.
'Code is released at ht tps: //github.com/adymaharana/adapt—inf.


https://github.com/adymaharana/adapt-inf

Preprint

Temporal stream of instruction tuning datasets Step 1: Pseudo-Task Clustering
t=0 t=1 t=2 t=3 %
—r > . ° 4 .
Gradient |l 1 0 ] . o
Vectors [l Il Il k-means
¥ v v v . D A
L J ] .
Training Data Pool
Step 3: Redundancy-based Step 2: Multi-way Data Selection
Lifelong Permanent Pruning
Multimodal LLM . Retain few ° 5%) 51 () mS,\I,](J
(e i from similar ° . - O
o samples Q Q ‘3
> -« |
° e (e . Selection of
(® 3 . -
scoring function
and data samples

0L o= Y
f . w Retain more from % ® .
1 l
1 1
1 1

distant samples

Figure 1: Illustration of Adapt-oo. When a new dataset is incorporated into the data pool at
the beginning of each timestep, Adapt-co extracts sample vectors and forms pseudo-task clusters
based on their similarity. Using a set of scoring functions, Adapt-co predicts the most suitable
scoring function for each cluster and trains an MLLM on the selected samples. To prevent excessive
computation as the pool size grows, we introduce dataset compression by permanently removing
redundant samples.

conventional continual learning ( ; ; s ),
which focuses on learning a sequence of dlSJOlnt tasks Speaﬁcally, at each time step, we assume
a new multimodal instruction-tuning dataset is added to the existing training pool, which already
contains previous datasets. The model aims to train on samples from this continually expanding
dataset pool, a scenario we refer to as Lifelong Instruction Tuning (LiIT). This scenario is critical as
recent datasets tend to be exhaustively large to cover a variety of skills in uni- and multimodal tasks.

Our initial experiments with sequential multimodal instruction tuning, i.e., training on a sequence
of instruction tuning datasets, show catastrophic forgetting, particularly when new output modalities
such as bounding boxes and key points are introduced. While experience replay on a small subset of
past datasets helps mitigate forgetting, it is insufficient for retaining rare or unique tasks that appear
only once due to the skewed task distribution. This challenge is further compounded by the loosely
defined nature of ‘tasks’ in instruction tuning (e.g., multi-turn conversations across multiple tasks
on the same image) and the lack of sample-wise task labels. To address this, we explore LilT from
a data selection perspective, enabling the model to learn skills in a balanced manner over time and
avoid overfitting to dominant tasks. Specifically, we explore how to prune both past and incoming
datasets to create a balanced training set at each time step, considering the model’s current state.

To build an efficient, lifelong-evolving MLLM, we introduce Adapt-oo: Adaptive Multi-way Prun-
ing, an efficient and dynamic multimodal data selection strategy. At each time step, Adapt-oc selects
the most beneficial samples for the current model from the data pool, adapting to the model’s evolv-
ing knowledge and changing dataset distributions. This is crucial for LilT, as sample importance
shifts over time. Adapt-oco operates in two major steps: (1) Task-based clustering. When introduc-
ing a new dataset, we integrate it into the training data pool and create pseudo-task clusters using
gradient vectors to represent data samples. (2) Cluster-wise data selection. We select influential
samples from each cluster for model tralnmg Motivated by the observation that different score
functions ( , ; ) define sample 1mportance differently, we
propose a new multi-way data selectlon approach that chooses the best scoring function from a
pool of experts based on its discriminativeness (measured by entropy). This approach is able to se-
lect a skill-balanced subset of highly influential samples from the current training data pool. As the
size of the data pool continues to grow with time, the inference step for computing scores and data
representations in Adapt-oco, as in most existing data selection strategies, can become prohibitively
expensive. Hence, to maintain a sufficiently diverse yet computationally manageable data pool,
Adapt-oo performs an additional step: (3) Permanent data pruning that removes semantically re-
dundant samples from the data pool at the end of each time step, thereby continually controlling its
size during LilT.
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To better assess the influence of multimodal samples, we also propose a new scoring function, called
the image grounding score (IG), that measures the relative change in sample perplexity when the
model is grounded by visual information. This metric prioritizes samples that effectively utilize and
improve the multimodal skills of the MLLM and serves as an effective data selector in Adapt-co.

We design an experimental setup for this previously unexplored scenario of lifelong multimodal
instruction tuning using the pre-trained LLaVA 1.5 ( , ) model on a stream of five
visual instruction tuning datasets. As discussed earlier, experience replay alone is insufficient to
mitigate forgetting, however, selecting a random subset from the data pool of past and new datasets
reduces the forgetting rate from 26% to nearly 2%. Score-based data-selection strategies largely fail
in this setting due to their inability to select task-balanced data subsets from multi-task datasets. In
contrast, Adapt-co minimizes the forgetting to just 0.9% using only a fraction of the training data
pool while promoting forward transfer of skills and consistently achieving >100% relative gains.

Adapt-oco provides an intuitive framework for dynamic data selection in the temporal scenario. We
conduct extensive ablations of Adapt-oco to find its best-performing settings. One of our significant
findings is that hidden layer outputs represent the semantic component whereas gradient vectors rep-
resent the skill component of samples. Hence, gradient vectors are more effective at pooling samples
into pseudo-task clusters (see examples in Figures 2 and 4). Further, we find that gradients from the
middle layer of the model lead to best overall performance, suggesting that skill retention could
be localized to a few layers in LLMs. We also find that zero-order gradients ( , ;

, ) are promising and computationally cheaper alternatives to backpropagated gradients for
pseudo-task clustering (See Table 5). Analysis of the skill-wise breakdown of performance reveals
that language-only skills are the easiest to retain and improve, whereas multilingual multimodal
skills exhibit significant forgetting in LilT.

In summary, to the best of our knowledge, we are the first to explore the realistic setting of life-
long multimodal instruction tuning where the temporal stream of datasets may contain new skills,
overlapping or rare tasks, and redundant samples. This scenario necessitates dynamic data selec-
tion strategies for efficient and effective learning. Our proposed method, Adapt-co, demonstrates
superior retention as well as forward transfer of skills over time.

2 RELATED WORK

Multimodal Instruction Tuning Datasets. While multimodal data, such as image-text pairs, has
increased s1gn1ﬁcantly, multimodal instruction-following data remains relatively scarce due to the
time-consuming nature of human data collection. To address this, recent works ( ,

, ) have leveraged generatlve
models to collect such data from ex1st1ng nnage datasets. ( ) introduce the M3IT
dataset with 2.4 million instances and 400 task instructions, translated into 80 languages.

( ) develop VISION-FLAN, a large-scale dataset of 187 tasks with expert-written instructions,
ensuring diversity through iterative refinement. Multilnstruct ( , ) features 62 tasks
across 10 categories, sourced from 21 open datasets.

Continual Instruction Tuning. In the era of multimodal LLMs, instructional datasets have raised
several timely research problems. Therefore, it is crucial to develop sustainable models that can ad-
dress emerglng data and real- World challenges. Inspired by continual learning (

, ), a paradigm focused on enabling models to adapt
to non-i.i.d., time- varlant tasks continual instruction tuning (CIT) (

) has recently been studied for (multimodal) LLMs that allows the model to adapt to mu1t1ple
instruction tuning datasets sequentially without costly retraining. KPIG ( , ) introduces
a new CIT method that helps LLMs capture task-specific information and avoid overfitting general
instructions by computing key-part information gain on masked parts to replay data and refine train-
ing dynamically. EProj ( , ) and Fwd-Prompt ( , ) expand the CIT to
the training of large multimodal models. EProj introduces new regularization and model expansion
methods based on task correlations for continual instruction tuning of LMMs. Fwd-Prompt proposes
a prompt-based approach that projects the prompt gradient into the residual space to minimize task
interference while utilizing pre-trained knowledge, reducing negative forward transfer.
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Figure 2: A: Sample distributions for different visual language tasks in M3IT ( , )

based on two importance scores, EL2N and entropy. B: t-SNE visualization of sample vectors
based on their gradients and features. C: Histogram of Perplexity and Image Grounding scores. We
visualize a few samples from M3IT with prompts (black) and ground-truth answers (blue).

Data Selection. Data selection has been explored in the form of coreset selection in many works

( , ; , ). Uncertainty/loss/error-based methods es-
timate the difficulty of a sample from model confidence ( , ) or its training
dynamics ( ; s ). ( ) address catas-
trophic accuracy drop at hlgh prumng rates ( ) represent datasetd as undirected
graphs and employ message passing to select the best subset. ( ) investigate data
selection for CLIP ( ) models. ( ) use learnability score (

, ) to accelerate training of CLIP models.

3 LIMITATIONS OF SCORE-BASED DATA SELECTION IN LIFELONG
MULTIMODAL INSTRUCTION TUNING

3.1 LOCALITY OF THE SAMPLE IMPORTANCE: DATA SELECTION DEPENDS ON THE DATA

Score-based selection methods are w1dely used to assess the 1mp0rtance of training samples across

modalities ( s ; R
). We analyze two importance scores in multlmodal 1nstruct10n tuning: the EL2N score (
, ) and entropy score ( ). EL2N measures the L2-norm of the output error

vector, while entropy reflects the uncertainty in the output probabilities. Using the M3IT dataset (

s ), which includes eight tasks: captioning, multilingual (Chinese), classification, gener-
ation, knowledge VQA (kvqa), reasoning, videoQA, and VQA, we compute score distributions. As
shown in Figure 2A, relying on a single importance score metric, such as EL2N or entropy, is in-
sufficient to differentiate meaningful samples across a diverse range of tasks. For instance, selecting
higher EL2N scores tends to favor for generalization ( , ), captioning samples over
kvga, leading to a skewed dataset.

In addition, the effectiveness of different importance scores varies based on the task and dataset at
hand. The perplexity score is effective for filtering out low-quality samples in VQA that generally
occur in the tail end of its distribution (see Figure 2C). Tasks such as kvga (in purple) and captioning
(in blue) are more separable via their entropy scores than EL2N scores. Moreover,

( ); ( ) show that the most effective training subset contains a balanced
mix of easy, difficult, and ambiguous samples. A biased score estimator may assign higher or lower
scores to too many samples, making it hard to select the most effective subset. Thus, we need a
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different, generalizable strategy for assessing sample importance across multiple datasets during
multimodal instruction tuning.

3.2 IMPORTANCE OF VISION-LANGUAGE DATA WITH IMAGE GROUNDING SCORE

The perplexity score measures the likelihood of a given sequence of tokens as predicted by an
autoregressive generative model and has been used for selecting samples with higher instruction
following difficulty in language datasets ( , ). For MLLMs, the perplexity function
additionally conditions on the input image tokens within the model. A lower perplexity score implies
that the model assigns a higher probability to the output tokens. We compute the perplexity of a
multimodal data instance zi for an MLLM with weights 0 as:

PPL(z;) = exp( Z NLL(e;)), where NLL(e;) = —log(e;le<;,I;8). ()

e;€z;

Iz\

where NLL(e;) indicates the negative log-likelihood of token e; in the sequence z; comprising of
image I and tokens e. As discussed in the previous section, perplexity is useful for detecting low-
quality multimodal samples (see Figure 2C top) Motivated by the effectiveness and generahzablhty
of the perplexity score ( , , ), we further modify this scoring func-
tion to distill the importance of the image in a multimodal data instance. We compute the image
grounding score of a multimodal data instance z; with image I and tokens e as:
PPL(e)

PPL(e, I)

A higher IG score is assigned when the model assigns a higher probability to the text when condi-
tioned on the image, compared to when the image is absent. Conversely, a lower IG score indicates
that the image has little to no effect on the text’s probability. As shown in Figure 2C bottom, an
image-query pair with a higher IG score requires the model to carefully understand the visual scene
(e.g., reading the text on a sign in the image). In contrast, examples where the model can predict the
answer without seeing the images represent lower IG scores. Thus, the IG scoring function allows
us to discard multimodal samples that do not leverage the multimodal functionality of MLLM:s.

IG(z;) = 2

4 LIFELONG MULTIMODAL INSTRUCTION TUNING VIA MULTI-WAY DATA
SELECTION

4.1 PROBLEM STATEMENT

This paper tackles the problem of LilT over a sequence of multiple large datasets. Let Dy, ..., Dp_1
be a set of accessible datasets where D; = {x!, pﬁ}fvzfl denotes the dataset released in the timestep
t, composed of V; image-text pairs. Formally, we aim to train a multimodal model over multiple
observed datasets for a given computational budget, such as FLOPs or training iterations. Given the
model f parameterized by 6, the training objective at time step 7" is formulated as follows:

T Ni—1
argmln Jrlz Z ﬂ i,ﬁf;@),@ﬁ) s.t. T~(Nt—1)§7', 3)
t=0 =0

where N, = r(Ny,T,7) € N, N; < Ny, and 7 is the computational budget. () denotes a decay
function conditioned on T and 7, and ¢ indicates the ground truth answer corresponding to the
input data sample. Here, we constrain the minibatch iterations for multimodal instruction tuning per

training timestep, by subsampling D = {:cz,pl}L ., where D C D, D~ P(D|D,T,7). When
a new multimodal instruction tuning dataset Dr is released, {Dt}t o 18 (re-) drawn for finetuning 6.

We propose the Adapt-co data selection method for the problem of lifelong multimodal instruction
tuning and describe each of its steps in detail in the following sections.

4.2 PSEUDO-TASK CLUSTERING VIA GRADIENTS

In the LilT scenario, the model continuously updates its weights to incorporate new knowledge
and refine its capabilities in specific tasks by training on unseen, meaningful data. The relative
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importance of each data sample evolves with changes in the model’s state and expansion of the data
pool at each time step. Therefore, adjusting the relative importance of samples within the data pool
over time is crucial to faster and better optimization under restricted conditions. We accomplish
this by first using gradient vectors from the model’s current state to estimate skill clusters within
the training data pool. As shown in Figure 2B and Figure 4, we find that gradient vectors are
significantly more separable by skills than hidden state outputs of the model.

For a model with weights ; for layer [, we compute the gradients of 0, for a sample (z;,y;) =
((x4, i), §;) using backpropagation. We obtain the data representation for the sample by concate-
nating weight gradient vectors Vgz; = [Vg,2i; Vo, 2i; ...; Vo, _, zi|, where L denotes the number
of layers, and construct pseudo-task clusters in the data pool by performing k-means clustering over
data representations of the seen and unseen datasets (see Figure 1). However, in practice, we find
that not all gradients are necessary for distinguishing samples into multiple meaningful skills. Fol-
lowing ( ), we cluster samples based on the gradients of essential layers, which leads
to better performance compared to using gradients from all layers and is more memory-efficient as
well (see discussion in Section 6).

4.3 ENTROPY-BASED MULTI-WAY DATA SELECTION

As discussed in Section 3.1, different scoring functions provide distinct advantages when select-
ing meaningful samples from a wide range of vision-language instruction tuning tasks, such as
in-domain VQA, open-ended VQA, multilingual QA, visual grounding, commonsense reasoning,
scientific/physical understanding, and OCR. To address the limitations of relying on a single data
selection (pruning) method and promote collaborative decision-making when evaluating sample im-
portance, based on the model’s current state and data diversity, we propose a novel and versatile,
multi-way data pruning strategy. First, we construct a function pool S = {s¢(*), ..., Sny—1(-)} where
Sn(+) denotes n-th sample selection operation based on the corresponding importance score func-
tion. Here, we aim to identify the function § that maximizes the entropy of the distribution of scores
over the samples of each pseudo-task cluster. For the k-th cluster C, with m samples, we first ex-
tract the corresponding scores for each s,, using model weights 6 at time step ¢t. We approximate the
distribution of scores, P?, by binning the range of normalized scores and calculating densities p?,

over the BS,,’“) bins. Omitting cluster index & for brevity, the selection of § is formulated as:

3 = grgmax H (15,?) , where P? = {pb(x)}, Vb e B® and x € Cy. “4)
Sn

A score function that yields higher average entropy in its distribution compared to other functions
indicates a better ability to assess the uncertainty of the system (i.e., the model 6 at timestep t).
Moreover, we employ the CCS ( , ) sampling strategy that aims to select a balanced
representation of seen and unseen samples as well as frequent and rare tasks by sampling uniformly
over the range of a score function. Hence, it is even more imperative to use a score function that
is discriminative over its entire range. Since the resulting pseudo-task clusters may vary in size,
we define a training budget 7" and divide it uniformly over the k clusters. The leftover data budget
from clusters with sizes |c;| smaller than 7'/ k are equally distributed over other clusters. This results
in the selection of a skill-balanced subset from the pool of multi-task datasets in lifelong learning.
Importantly, our proposed multi-way approach is highly flexible since the scoring function pool can
be seamlessly extended with new scoring functions based on users’ needs.

4.4 COMBINED PERMANENT-TEMPORAL DATA PRUNING BY REMOVING REDUNDANCY

The steps of Adapt-oo outlined in the previous sections enable the model to effectively select the
most beneficial samples for each pseudo-task (i.e., skill) and train on them adaptively, based on
the current model and evolving dataset distributions. However, as the data pool grows with the
release of new instruction-tuning datasets, the computational burden of updating gradient-based
sample vectors and ranking their importance increases. To keep the computational requirements
manageable over time, we further implement a permanent data pruning strategy to iteratively reduce
the size of the entire dataset pool. At the end of training at each timestep, we measure pairwise
cosine similarities between samples within each cluster and prune those with maximum similarities,
as they are highly redundant and contain overlapping knowledge. The similarity is computed in
the semantic space which is well represented using hidden layer outputs of the model as shown in
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Table 1: Comparison of multimodal instruction tuning datasets. Distribution of various skills in
the datasets. RE: Referring Expression, OD: Object Detection, KD: Keypoint Detection.

Skills
Training Datasets Dataset Size VQA Knowledge Captioning Multi- Non-text Video Complex Language
VQA P e lingual Output QA Reasoning Only
LLaVA-1.5 ( s ) 665K v v v X RE X v v
M3IT ( ) 2.1IM 4 4 4 v X X X X
MiniGPT4 ( s ) 3K X X v X X X X X
MANTIS ( s ) 666K v X X X X X v X
LaMM ( s ) 250K v X v X OD & KD X X X
VisionFLAN ( s ) 191K v v v X X X v X
Figure 4 ( ; , ). Larger clusters are prioritized for pruning to fit

a predeﬁned data pool budget D until all clusters retain a uniform number of samples. We refer to
the version of Adapt-oo with this combined permanent-temporal pruning as LITE-Adapt-oo

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model. We conduct our experiments using the LLaVA 1.5 multimodal large language model (

, ). It is trained on top of the Vicuna LLM ( , ) using a corpus of approx-
imately 600K image-text caption pairs for pretaining of the vision projectors from the pre-trained
CLIP visual encoder ViT-L/14 ( s ). Further, it is trained on the LLaVA instruc-
tion tuning dataset consisting of 665K text-only and vision-language instances. We adopt LoRA
finetuning ( , ) of the LLaVA-1.5-7B model with the recommended hyperparameters.”

Datasets. For training, in addition to the LLaVA-665K instruction tuning dataset at t = 0, we
consider the following order of datasets: M3IT ( , ), MiniGPT4 ( , ),
MANTIS ( , ), LAMM ( , ) and VisionFLAN ( , ). Each
dataset’s temporal order, size, and skill composition are summarized in Table 1. We select standard
evaluation datasets to measure performance on the skills enumerated in Table 1. These datasets and
their corresponding task-specific evaluation metrics are listed in Table 4.

Metrics. We report various evaluation metrics from existing literature designed for understand-
ing the continual learning phenomena in machine learning. The Average Accuracy (acc) at final
timestep ¢ = 7' is the average of the model’s performance across all skills (and across datasets

within each skill). The Relative Gain (r) metric ( , ) is the average of skill
performances as a % of the respective upper bounds i.e., r’ = %Zle W x 100%.

We consider the best performances in each skill group in the sequential learning setting to be the
upper bound in performances and report r for the final time step 7. We also report the Forget-
ting Rate(f) which is the % drop in performance averaged across all skills and timesteps i.e.,

_ 1 S T min(P;—P;’170)
f= SXT Zs:l Zt:l P x 100%.

Adapt-oco Setup. The optimal value of % in the pseudo-task clustering step is computed from a grid
search over values of k between 5 and 50, and selected absed on the WSS value of clusters.’ In the
score-based sample selection step, we use a bin size of 50 and discard the top and bottom 5% of
samples for computing entropy as well as for CCS sampling, to remove outliers, low-quality sam-
ples, and uninformative data ( , ). We use perplexity, image grounding (Section 3.2),
EL2N ( , ) and entropy ( ) score functions for S throughout the paper.

Baselines. We present baseline numbers on (1) Sequential and Multi-task training, (2) Random
selection for experience replay (10% of past datasets), (3) Score-based selection methods, including

Random, EL2N ( s ), Entropy ( ), Perplexity ( s ),
and (3) recent competitive data pruning baselines: SemDeDup ( , ), Density-based
Pruning ( . ), and COINCIDE ( , ). See Appendix for details.

Mttps://github.com/haotian—liu/LLaVA/tree/main
3Within the sum of squares (WSS) is sum of squared distance between samples and their cluster centroids.
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Table 2: Overall results for lifelong multimodal instruction tuning. Comparison of performance
of LLaVA models trained on datasets selected using Adapt-oco vs. other data selection methods.

Pruning Strategy Datasize at¢ Relative Gain % (1) Forgetting Rate % (]) Avg. Acc. (1)
Sequential Full 68.0 26.0 32.0
Multi-task Full 92.5 - 46.1
Random Experience Replay Full 89.5 6.6 43.4
Random 25k 95.3 2.1 47.2
EL2N ( s ) 25k 82.4 12.2 43.9
Entropy 25k 79.6 15.1 41.6
Perplexity ( , ) 25k 91.4 9.6 452
Image-grounding (ours) 25k 92.3 5.6 45.6
SemDeDup ( , ) 25k 76.4 6.4 38.5
Density-based ( R ) 25k 78.1 5.1 39.6
COINCIDE ( R ) 25k 89.5 39 44.7
Adapt-oco 25k 102.3 0.9 50.5
Adapt-co 50k 107.2 0.2 51.7
Adapt-oo 100k 109.7 04 52.5
LITE-Adapt-co 25k 99.7 1.3 49.6
VQA Knowledge-VQA Multilingual (CN)
70 60 —e— Sequential
15 Random Pruning
60 50 —e— Random ER
10 —o— |G Score
50 20 —e— COINCIDE
40 5 —e— Ours
30
30 0
Grounding MMMU MMLU
60 50
38 40
40 36 30
20
20 3 1o
0 0
W S\ N4 N > K\ SNEPU 4 N S K\ NP 4 N >
g S &9 4\1}0@" S & &Q@y S & 4\@@@

Figure 3: Average accuracies per skill over time. Comparison of average accuracies over time for
each skill in our evaluation suite using various data selection methods. Higher is better.

5.2 MAIN RESULTS

We present the main experimental results in Table 2 and show a breakdown of skill-wise accuracies
at each time step for various methods in Figure 3. Our main findings are as follows:

Sequential training leads to catastrophic forgetting of skills. Multiple skills learned at ¢=0
(LLaVA) are forgotten at t=1,2 upon training the model on datasets containing a different set of
skills. The M3IT dataset (¢=1) does not contain grounding tasks and results in large drops in per-
formance for the same. Similarly, the MiniGPT4 dataset (¢=2) predominantly contains high-quality
captions and causes forgetting of all other skills. The MANTIS dataset (t=3) improves performance
on the MMMU dataset because it contains training instances with documents, charts, and visualiza-
tion images. At t=4, the LAMM dataset contains object detection and keypoint detection tasks that
promote recovery of the referring comprehension skill learned at ¢ = 0, presumably due to a sim-
ilarity in their non-textual output modalities. Finally, VisionFLAN (¢=5) recovers performance on
all skills except grounding and MMMU. Surprisingly, VisionFLAN also induces recovery of multi-
lingual and unimodal skills (MMLU) despite not containing those tasks in its dataset composition.
This method incurs nearly 26% forgetting across all timesteps and retains only 68% of its all-time
high performances at the final timestep (see Table 2).

Random experience replay and pruning alleviate forgetting. Random experience replay using
10% data from past datasets significantly improves skills retention over sequential training, bringing
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Figure 4: Nearest neighbor samples for query samples from VQA (top) and Chinese VQA (bottom)
tasks in the gradient (left) and feature spaces (right).

down the forgetting rate from 26% to 6.6%. Random pruning of the combined set of past and
incoming datasets results in better retention of skills with only a 2.1% forgetting rate using a fraction
of the datasets for training as seen in Figure 3. This result demonstrates the need for applying data
selection methods to the combined datasets rather than in isolation and serves as a strong baseline for
lifelong multimodal instruction tuning. Notably, random pruning also improves the language-only
skill of the underlying LLM in LLaVA. However, random pruning achieves a relative gain of 95%,
falling short of reaching the best performance seen during sequential training.

Adapt-co minimizes forgetting and promotes forward transfer. Adapt-co outperforms all exist-
ing data selection methods for retaining and learning skills via instruction tuning over time. Score-
based data selection methods generally fall short of random pruning because selecting samples from
multi-task datasets based on scores leads to a skewed representation of tasks in the subset (see Fig-
ure 2). Our proposed scoring function, Image grounding, prioritizes the data samples where the
outputs are strongly grounded in images (see Fig. 2C) and achieves relatively higher performance
for multimodal tasks. SemDeDup ( s ), DBP ( R ), and COINCIDE

, ) rely on hidden layer outputs from the model to represent and prune data samples
which can lead to imbalanced task distributions in the selected subset.

The use of gradient vectors in Adapt-co to pool samples into pseudo-task clusters before pruning
ensures that all skills are well-represented at each time step resulting in the lowest forgetting rate
i.e., 0.9%. Further, the multi-way score-based selection of important samples within those clusters
promotes forward transfer of skills and results in >100% relative gain unlike any other method in
Table 2. The relative gain increases by nearly 5% on doubling the data budget from 25K to 50K
samples and shows signs of plateauing with further increase in data.

Semantic deduplication for managing data complexity over time is effective. LITE-Adapt-co
employs semantic deduplication of the training pool at the end of each timestep to reduce the com-
putation complexity of extracting data representations at the next step. For the deduplication size
of 100K samples (4x of training budget) across all timesteps, LITE-Adapt-oo suffers minor drops in
performance and forgetting as compared to Adapt-co.

6 ANALYSIS

Relative gains per skill. We present the skill-wise breakdown of relative gains of each method
discussed in Table 2, in Figure 5A. The largest increases are observed for the language-only skill
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Table 3: Ablation results for Adapt-co. Comparison of performance of the Adapt-co method to
its ablated versions for lifelong multimodal instruction tuning.

Ablation Type Values Relative Gain % (1) Forgetting Rate % (]) Avg. Acc. (1)
Within-cluster Pruning Multi-way 102.3 0.9 50.5
Image Grounding Score 96.3 2.7 48.8
EL2N 97.4 1.5 49.1
Data Representations Gradients (middle layer) 102.3 0.9 50.5
Gradients (first layer) 97.2 1.8 479
Gradients (last layer) 101.5 1.3 50.1
Gradients (all layers) 98.9 2.5 49.1
Hidden layer outputs (all layers) 96.5 4.3 474
Cluster Budget Uniform 102.3 0.9 50.5
Density-based 101.7 0.5 49.5
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A. Relative gain % of various data selection methods for each skill B. t-SNE plots of gradient vectors from diff. layers of the model

Figure 5: A: Relative gain % for different skills using various data selection methods in the
lifelong multimodal instruction tuning setting. B: t-SNE visualization of gradient vectors of the
M3IT dataset from layers of varying depth in the LLaVA model.

across all methods, except the image-grounding score which deprioritizes unimodal samples. This
result is especially striking because none of the datasets in our experimental setting contain samples
similar to those in the MMLU evaluation dataset. It suggests that the underlying LLM in LLaVA
can recover this skill from similar multimodal samples. The next highest gains are seen for the
knowledge VQA dataset, using our image-grounding score and the Adapt-co method. Multilingual
skills appear to be the hardest skills to learn and retain over time, potentially because they utilize a
different part of the model’s vocabulary than other tasks and are included in the M3IT dataset only.

What is important for multimodal skill recovery? Skill Recovery %

As noted in Section 5.2, a model can recover previ-  95.0 (a) Random
ously learned skills without being re-trained on data (b} LoRA grads
92.5 (c) Proj. grads

from that skill. Sequential training of the LLaVA
model in our experimental setting shows that the 90.0

model at =4 has poor multilingual skills (introduced ;. I
at t=1), and recovers those skills at t=5 without be- . I

ing trained on multilingual data (See the result of 80 |
Sequential on Multilingual (CN) task in Figure 3). Fjgure 6: Recovery of multilingual skill
We use this phenomenon to understand what aspects  with various training data selection methods.
of the training data induce skill recovery in a multi-

modal model. To this end, we train the model from ¢=4 timestep on different subsets of the Vision-
FLAN dataset at t=5 and evaluate its performance on the multilingual skill. Specifically, in ¢=5, we
train the model on an equal number of (a) randomly selected samples, most similar samples in (b)
LoRA gradient space, (c) vision projection layer gradient space, (d) hidden layer output space and
(e) projection layer output space. We compute the average cosine similarity of each sample in the
VisionFLAN dataset with the multilingual subset of the M3IT dataset (t=1). Gradients and outputs
are extracted from the vision projector layers and the decoder layers to represent the visual and mul-
timodal content of the samples, respectively. We report the relative gain of the trained model as a
measure of skill recovery. As presented in Figure 6, the best multilingual performance is achieved
by (b) training on VisionFLAN samples that have similar gradients in the LoORA modules, followed

(d) Layer outputs
(e) Proj. outputs
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by (e) samples with similar outputs from the visual projection layer. Since we have already estab-
lished that gradients represent the skill whereas hidden layer outputs represent the semantics (see
Section 4.2), these results suggest that multimodal models can retain as well as recover previously
learned skills through reminding indirect representations of the skill in training datasets. We also
observe this phenomenon at =4 in the sequential setting where training the LLaVA model on object
and keypoint detection tasks leads to recovery of the referring comprehension skill. These results
provide further evidence for the effectiveness of gradient-based clustering of datasets in Adapt-co

Multi-way pruning vs. single pruner. Adapt-oco uses one among various importance score func-
tions (or pruner experts) for each cluster to select a representative subset of importance samples
from the cluster. This works better than using any one single metric across all clusters as shown in
Table 3. Importantly, this serves as a flexible framework for swapping or adding advanced ‘expert’
pruners, e.g., learnability score ( s ; s

Source of data representations. Various data selection works propose different ways of represent-
ing data samples in a high-dimensional space. Methods designed for pruning pretraining datasets
or single-task finetuning can effectively use semantic representatlons such as sentence embeddings
( R ) and hidden state outputs ( s s ). However,
we observe subpar performance with the use of semantic representatlons for pseudo-task clustering,
as reported in Table 3. Gradient vectors are better representations of the skill component of a data
sample as we show in Figure 4. Further, we experimented with gradients from all layers (similar
to ( ); ( )) as well as individual layers of the model. We observed the
best performance with gradients from the middle layer only. Gradients from the last layer also work
relatively well with Adapt-co but those from the first layer work poorly. This discrepancy correlates
with the compactness of task clusters in the t-SNE plots of gradients from the corresponding layers,
as demonstrated in Figure 5B.

Sampling budget across clusters. As outlined in Section 4, we sample a subset with an equal
number of samples from each pseudo-task cluster in Adapt-oo. The budgets leftover from smaller
clusters are distributed equally across the remaining clusters. We experimented with more intuitive
budgets for each cluster i.e., based on the density of the cluster members ( s ).
However, it did not result in significant changes in the performance.

Efficiency. Most data selection methods require extra steps to select an influential data subset and
incur computational costs. Adapt-oco expends additional memory and inference-time compute to ef-
fectively select data. We experiment with three methods to reduce this cost: (1) Zero-order gradients
( , ), (2) Varying size of data pool in LITE-Adapt-co, and (3) gradients from a smaller
model i.e., TinyLLaVA ( , ). Using zero-order gradients instead of full gradients
leads to a 2% drop in average accuracy and a 2.4% drop in relative gains. TinyLLaVA gradients
demonstrate a similar drop, in addition to a higher forgetting rate. Conversely, the performance of
LITE-Adapt-oco improves with increasing size of the data pool post-deduplication (see Table 5).

7 CONCLUSION

Valuable visual instruction tuning datasets from various sources are released over time and often
contain overlapping text-image pairs. To efficiently train lifelong adaptive MLLMs on these growing
datasets, a scenario we call Lifelong Instruction Tuning (LiIT), we reformulate data selection so
the model automatically selects meaningful samples from both old and new datasets, maintaining
balance when incorporating new data. We observe that assessing sample informativeness with a
static importance measure is challenging in LilT, as it depends on the model’s evolving capabilities
and the shifting dataset distribution. To address this, we propose a scalable lifelong multimodal
instruction tuning approach that dynamically balances sample efficiency and effectiveness through
temporal multi-way data pruning. We show that training with samples selected by this method
reduces catastrophic forgetting and enhances forward gain, using only a fraction of the original
dataset, particularly for rare tasks with limited resources.
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APPENDIX

Table 4: Evaluation datasets used for measuring the performance of the trained model at each time
step in our continual learning experiments.

Skill Evaluation Datasets Evaluation Metric
VQA GQA ( R ), LLaVA- Accuracy
Bench ( S )
Knowledge VQA ScienceQA ( N ), OK-VQA ( Accuracy
, ), A-OK-VQA ( ,
)
Multilingual (Chinese) COCO-CN, Flickr-8K-CN ( R ) BLEU Score
Grounding RefCOCO, RefCOCO+, RefCOCOg I0U
( , ; , )
Reasoning MMMU ( R ) Accuracy
Language MMLU ( , ;b) Accuracy

A BASELINES

Sequential Training. In this method, the model is naively trained on the stream of instruction
tuning datasets without any experience replay. Generally, this method sets a lower bound on the
performance of the model on each evaluation task.

Multi-task Training. This method comprises pooling all of the datasets across time steps and
training the model on this pooled dataset in one go. Generally, this method sets an upper bound on
the performance of the model on various skill sets. However, if there are low-resource tasks in the
dataset, it can lead to low performance on those tasks.

Coverage-based Coreset Selection (CCS). ( ) introduces the method CCS where
they divide a range of difficulty scores into equal-sized bins and randomly data samples from each
bin with a uniform budget. This approach is motivated by maximizing coverage over the semantic
space while ensuring an equal distribution of easy and difficult samples in the selected subset. Easy
samples promote learning whereas difficult samples are information-dense and promote generaliza-
tion. We use this method in Adapt-oo for score-based selection.

Score-based Selection. Multiple importance score functions have been proposed over the years
for various data types. We select the following for baseline experiments: (1) Perplexity: This metric
is widely used for filtering language corpora ( , ), (2) EL2N ( , ):
This metric is the L2-norm of the output error vector and is effective at low pruning ratios (or high
retention rates), (3) Entropy ( ): This score function is the entropy value of the output
probability vector.

Embedding-based Selection. SemDeDup ( , ) extracts semantic embeddings for
pertaining datasets using a universal embedding transformer such as CLIP ( , ) for
image-text pairs or Sentence Transformer* for natural language corpora and performs deduplication
within k-means clusters. DBP ( , ) assigns pruning budget to the clusters in SemD-
eDup using a cluster complexity score. COINCIDE ( , ) clusters feature vectors into a
large number of cluster e.g., k=10,000 to identify skill-concept clusters and samples non-uniformly
from the clusters using a difficulty score metric.

4https ://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_
hub_universal_encoder
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Table 5: Efficiency Results. Comparison of performance of efficient versions of the Adapt-oco
method for lifelong multimodal instruction tuning. 7" = Training data size; = Size of data pool
after permanent pruning in LITE-Adapt-co.

Method Relative Gain % (1) Forgetting Rate % (]) Avg. Acc. (1)
Adapt-oo (T=25k) 102.3 0.9 50.5
+ TinyLLaVA gradients ( s ) 99.6 29 48.1
+ Zero-order gradients ( s ) 99.9 1.5 48.5
LITE-Adapt-co (| D|=100k) 99.7 1.3 49.6
LITE-Adapt-oo (| D|=200k) 101.8 1.1 50.1
LITE-Adapt-oo (| D|=500k) 102.5 0.7 50.8

B EXPERIMENTAL SETUP

Additional Details on Adapt-oc Setup. We use random projections ( ; ,
) to reduce the dimensionality of gradient vectors extracted for the pseudo- task clustermg step.
We use a constant projection dimension of 8192 throughout our experiments.
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