
HubBub: Contention-Based Side-Channel Attacks on USB Hubs

Junpeng Wan1, Yanxiang Bi2, Han Gao1, Dave (Jing) Tian1

1Purdue University, 2The Chinese University of Hong Kong

{wan155, coolgao, daveti}@purdue.edu, by022@ie.cuhk.edu.hk

Abstract

Universal Serial Bus (USB) hubs enhance connectivity in

modern computers by allowing multiple peripheral devices

to share a single upstream port. Common peripherals include

external storage devices, network interface cards, cameras,

and keyboards. However, when several devices operate si-

multaneously, bus contention within the USB hub becomes

unavoidable. Such contention causes timing variations that

can be exploited to leak sensitive information.

We identify three types of USB bus contention and design

multiple side-channel attacks to infer user activities based

on these contentions. These attacks can be launched from a

virtual machine, a remote website, or a USB peripheral, as

demonstrated in three distinct attack scenarios. By collecting

I/O interval data using our probers, we can recover informa-

tion such as web browsing history, camera-captured activities,

and keystrokes with accuracies ranging from 85% to 99%.

We evaluated 15 leading USB 3.x external hubs on the mar-

ket, a USB 2.0 hub, and an internal hub, most of which are

vulnerable to HubBub attacks. We have reported our findings

to the relevant stakeholders.

1 Introduction

Universal Serial Bus (USB) is the de facto interface between

computers and peripherals. As portable computers such as

laptops and small-factor PCs become slimmer and more com-

pact, manufacturers further reduce the number of USB ports

available in their products to reduce the weights and overall

sizes. In addition to internal USB hubs usually built into the

motherboard, external USB hubs connecting to a computer’s

existing USB ports are also widespread and continue to grow

in popularity. According to a report [47], the global USB hub

market, valued at USD 4.4 billion in 2023, is projected to

double by 2032.

A typical USB hub features one upstream port that con-

nects to the host computer and multiple downstream ports

for various peripherals, such as keyboards, Ethernet Network

Interface Cards (NICs), and cameras. These peripherals fre-

quently exchange sensitive information with the host, includ-

ing private browsing data, personal activities captured by the

camera, and even user-typed passwords. However, when mul-

tiple USB devices are connected to a single hub and operate

simultaneously, USB bus contention becomes unavoidable.

This contention can degrade performance and even introduce

privacy risks.

In this work, we identify and analyze three types of USB

hub contention: Traffic Congestion, Scheduling Contention,

and Shared-structure Contention. Traffic Congestion occurs

when the combined throughput of connected devices exceeds

the bandwidth capacity of the USB hub, resulting in perfor-

mance degradation. Scheduling Contention stems from the

host-centric nature of USB communication, where additional

latency is introduced as the host orchestrates data transfers

among competing devices, especially those with different

transfer priorities. Shared-structure Contention arises from

limitations in the hub’s internal architecture, such as shared

components like Transaction Translators, leading to increased

latency at each operation.

By exploiting USB hub contention, we introduce HubBub,

the first contention-based timing side-channel attacks on USB

hubs, which can steal the victim’s private information from

a virtual machine, a remote webpage, or a USB peripheral.

Specifically, we evaluate HubBub in three attack scenarios.

In Attack A, we use a USB SSD to congest the USB hub

and monitor the increased I/O operation time caused by the

victim’s web browsing. Using our classifier HubAttGRU, we

can infer browsing history with a Top-1 classification accuracy

of 98.84% and a Top-3 accuracy of 99.53% across the top

100 websites. In Attack B, we leverage a USB NIC to monitor

the USB hub, affecting the transfers of USB camera data. We

achieved 85% accuracy in classifying six basic daily activities

captured by a webcam. In Attack C, we monitor the hub

using a USB device that shares the hub with a keyboard.

The attacker can detect keystroke patterns through timing

variations of its own operations. By applying simple filters,

we successfully identify keystrokes with a precision of 93.4%

and a recall of 92.09%.

Our contributions can be summarized as follows:

• We reveal the privacy risks of USB hubs caused by USB

bus contention and realize them in three real-world at-

tack scenarios, i.e., website inference, camera activities

capturing, and keystroke detection.

• Leveraging USB hubs, we propose HubBub, the first

timing side-channel attacks targeting USB hubs. We

demonstrate HubBub’s capability to infer the victim’s

private information under two threat models.

• We illustrate the security impact of HubBub by evalu-

ating 15 USB 3.x hubs, a USB 2.0 hub, and an internal

USB hub. Our findings reveal that most tested devices are

vulnerable to HubBub attacks. We also demonstrate that

our attacks are transferable between hubs and resilient

to noise to a certain level.

2 Background

The USB protocol. To unify peripheral-computer interfaces

like serial, parallel, and Android Debug Bridge (ADB) ports,

the Universal Serial Bus (USB) standard was introduced first

in 1996 [11]. Since then, USB has experienced considerable

evolution. With 1.5 Mbps (Low-Speed) to 12 Mbps (Full-

Speed) data transfer rates, USB 1.x (short for USB 1.0 and

1.1 [11, 13]) benefits mainly for peripherals with low trans-

fer rates, like keyboards and mice. Released in 2000, USB

2.0 [12] has a bandwidth surged to 480 Mbps (High-Speed),

accommodating the increasing data demands like CD writers,

Ethernet adapters, and digital cameras.

Released in 2008, USB 3.0 [9] supports a transfer rate of

up to 5 Gbps (Super-Speed Protocol). Released in 2013 and

2017, respectively, USB 3.1 [10] and USB 3.2 [28] offer a

maximum of 10 Gbps (Super-Speed Plus Protocol) and 20

Gbps bandwidth (Super-Sped Plus with Dual Lane). Until

now, USB 3.x is the dominant USB protocol.

USB policy and mechanism. USB is a host-centric commu-

nication protocol, i.e., only the host can initiate data transfers.

In USB 1.x and 2.0 specifications, the host periodically polls

devices, with polling intervals depending on the USB version

and device speed. In the USB 3.x and later specifications, the

host no longer uses regular polling but instead employs an

asynchronous notification mechanism. This approach allows

devices to alert the host when they are prepared to transmit or

receive data.

A USB endpoint is a logical entity in a device that serves

as the source or sink for data transfer. An endpoint is char-

acterized by direction (IN or OUT), the maximum packet

size, and the transfer types, including Control, Bulk, Interrupt,

and Isochronous transfers [8]. Control transfers are utilized

for command and control during device setup, whereas bulk

transfers manage large data loads that are not time-sensitive

ControllerRepeater
(Forwarder)

USB 2.0
Hub

Downstream Ports

Upstream Port

Figure 1: Topology of a USB 3.0 hub

(e.g., traffic of mass storage devices). Interrupt transfers are

designed for devices that need occasional but timely data com-

munication (e.g., keyboards and mice) with a guaranteed la-

tency. Isochronous transfers are designed for continuous data

streams (e.g., HDMI) that require consistent timing without

any guarantee of error correction. USB host controllers man-

age bus bandwidth allocation, ensuring that no more than 90%

of a full-speed frame and 80% of a high-speed microframe are

allocated for Periodic Transfers (isochronous and interrupt).

This reservation leaves at least 10% of the bandwidth for con-

trol transfers. Any remaining bandwidth is then available for

bulk transfers [12]. Besides, each USB device can have up

to 16 IN endpoints and 16 OUT endpoints, with endpoint 0

reserved for control transfers.

USB hubs. The function of a USB hub is to transform a

single USB port into multiple ports, facilitating the simulta-

neous connection of peripherals. Figure 1 illustrates a typical

multi-port USB hub topology. The downstream ports connect

devices such as keyboards and USB flash drives, while the up-

stream port links to a host USB port. Traffic between the host

and USB devices is handled by the Repeater/Forwarder unit

under the scheduling of a micro-controller within the USB

hub. To ensure backward compatibility, a USB hub includes

the features of lower-version USB hubs. As demonstrated

in Figure 1, a USB 3.0 (Super-Speed) hub also possesses

the functionality of a USB 2.0 (High-Speed) hub. Likewise,

a USB 2.0 hub contains a component known as a Transac-

tion Translator (TT), which facilitates the translation between

the USB 2.0 packets (High-Speed) and the USB 1.1 devices

(Low-Speed and Full-Speed).

In the hierarchy of USB hubs, the root hub refers to the

hub that is directly linked to the host computer’s USB con-

troller [28]. The root hub is also an internal USB hub because

it is integrated into the computer’s motherboard. External

USB hubs, instead, connect their upstream ports with down-

stream USB ports of internal USB hubs.

3 Attack Overview

In this section, we first outline the threat model of HubBub

attacks, analyze USB traffic, and highlight three types of hub

contention. Next, we discuss the attack procedures. Finally,

we describe the challenges of designing and applying the

attacks.

3.1 Threat Model

In the context of HubBub attacks, a USB hub with multiple

downstream ports is connected to the host computer, as il-

lustrated in Figure 2. The hub can be internal or external,

supporting USB 2.0 or 3.x specifications. We assume that

one of the target devices, such as a camera, a keyboard, or a

Network Interface Card (NIC), is attached to one downstream

port of the hub. The victim may use the target device in var-

ious ways, like monitoring a room with the camera, typing

passwords on the keyboard, or browsing websites via the NIC.

In our settings, both the USB hub and the host computer are

assumed to be benign and beyond the attacker’s control. How-

ever, the attacker can still monitor the victim’s activities from

the USB hub in the following two threat models.

In Threat Model I, we assume that the attacking program is

pre-installed, e.g., via social engineering, but is isolated from

other components of the host system, as illustrated in Figure 2.

This threat model aligns with the previous studies assuming

a virtual machine managed by a Virtual Machine Monitor

(VMM) [29,30,68,71,80] or a website confined within a web

browser [16, 22, 23, 32, 41]. As a result, the attacker cannot

access the victim’s memory space outside the confinement,

preventing any tampering outside the isolation or access to

sensitive information from the victim program.

Additionally, we assume the attacker has access to one of

the USB peripherals connected to the USB hub, such as a

USB SSD or a USB NIC. As shown in Figure 2, we design

two probing tools in this threat model: the SSD Prober, which

monitors the USB hub traffic by operating with files on the

SSD, and the NIC Prober, which monitors the USB hub traffic

by sending and receiving packets via the NIC. Both the USB

SSD and NIC are common peripherals connected to a hub.

Threat Model II is consistent with existing USB attacks [5,

6,18,50,66,69], where malicious USB devices are introduced

into the victim’s environment through social engineering tac-

tics. These devices may appear as enticing lost drives, legit-

imate peripherals like keyboards or network adapters, tam-

pered by a supply chain attack, or embedded in compromised

public charging stations. In this threat model, we assume the

attack program resides in one of the USB devices connected

to the hub. This device operates in a plug-and-play fashion,

automatically monitoring the USB hub traffic upon connec-

tion. In addition to traffic monitoring, it performs legitimate

functions, such as acting as a microphone or a flash drive,

allowing it to launch the attack covertly. In this threat model,

we developed the Gadget Prober, a USB device equipped

with a traffic monitoring program, as shown in Figure 2. In

the current implementation, we developed a custom USB host

driver for the Gadget Prober, which lacks a default driver on

the host. This driver passively receives USB packets from

USB Driver/Controller

Victim's Program

USB Hub

NICCamera Keyboard

Host Computer

Potential Victim Devices

Gadget Prober

Isolations (VMM or Browser)

SSD Prober

NIC ProberPassword: ******

BobUser:

Figure 2: Overview of HubBub Attacks.

the gadget without performing any malicious or suspicious

operations. An attacker could potentially bypass this require-

ment by emulating a device that uses standard host drivers, as

shown in BadUSB attacks [50].

In later sections, attacks A, B, and C utilize the SSD Prober,

NIC Prober, and Gadget Prober, respectively. All three probers

appear benign and do not contain malicious behaviors explic-

itly, such as writing shellcodes to storage or downloading

malicious software from external websites. All the probers

operate covertly and evade the detection of conventional se-

curity measures, such as antivirus software. In both threat

models, alternative attacks that rely on system configurations

other than USB hub sharing are also possible. We discuss their

implications and limitations in Section 9 on related work.

3.2 Characterization of USB Hub Contention

In USB hubs, every downstream device shares the same hub

structure and upstream port, thereby causing unavoidable con-

tention. We classify them into the following three types.

Traffic Congestion. Traffic Congestion occurs when the data

load exceeds the capacity of the USB hub, particularly when

multiple downstream devices are in use simultaneously. Our

review of popular USB hubs on the market indicates that most

of them are either USB 3.0 or 3.1, with theoretical transfer

speeds of up to 5 Gbps and 10 Gbps, respectively. In reality,

these hubs typically achieve bandwidths of only 400 MB/s and

1,100 MB/s due to encoding overhead [10]. Meanwhile, the

sequential read speed of a SAMSUNG MU-PC500T portable

SSD can reach 1,050 MB/s, which alone can saturate the band-

width of USB 3.0 hubs. When combined with other devices,

it can also exceed the bandwidth of USB 3.1 hubs.

Scheduling Contention. USB transfer scheduling can intro-

duce delays even when the bus bandwidth is not fully utilized.

This is because USB is a host-centric protocol, where the

host initiates and schedules data transfers for all connected

devices. The host schedules these transfers with the granular-

ity of time interval, either frame (1 ms) or microframe (125

µs). A transfer does not happen immediately, thus introduc-

ing scheduling delays, particularly for upstream traffic when

multiple devices compete for bandwidth. Furthermore, the

USB protocol prioritizes different types of transfers: periodic

transfers, i.e., interrupt and isochronous transfers, are given

precedence over asynchronous transfers, i.e., bulk and control

transfers. This prioritization can further exacerbate delays for

lower-priority transfers in high-traffic scenarios.

Take the High-Speed (USB 2.0) protocol as an example.

Each microframe can accommodate up to 3 isochronous trans-

fers, 3 interrupt transfers, or 13 bulk transfers. Figure 3 il-

lustrates a sample traffic profile of USB 2.0 traffic across

three microframes, each lasting 125 µs, demonstrating how

different transfer types are allocated. At the start of each mi-

croframe, isochronous transfers from a camera are scheduled

first to ensure consistent data delivery. Bulk transfers, such

as those from NIC and storage devices, are placed later in

the microframe. When the keyboard detects a key press, it

sends a packet via interrupt transfer, which is scheduled after

the isochronous transfers but before bulk, highlighted in red.

From Figure 3, we can see that traffic using bulk transfers may

experience extra scheduling delays when periodic transfers

are present.

Shared-structure Contention. While USB hubs generally

provide multiple downstream ports, as shown in Figure 1, cer-

tain hardware components of the USB hub cannot be shared

simultaneously. For example, USB 2.0 hubs use Transaction

Translator (TT) [12] to translate and buffer low-speed and

full-speed USB traffic to high-speed, ensuring backward com-

patibility. These hubs often feature a Single-TT architecture

shared by multiple USB 1.1 devices, leading to bus contention

and performance degradation, as a TT can only process one

transaction at a time. Even with a single USB 1.1 device con-

nected, the TT still introduces a translation delay, known as

TT think time [12]. Because TT manages internal resources,

buffers data, and ensures proper synchronization, the afore-

mentioned delay arises from interpreting the Start-split and

Complete-split transactions from the USB 2.0 host and estab-

lishing the corresponding full-speed or low-speed transactions

on the downstream bus.

3.3 Attack Steps of HubBub

Step 1: Identify the target USB device. Initially, the attacker

needs to identify the target devices connected to the USB

hub. Take Figure 2 as an example. If the victim is browsing

websites such as amazon.com, the target device is the USB

NIC; if the victim is typing a password to log in, the target

device becomes the keyboard. The attacker might have prior

knowledge of these devices, e.g., through social engineering

techniques. Additionally, the attacker may identify the target

device by observing USB traffic using our provided probers.

Step 2: Monitor hub traffic Online. Based on different tar-

gets, the attacker may choose to deploy different probers, e.g.,

the SSD Prober, the NIC Prober, or the Gadget Prober. The

probers perform I/O operations to generate traffic passing

through the USB hub and record the time interval of each

operation. The USB traffic related to the victim’s activities

then causes disturbances in the time intervals of the attacker’s

operations. The attacker subsequently collects a sequence

of time intervals, which captures the victim’s traffic patterns

indirectly.

Step 3: Infer private information offline. The attacker ana-

lyzes the time-interval sequences gathered in Step 2, where

longer intervals indicate the presence of victim activities on

the USB hubs. Depending on the specific scenario, the at-

tacker applies various analytical methods to these time-series

patterns to extract the victim’s sensitive information. In the

scenario of Figure 2, the attacker can infer the website visited

(e.g., Amazon.com) or the password entered by the victim.

3.4 Challenges

The design and implementation of HubBub attacks presents

several practical challenges. First, exploiting Traffic Conges-

tion requires our prober to: 1) maintain high throughput to sat-

urate the bus bandwidth and capture the extra latency caused

by the victim’s traffic; 2) achieve high Input/Output Opera-

tions Per Second (IOPS)) for fine-grained activity monitoring.

Besides, we need to meet the above requirements simultane-

ously, which requires a suitable trade-off.

Second, different from protocols like PCIe [53], USB data

transfers are strictly host-driven [13], which complicates po-

tential attacks originating from USB devices.

Third, USB hubs vary in specification and design. An at-

tack that works on a single USB hub does not guarantee that

it will work on other hubs. Therefore, we need to evaluate

different models to ensure the generality and transferability

of the attack. Moreover, given the wide variety of USB pe-

ripherals, exploring multiple usage scenarios is essential to

assess HubBub’s impact in the real world.

4 Attack A: Website Inference

In this attack, we infer the websites visited by the victim

by leveraging traffic congestion in the hub. As described in

Threat Model I in Subsection 3.1, we assume that a USB hub

is connected to the host computer, with both a portable SSD

and a USB NIC attached. Moreover, the attacker program can

be isolated within a virtual machine yet still have access to the

SSD. The USB NIC serves as the means of network connec-

tion for the host and acts as the target device. Meanwhile, the

Isochronous (Camera) Bulk (NIC) Isochronous (Camera) Interrupt
(Keyboard) Bulk (NIC) Isochronous (Camera) Bulk (NIC)

0μs 125μs 250μs
Microframe 1 Microframe 3Microframe 2

375μs

Figure 3: USB Transfer Scheduling in Three Microframes

SSD functions as the probing device, monitoring the network

activities from the NIC.

4.1 SSD Prober Design and Implementation

First, we describe how to design the SSD Prober to address the

first challenge mentioned in Subsection 3.4, namely, ensuring

high throughput while balancing the trade-off to achieve a

high IOPS.

High throughput and prober implementation. To maxi-

mize the throughput in the hub, we make several key design

choices for the SSD Prober. Firstly, by leveraging the fea-

tures of an SSD, we use READ operations instead of WRITE

operations, as reading is faster and writing requires erasing

and programming data [65]. Secondly, we perform sequential

rather than random operations to make caching and prefetch-

ing of data blocks more effective. Finally, we generate I/O

commands asynchronously, which allows multiple I/O oper-

ations to be initiated and processed concurrently, increasing

the throughput and reducing overall wait times.

Based on the above design options, we implement the SSD

Prober using IO_uring [7], a Linux asynchronous I/O frame-

work, to initiate sequential READ operations. The SSD Prober

consists of 166 lines of C code, simplified in Algorithm 1.

As shown in the algorithm, we submit READ commands

to continuously keep the Submission Queue (SQ) full, en-

suring a steady stream of I/O operations. We then check

the status of the READ operations by monitoring the com-

pletion queue (CQ) and record timestamps (TS). The pro-

gram also ensures that the submission queue remains full

during the loop to maintain continuous operation. Addition-

ally, we enable O_DIRECT flag when we open the file to by-

pass the operating system’s page cache and perform direct

I/O operations. To further increase the throughput, we en-

able the kernel polling mode of IO_uring by setting the

IORING_SETUP_SQPOLL flag during initialization. With this

mode, a kernel thread polls the submission queue rather than

invoking io_uring_enter() via the user program, providing

a high I/O command submission speed [7]. Before Linux 5.11,

root privileges were required to use this feature. Linux 5.11

introduced support for non-root users with the CAP_SYS_NICE

capability, and this restriction was further lifted in 5.13, al-

lowing unprivileged users without any special privileges [46].

Note that the SSD prober can be deployed both natively in a

host or inside a virtual machine.

We conduct the following analysis to demonstrate that

the SSD Prober is capable of saturating typical USB hubs.

Algorithm 1 SSD Prober

Input: io_size, ring_size, access_num

Output: Intervals

1: Intervals← []

2: SQ← INITRING(ring_size) ▷ Init Submission Queue

3: CQ← INITRING(ring_size) ▷ Init Completion Queue

4: SUBMIT(ring_size * READ(io_size))→ SQ

5: TS← GETTIME() ▷ TS = timestamp

6: while LEN(Intervals) < access_num do

7: FINISH(READ)→ CQ

8: Intervals.APPEND(GETTIME() − TS)

9: TS← GETTIME()

10: current_size← LENGTH(SQ)

11: if CurrentSize < ring_size then

12: read_needed = ring_size - current_size

13: SUBMIT(read_needed * READ(io_size))→ SQ

14: end if

15: end while

Firstly, we deploy the SSD Prober in the host computer to

read files within SSD11, which is connected via a USB 3.0

Hub named A1. As depicted in Figure 4, when IO_SIZE is

16K, the throughput of the SSD prober is approximately 3.6

Gbps, or around 432 MB/s. According to the USB 3.0 specifi-

cation, the effective bandwidth of USB 3.0 is approximately

400 MB/s [9], indicating that our prober successfully satu-

rates the hub. Note that although the theoretical maximum

throughput of USB 3.0 is 5 Gbps or 625 MB/s, the actual

effective bandwidth is around 400 MB/s due to: 1) the use of

8b/10b symbol encoding, which imposes a 20% overhead [9],

and 2) the overhead introduced by link-level flow control,

structuring, and framing of USB packets.

Then we test the prober on a USB 3.1 hub, B1, to read files

within SSD22. As shown in Figure 4, when setting IO_SIZE

to 16K, our prober achieves a throughput of approximately 8

Gbps, or 1,000 MB/s, which is close to the effective bandwidth

of 1,100 MB/s for USB 3.1, as specified [10]. Thus, the SSD

prober can saturate both USB 3.0 and USB 3.1 hubs.

Throughput-IOPS trade-off. As shown in Figure 4, increas-

ing the size of each I/O operation enhances bandwidth uti-

lization. However, if the I/O size becomes too large, the time

interval of each operation also increases. As a result, the gran-

ularity of the captured patterns becomes coarse, limiting the

effectiveness of inferring the information from the victim. Fig-

ure 4 illustrates the trade-off between throughput and IOPS as

1SSD1 is a portable USB SSD that supports throughput up to 540 MB/s.
2SSD2 is another USB SSD with a throughput of 1,050 MB/s.

0K 2K 4K 6K 8K 10K 12K 14K 16K
IO Block Size (bytes)

100

200

300

400

500
Ki

lo
 IO

PS

2

4

6

8

Th
ro

ug
hp

ut
 (G

bp
s)

SSD1 IOPS SSD2 IOPS SSD1 Throughput SSD2 Throughput

Figure 4: IOPS and Throughput of the SSD Prober as

IO_SIZE varies from 0 to 16 K. SSD1 is connected to a USB

3.0 hub, while SSD2 is connected to a USB 3.1 hub.

we vary IO_SIZE in Algorithm 1 from 512 to 16,384 (16K).

Notably, as throughput increases, IOPS decreases, necessitat-

ing a careful balance between them.

In the design of the SSD prober, we prioritize throughput

over IOPS initially and then balance both metrics. This is

because the traffic of the SSD prober can only interact with

the victim traffic when the throughput is sufficiently high for

competition. Based on the above analysis and Figure 4, we

set IO_SIZE to 4906 for USB 3.0 hubs and 8192 for USB 3.1

hubs to optimize the trade-off between throughput and IOPS.

With these parameters, both USB 3.0 and USB 3.1 hubs can

be saturated while maintaining a high IOPS of around 100K,

with each I/O operation around 10 microseconds.

Timing function and parameters selection. To achieve high

precision for recording timestamps, we use rdtscp [25] on

the x86-64 ISA to access the processor’s timestamp counter

(TSC). The TSC records the number of CPU clock cycles

since the last reset, providing precise timing measurements.

For the remaining input parameters in Algorithm 1, we

set RING_SIZE to 128, which offers acceptable performance

as analyzed above. ACCESS_NUM is configured to 0x80000,

determining the total collection duration, which makes the

prober run for approximately 5.3 seconds on USB 3.0 hubs

and around 4.6 seconds on USB 3.1 hubs.

4.2 Website Fingerprinting

In our experiment, we connected SSD1 and the Ethernet ca-

ble to a USB 3.0 hub named A2. We then deployed the SSD

Prober and visited websites from the desktop, which utilizes

the network connection provided by a USB NIC attached

to A2. Due to variations in traffic patterns, such as loading

images, documents, videos, and unique element-loading se-

quences, the traffic of different websites becomes distinguish-

able. Figure 5 showcases the Intervals (output of Algo-

rithm 1) from the SSD Prober for three popular websites:

google.com, youtube.com, and amazon.com, each exhibiting

distinct patterns. Due to the discriminable patterns captured

by the SSD prober, we can differentiate a number of websites

using classifiers, as detailed in Subsection 4.2.3. Furthermore,

we can deploy the SSD prober in a virtual machine (VM), as

1200

1400

1600
google.com

1200

1400

1600
youtube.com

0 100K 200K 300K 400K 500K
Operation Sequence ID

1200

1400

1600
amazon.com

In
te

rv
al

 (u
s)

Figure 5: Website Patterns from the SSD prober

detailed in E3 of Subsection 7.2.

4.2.1 Dataset Creation

To evaluate the performance of our attack on website fin-

gerprinting, we created a new dataset, the HubBub Web-

site Fingerprinting (HF) Dataset. Our dataset is different

from previous website fingerprinting datasets, such as the DF

dataset [61], the Wang dataset [72], and the AWF dataset [55],

which capture direct features like packet size, direction, and

timestamps. In contrast, the HF dataset only comprises in-

direct features, i.e., I/O operation intervals recorded by our

probers.

The HF Dataset comprises three subsets: HubBub-100,

HubBub-45, and HubBub-OpenWorld. HubBub-100 is de-

signed to evaluate the attack’s performance on globally lead-

ing top websites, featuring 53,700 traces collected from the

top 100 popular websites. HubBub-45 focuses on assessing

the impact of HubBub across 15 USB 3.x hubs and 45 web-

sites, with 135,000 traces captured in total. Lastly, HubBub-

OpenWorld contains website fingerprints for the open-world

setting, incorporating 5,636 traces from 2,818 websites. Be-

sides, we use Chrome in headless mode to simulate user

website visiting from the USB host. More details about HF

dataset can be found in Appendix A.

4.2.2 Data Pre-processing

To reduce noise and improve classifier performance, we apply

two operations to each Interval.

Windowed maximum. We divide the interval sequence into

non-overlapping windows with a window size of 64 and ex-

tract the maximum value from each window. This parameter

is selected after analyzing the traces, which typically contain

100 to 120 near-zero values followed by a distinct peak. With

window size 64, we can significantly reduce the data size

while keeping these peaks.

Smoothing. To capture overall traffic trends and reduce the

impact of short-term noise, we apply a smoothing function

with a window size of M = 50. The window slides over the

sequence, computing the mean at each step. This operation

smooths the data over 32 ms, reducing noise while preserving

website-related patterns.

4.2.3 Design and Choice of Classifiers

Given that our dataset comprises time-interval sequences, we

initially turn to Recurrent Neural Network (RNN) based meth-

ods, which are well-suited for learning from sequential data

due to their ability to capture temporal dependencies. How-

ever, traditional RNNs often suffer from issues like vanishing

gradients, which can hinder their ability to learn long-term

dependencies. In order to avoid this, we explore the advanced

variant, the Gated Recurrent Unit (GRU) [17], which incor-

porates gating mechanisms to enhance information flow con-

trol and lessen the drawbacks. In line with previous work in

website fingerprinting [31, 68, 75], we also incorporate the

attention mechanism into our model, which has proven highly

effective by allowing the model to focus on the most rele-

vant parts of the input sequence, thereby emphasizing critical

features within the time-interval sequence. To this end, we

developed HubAttGRU (HubBub Attention-Based GRU Clas-

sifier), which leverages an attention-based GRU architecture

to infer the websites. The detailed structure is provided in

Table 6 in the appendix.

Additionally, we evaluate the performance of the Hub-

Bub attack using both CNN-based and traditional machine

learning classifiers. First, CNN-based models are more time-

efficient compared to RNNs. We reproduce three CNN-based

models: 1) Deep Fingerprinting (DF) [61], a multi-layer

1D-CNN model; 2) Deep Nearest Neighbor Fingerprinting

(DNNF) [26], which uses a CNN for feature extraction fol-

lowed by KNN clustering on the final convolutional layer; 3)

Triplet Fingerprinting (TF) [62], which jointly trains three DF

models to produce feature vectors that maximize intra-class

similarity and minimize inter-class similarity, also using KNN

for clustering.

Second, we explore classical machine learning models to

validate our dataset efficiently and provide lightweight al-

ternatives where computational resources are limited. Using

Scikit-learn [54] version 1.0.2, we implement five models:

Support Vector Machine (SVM), Decision Tree, XGBoost,

Random Forest, and Multi-layer Perceptron (MLP).

5 Attack B: Camera Activity Detection

In this attack, we assume that the attacker is located on a

remote website and aims to collect information about the

local environment. The website will be accessed by the victim

from a browser which enforces browser isolations, such as

Chrome’s strict site isolation policy. In our attack setting,

Internet access is provided via an Ethernet Adapter (or NIC)

attached to the USB hub, which is connected to the USB

port of a computer. A camera is also linked to the same USB

0K 10K 20K 30K 40K 50K 60K
IO Block Size (bytes)

2.5

5.0

7.5

10.0

12.5

Ki
lo

 IO
PS

200

400

600

800

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 6: IOPS and Throughput of the NIC Prober as

BUFFER_SIZE varies from 0 to 64 K.

hub, monitoring the room. The above assumption aligns with

Threat Model I detailed in Subsection 3.1.

5.1 NIC Prober Design and Implementation

As described before, the attacker will deploy the NIC Prober

within the browser and receive packets from a server she

controls. Thus, the NIC prober consists of a client part and

a server part, simplified as Algorithm 2 and Algorithm 3

in the appendix. The client part has 130 lines of JavaScript

code embedded within an HTML webpage, while another 73

lines of JavaScript code are implemented in the server part.

In our implementation, we use the WebSocket [21] protocol

to establish the connection. However, the attacker can opt

for other frameworks, such as WebRTC [64]. For the timing

function, we use performance.now() of JavaScript to record

timestamps, which offers microsecond-level accuracy.

Throughput-IOPS trade-off. The design principle of this

prober differs from that of the SSD Prober. Specifically, the

NIC Prober prioritizes high IOPS over high throughput to

focus on investigating scheduling contention in this attack.

Since hub congestion is not required, the low latency allows

the prober to capture USB host scheduling behavior with high

precision.

We deploy the NIC Prober within the Chrome browser on

a computer connected to USB 3.0 hub A1. This hub has a de-

fault Ethernet Adapter named ETH-D1. The server part of the

prober is hosted using NodeJS on a desktop within the local

area network. We run the NIC Prober with BUFFER_SIZE val-

ues ranging from 512 to 64K bytes and evaluate the resulting

throughput and IOPS, as shown in Figure 6. In this scenario,

we configure BUFFER_SIZE to 8192, achieving an IOPS of

8000 with a bandwidth of 600 Mbps. With this IOPS, we can

receive a packet every 125 microseconds, which is sufficient

in our attack since it is at the same level as the microframe

in USB 2.0 High-Speed mode [12] and bus interval period in

USB 3.0 [40].

5.2 Camera Activity Detection

In this attack, we deploy the NIC Prober to monitor the cam-

era traffic within the USB hub. Specifically, we connect both

the Ethernet cable and the webcam, Camera1, to hub A2. The

0 5K 10K 15K 20K 25K
Operation sequence ID

0

250

500

750

1000

In
te

rv
al

 (u
s)

W/o Camera Traffic W/ Traffic & Light On W/ Traffic & Light Off

Figure 7: Camera Activity Detection by the NIC Prober

webcam is initially connected but not activated in a room with

the light on. We then launch a camera application [74], initi-

ating 1080p camera streaming at 30 frames per second (fps)

over USB. Afterward, we turn off the room light. Figure 7

shows the time-series data captured by our NIC Prober, clearly

indicating the transition points: when camera streaming be-

gins and when the room light is turned off. The reason we

observe different traffic patterns from the NIC prober is the

USB webcam adopts H.264 video encoding standard. H.264

dynamically adjusts parameters based on scene complexity,

motion, and other visual factors to compress the traffic while

maintaining visual quality [37]. Moreover, the NIC Prober

primarily captures camera traffic patterns due to the host’s

prioritization of isochronous data, leading to Scheduling Con-

tention. Since the NIC Prober uses bulk transfers, it is af-

fected by camera traffic that relies on periodic transfers, as

bulk transfers can only be polled after periodic transfers are

completed. This results in increased transfer delays caused by

camera traffic, as illustrated in Figure 3.

Information inference from camera and video. Common

video encoding standards such as MPEG-4 and H.264 pro-

duce distinct traffic patterns that correspond to scene changes

and motion intensity. Based on this, Walls Have Ears [24]

identifies streamed videos by analyzing network traffic. Prior

work [38] demonstrates that information about basic daily

activities can be inferred from the traffic patterns of encrypted

video streams. Similarly, we show that an attacker can infer

basic behaviors from camera traffic, as detailed in Subsec-

tion 7.3.

6 Attack C: Keystrokes Detection

In scenarios where deploying the probers on the host com-

puter is unfeasible, the attacker can alternatively embed the

prober within a USB device, which corresponds to Threat

Model II. In this section, we demonstrate how to launch a

HubBub attack from a USB peripheral. We assume that the

peripheral and a keyboard are both connected to the host com-

puter through the same USB hub, and the keyboard is being

actively used by the victim.

6.1 Gadget Prober Design and Implementation

Due to USB being a host-centric communication protocol, the

attacker within the USB device is unable to independently ini-

tiate a transaction and, consequently, cannot record the time

interval during its execution. To address this limitation, we uti-

lize a USB IN endpoint controlled by the device. Specifically,

the attacker program continuously writes USB packets to this

IN endpoint and records the time interval of the write opera-

tion. Successful writing to the IN endpoint occurs only when

the USB host polls the device and the endpoint has available

slots. If the host polls the device as expected, our prober will

experience a time interval equal to the polling interval, either

a frame (1 millisecond) or a microframe (125 microseconds),

depending on the specific configuration. A time interval ex-

ceeding a frame or microframe indicates that the host failed to

schedule the transfer within the expected period. Therefore, if

the third type of bus contention, Shared-Structure Contention,

occurs, our prober will experience higher time intervals. We

present the detailed design of Gadget Prober in Algorithm 4

in the appendix.

Implementation. We build the Gadget Prober with a Rasp-

berry Pi 4B, which features a USB Device Controller that

supports On-The-Go (OTG) mode, i.e., it can behave as a

USB device. We install Ubuntu 22.04 with kernel version

5.15.0-1077-raspi on the Raspberry Pi and configure it

as a USB gadget by setting up Function Filesystem (Func-

tionFS) interface. The configure script contains 49 lines of

bash script. Subsequently, we develop a C program with 285

lines of code to implement the aforementioned mechanism.

The details of this implementation are also presented in Algo-

rithm 4. In detail, we configure the device for USB 2.0 (High-

Speed) (bcdUSB = 0x0200), with a maximum power draw of

500 mA, and set up FunctionFS (ffs.isoc) for isochronous

transfers. We adjust the USB host to poll the endpoint every

microframe, by setting .bInterval to 1.

We emulate the gadget prober as a USB 2.0 peripheral

because the OTG mode of our Raspberry Pi is limited to USB

2.0. Nevertheless, USB 2.0 devices are compatible with USB

3.x hubs because a USB 3.0 hub includes a USB 2.0 hub, as

illustrated in Figure 1.

Driver for Gadget Prober. We utilize FunctionFS to imple-

ment the Gadget Prober, enabling a more flexible approach

to programming USB gadget devices compared to standard

drivers like g_mass_storage or audio. Due to the lack of de-

fault drivers for FunctionFS gadgets on the USB host, we

developed a simple USB host driver using libusb, which con-

tains 131 lines of C code that only receives USB packets from

the gadget device. This driver only polls the gadget without

performing any malicious or suspicious operations. In real-

world attack scenarios, adversaries can bypass the need for

this custom driver by impersonating legitimate devices, such

as BadUSB [50]. Since USB hosts support standard device

classes like flash drives and microphones by default, such

impersonation would trigger the loading of existing USB host

device drivers. We leave the design of the Gadget prober that

impersonates a known device to future work.

Timing function and parameters selection. For the tim-

ing function, we used POSIX API clock_gettime() with

the CLOCK_MONOTONIC flag. In the default configuration of

the Gadget Prober, we set the TRANSFER_TYPE to isochronous

transfer and the BUFFER_SIZE to 100, which are defined in Al-

gorithm 4. By using an isochronous endpoint, we can emulate

the device as video and audio peripherals, such as a micro-

phone, speaker, or camera. However, the attacker can also

modify the TRANSFER_TYPE to bulk or interrupt as needed.

For instance, if the victim device primarily uses bulk transfer,

such as an SSD, we can switch the TRANSFER_TYPE to bulk

to probe the traffic more accurately by exploiting Scheduling

Contention. Because the host prioritizes periodic (interrupt

and isochronous) traffic over asynchronous (bulk and control)

traffic, isochronous transfers are less affected by the victim’s

traffic than bulk.

6.2 Keystrokes Detection

We attach the Gadget Prober and a standard keyboard, denoted

as Keyboard1 in Table 8 in the appendix, to two downstream

ports of the USB 3.0 internal hub on Desktop B (specifica-

tions in Table 7). Besides, Keyboard1 adopts the USB 1.1

protocol (Full-Speed and Low-Speed), which is common for

HID devices, as they do not require high bandwidth to operate

effectively.

We then typed word HUBBUB and extracted the inter-

vals using the prober, specifically the Intervals from Al-

gorithm 4. This sequence, illustrated in Figure 8, shows that

most time intervals are around 125 µs. Because the prober

can only write to the endpoint if the endpoint has available

slots, i.e., after the host schedules the data transmission, the

above results indicate that the host polls the endpoint for each

microframe, which aligns with our configuration.

Figure 8 shows that we can distinguish keystrokes by iden-

tifying successive time intervals that exceed a microframe.

The reason for the information leakage is as follows. When-

ever a key press or release event is detected on the keyboard,

it sends a USB packet with Interrupt transfer. Due to the key-

board operates with the USB 1.1 protocol, the higher-version

USB controller will then send Start-split and Complete-split

transactions to the USB hub, which are then translated and

buffered by the Transaction Translator (TT) [12] within the

USB 2.0 hub (note that our USB 3.0 hub also contains a USB

2.0 hub, as shown in Figure 1). The above translation intro-

duces slight time delays, which are generally imperceptible to

users but can be captured by the prober as shown in Figure 8.

It is reasonable to infer that the time delay is attributable to

the bus sharing of the TT structure and other hub function-

alities, namely the third type of contention. Moreover, it is

unlikely that the other two types of contention result in extra

Figure 8: Keystrokes of HUBBUB Captured by the Gadget

Prober

latency. The reasons are elaborated as follows. Firstly, the

Gadget Prober utilizes isochronous transfer, which holds the

highest priority within a microframe, as illustrated in Figure 3.

Secondly, the bandwidth consumed by our prober is approx-

imately 6.4 Mbps, with 100 bytes of data being transmitted

per microframe. When combined with the keyboard’s max-

imum throughput of 12 Mbps, the overall bandwidth usage

is negligible in comparison to the 480 Mbps bandwidth of a

USB 2.0 hub.

To filter keystrokes, we use a simple heuristic sliding win-

dow filter: detecting three consecutive high time intervals

(over 170 microseconds) as a keystroke, which we mark with

a vertical line in Figure 8. For comparison with ground truth,

we mark the exact key typing time, calculated as the aver-

age of key press and release times, with a star and the letter

typed. For letters H, B, and the second U, the release-to-press

intervals are short, allowing us to detect only a single event.

Besides, for the first U, the key press and release events are

detected separately due to a longer release-to-press interval.

Thus, we can accurately capture the timing of the keystrokes

using the Gadget Prober. Additionally, we have confirmed

that keystroke timings can also be detected on external hubs,

as demonstrated in Subsection 7.4.

Text or password recovery. Earlier research [63, 68, 79]

shows that passwords or text can be retrieved from keystroke

timings using a Hidden Markov Model (HMM), which lever-

ages statistical features. Specifically, different key pairs ex-

hibit distinct inter-keystroke latency due to human typing

habits; for instance, the latency between typing v and o is

typically shorter than that between v and b [63]. By analyz-

ing these timing patterns, an HMM can infer the most likely

sequences of characters typed. Additionally, previous stud-

ies [59] demonstrate that they could train an RNN model to

detect a specific sentence or a specific user. Similar to previ-

ous work, we also demonstrate that the recovered keystroke

timings can further reveal the words typed, detailed in Sub-

section 7.4.

7 Evaluation

In this section, we introduce our experimental platform in

Subsection 7.1. We then evaluate Attack A, B, and C in Sub-

section 7.2, 7.3, and 7.4 respectively. We then explore uni-

versality, transferability, and noise resilience of HubBub in

Subsections 7.5 and 7.6. Finally, Subsection 7.7 discusses

other potential attack vectors.

7.1 Experiment Platform

We use four desktop hosts, i.e., Desktop A, Desktop B, Desk-

top C, and Desktop D. Desktop A and Desktop B provide

USB 3.0/3.1 ports for evaluating external USB 3.x hubs,

while Desktop C and Desktop D are dedicated to cross-

host transferability experiments. Their hardware details ap-

pear in Table 7 in the appendix. All attacks run on Chrome

130.0.6723.116.

USB hubs. The external USB hubs evaluated were selected

from the best-selling USB hubs on the market. Specifically,

we searched for the keyword USB hubs on Amazon [1] and

excluded unrelated items, such as charging stations. From the

search results, we purchased 16 hubs for our study: 12 USB

3.0 hubs (A1-A12) and 4 USB 3.1 hubs (B1-B4). The cost

of these hubs ranged from $7 to $40. Additionally, we evalu-

ated monitor C1, a computer display that provides complete

USB hub capabilities. Furthermore, each hub integrates an

Ethernet NIC with 1000 Mbps bandwidth. We named each

NIC according to the USB hub it is attached to; for instance,

the NIC attached to A1 is referred to as ETH-A1, and so on.

Our analysis also includes USB 2.0 hubs and internal USB

hubs, designated as D1 and F1, respectively. Detailed speci-

fications of all the USB hubs, NICs, and other USB devices

are provided in Table 8 in the Appendix.

7.2 Website Inference with the SSD Prober

In this section, we use three experiments, i.e., E1, E2, and

E3, to assess the performance of HubBub attack on Webpage

Inference. Specifically, the SDD probers of E1 and E2 are

deployed natively on the desktop to infer webpages under

two settings. In E3, the prober is deployed within the VMM,

which can still infer the visited webpage from the host.

For all subsequent experiments in this paper, unless other-

wise specified, 80% of the dataset is randomly selected for

training, with the remaining 20% reserved for testing. We

pre-process the Intervals collected by our SSD prober be-

fore training the classifiers. Accuracy serves as our primary

evaluation metric for the multi-class classification task, mea-

suring the proportion of correct predictions. Additionally, we

evaluate Top-3 accuracy, which considers a prediction correct

if the true class is among the top three predicted labels.

The key findings from our evaluation are as follows: 1) the

HubBub attack achieves high accuracy in website inference,

particularly in the close-world setting, and 2) the SSD probers

are capable of effectively monitoring USB hub traffic even

within VMM isolation.

Table 1: Website Classification on HubBub-100 Dataset

Model Top-1 Acc Top-3 Acc F1 Precision Recall

HubAttGRU 98.84% 99.53% 0.99 0.99 0.99

DF [61] 58.57% 64.26% 0.64 0.73 0.59

DNNF [26] 41.68% 53.49% 0.42 0.42 0.42

TF [62] 5.81% 10.8% 0.06 0.09 0.06

Random Forest 24.12% 36.73% 0.23 0.23 0.24

XGBoost 25.88% 40.73% 0.26 0.27 0.26

MLP 6.82% 14.81% 0.07 0.07 0.07

Decision Tree 8.06% 9.86% 0.08 0.08 0.08

SVM 18.20% 28.99% 0.19 0.21 0.18

E1: Close-world setting. In a Close-world website finger-

printing setting, the classifier is trained and tested on the same

set of websites. In this experiment, we utilize HubAttGRU

to classify the HubBub-100 dataset, which was collected us-

ing A2, a USB 3.0 hub, to evaluate its ability to identify

leading websites. As detailed in Table 1, HubAttGRU outper-

forms CNN-based and traditional machine learning classifiers.

Given that the simpler DF model outperforms DNNF and TF,

we only evaluate DF for CNN-based models in subsequent

experiments. Moreover, among the ML-based classifiers, Ran-

dom Forest and XGBoost yield the best performance. As

shown in Table 1, HubAttGRU achieves Top-1 and Top-3

accuracies of 98.84% and 99.53% for 100 websites. Thus, we

can effectively deduce the specific webpage accessed by the

victim.

E2: Open-world setting. In an Open-world setting, the clas-

sifier needs to identify websites from both known and un-

known sets. To evaluate, we follow the Open-world Standard

Mode [55,62] in this experiment. Specifically, we combine the

HubBub-100 and HubBub-OpenWorld datasets. Therefore,

we have 101 categories, including 100 known websites and

one open-world category representing all the unknown web-

pages. Our HubAttGRU classifier achieves Top-1 and Top-3

accuracies of 52.27% and 61.32%, respectively. Besides, for

the open-world category, we achieve a precision of 87% and

a recall of 89%. These results demonstrate that our model

can effectively distinguish between websites within and out-

side the training data. By addressing class imbalance issues

(we have around 5000 traces for the open-world category and

537 traces for normal categories), the overall accuracy in this

setting could be further improved. One solution is to collect

more traces for each website in the dataset, which we defer to

future work.

E3: Virtual machine. We conduct this experiment to demon-

strate that the SSD Prober functions effectively within VMM

isolation. In this setting, a USB hub with an Ethernet inter-

face is connected to Desktop B, with an SSD attached to the

same hub and passed through to a virtual machine. We use

Kernel-based Virtual Machine (KVM) [33] to host the virtual

machine (VM) and Libvirt [39] to manage the VM. Their re-

spective versions are 6.2.0 and 8.0.0. The virtual machine

is configured with 4 vCPUs and 4.0 GiB of memory, sharing

the same operating system and kernel version as Desktop B.

We perform the Top-10 website classification task on A2

and B2, which are a USB 3.0 hub and a USB 3.1 hub, respec-

tively. During the probing step, the SSD Prober collects 200

interval traces per website, totaling 2,000 traces per USB hub.

We then train DF to infer the websites, achieving accuracies

of 72.00% and 90.75% on A2 and B2, respectively. These re-

sults confirm that the SSD prober performs effectively within

a virtual machine, thus compromising the VMM isolation

assumptions.

7.3 Camera Activity Detection with the NIC

Prober

To demonstrate the practicality of Attack B, we design an

experiment to infer six basic daily activities captured by a

camera. The setup is the same as in Subsection 5.2, with

the NIC Prober deployed and camera traffic routed through

USB Hub A2. Specifically, we collect 50 traces using the NIC

Prober for the following behaviors: opening the camera using

a camera application [74], and closing it through the same

application; with the camera on, turning the light on, turning

the light off, watching the screen while switching between

two apps, and watching the screen while playing a five-second

video.

After collecting the dataset, we preprocessed the traces

using the method described in Subsection 4.2.2. As in the

website fingerprinting task, 80% of the traces are used for

training and 20% for testing. Given the dataset size, we use

a classical machine learning approach, training a Random

Forest classifier with 300 decision trees, each with a maximum

depth of 10. The model is trained with a fixed random seed

(random_state=42) to ensure reproducibility. The classifier

achieves 85% accuracy on the test set, with a precision of

0.88, a recall of 0.85, and an F1-score of 0.83, demonstrating

the feasibility of Attack B.

While the granularity of our prober is lower than that of

prior work [24,38], which extracted fine-grained features such

as encrypted packet sizes, the traffic fluctuations we capture

remain sensitive to changes in brightness and reveal certain

user activities, such as those targeted in this study.

7.4 Keystrokes Capture with the Gadget

Prober

Keystrokes detection. We evaluated our attack in the setting

described in Section 6.2, where the Gadget Prober records tim-

ing intervals from a USB keyboard connected through either

an internal hub and A1, with 100 and 115 keystrokes typed,

respectively. In total, 215 keys were typed across both se-

tups. To obtain ground truth, we logged key press timestamps

from /dev/input/eventX on Desktop B. We then applied

the same filtering method as in Section 6.2 and grouped adja-

cent keystrokes occurring within 100 milliseconds as a single

key press. We detected 198 keystrokes with 14 false posi-

tives, achieving a precision of 93.40% and a recall of 92.09%.

These results confirm the effectiveness of the Gadget Prober

in detecting keystrokes and also demonstrate its universality

across different USB hubs.

Word inference. To demonstrate the practicality of this at-

tack, we further evaluate the inference of 40 common English

words typed on a standard USB keyboard. This setup is con-

sistent with prior studies that evaluated 43 words [68] and

39 words [79], respectively. The dataset includes ten 3-letter

words, ten 4-letter words, ten 5-letter words, and ten 6-letter

words, with 50 traces of each word listed in Appendix B. Then,

we converted the captured timestamps into inter-keystroke

delays and padded them to a uniform length.

Using 80% of the data for training the Random Forest

classifier used in Subsection 7.3, we achieved 72.5% and

90.75% Top-1/Top-3 accuracy on the test set. Specifically, the

Top-1 accuracies for 3-, 4-, 5-, and 6-letter words were 46%,

70%, 89%, and 85%, respectively. As expected, longer words

contain more inter-keystroke delays, providing richer features

for classification. Note that these distributions also reflect an

individual’s typing patterns. Therefore, the accuracy might

decrease when the model is used to infer words typed by a

different person. In summary, our evaluation demonstrates

that Attack C has the potential to reveal sensitive information

such as typed words.

7.5 Attack Generality and Transferability

In this subsection, we revisit Attack A to evaluate the ro-

bustness and impact of HubBub on various USB hubs. Our

evaluation demonstrates that: 1) HubBub affects all 15 exter-

nal USB 3.x hubs in our experiments; 2) internal and USB

2.0 hubs are also vulnerable to HubBub; 3) HubBub attacks

are transferable between different USB hubs; and 4) HubBub

attacks are transferable between different hosts computers.

External USB 3.x hubs. In this experiment, we use the

HubBub-45 dataset to evaluate the website inference accuracy.

Table 2 shows the accuracy of HubAttGRU, DF, and Random

Forest on different USB hubs. Compared to the evaluation

on the HubBub-100 dataset, we slightly reduced the model

parameters of HubAttGRU to adapt to the smaller dataset size.

Besides, we trained both HubAttGRU and DF for 200 epochs.

While more epochs may further enhance accuracy, we leave

this for future work because the current results sufficiently

illustrate HubBub’s impact on various USB 3.x hubs.

Our findings show that for most USB 3.x hubs, HubAttGRU

can accurately infer websites. For hubs A1, A2, A4, A5, A7,

A10, A11, and B2, we can achieve over 80% accuracy. Even

for the hub with the lowest accuracy, B1 at 11.61%, the per-

formance is still significantly better than the accuracy of a

random classifier (with an accuracy of 1
45 or 2.22%), indicat-

ing that information of the victim can still be inferred, albeit

at a coarser level. Therefore, we assert that most USB hubs

are vulnerable to the HubBub attack, and all the hubs in our

testing are affected by HubBub. Moreover, the reason why the

accuracy of HubBub varies on different USB hubs might be

due to the priority of USB ports within the USB hub. Because

both the NIC and SSD traffic use bulk transfer, their priority

of scheduling in the hub is theoretically the same. However,

due to specific USB hub implementations, the USB hub may

assign a lower priority to the NIC port than a normal port used

by the USB SSD. For example, the NIC port of B1 may have

lower priority than that of other hubs. This situation causes

the traffic of our SSD prober to be less influenced, which in

turn causes it to capture fewer patterns.

Table 2: Website Inference Accuracy on HubBub-45 Dataset

Hub Brand Spec HubAttGRU DF Random Forest

A1 UNI USB 3.0 95.67% 93.86% 82.1%

A2 UGREEN USB 3.0 97.56% 95.56% 86.61%

A4 TPLINK USB 3.0 90.56% 85.06% 40.3%

A5 ABLEWE USB 3.0 83.89% 83.89% 45.6%

A6 ACEELE USB 3.0 77.17% 77.28% 39.3%

A7 OYLIAN USB 3.0 86.83% 80.28% 38.4%

A9 Fophmo USB 3.0 78.56% 74.22% 35.1%

A10 ACER USB 3.0 87.17% 82.56% 38.3%

A11 WAVLINK USB 3.0 81.11% 84.17% 45.9%

A12 UtechSmart USB 3.0 78.44% 83.83% 39.0%

B1 RSHTECH USB 3.1 11.61% 9.22% 7.7%

B2 INATECK USB 3.1 94.06% 92.97% 80.7%

B3 WAVLINK USB 3.1 72.17% 69.72% 56.3%

B4 Getatek USB 3.1 29.06% 20.83% 11.9%

C1 Dell USB 3.0 57.83% 51.39% 20.3%

Internal hub and USB 2.0 hub. Firstly, we expand the eval-

uation to a USB 3.0 internal hub, which is the root hub of

Desktop A (F1 in Table 8 in the Appendix). Specifically, we

connect SSD3 and ETH-D1, the USB NIC, to F1. After train-

ing for 200 epochs, we achieve a classification accuracy of

79.33% with HubAttGRU for the top 45 websites.

In the USB 2.0 hub evaluation, we use D1 as the hub

and ETH-D1 as the USB NIC. We configure SSD1 with

an IO_SIZE setting of 4096. Then, we evaluate the top 10

websites and collect 200 traces of approximately 5 seconds

for each. We choose DF as the classifier, which fits this data

scale better than HubAttGRU. In our experiment, we achieved

an accuracy of 91.25%, which shows that HubBub are also

effective on internal hubs and USB 2.0 hubs.

USB hub transferability. In this experiment, we evaluate the

cross-hub accuracy of HubAttGRU across all USB 3.0 hubs

listed in Table 2. Assuming we train on hub X and test on hub

Y, we use 80% of the traces from HubBub-45-A[X] to train

the model for 200 epochs and evaluate it on 20% of traces

from HubBub-45-A[Y] as the test set. As shown in Figure 9,

we list all the cross-hub transferability Top-1/Top-3 accuracy

in two heatmaps. We then adopt three metrics to evaluate

the transferability: Top-1/Top-3 accuracy, the multiplicative

gain over random guessing accuracy (2.22% for a 45-class

classifier), and the accuracy drop compared to the classifier

trained directly on traces from hub Y.

After analysis, we observe two distinct groups of hubs for

A1 A2 A4 A5 A6 A7 A9
A10 A11 A12

A1

A2

A4

A5

A6

A7

A9

A10

A11

A12

95.7 80.3 2.8 2.8 2.8 3.2 2.2 2.9 1.7 2.3

85.0 97.6 2.7 2.5 2.9 4.7 1.7 1.7 1.5 2.1

2.9 2.5 90.6 20.2 23.4 66.7 55.1 55.5 40.3 43.5

2.6 2.9 31.7 83.9 37.2 31.9 34.0 27.7 39.1 17.2

2.1 3.4 38.2 41.8 77.2 43.5 39.9 31.4 32.2 22.8

1.9 2.6 65.2 22.6 25.8 86.8 57.6 42.9 43.9 38.9

2.1 2.3 60.8 25.1 29.1 62.4 78.6 37.9 43.3 32.7

2.3 2.5 47.2 15.0 14.2 40.4 28.6 87.2 19.6 30.9

2.5 2.6 41.5 25.8 21.1 50.3 42.1 27.7 81.1 20.1

2.3 2.1 44.2 16.3 14.3 48.9 36.7 42.1 33.4 78.4

0 20 40 60 80
Accuracy (%)

(a) Top-1 Accuracy

A1 A2 A4 A5 A6 A7 A9
A10 A11 A12

A1

A2

A4

A5

A6

A7

A9

A10

A11

A12

98.9 91.7 7.7 8.0 6.8 7.1 8.3 7.1 4.2 4.6

94.7 99.2 7.6 7.1 7.2 8.3 7.0 6.8 4.5 4.6

7.7 7.7 98.1 34.8 40.7 83.4 73.6 77.1 63.8 64.0

8.0 7.7 51.2 95.6 56.4 51.0 50.5 44.7 57.7 33.8

6.2 7.1 55.0 63.5 92.6 62.0 58.7 49.2 51.7 39.0

7.1 6.3 84.0 39.3 42.7 95.8 76.8 65.4 67.3 60.2

7.1 7.4 76.6 40.5 44.8 78.2 87.9 57.1 61.7 53.3

7.7 6.8 66.0 25.5 26.9 60.4 45.9 96.3 37.4 51.2

7.3 7.0 63.5 45.0 35.3 71.1 62.6 48.2 94.4 39.4

7.2 6.9 64.8 31.2 26.3 69.1 56.1 63.7 53.3 91.8

0 20 40 60 80
Accuracy (%)

(b) Top-3 Accuracy

Figure 9: Cross-hub Transferability of HubAttGRU Top-45

Website Inference. The X-axis Represents the Training Hub

transferability. Group 1 includes A1 and A2, exhibiting a

strong mutual transferability, with Top-1/Top-3 accuracy ex-

ceeding 80% and 90%. The average accuracy improvement

over random guessing is 36.18×, and there is only a 14.5%

accuracy drop. Group 2 includes hub A4 to A12, showing

cross-hub Top-1/Top-3 accuracy ranging from 14.2%/25.5%

to 66.7%/84%, with an average of 36.11%/54.51%. The av-

erage improvement over random guessing is around 16.25×,

and the average accuracy drop is 56.4%. In the worst case,

nevertheless, the accuracy remains 4.2 times higher than ran-

dom guessing.

In comparison, the transferability across groups is low. The

Top-1/Top-3 accuracy is approximately 2.50%/6.94%, indicat-

ing little to no improvement over random guessing. We further

investigated the potential reason by visualizing traces from

both groups. We observed that traces collected from Group 1

are notably stable, although with some noise, whereas traces

from Group 2 are more variable and share a similar noise

pattern. For example, in Group 2, some hubs exhibit signifi-

cantly longer delay sequences during the first second, while

others show extended delays during the middle portion of

the trace. This also explains why the models achieve higher

accuracy on A1 and A2 in Table 2. This characteristic may

stem from power-saving and traffic management policies im-

plemented in the firmware or microcontroller of each hub.

We leave the exploration of improving transferability across

groups to future work, which may benefit from more pre-

cise temporal alignment and enhanced noise filtering during

pre-processing.

USB host transferability. In this evaluation, we demon-

strate HubBub’s host transferability by training and testing

HubAttGRU on different computers. We collected 200 traces

for the 45 websites each from Desktop A, Desktop C, and

Desktop D using hub A1. Each dataset was split into 80% for

training and 20% for testing the model. We observed that vary-

ing CPU frequencies across hosts affect rdtscp-based timing,

Table 3: Cross-host Transferability of HubAttGRU Top-45

Website Inference (Top-1/Top-3, %)

Test / Train Desktop A Desktop C Desktop D

Desktop A 83.39 / 94.33 30.56 / 54.83 29.22 / 53.83

Desktop C 19.44 / 33.17 84.50 / 96.00 18.00 / 32.94

Desktop D 35.44 / 60.50 31.56 / 53.00 89.67 / 98.44

so we applied simple normalization during preprocessing. The

Top-1/Top-3 accuracy of cross-host website inference is listed

in Table 3.

The results show an average Top-1/Top-3 accuracy of

27.37% and 48.04%, respectively, representing an average

12.31× improvement over random guessing and a 68.21%

drop compared to same-host performance. The results demon-

strate that models trained on one computer can remain effec-

tive on others despite some accuracy degradation.

We further investigated the cause of the accuracy drop and

found that variations in noise patterns across hosts contributed

to the decline. We leave cross-host inference improvements to

future work, potentially through more effective noise filtering

or adversarial noise injection to enhance robustness.

7.6 Effective Bandwidth and Noise Resilience

We first design three covert-channel attacks targeting the three

probers: CC1 (Covert Channel 1) for the SSD prober, CC2 for

the NIC prober, and CC3 for the Gadget prober. We adjust the

number of packets sent by the sender to induce a noticeable

delay in the traces captured by the prober, which we use to

transmit bit 1. To transmit bit 0, the sender pauses for the same

duration. We then measure their ideal bandwidths, which are

500 bit/s, 4 bit/s, and 5 bit/s, respectively. Detailed designs

are provided in Appendix C.

Effective Bandwidth. For each attack, we analyze a sequence

of 120 transmitted bits from the receiver’s trace and observe

0, 1, and 3 bit errors for CC1, CC2, and CC3, respectively.

This corresponds to bit error rates (BER) of 0%, 0.83%, and

2.5%. We treat all channels as symmetric, as both 1 and 0

may be misclassified as each other. The effective bandwidth

(or channel capacity), denoted by C = R
(

1−H2(p)
)

[14], is

calculated using the ideal bit rate R and the binary entropy

function H2(p), where p is the BER. Based on this, the effec-

tive bandwidths of CC1, CC2, and CC3 are 500 bit/s, 3.72

bit/s, and 4.16 bit/s, respectively.

Bandwidth Degradation Under Noise. To evaluate noise re-

silience, we connect SSD2 to the USB hub and inject noise by

performing file access operations from the host. Specifically,

our noise injection program reads 256 KB from one of ten

randomly selected 200 MB files. All files are opened with the

O_DIRECT flag to bypass the page cache.

We simulate four noise levels by varying the file access

frequency: 1000 ms (Level 1), 100 ms (Level 2), 10 ms (Level

Table 4: Effective Bandwidth (Eff) under Noise

Noise Level CC1 Eff (bit/s) CC2 Eff (bit/s) CC3 Eff (bit/s)

Level 0 500.00 3.72 4.16

Level 1 438.85 3.16 1.23

Level 2 438.85 3.00 N/A

Level 3 293.09 N/A N/A

Level 4 17.07 N/A N/A

3), and 1 ms (Level 4), with the baseline (no injected noise)

denoted as Level 0. For each level, we analyze a 120-bit trans-

mission sequence from all three covert-channel attacks and

compute the effective bandwidth, as shown in Table 4. For

CC1, we observe an apparent decline in capacity as noise in-

creases. At Level 4 (1 ms access interval), the bandwidth drops

to 17.07 bit/s, preserving only 3.4% of its original capacity.

For CC2 and CC3, the signal becomes indistinguishable from

noise at Level 3 and Level 2, respectively, and we therefore

mark their effective bandwidths as N/A.

7.7 Other Attacking Combinations

In our three demonstrated attacks, each primitive was initially

evaluated against a single target. To illustrate broader appli-

cability, we assess the feasibility of all three targets across

all probers, as summarized in Table 5, where filled circles

indicate confirmed attacks, empty circles denote infeasible

ones, and half-filled circles represent potential attacks with

preliminary feasibility testing.

Table 5: Capability Matrix of Probers against Targets

Prober\Target Website Fingerprinting Camera Keystrokes

SSD Prober

NIC Prober

Gadget Prober

Attack A, B, and C correspond to the diagonal entries in

Table 5 and are marked with filled circles. Additionally, we

find that the NIC prober can leak information about visited

websites. To validate this, we connect an additional USB NIC

to Hub A1 and collect 200 traces across 10 websites using

our prober. Using an 80:20 train-test split, we train a Random

Forest classifier and achieve an accuracy of 73.3%.

We further show that the SSD Prober can potentially leak

camera-related activity. Specifically, with IO_SIZE set to

8192, it can distinguish traces with the camera on versus off

due to congestion caused by the camera traffic. We also found

that the Gadget prober may leak information about website

visits and camera activity. For website visits, the prober is

sensitive to Ethernet traffic from YouTube video preloading,

which increases USB endpoint write delays of the Gadget

prober. Similarly, enabling the camera introduces additional

USB traffic on the hub, resulting in measurable delays of the

Gadget prober.

Unfortunately, we could not recover keystrokes from the

USB keyboard using the SSD or NIC prober. We suspect the

interrupt traffic generated by keystrokes is too small relative

to the probers’ bulk traffic and may even fall below the noise

level in their traces.

8 Potential Mitigations

HubBub attacks might be mitigated in the following ways.

First, we can restrict the use of high-precision timing func-

tions. . To mitigate this, browsers could enhance isolation

mechanisms by requiring websites to request permission be-

fore accessing this or similar functions. Besides, our SSD

Prober uses rdtscp or rdtsc to measure CPU cycles, which

could also be restricted for untrusted users [25]. Additionally,

reducing the resolution of timing functions may help lower

the attack’s accuracy. For example, starting from Firefox 59,

the default resolution of performance.now() was reduced

to 2 milliseconds.

Second, USB hub manufacturers can upgrade firmware to

implement countermeasures against HubBub. One approach

is to introduce random delays in the delivery of USB packets.

However, this method would reduce bandwidth and increase

latency, trading performance for enhanced security. Besides,

a hardware-level detection approach can be implemented by

integrating a small, programmable security controller into the

USB hub. This on-hub controller passively monitors traffic

on each downstream port, parsing packets and applying rule-

based or machine learning logic to detect malicious flows.

Upon identifying suspicious activity, it can initiate a standard

control transfer to alert the host.

Third, USB bandwidth isolation can be enforced on the host

by reserving a dedicated portion of one or more micro-frames

for each device, ensuring that its packets are polled exclu-

sively within those slots. It can be implemented by updating

scheduling policies similar to those proposed for improving

power efficiency in USB hubs [57].

9 Related Works

In both our threat models, alternative attacks exist. Below,

we discuss their respective advantages and limitations and

compare them to HubBub. In addition, we list other USB

attacks in Appendix D.

Threat Model I. First, Invisible Probe [68] exploits PCIe

switch and PCH congestion to infer secrets such as website

fingerprints, passwords, and machine learning models. Like

HubBub, it requires access to a peripheral. However, due to

PCIe’s higher bandwidth, inducing sufficient congestion typi-

cally demands high-speed devices. Moreover, their attacks are

tailored for cloud environments, e.g., requiring a remote ma-

chine connected to the victim host via RDMA NIC to launch

attacks. In contrast, HubBub targets typical desktops and lap-

tops and does not require high bandwidth peripherals like

RDMA. Second, SMASH [16] and Rowhammer.js [23] break

browser isolation by exploiting Rowhammer attacks. How-

ever, they rely on vulnerable DRAM modules. In contrast,

HubBub does not require vulnerable DRAM. Third, Cache

side channels [35, 42–44, 51, 76, 78] are pervasive and can

leak sensitive information such as private keys. In contrast,

HubBub does not rely on prior architectural knowledge, nor

does the attacker need to manage low-level details such as

identifying which cache set buffers a given memory access.

Finally, MeshUp [71], Lord of Ring [52], and Don’t Mesh

Around [15] are contention-based side-channel attacks that

leak information such as RSA private keys, from CPU inter-

connects like Rings, Mesh, and UPI. Unlike HubBub, their

attacks rely on knowledge of CPU core topology and cache

structure, similar to the above-mentioned cache-based attacks.

Threat Model II. First, USBhubleakage [66] constructed a

harmful peripheral device capable of intercepting confidential

USB traffic from neighboring paths, which leaks keystrokes

from the USB hub. However, their attack can only succeed

on USB 1.x/2.0 hubs. Second, prior to USB 3.0, a device

plugged into a hub could eavesdrop on traffic intended for any

other downstream port [48], due to all downstream packets

being broadcast to every port. USB 3.0 removes the threat

by replacing broadcast forwarding with unicast routing, so

the attack no longer works on modern hubs. In contrast to the

attacks described above, HubBub also targets USB 3.x hubs.

Third, Key injection attacks like USB Rubber Ducky [6] and

USBImpostor [18] can masquerade as keyboards and issue

arbitrary commands on the host, but they are relatively easy to

detect. For example, macOS prompts for user authentication

when a new keyboard is connected, which hinders spoofed de-

vices. By contrast, HubBub evades USB-peripheral defenses

and remains invisible to the user.

10 Conclusion

In summary, our work reveals that when multiple USB pe-

ripherals are connected to a single USB hub, bus contention

can arise, which poses a privacy risk. By leveraging USB bus

contention, we design HubBub which can extract sensitive in-

formation from USB hubs. Our evaluations demonstrate that

attackers can infer visited webpages, activities captured by

the camera, and keystrokes via HubBub attacks. We hope that

this work raises awareness and inspires the implementation

of protective measures against HubBub attacks.

Acknowledgment

This work was supported in part by the National Science Foun-

dation (Grant No. CNS-2145744). We thank the anonymous

reviewers for their constructive feedback and our colleagues

for their helpful suggestions.

11 Ethics considerations

We have reported our findings to relevant stakeholders and the

USB Implementers Forum (USB-IF). Besides, we conducted

all experiments within our controlled environment, and no

attacks were carried out against any third-party environment.

12 Open Science Policy

To facilitate reproducibility and further research, we released

the source code for three probers and the main classifier, along

with the HubBub Website Fingerprinting Dataset. The artifact

can be accessed at https://doi.org/10.5281/zenodo.15581471.

References

[1] https://www.amazon.com/s?k=USB+hub&s=

exact-aware-popularity-rank. Accessed:

April 14, 2024.

[2] Cynthion — all-in-one usb test instrument, 2023. Ac-

cessed 18 May 2025.

[3] Alexa top websites - expireddomains.net, 2024.

[4] Trending websites - semrush, 2024.

[5] Olga Angelopoulou, Seyedali Pourmoafi, Andrew Jones,

and Gaurav Sharma. Killing your device via your usb

port. In Proceedings of the Thirteenth International

Symposium on Human Aspects of Information Security

& Assurance (HAISA 2019), pages 61–72. The Centre

for Security, Communications and Network Research

(CSCAN), 2019.

[6] Lakshay Arora, Narina Thakur, and Sumit Kumar Ya-

dav. Usb rubber ducky detection by using heuristic rules.

In 2021 International Conference on Computing, Com-

munication, and Intelligent Systems (ICCCIS), pages

156–160. IEEE, 2021.

[7] Jens Axboe. Efficient io with io_uring. URL

https://kernel. dk/iouring. pdf, 2019.

[8] Jan Axelson. USB complete: the developer’s guide.

Lakeview research LLC, 2015.

[9] Hewlett-Packard Company, Intel Corporation, Microsoft

Corporation, NEC Corporation, ST-NXP Wireless, and

Texas Instruments. Universal serial bus specification 3.0

revision 1.0. Specification, USB Implementers Forum,

November 2008.

[10] Hewlett-Packard Company, Intel Corporation, Microsoft

Corporation, Renesas Corporation, ST-Ericsson, and

Texas Instruments. Universal serial bus specification 3.1

revision 1.0. Specification, USB Implementers Forum,

July 2013.

[11] Compaq, Digital Equipment Corporation, IBM PC Com-

pany, Intel, Microsoft, NEC, and Northern Telecom. Uni-

versal serial bus specification revision 1.0. Specification,

USB Implementers Forum, January 1996.

[12] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,

NEC, and Philips. Universal serial bus specification

revision 2.0. Specification, USB Implementers Forum,

April 2000.

[13] Compaq, Intel, Microsoft, and NEC. Universal serial

bus specification revision 1.1. Specification, USB Im-

plementers Forum, September 1998.

[14] Thomas M Cover. Elements of information theory. John

Wiley & Sons, 1999.

[15] Miles Dai, Riccardo Paccagnella, Miguel Gomez-

Garcia, John McCalpin, and Mengjia Yan. Don’t mesh

around:{Side-Channel} attacks and mitigations on mesh

interconnects. In 31st USENIX Security Symposium

(USENIX Security 22), pages 2857–2874, 2022.

[16] Finn de Ridder, Pietro Frigo, Emanuele Vannacci,

Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi.

{SMASH}: Synchronized many-sided rowhammer at-

tacks from {JavaScript}. In 30th USENIX Security Sym-

posium (USENIX Security 21), pages 1001–1018, 2021.

[17] Rahul Dey and Fathi M Salem. Gate-variants of gated

recurrent unit (gru) neural networks. In 2017 IEEE

60th international midwest symposium on circuits and

systems (MWSCAS), pages 1597–1600. IEEE, 2017.

[18] Robert Dumitru, Daniel Genkin, Andrew Wabnitz, and

Yuval Yarom. The impostor among US(B): Off-

Path injection attacks on USB communications. In

32nd USENIX Security Symposium (USENIX Security

23), pages 5863–5880, Anaheim, CA, August 2023.

USENIX Association.

[19] Zakir Durumeric. Crux top lists, 2023.

[20] Monta Elkins. Universal rf usb keyboard emulation

device urfuked, June 2010.

[21] Ian Fette and Alexey Melnikov. The websocket protocol.

Technical report, 2011.

[22] Daniel Gruss, David Bidner, and Stefan Mangard.

Practical memory deduplication attacks in sandboxed

javascript. In Computer Security–ESORICS 2015: 20th

European Symposium on Research in Computer Security,

Vienna, Austria, September 21-25, 2015, Proceedings,

Part I 20, pages 108–122. Springer, 2015.

[23] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Rowhammer. js: A remote software-induced fault attack

in javascript. In Detection of Intrusions and Malware,

and Vulnerability Assessment: 13th International Con-

ference, DIMVA 2016, San Sebastián, Spain, July 7-8,

2016, Proceedings 13, pages 300–321. Springer, 2016.

[24] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen.

Traffic-based side-channel attack in video streaming.

IEEE/ACM Transactions on Networking, 27(3):972–

985, 2019.

[25] Part Guide. Intel® 64 and ia-32 architectures software

developer’s manual. Volume 3B: System programming

Guide, Part, 2(11):1–64, 2011.

[26] Maohua Guo, Jinlong Fei, and Yitong Meng. Deep

nearest neighbor website fingerprinting attack tech-

nology. Security and Communication Networks,

2021(1):5399816, 2021.

[27] Mordechai Guri, Matan Monitz, and Yuval Elovici. Us-

bee: Air-gap covert-channel via electromagnetic emis-

sion from usb. In 2016 14th Annual Conference on

Privacy, Security and Trust (PST), pages 264–268, 2016.

[28] Apple Inc., Hewlett-Packard Inc., Intel Corporation, Mi-

crosoft Corporation, Renesas Corporation, STMicroelec-

tronics, and Texas Instruments. Universal serial bus

specification 3.1 revision 1.0. Specification, USB Im-

plementers Forum, September 2017.

[29] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. A

shared cache attack that works across cores and defies

vm sandboxing–and its application to aes. In 2015 IEEE

Symposium on Security and Privacy, pages 591–604.

IEEE, 2015.

[30] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,

and Berk Sunar. Wait a minute! a fast, cross-vm attack

on aes. In Research in Attacks, Intrusions and Defenses:

17th International Symposium, RAID 2014, Gothenburg,

Sweden, September 17-19, 2014. Proceedings 17, pages

299–319. Springer, 2014.

[31] Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang.

Transformer-based model for multi-tab website finger-

printing attack. In Proceedings of the 2023 ACM

SIGSAC Conference on Computer and Communications

Security, pages 1050–1064, 2023.

[32] Martin Johns. On javascript malware and related threats:

Web page based attacks revisited. Journal in Computer

Virology, 4(3):161–178, 2008.

[33] Kernel-based Virtual Machine Project. KVM: Kernel-

based Virtual Machine, Year of Publication or Access.

https://www.linux-kvm.org.

[34] David Kierznowski. Badusb 2.0: Exploring usb man-in-

the-middle attacks.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,

Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre

attacks: Exploiting speculative execution. Communica-

tions of the ACM, 63(7):93–101, 2020.

[36] David Kushner. The real story of stuxnet. ieee Spectrum,

50(3):48–53, 2013.

[37] Jeehong Lee, IlHong Shin, and HyunWook Park. Adap-

tive intra-frame assignment and bit-rate estimation for

variable gop length in h. 264. IEEE Transactions on

Circuits and Systems for Video Technology, 16(10):1271–

1279, 2006.

[38] Hong Li, Yunhua He, Limin Sun, Xiuzhen Cheng, and

Jiguo Yu. Side-channel information leakage of en-

crypted video stream in video surveillance systems. In

IEEE INFOCOM 2016-The 35th Annual IEEE Interna-

tional Conference on Computer Communications, pages

1–9. IEEE, 2016.

[39] Libvirt Developers. libvirt: The virtualization API, Year

of Publication or Access. https://libvirt.org.

[40] Chong Han Lim, Bakhtiar Affendi bin Rosdi, and

Chee Fai Yap. Synchronization of multiple usb 3.0

devices using isochronous timestamp packet. Computer

Standards & Interfaces, 49:22–33, 2017.

[41] Moritz Lipp, Daniel Gruss, Michael Schwarz, David

Bidner, Clémentine Maurice, and Stefan Mangard. Prac-

tical keystroke timing attacks in sandboxed javascript.

In Computer Security–ESORICS 2017: 22nd European

Symposium on Research in Computer Security, Oslo,

Norway, September 11-15, 2017, Proceedings, Part II

22, pages 191–209. Springer, 2017.

[42] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-

tine Maurice, and Stefan Mangard. {ARMageddon}:
Cache attacks on mobile devices. In 25th USENIX Secu-

rity Symposium (USENIX Security 16), pages 549–564,

2016.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Stefan Mangard, Paul Kocher,

Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-

down. arXiv preprint arXiv:1801.01207, 2018.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and

Ruby B Lee. Last-level cache side-channel attacks are

practical. In 2015 IEEE symposium on security and

privacy, pages 605–622. IEEE, 2015.

[45] Hao Liu, Riccardo Spolaor, Federico Turrin, Riccardo

Bonafede, and Mauro Conti. Usb powered devices:

A survey of side-channel threats and countermeasures.

High-Confidence Computing, 1(1):100007, 2021.

[46] man.archlinux.org. io_uring_setup(2) - linux man-

ual page. https://man.archlinux.org/man/io_

uring_setup.2.en, 2019. Accessed: 2025-05-17.

[47] Market.us. Usb hub market size and growth report.

https://market.us/report/usb-hub-market/,

2023. Accessed: November 7, 2024.

[48] Matthias Neugschwandtner, Anton Beitler, and Anil Kur-

mus. A transparent defense against usb eavesdropping

attacks. In Proceedings of the 9th European Workshop

on System Security, pages 1–6, 2016.

[49] Tao Ni, Yongliang Chen, Weitao Xu, Lei Xue, and

Qingchuan Zhao. Xporter: A study of the multi-port

charger security on privacy leakage and voice injection.

In Proceedings of the 29th Annual International Con-

ference on Mobile Computing and Networking, pages

1–15, 2023.

[50] Karsten Nohl and Jakob Lell. Badusb-on accessories

that turn evil. Black Hat USA, 1(9):1–22, 2014.

[51] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache

attacks and countermeasures: the case of aes. In

Topics in Cryptology–CT-RSA 2006: The Cryptogra-

phers’ Track at the RSA Conference 2006, San Jose, CA,

USA, February 13-17, 2005. Proceedings, pages 1–20.

Springer, 2006.

[52] Riccardo Paccagnella, Licheng Luo, and Christopher W

Fletcher. Lord of the ring (s): Side channel attacks on

the {CPU}{On-Chip} ring interconnect are practical.

In 30th USENIX Security Symposium (USENIX Security

21), pages 645–662, 2021.

[53] PCI-SIG. PCI Express® Base Specification. PCI-SIG,

revision 4.0 version 0.3 edition, 2 2014. https:

//astralvx.com/storage/2020/11/PCI_Express_

Base_4.0_Rev0.3_\February19-2014.pdf.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

[55] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom

Van Goethem, and Wouter Joosen. Automated web-

site fingerprinting through deep learning. arXiv preprint

arXiv:1708.06376, 2017.

[56] Gaurav Shah, Andres Molina, Matt Blaze, et al. Key-

boards and covert channels. In USENIX Security Sym-

posium, volume 15, page 64, 2006.

[57] Bikrant Das Sharma, Abdul Rahman Ismail, and Chris

Meyers. Power savings in usb hubs through a proactive

scheduling strategy. In 2023 24th International Sympo-

sium on Quality Electronic Design (ISQED), pages 1–7.

IEEE, 2023.

[58] Seungwon Shin and Guofei Gu. Conficker and beyond:

a large-scale empirical study. In Proceedings of the

26th Annual Computer Security Applications Confer-

ence, pages 151–160, 2010.

[59] Laurent Simon, Wenduan Xu, and Ross Anderson. Don’t

interrupt me while i type: Inferring text entered through

gesture typing on android keyboards. Privacy Enhancing

Technologies Symposium Advisory Board, 2016.

[60] Arjun Singh, Pushpa Choudhary, et al. Keylogger de-

tection and prevention. In Journal of Physics: Confer-

ence Series, volume 2007, page 012005. IOP Publishing,

2021.

[61] Payap Sirinam, Mohsen Imani, Marc Juarez, and

Matthew Wright. Deep fingerprinting: Undermining

website fingerprinting defenses with deep learning. In

Proceedings of the 2018 ACM SIGSAC conference on

computer and communications security, pages 1928–

1943, 2018.

[62] Payap Sirinam, Nate Mathews, Mohammad Saidur Rah-

man, and Matthew Wright. Triplet fingerprinting: More

practical and portable website fingerprinting with n-shot

learning. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security,

pages 1131–1148, 2019.

[63] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.

Timing analysis of keystrokes and timing attacks on

{SSH}. In 10th USENIX Security Symposium (USENIX

Security 01), 2001.

[64] Branislav Sredojev, Dragan Samardzija, and Dragan

Posarac. Webrtc technology overview and signaling

solution design and implementation. In 2015 38th inter-

national convention on information and communication

technology, electronics and microelectronics (MIPRO),

pages 1006–1009. IEEE, 2015.

[65] StoredBits. Why do ssds have slower data

write speeds? https://storedbits.com/

why-do-ssds-have-slower-data-write-speed/,

2024. Accessed: November 7, 2024.

[66] Yang Su, Daniel Genkin, Damith Ranasinghe, and Yu-

val Yarom. USB snooping made easy: Crosstalk leak-

age attacks on USB hubs. In 26th USENIX Security

Symposium (USENIX Security 17), pages 1145–1161,

Vancouver, BC, August 2017. USENIX Association.

[67] Peter Szor. Duqu–threat research and analysis. McAfee

Labs, 2011.

[68] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li.

Invisible probe: Timing attacks with pcie congestion

side-channel. In 2021 IEEE Symposium on Security and

Privacy (SP), pages 322–338, 2021.

[69] Stella Vouteva, Ruud Verbij, and Jarno Roos. Feasibil-

ity and deployment of bad usb. University of Amster-

dam, System and Network Engineering Master Research

Project, 2015.

[70] Jim Walter. Flame attacks": Briefing and indicators of

compromise. McAfee Labs Report, 1:43, 2012.

[71] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li.

Meshup: Stateless cache side-channel attack on cpu

mesh. In 2022 IEEE Symposium on Security and Pri-

vacy (SP), pages 1506–1524, 2022.

[72] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob John-

son, and Ian Goldberg. Effective attacks and provable

defenses for website fingerprinting. In 23rd USENIX

Security Symposium (USENIX Security 14), pages 143–

157, 2014.

[73] Yuanda Wang, Hanqing Guo, and Qiben Yan. Ghosttalk:

Interactive attack on smartphone voice system through

power line. arXiv preprint arXiv:2202.02585, 2022.

[74] Jonas Westman. camera – gnome virtual camera imple-

mentation. https://gitlab.gnome.org/jwestman/

camera, 2020.

[75] Zhen Wu, Peng Hu, Shuangyue Liu, and Tao Pang. At-

tention mechanism and lstm network for fingerprint-

based indoor location system. Sensors, 24(5):1398,

2024.

[76] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,

Christopher Fletcher, Roy Campbell, and Josep Torrel-

las. Attack directories, not caches: Side channel attacks

in a non-inclusive world. In 2019 IEEE Symposium on

Security and Privacy (SP), pages 888–904. IEEE, 2019.

[77] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar,

and Kiran S Balagani. On inferring browsing activity on

smartphones via usb power analysis side-channel. IEEE

Transactions on Information Forensics and Security,

12(5):1056–1066, 2016.

[78] Yuval Yarom and Katrina Falkner. {FLUSH+

RELOAD}: A high resolution, low noise, l3 cache {Side-

Channel} attack. In 23rd USENIX security symposium

(USENIX security 14), pages 719–732, 2014.

[79] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the

neighborhood: Keystroke eavesdropping on multi-user

systems. In USENIX Security Symposium, volume 20,

page 23, 2009.

[80] Wu Zhenyu, Xu Zhang, and H Wang. Whispers in the

hyper-space: high-speed covert channel attacks in the

cloud. In USENIX Security symposium, pages 159–173,

2012.

A HubBub Website Fingerprinting Dataset

HubBub-100 Dataset. We built this dataset to evaluate Hub-

Bub in inferring globally leading websites. To minimize ex-

perimental bias, we selected two reputable sources: Alexa

Top Websites [3] and Semrush [4]. After removing duplicates,

we finalized a list of 100 websites. The environment setting

is the same as Subsection 4.1. We connect SSD1 to Desktop

A via a USB 3.0 hub, A2. For each of the 100 websites, we

conducted 537 individual traces, collecting the resulting time-

series data with the SSD Prober for around 5 seconds. As a

result, HubBub-100 comprises 53,700 traces.

HubBub-45 Dataset. We created this subset to study the

impact of HubBub on various USB hubs. HubBub-45 com-

prises data from 15 hubs spanning USB versions 2.0, 3.0,

and 3.1, with all USB hubs listed in Table 2 included. We

excluded A3 and A8 due to their instability and frequent

connection losses during data collection. Consequently, the

HubBub-45 dataset consists of 15 subsets named HubBub-45-

A1, HubBub-45-A2, and so forth. In addition, SSD1 was used

to test USB 3.0 hubs (A1-A12), SSD33 was employed for

USB 3.1 hubs (B1-B4), and SSD2 was used to evaluate C1.

Same as HubBub-100 Dataset, we collect data on Desktop

A. Due to data collection being time-intensive, e.g., approxi-

mately 4 days for HubBub-100 on one USB hub, we scaled

down the data for each HubBub-45 subset to about one-fifth

of the size of HubBub-100. Specifically, we selected only

45 websites and collected 200 traces per website. Since the

purpose of this dataset is to demonstrate the feasibility of

HubBub across different USB hubs effectively, our objective

can still be achieved. Consequently, HubBub-45 consists of

a total of 135,000 traces (15 USB hubs × 45 websites × 200

traces).

HubBub-OpenWorld Dataset. To evaluate the Open-World

scenario, we use 2,818 valid websites crawled by Chrome Top

Million Websites (CrUX) [19]. We collect two traces for each

website in the same setting with the HubBub-100 Dataset.

Consequently, this dataset consists of 5,636 traces.

3The maximum throughput of SSD3 is 3,000 MB/s.

B Word List

and bus cup dog key man pig sky sun two city game give hand

life name park play time this angle chair crown light quick

south super about audio candy double island jacket people

planet quench random spring rocket search

C Covert-channel Designs

In CC1 (Covert Channel 1), we use the SSD prober as the

receiver. The sender program is deployed within the Local

Area Network (LAN), and transmits UDP packets to the target

machine’s NIC, which is connected via the USB hub. In the

sender, a buffer size of 256 KB is used to represent a binary 1,

and a 2 ms sleep interval denotes a binary 0, yielding a stable

bit transmission rate of 500 bit/s.

In CC2, the gadget prober acts as the sender and the NIC

prober as the receiver. To transmit bits reliably, the gadget

prober sends continuous interrupt packets for 250 ms to rep-

resent a binary 1 and remains idle for 250 ms to represent a

binary 0, resulting in a bandwidth of approximately 4 bit/s.

In CC3, we use a Cynthion device [2] to inject keystrokes

as the sender, and the gadget prober serves as the receiver.

The sender issues three keystrokes to represent a binary 1 and

waits 200 ms to represent a binary 0, achieving a bandwidth

of around 5 bit/s.

D Other USB Attacks

We classify USB-based attacks into invasive and non-invasive

categories. Invasive attacks are designed to introduce

keystrokes [6,18,20] or code fragments [36,58,67,70] into the

USB host, or inflict damage on it [5]. Non-invasive attacks

typically passively and covertly intercept confidential data

from the USB channel, making them difficult to detect. For ex-

ample, USB Key Logger [60] records keystrokes by attaching

a device to the USB communication path. BADUSB 2.0 [34]

accomplishes identical keystroke recording by fabricating a

custom USB cable and initiating a Man-in-the-Middle as-

sault. JitterBug [56] are instruments that can discreetly exfil-

trate confidential data from input devices (e.g., keyboard) by

inserting minor, nearly undetectable pauses following each

keystroke, thus embedding data into the timing of the subse-

quent network traffic. Relying on an unmodified USB device

without RF transmitters, USBee [27] encodes and transmits

data through electromagnetic emissions from the USB con-

nector’s data bus. The electromagnetic signal could then be

decoded by a nearby receiver. Besides, power side-channel

attacks [45, 49, 73, 77] can also be launched against USB

hosts or devices. This involves a distinct method of examin-

ing power consumption, distinct from our work. HubBub can

be classified as a Non-invasive USB attack as well.

E Supplementary Algorithms and Tables

Algorithm 2 NIC Prober

Input: buffer_size, access_num

Output: Intervals

1: Intervals = []

2: Conn← CONNECTIONREQUEST(server, WebSocket)

3: Buffer = MEMORYALLOC(buffer_size)

4: TS← GETTIME() ▷ TS = timestamp

5: for i← 1 to access_num do

6: Packet← RECIVE(Conn, buffer_size)

7: Intervals.APPEND(GETTIME() - TS)

8: TS← GETTIME()

9: end for

10: MEMORYRELEASE(Buffer)

11: CLOSE(Conn)

Algorithm 3 NIC Prober (Server Side)

Input: buffer_size, access_num

Output: None

1: Conn← CONNECTIONRESPOSE(client, WebSocket)

2: Buffer = MEMORYALLOC(buffer_size)

3: for i← 1 to access_num do

4: Buffer← Payload

5: SEND(Conn, Buffer)

6: AWAIT(client, confirmation)

7: end for

8: MEMORYRELEASE(Buffer)

9: CLOSE(Conn)

Algorithm 4 Gadget Prober

Input: transfer_type, buffer_size, access_num

Output: Intervals

1: CREATE EP&IN(transfer_type)

2: Intervals← []

3: Buffer← MEMORYALLOC(buffer_size)

4: TS← GETTIME() ▷ TS = timestamp

5: for i← 1 to access_num do

6: WRITE(EP, buffer) ▷ Write buffer to EP

7: Intervals.APPEND(GETTIME() − TS)

8: TS← GetTime()

9: end for

10: MEMORYRELEASE(Buffer)

Table 6: Architecture and Dimensions of HubAttGRU Model

Parameters/Layer Embedding GRU Attention FC1 FC2 FC3

Input Dimension 1 384 384 384 256 128

Output Dimension 384 384 384 256 128 100

Table 7: Platform Specifications

Desktop A Desktop B Desktop C Desktop D

Model Dell OptiPlex 7060 MFF Micro-Star Aegis RS 12th Intel NUC Lenovo ThinkCentre M93P

Processor Intel Core i7-8700 Intel Core i7-12700KF Intel Core i3-8190 Intel Core i7-4790

Frequency 3.20 GHz 3.60 GHz 3.00 GHz 3.60 GHz

Memory 32 GiB 32 GiB 8 GiB 4 GiB

OS (Kernel) Ubuntu 22.04.4 (6.5.0-28) Ubuntu 22.04.4 (6.5.0-28) Ubuntu 22.04.1 (6.8.0-58) Ubuntu 22.04.1 (6.8.0-58)

Table 8: Detailed Device Specifications.

Name Brand VID PID bcdDevice Upstream

A1 UNI 0x05e3 (Genesys Logic, Inc.) 0x0626 6.56 Type A

A2 UGREEN 0x05e3 (Genesys Logic, Inc.) 0x0626 6.56 Type A

A3 ANKER 0x291a (Anker) 0xa817 90.91 Type C

A4 TPLINK 0x0bda (Realtek Semiconductor Corp.) 0x0411 0.02 Type A

A5 ABLEWE 0x0bda (Realtek Semiconductor Corp.) 0x0411 1.01 Type A

A6 ACEELE 0x05e3 (Genesys Logic, Inc.) 0x0626 6.56 Type A

A7 OYLIAN 0x05e3 (Genesys Logic, Inc.) 0x0626 62.05 Type A

A8 AMAZON BASICS 0x2109(VIA Labs, Inc.) 0x0813 90.11 Type C

A9 Fophmo 0x0bda (Realtek Semiconductor Corp.) 0x0411 1.01 Type C

A10 ACER 0x05e3 (Genesys Logic, Inc.) 0x0626 6.63 Type C

A11 WAVLINK 0x174c (ASMedia Technology Inc.) 0x3074 0.01 Type A

A12 UtechSmart 0x05e3 (Genesys Logic, Inc.) 0x0626 6.63 Type C

B1 RSHTECH 0x2109 (VIA Labs, Inc.) 0x0822 8.b4 Type C

B2 INATECK 0x1d5c (Fresco Logic) 0x5500 1.02 Type C

B3 WAVLINK 0x2109 (VIA Labs, Inc.) 0x0822 90.14 Type C

B4 Getatek 0x05e3 (Genesys Logic, Inc.) 0x0610 94.05 Type C

C1 Dell 0x0bda (Realtek Semiconductor Corp.) 0x0409 1.55 Type C

D1 SABRENT 0x05e3 (Genesys Logic, Inc.) 0x0608 85.38 Type-A

F1 N/A 0x1d6b (Linux Foundation) 0x0003 6.05 USB Controller

SSD1 SAMSUNG 0x04e8(Samsung Electronics Co., Ltd) 0x61f5 1.00 Type C

SSD2 SAMSUNG 0x04e8(Samsung Electronics Co., Ltd) 0x4001 1.00 Type C

SSD3 GiGimundo 0x152d(JMicron Technology Corp.) 0x0584 2.12 Type C

ETH-A1 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-A2 N/A 0x0b95 (ASIX Electronics Corp.) 0x1790 2.00 Integrated

ETH-A3 N/A 0x0b95 (ASIX Electronics Corp.) 0x1790 2.00 Integrated

ETH-A4 N/A 0x2357 (TP-Link) 0x0601 30.00 Integrated

ETH-A5 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 31.00 Integrated

ETH-A6 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-A7 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-A8 N/A 0x0bda(Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-A9 N/A 0x0bda(Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-A10 N/A 0x0bda(Realtek Semiconductor Corp.) 0x8153 31.00 Integrated

ETH-A11 N/A 0x0b95(ASIX Electronics Corp.) 0x1790 2.00 Integrated

ETH-A12 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 30.00 Integrated

ETH-B1 N/A 0x0b95 (ASIX Electronics Corp.) 0x1790 2.00 Integrated

ETH-B2 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 31.00 Integrated

ETH-B3 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8156 31.04 Integrated

ETH-B4 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 31.00 Integrated

ETH-C1 N/A 0x0bda (Realtek Semiconductor Corp.) 0x8153 33.00 Integrated

ETH-D1 TPLINK 0x0b95 (ASIX Electronics Corp.) 0x1790 2.00 Type-C

Camera1 Logitech 0x046d (Logitech, Inc.) 0x08e5 0.21 Type A

Keyboard1 MSI 0x0b20 (TransDimension, Inc.) 0db0 1.10 Type-A

	Introduction
	Background
	Attack Overview
	Threat Model
	Characterization of USB Hub Contention
	Attack Steps of HubBub
	Challenges

	Attack A: Website Inference
	SSD Prober Design and Implementation
	Website Fingerprinting
	Dataset Creation
	Data Pre-processing
	Design and Choice of Classifiers

	Attack B: Camera Activity Detection
	NIC Prober Design and Implementation
	Camera Activity Detection

	Attack C: Keystrokes Detection
	Gadget Prober Design and Implementation
	Keystrokes Detection

	Evaluation
	Experiment Platform
	Website Inference with the SSD Prober
	Camera Activity Detection with the NIC Prober
	Keystrokes Capture with the Gadget Prober
	Attack Generality and Transferability
	Effective Bandwidth and Noise Resilience
	Other Attacking Combinations

	Potential Mitigations
	Related Works
	Conclusion
	Ethics considerations
	Open Science Policy
	HubBub Website Fingerprinting Dataset
	Word List
	Covert-channel Designs
	Other USB Attacks
	Supplementary Algorithms and Tables

