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ABSTRACT

The performance and reasoning capabilities of Large Multi-modal Models
(LMMs) is dependent on the size and quality of their training datasets. How-
ever, collecting datasets that support chain-of-thought instruction tuning is highly
challenging. Existing video instruction tuning datasets are often derived by
prompting large language models with video captions to generate question-answer
pairs, which makes them predominantly descriptive rather than reasoning-focused.
Meanwhile, many labeled video datasets with diverse labels and supervision exist
– however, we find that their integration into LMMs is non-trivial. To address
this, we introduce Video Self-Training with augmented Reasoning (Video-STaR),
the first self-training approach for video instruction tuning. Video-STaR allows
the utilization of any labeled video dataset for video instruction tuning. In Video-
STaR, an LMM cycles between instruction generation and finetuning, which we
show (I) improves general video understanding and (II) adapts LMMs to novel
downstream tasks with existing supervision. During instruction generation, an
LMM is prompted to propose an answer. The answers are then filtered only to
those that contain the original video labels, and the LMM is then re-trained on
the generated dataset. By training exclusively on generated answers containing
the correct video labels, Video-STaR leverages these existing labels as weak su-
pervision for video instruction tuning. Our results demonstrate that Video-STaR-
augmented LMMs achieve notable improvements in (I) general Video QA, where
TempCompass performance improved by 6.1%, and (II) downstream tasks, with
a 9.9% increase in Kinetics700-QA accuracy and a 4.0% improvement in action
quality assessment on FineDiving, while also exhibiting better interpretability.

1 INTRODUCTION

The advent of Large Multi-modal Models (LMMs) marked a significant milestone in artificial intelli-
gence. These models aim to create versatile systems capable of understanding and executing vision-
and-language tasks aligned with human intentions. Liu et al. (2023a) demonstrated the importance
of visual instruction tuning on the resulting LMM’s performance. While significant advancements
have been made with image-based LMMs, video-LMMs continue to face challenges due to the
increased complexity of videos, which involve more intricate scene dynamics and temporal infor-
mation. This complexity demands larger, more diverse, and reasoning-focused video instruction
tuning datasets. However, the largest existing video instruction dataset, VideoInstruct-100K (VI-
100K) (Maaz et al., 2023), comprises 100K video-text pairs but only 13K unique videos. This is
small compared to image instruction datasets like Cambrian-10M (Tong et al., 2024), which contain
millions of image question pairs from diverse domains and tasks.

Furthermore, due to video instruction tuning dataset construction - mainly prompting large language
models to produce question-answer pairs - these video datasets often degrade to simplistic questions,
prompting for video captions — 75% of VI-100K’s questions are of this type (see App. Fig. 10),
lacking diversity and reasoning. Combining different sources of supervision has the potential to
generate more diverse video instruction tuning datasets, enhancing video understanding. Such su-
pervision exists, as the broader computer vision community has developed an extensive collection of
video benchmarks tailored for diverse tasks such as action recognition (Smaira et al., 2020; Soomro
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Figure 1: Video-STaR Overview. Video-STaR can utilize any labeled video dataset, including AR
(Action Recognition), AQA (Action Quality Assessment), and TAL (Temporal Action Localization)
– from which it generates video instruction tuning data (video, question, answer triplets). Internally,
Video-STaR cycles between: (I) Answer Generation, where an LMM is prompted to generate
candidate answers for the questions. (II) Label Verification where generated answers are filtered to
only those that contain the video labels. And (III) Instruction Tuning, where a model is retrained
on answers that pass verification. These cycles continue until performance plateaus, producing both
an instruction tuning dataset and an improved LMM.

et al., 2012), action quality assessment (Xu et al., 2022b; Zhang et al., 2023c), among others (Wu
et al., 2021; Grunde-McLaughlin et al., 2021; Grauman et al., 2023; Luo et al., 2022).

Beyond improving overall LMM performance, adapting LMMs to novel or out-of-domain tasks is
also crucial. While LMMs have many novel and impactful applications, many remain out of reach —
such as analyzing radiology images (Senkaiahliyan et al., 2023), meteorological data (Lawson et al.,
2024), traffic analysis (Zhou & Knoll, 2024), judging sporting events (e.g., gymnastics, Olympic
diving), and assisting in surgical procedures, among others (Zheng et al., 2024; Jiang et al., 2024;
Deng et al., 2024). These tasks require expert, in-domain knowledge that LMMs lack, necessitat-
ing adaptation through instruction tuning. However, collecting video instruction tuning datasets is
complex and requires extensive manual effort. For instance, training an ‘AI judge’ to judge Olympic
diving would traditionally involve collecting detailed expert critiques of each dive. On the other
hand, these tasks often include auxiliary annotations that could be leveraged, such as surgical out-
comes in medical procedures or judging scores in Olympic events.

To address these challenges, we take inspiration from LLM’s capability for self-improvement (a.k.a
self-training) (Huang et al., 2022; Zelikman et al., 2022; Singh et al., 2023), which involves training
a model on its generated data and filtering to exclude low-quality outputs. A model’s performance
is improved by cycling between generation, filtering, and training. Inspired by the success of self-
training in LLMs, we hope that applying self-training to LMMs could improve their performance on
complex reasoning and multi-modal tasks. Herein, we explore self-training in LMMs and introduce
Video Self-Training with augmented Reasoning (Video-STaR, see Fig. 1). Video-STaR enables the
incorporation of any labeled video dataset of any format or task by prompting an LMM with the
video and a question to generate answers (Fig. 2, 2.1) containing the video content’s label, allowing
the utilization of these labels as form of weak supervision. If the model cannot correctly answer
the question, we provide the original video label and ask it to rationalize it (Fig. 2, 2.2). We then
again reject answers that do not contain the gold label (Fig. 2, 2.3). By facilitating the use of any
supervision for video instruction tuning, Video-STaR enables the creation of diverse datasets with
chain-of-thought reasoning.

Our experimental setup initializes Video-STaR with Video-LLaVA (Lin et al., 2023), focusing on
assessing its impact on video question-answering (VQA) performance. After a few Video-STaR
training cycles, we compare the performance of Video-STaR to other LMMs and strong baselines,
which utilize the entire source datasets, to gauge the effectiveness of the Video-STaR framework.
Our findings demonstrate notable enhancements in accuracy and reasoning capabilities, highlighting
Video-STaR’s role in overcoming the constraints posed by conventional video instruction tuning
datasets. We show that the integration of Video-STaR not only boosts Video-LLaVA’s performance
on standard zero-shot VQA benchmarks but also significantly improves its adaptability to various
downstream video understanding tasks. This underscores Video-STaR’s capacity to advance LMM
training while improving overall performance and versatility.
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Our contributions can be summarized as follows:

1. We introduce Video Self-Training with augmented Reasoning (Video-STaR), the first video
self-training method for Large Multi-modal Models. Video-STaR enables the use of any
labeled video dataset for visual instruction tuning with chain-of-thought reasoning.

2. Video-STaR improves zero-shot video question answering performance on various bench-
mark datasets, compared to strong baselines, as evidenced by increased accuracy on Tem-
pCompass from 45.7% to 51.8%.

3. We demonstrate that Video-STaR can adapt LMMs to diverse video tasks, notably enhanc-
ing action quality assessment accuracy on FineDiving from 17.6% to 21.6%. Additionally,
with Video-STaR, we show that LMMs can also explain why a score is given.

4. Utilizing Video-STaR, we create a large, 1M video instruction tuning dataset with rich
chain-of-thought reasoning - VSTAR-1M, sourced from diverse datasets and tasks, and
show that it benefits LMM performance.

2 VIDEO SELF-TRAINING WITH AUGMENTED REASONING (VIDEO-STAR)

Given a dataset of videos v and their corresponding labels l : D = {(vi, li)}di=1, Video-STaR’s
objective is to create question q and chain-of-thought answer a, that contains both the rationale r
and final answer (a = r ∪ l). These pairs are then used to instruction-tune the pre-trained model M
on the dataset D̂ = {(vi, qi, ai)}

df

i=1, producing the instruction-tuned model M̂ . Note that videos
need not be from the same task, and may contain multiple labels. We start by prompting a large
language model with a task description T and video labels L to generate candidate questions q:

YT,L = A video is labeled {L} for the task of {T}. What questions could you ask
someone about the video that should contain the video labels in the response?

Video-STaR performs generation-training cycles, where in cycle i the instruction-tuned model M̂ i⋆

is produced, while the instruction-tuned model from the previous cycle M̂ (i−1)⋆ is utilized for train-
ing data generation. We initialize the process with M̂0⋆, an existing instruction-tuned model.

To prepare the training data in cycle i, answers are generated either directly via Answer Generation
or through backward rationalization via Label Rationalization. In Answer Generation, M̂ (i−1)⋆ is
prompted with questions (Sec. 2.1). Candidate answers are then filtered using the original video
labels (Sec. 2.3). Videos rejected during direct Answer Generation are rationalized, where M̂ (i−1)⋆

is provided both a video vi and labels li, and then prompted with the question again (Sec. 2.2).
Candidate answers are filtered again, creating the instruction tuning dataset in cycle i, D̂i of size
di. A pre-trained model M is then finetuned on Di, producing M̂ i⋆. The next cycle generates data
using M̂ i⋆, until the performance plateaus (see Fig. 2).

2.1 ANSWER GENERATION

Each Video-STaR cycle begins in direct Answer Generation. In this phase, M̂ (i−1)⋆ is prompted
with the video-question pair to provide an answer along with a detailed rationale:

YQ = Question: {Q}. Rationalize your answer step-by-step; how can one arrive at
this conclusion?

When prompted with the question qi on a particular video, M̂ (i−1)⋆ is expected to generate an
answer ai that contains the label l̂i and the rationale ri (ai = ri ∪ l̂i, see Fig. 2). As can be seen
in App Fig. 13, 12, answers containing the correct labels are of higher quality and suffer less from
hallucination. Therefore, we filter the generated answers to include only those that contain the
correct label utilizing the verifier (Sec. 2.3). For an example of Answer Generation, see Fig. 3.

2.2 LABEL RATIONALIZATION

Answer generation has two main drawbacks: (i) In some applications, especially on challenging/out-
of-domain tasks, initial Answer Generation yield is low, resulting in almost no training samples after
filtering (e.g., FineDiving, see Fig. 3); (ii) improvement plateaus as the model fails to solve new
problems in the training set, and it is only trained on examples it answers correctly.
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Figure 2: Video Self-Training with augmented Reasoning. (2.1) We initialize by prompting an
LMM to generate an answer for a particular video. (2.3) We then filter the generated answers to
those only containing the original video labels. (2.2) The videos whose generated answer did not
contain the ground-truth labels are then sent to label rationalization, where given the video, question,
and label - the model is expected to rationalize the label. (2.3) The generated answers are filtered
again to those only containing the ground-truth labels, and (2) the LMM is instruction-tuned from
the pre-trained checkpoint on the resulting dataset. The cycle is then repeated.

Inspired by Zelikman et al. (2022), for videos whose M̂ (i−1)⋆ generated answers did not contain
the ground-truth labels, we introduce label rationalization as part of Video-STaR. Concretely, we
provide M̂ (i−1)⋆ the video, question, and video label and instruct the model to rationalize the label:

YQ,L = Question: {Q}. Answer: {L}.
Can you rationalize the answer step-by-step? How can one arrive at this con-
clusion?

Given the correct label, the model can reason backward and more easily generate a rationale leading
to the correct answer. However, Label Rationalization is more prone to hallucinations, so we prefer
direct Answer Generation and use rationalizations only if answer generation fails (see App. Sec. F).
For an example of Label Rationalization, see Fig. 3. The generated answers are then filtered, keeping
only those that contain the gold label (l̂i = li) utilizing the verifier (Sec. 2.3). Label Rationalization
is only utilized in training cycles; only Answer Generations produce the final model M̂⋆.

2.3 LABEL VERIFICATION

Video-STaR aims to utilize the labels as weak supervision in instruction tuning data generation.
Gold labels are a grounding aspect of our datasets and represent some ground-truth knowledge. In
App. Sec. F.1, we show that answers that contain the ground-truth labels in their responses are of
higher quality than those that don’t and have a higher probability of being correct. While we would
like to validate the existence of the different labels in the generated text, this can be non-trivial.

To this end, we introduce the Parser-Verifier. The Parser, P extracts the predicted labels from the
generated text (l̂i = P (ai)), using a mixture of named entity recognition and Regex. Regex is used
to identify easily identifiable string patterns, such as bounding boxes and time ranges, while named
entity recognition is used for more nuanced entities, such as timestamps. The Verfier, V compares
the extracted labels with the gold ones using the appropriate metrics (V (li, l̂i) → R). For example,
IoU for bounding boxes/temporal action localization, and BERT (Devlin et al., 2018) embedding
similarity for sentence ordering. Each video has between 1-3 associated labels. To be classified as
correct, the predicted labels must be within a 5% margin of error from the gold. See App. Tab. 8 for
a comprehensive list of the label types, their description, and corresponding parsers and verifiers.

3 VIDEO-STAR GENERATED DATASET - VSTAR-1M

In this section, we detail the different source datasets utilized in our study (Sec. 3.1) and analyze the
generated Video-STaR Dataset, VSTAR-1M (Sec. 3.2).
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Source Videos Labels Avg. Dur. Source Task
Kinetics700 (2020) 650K 700 5.1 Action Recognition

STAR
benchmark
(2021)

22K 207 28.6
Video Reasoning, Temporal
Action Localization,
Bounding Box

FineDiving
(2022b) 3K 1065 3.2 Action Quality Assessment,

Action Sequence

Table 1: Source Dataset Summary. Video datasets used as source datasets for instruction tuning
data generation, their source tasks, and the number of unique labels.

The performer in the video executes a series of flips and twists in the air, showcasing their athleticism and skill. The first 
flip is an inward somersault... The second flip is a 3.5 somersault,… The third flip is a tuck… The fourth flip is an entry, 
which is the final maneuver before the performer enters the water. Overall, the performer demonstrates a high level of 
skill and athleticism throughout the routine, making it a challenging and impressive display of acrobatics.

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100.
Answer: Action Sequence: Inward, 3.5 Soms.Tuck, Entry. Action difficulty: 3.2. Overall Score: 65.6.
Can you explain step-by-step how one can arrive at this conclusion?

[Label] 65.6

First, we need to identify the action sequence performed by the diver… inward somersault, followed by a 3.5 somersault 
tuck, and then an entry into the water. Next, we need to assess the difficulty of each action in the sequence. … In this 
case, the difficulty of each action is as follows: Inward: 3.5, 3.5 Soms.Tuck: 3.2, Entry: 3.0… In this case, the average 
difficulty score is 3.2… we can conclude that the diver's action sequence is of a high skill level and is quite tough, with 
an overall difficulty score of 65.6.

[Input Instruction] Please assess the performer's skill level and the action's toughness in the video on a scale of 1-100..
Can you explain step-by-step how one can arrive at this conclusion?

First, we need to identify the action sequence performed by the diver. In this case, the diver performs an inward 
somersault, followed by a 3.5 somersault tuck, and then an entry into the water... The action difficulty score for a inward 
to a 3.5 somersault tuck is 3.2…
we can conclude that the diver's action sequence is of a high skill level and is quite tough, with an overall score of 64.68
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Figure 3: Qualitative Improvement of Data Generation over Cycles on FineDiving. We initial-
ize the model with Video-LLaVA (Cycle 0), where the model cannot generate an answer (→ |×) or
rationalize the label correctly (| → ×). In the second cycle (Cycle 1), the model still cannot gener-
ate an answer (→ |×) but can rationalize the video label (✓| →), which is selected for instruction
tuning. Finally, in the third cycle (Cycle 2), the model directly generates a correct answer (✓| →),
which is selected for visual instruction tuning. We highlight in green correct answers, in red wrong
answers, and in yellow - hallucinations.

3.1 SOURCE DATASETS

In selecting source datasets, we selected datasets that contain diverse video content and label types,
please see Tab. 1. These include Kinetics700 (Smaira et al., 2020), which has action recognition
annotations and is particularly large and diverse. FineDiving (Xu et al., 2022b) is an action quality
assessment dataset of Olympic diving events and has both an overall score and action sequence
annotations. Finally, STAR-benchmark (Wu et al., 2021), a video reasoning dataset, also contains
bounding box and temporal action localization annotations. Tab. 1 contains the relevant dataset
statistics, e.g., the number of videos and labels per dataset.

3.2 GENERATED DATASET ANALYSIS

Quantitative Analysis. Through the application of Video-STaR, significant dataset augmentation
was achieved over two cycles of, illustrated in Fig. 4. This figure displays the Answer Generation
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Kinetics700 STAR-Benchmark FineDiving

Video

Question What type of activity is being per-
formed in this video?

Which object was put down by the
person?

On a scale from 1-100, how would
you evaluate the execution of the
actions in the video?

Generated
Answer

In the video, a man is seen holding
a large axe and swinging it around
while a crowd watches. He then
proceeds to hit a block of wood with
the axe. Based on these observa-
tions, it can be concluded that the
activity is chopping wood.

In the video, the person is seen
picking up a bag and putting it
down on the floor. After that, he
picks up a book and puts it down
on the floor. Based on this informa-
tion, we can conclude that the per-
son put down the bag and picked up
the book.

First, we identify the diver’s ac-
tion sequence: inward somersault
· · · entry into the water. Evaluat-
ing each movement’s difficulty, we
assign · · · inward somersault: 2.5,
· · · . By averaging these scores · · ·
the overall score is 63.0 out of 100.

Label Smashing The bag. Overall Score 63.0

Table 2: Examples of Generated Data. Examples of the video, question, Video-STaR generated
answer, and ground-truth label from each source dataset.
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Cycle
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25
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Answer Generation
Label Rationalization

0 1 2
Cycle

STAR-Benchmark

Answer Generation
Label Rationalization

0 1 2
Cycle

FineDiving
Answer Generation
Label Rationalization

Figure 4: Dataset Yield vs. Cycles. Percentage of the videos converted to instruction tuning by
the Answer Generation and Label Rationalization per dataset. As can be seen, on difficult datasets,
such as FineDiving, no videos are converted by Answer Generation in the first cycle. By utilizing
Label Rationalization, the model is able to improve to eventually generate answers correctly.

and Label Rationalization yield across the datasets source. Notably, the initial application of Video-
LLaVA on datasets like Kinetics700 and STAR-Benchmark showed significant Answer Generation
success rates. However, the FineDiving dataset presented a notable challenge, with Answer Gen-
eration having no answers generated directly, underscoring the complexity of the dataset and the
critical role of Label Rationalization. By the end of the second cycle, a substantial number of high-
quality instances had been produced, showcasing both the effectiveness of Video-STaR in converting
labeled video datasets into video instruction tuning dataset, as evidenced in Fig. 4.

Qualitative Analysis. See Tab. 2 for examples of generated question-answer pairs. From Kinet-
ics700, we extracted an instance showcasing a video labeled ‘smashing’. Video-STaR correctly
identified a more fine-grained label, ‘chopping wood’. In the FineDiving dataset, a clip depicting
a complex dive was accompanied by the question ‘On a scale from 1-100· · · ’ The model’s output
text provided a breakdown of the dive’s components, leading to a score (label), as would be desired
from an LMM visual assistant. Finally, in the STAR benchmark, questions are already provided;
therefore, we utilized them directly.

In 3, we show the qualitative improvement of the generated data over Video-STaR cycles. In the first
cycle (Cycle 0), Video-LLaVA failed at Answer Generation and Label Rationalization. After one
Video-STaR cycle (Cycle 1), Video-STaR still failed at Answer Generation but succeeded in Label
Rationalization. After the final Video-STaR cycle (Cycle 2), Video-STaR managed to generate the
answer without requiring the label via Answer Generation.

4 EXPERIMENTS

We experimented with Video-STaR and evaluated its enhanced video understanding capabilities. In
Sec. 4.3, we evaluate how Video-STaR adapts Large Multi-modal Models (LMMs) to the source
datasets and how these capabilities are transferred zero-shot to similar benchmarks. In Sec. 4.2, we
evaluate the video question-answering capabilities on video benchmark datasets.
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Action Direction Speed Event Attribute Change Avg.
Fine Coarse Obj. Cam. Abs. Rel. Order Color Size Both Other

Random 39.7 40.1 39.8 39.0 40.8 42.0 41.5 40.4 39.9 38.9 39.4 40.5
mPLUG-Owl (2023) 48.8 66.1 38.7 36.8 42.2 38.4 42.0 41.7 44.7 41.9 39.9 44.4
Video-LLaVA (2023) 63.4 93.5 36.1 34.8 42.7 26.5 39.1 52.6 37.1 43.3 33.3 45.7
Video-LLaVA+ 62.1 93.0 35.0 32.6 41.1 38.7 36.4 59.0 40.2 36.7 44.4 47.2
Vid-LLaVAGemini 65.7 90.5 38.9 46.0 41.8 42.4 41.0 48.7 49.1 32.5 40.4 48.7
Video-STaR 68.6 94.1 39.9 39.0 40.7 43.0 41.1 53.8 48.5 45.0 55.6 51.8
Gemini-1.5 (2024) 94.8 98.4 43.6 42.4 65.3 48.7 55.6 79.5 59.8 70.0 66.7 66.0

Table 3: Comparison with state-of-the-art methods on TempCompass. TempCompass (Liu et al.,
2024) assesses the temporal understanding capabilities of video language models across five dimen-
sions Video-STaR improves Video-LLaVA performance on TempCompass by 5%.

Methods Dataset MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
size Accuracy Score Accuracy Score Accuracy Score Accuracy Score

VideoChat (2023b) 4K 56.3 2.8 45.0 2.5 34.4 2.3 - 2.2
Video-LLaMA (2023a) 4K 51.6 2.5 29.6 1.8 - - 12.4 1.1
Video-ChatGPT (2023) 100K 64.9 3.3 49.3 2.8 51.4 3.0 35.2 2.7
Video-LLaVA∗ (2023) 100K 69.7 3.9 57.4 3.5 46.5 3.3 43.2 3.4
Video-LLaVA+ 650K 67.8 3.8 56.0 3.4 46.5 3.3 42.2 3.3
Vid-LLaVAGemini 128K 67.2 3.9 56.9 3.4 45.5 3.4 42.6 3.3
Video-STaR 550K 71.3 4.0 58.2 3.5 47.3 3.3 43.2 3.3

Gemini-1.5-pro (2024) - 71.6 3.9 52.6 3.2 45.0 3.1 56.7 -

Table 4: Zero-shot Video QA benchmarks. As can be seen, many models are approaching Gemini
performance - indicating that LMMs may be operating near the noise level on these benchmarks.

4.1 EXPERIMENTAL SETTING

Implementation Details. We initialize from the Video-LLaVA (Lin et al., 2023) model, which
utilizes the Vicuna-7B v1.5 (Chiang et al., 2023). We ran three Video-STaR cycles, and each cycle
was initialized with the pre-trained Video-LLaVA weights. We train for one epoch using a 128
batch size, AdamW optimizer, and a cosine learning rate schedule. The learning rate is 2e− 5 with
a 0.03 warmup ratio. In combination with the generated Video-STaR instruction tuning dataset, we
additionally utilized the VideoInstruct-100K (Maaz et al., 2023) and the LLaVA v1.5 instruction
tuning datasets (Liu et al., 2023a). Additional details are available in the appendix.

Baselines. Besides comparing to Video-LLaVA, we also wanted to evaluate the effect of utilizing
additional data and naively adapting the source datasets. Therefore, we utilized simple templates
to generate question-answer pairs from the video labels and trained Video-LLaVA on the resulting
dataset. We will reference this baseline as Video-LLaVA+. Another baseline for adapting Large
Multi-modal Models to novel tasks is model distillation, where a stronger video model - in this
work, Gemini 1.5 pro-vision - is utilized to label/annotate a small set of videos (3500 from each
dataset) and used to finetune the models. Unlike Video-LLaVA+, we initialized from the fine-tuned
Video-LLaVA model and mixed the Gemini-generated dataset with 50% of Video-LLaVA’s original
dataset to mitigate forgetting. We will reference this baseline as Vid-LLaVAGemini.

Evaluation Details. We evaluate on the following benchmarks; the Zero-shot question-answer
(QA) benchmarks: MSVD-QA, MSRVTT-QA, TGIF-QA, and ActivityNet-QA (Xu et al., 2017;
2016; Jang et al., 2017; Heilbron et al., 2015). TempCompass (Liu et al., 2024), a multiple-choice
fine-grained QA benchmark. Adapted task performance is evaluated by converting source datasets
using simple templates and applying the same evaluation protocol as Maaz et al. (Maaz et al., 2023),
producing Kinetics700-QA, STAR-benchmark-QA, and FineDiving-QA. This protocol reports two
metrics: accuracy (the percentage of correctly answered questions) and the average score (where
ChatGPT rates each response on a scale of 1-5 and calculates the mean of these scores). All evalu-
ations utilize the same GPT model (Wu, 2024) (“gpt-3.5-turbo”) to ensure consistent comparisons.
Due to cost considerations, 1000 videos were randomly selected from each dataset for Gemini eval-
uation. The reported values are used on ActivitlyNet-QA.
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Methods Kinetics700-QA STAR-bench-QA FineDiving-QA
Accuracy Score Accuracy Score Accuracy Score

Video-LLaVA 50.0 3.2 24.9 2.6 17.1 2.2
Video-LLaVA+ 49.5 3.2 28.8 2.8 17.6 2.2
Vid-LLaVAGemini 49.4 2.7 29.3 2.6 16.5 2.1
Video-STaR 59.9 3.5 33.0 2.9 21.7 2.3

Table 5: Adapted Dataset Performance. Performance metrics on test sets of Kinetics700, Fine-
Diving, and STAR-benchmark datasets via converting them to QA following Maaz et al. (2023).
Video-STaR shows significant improvement over Video-LLaVA and Video-LLaVA+, showing the
potential of Video-STaR for LMM adaptation to new tasks.

4.2 QUANTITATIVE EVALUATION ON ZERO-SHOT BENCHMARKS

To evaluate Video-STaR’s effect on general video question answering, we evaluated its effect on
Video-LLaVA’s performance on TempCompass, see Tab. 3. On TempCompass, Video-STaR out-
performed Video-LLaVA across the board– by ∼ 5%. To see if this performance boost is simply a
factor of training on a larger dataset, we also evaluated Video-LLaVA+. Video-LLaVA+was trained
on even a larger video dataset by naively utilizing video labels, and yields a more modest improve-
ment of 3%, showing the utility of Video-STaR. TempCompass is also a fine-grained dataset that
would be sensitive to hallucinations, indicating that Video-STaR is not more prone to hallucina-
tions compared to existing methods. Gemini 1.5 pro scored an impressive 66.0 on TempCompass,
showing there is still much room for improvement on this benchmark.

We then continued and evaluated Video-STaR’s effect on zero-shot video QA performance on the
MSVD-QA, MSRVTT-QA, TGIF-QA and ActivityNet-QA benchmarks. As can be seen in Tab. 4,
Video-STaR achieves performance improvements where, for instance, on the MSVD-QA dataset,
Video-STaR attains the highest accuracy of 71.3% vs Video-LLaVA’s 69.7. On MSRVTT-QA,
Video-STaR leads with an accuracy of 58.2% and maintains a competitive edge in other datasets like
TGIF-QA and ActivityNet-QA. Seeing the relatively small performance gains compared to Temp-
Compass, we additionally evaluated Gemini 1.5 pro-vision on 1000 video subsets of each dataset
and found that its performance is on par with existing open-source models. We believe this shows
that we are near the ‘noise’ limit of these benchmarks. Our qualitative analysis indicated that many
of the questions selected as ‘wrong’ are actually due to the benchmark design—overly general ques-
tions with multiple correct answers. Concurrent work (Wu, 2024) has similarly concluded that the
ChatGPT-3.5 version utilized in evaluation can lead to variations of ±10 in accuracy.

4.3 QUANTITATIVE EVALUATION ON ADAPTED DATASETS

Besides improving general visual question-answering performance, Video-STaR can also adapt
Large Multi-modal models to novel takes. To demonstrate this, we converted the test sets (not
included in training) of the source datasets – Kinetics700, STAR-benchmark, and FineDiving. The
results of these evaluations are reported in Tab. 5. Adapting LMMs with easier-to-collect labels
can be helpful in various applications, leading to a more versatile, multi-domain capable assistant.
When evaluating Video-STaR’s impact on LMM performance on the diverse source datasets, we
found that it significantly improves model performance, particularly on complex tasks. For instance,
on Kinetics700, known for its extensive action categories, Video-STaR enhanced Video-LLaVA’s
performance accuracy by an average of 20% (as can be seen in Tab. 5), showcasing its ability to
develop generalized models adept across multiple domains. Interestingly, Video-LLaVA+’s perfor-
mance did not improve compared to Video-LLaVA, and in some cases, even worsened, showing that
one cannot directly utilize labeled datasets for LMM adaptation.

Action Quality Assessment (AQA) is a complex video task requiring detailed action understanding,
where Video-STaR significantly enhanced LMM performance on the FineDiving dataset. Our results
show a notable improvement from 17.6 to 21.6 in score prediction accuracy, highlighting Video-
STaR’s effectiveness in refining LMM’s temporal reasoning. However, Video-STaR allows LMMs
to not only rate a particular dive but also explain the rationale behind each assessment. This rationale
is invaluable for many applications, effectively providing potential user feedback for improvement.
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Ablations Kinetics700-QA STAR-bench-QA FineDiving-QA
Accuracy Score Accuracy Score Accuracy Score

Video-STaR 59.9 3.5 33.0 2.9 21.6 2.3
- Generation 58.8 3.5 28.7 2.7 17.1 2.1
- Rationalization 59.8 3.5 26.6 2.7 12.8 2.0

- Generation 50.0 3.2 24.9 2.6 17.6 2.2

Table 6: Ablations on Adapted Datasets. Performance metrics on test sets of Kinetics700, STAR-
benchmark, and FineDiving datasets. Label Rationalization impacts mostly the difficult datasets,
such as FineDiving, whose initial Answer Generation yields are low.

Ablations MSVD-QA MSRVTT-QA TGIF-QA ActivityNet-QA
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

Video-STaR 71.3 4.0 58.2 3.5 46.8 3.3 42.2 3.3
- Generation 70.6 3.9 57.8 3.5 44.9 3.3 41.1 3.2
- Rationalization 70.6 3.9 57.5 3.5 47.7 3.4 42.2 3.3

- Generation 69.7 3.9 57.4 3.5 46.5 3.3 43.2 3.4

Table 7: Ablations on Zero-Shot Benchmarks. In simpler benchmarks, Answer Generation proved
more critical for zero-shot generalization than Label Rationalization.

This advancement enables novel applications, from sports coaching to automated feedback systems,
by offering evaluations and constructive feedback. The ability to interpret and improve action quality
underscores the potential of Video-STaR, underscoring the potential of utilizing LMMs as intelligent
and informative visual assistants. For more, please see App. Sec. B.

4.4 ABLATIONS

In our ablation studies, we evaluated the impact of removing Label Rationalization and Answer
Generation from Video-STaR, focusing on adapted datasets (Kinetics700, FineDiving, STAR-
benchmark) and zero-shot benchmarks (MSVD-QA, MSRVTT-QA, TGIF-QA, ActivityNet-QA).

Adapted Datasets For adapted datasets (Tab. 4.3), excluding Label Rationalization led to a sig-
nificant performance drop in FineDiving, from 21.6 to 12.8 in accuracy, highlighting its critical
role in complex reasoning tasks. This is likely due to the lack of conversion of any examples from
the data. However, the removal of Answer Generation resulted in a more pronounced and uniform
decline across all datasets. For example, Kinetics700’s accuracy was reduced from 59.9 to 50.0,
underscoring its foundational role in generating context-relevant responses.

Zero-shot benchmarks In zero-shot benchmarks (Tab. 4.3), the removal of Label Rationaliza-
tion had a mixed impact, slightly affecting MSVD-QA where accuracy decreased from 71.3 to
70.6. The elimination of Answer Generation consistently lowered performance, such as a decrease
in MSRVTT-QA accuracy from 58.2 to 57.4. ActivityNet-QA performance improved, probably
because 100K-Instruct utilizes ActivityNet for instruction tuning. Therefore, the introduction of
additional videos decreases performance.

5 RELATED WORKS

In Sec. 5.1, recent advancements in Large Vision-Language Models and video instruction tuning
datasets are introduced. In Sec. 5.2, advancements in Large Language Models and self-supervised
instruction tuning are explored.

5.1 LARGE VISION-LANGUAGE MODELS

Initial LMMs, such as LLaVA (Liu et al., 2023b;a) and BLIP-2 (Li et al., 2023a), demonstrated
the potential of merging image inputs with large language models. Methods like mPLUG-Owl (Ye
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et al., 2023) and Flamingo (Alayrac et al., 2022) further allowed for multiple image inputs without
architectural changes. Li et al. (2023b) and Zhang et al. (2024) led the transition to video un-
derstanding, integrating video/image encoders and LLMs while training on small video instruction
tuning datasets. Jin et al. (2023) introduced Chat-UniVi, a unified model employing dynamic visual
tokens for both images and videos, optimizing visual token usage and higher frame count sampling.
LLaMA-VID (Li et al., 2023c) showed that the token count can be further reduced by pooling the
tokens selectively via the text prompt using Q-Former. Wang et al. (2024b) introduced a training-
free agentic approach. Recently, Video-LLaVA (Lin et al., 2023) used modality-specific encoders
for video and image inputs to leverage LanguageBind encoders as they are constructively aligned
during pretraining and utilized a shared projection.

Maaz et al. (2023) expanded the field with the first large video instruction tuning dataset,
VideoInstruct-100K. VideoInstruct-100K was generated from ActivityNet (Heilbron et al., 2015)
by prompting chatGPT with the video captions, generating question-answer pairs. While driving
much of the performance improvement in the field (Jin et al., 2023; Wang et al., 2023; Lin et al.,
2023; Li et al., 2023c), upon examination of VideoInstruct-100K, it is evident that it suffers from
quality issues. The questions often degrade into de facto prompts for a video caption (see Fig. 10)
and rarely require many spatiotemporal capabilities, which may limit LMM performance.

5.2 LARGE LANGUAGE MODELS AND SELF-TRAINING

The advent of GPT (Radford et al., 2018; Brown et al., 2020) marked significant milestones in
natural language processing, showcasing LLMs’ power in understanding and generating human-like
text. Open-source LLMs like LLaMA (Touvron et al., 2023a;b) and their instruction-tuned variants
like Alpaca and Vicuna (Taori et al., 2023; Chiang et al., 2023) further tailored these models for
nuanced human-AI interactions. However, even LLMs have found it challenging to scale annotated
datasets for training, prompting work on self-training and self-improvement (Singh et al., 2023;
Huang et al., 2022; Ho et al., 2023; Marasović et al., 2022; Hosseini et al., 2024). In this line
of work, LLMs cycle between instruction-tuning data generation and instruction tuning, iteratively
improving LLM performance over cycles. For instance, Zelikman et al. (2022) introduced the the
Self-Taught Reasoners method, used rationalization to generate chain-of-thought (CoT) reasoning,
filtering poor rationalizations to retain correctly answered questions. Other self-training approaches
include expectation-maximization-based approaches (Singh et al., 2023), which alternate between
data generation and improvement between training cycles. Alternatively, majority voting has also
been utilized to generate answers and rationale for unlabeled questions (Huang et al., 2022). These
methods show the effectiveness of iterative self-training. In our work, we aim to introduce a weakly
supervised self-training approach for video instruction tuning, leveraging video supervision that is
often easier to collect and exists in many large and diverse datasets.

6 CONCLUSIONS

In conclusion, Video Self-Training with augmented Reasoning (Video-STaR) presents a novel ap-
proach to enhance Large Multi-Language Models (LMMs) by enabling the use of diverse labeled
video datasets for visual instruction tuning. Video-STaR addresses critical data diversity and qual-
ity challenges, leading to performance improvements across various video understanding tasks. Our
experiments demonstrate Video-STaR’s effectiveness in source dataset adaptation and zero-shot gen-
eralization, showcasing its potential in advancing LMM capabilities for complex video reasoning.

The promising results of Video-STaR open new research avenues, particularly in expanding LMM
knowledge bases using readily available image and video datasets. Future work could explore ad-
vanced self-training techniques and integration with emerging LMM architectures, focusing on long-
form video understanding to boost LMM understanding. Additional work is also needed to reduce
hallucinations, perhaps by using grounded VLMs as agents to further supervise the generation.
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All code, source files, and generated dataset text instructions can be found in our supporting infor-
mation and will be made publicly available. Additional implementation details can also be found in
the Appendix, Sec. A.
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