
NEUROSCOPE: Reverse Engineering Deep Neural Network on Edge Devices

using Dynamic Analysis

Ruoyu Wu1, Muqi Zou1, Arslan Khan2, Taegyu Kim2,

Dongyan Xu1, Dave (Jing) Tian1, and Antonio Bianchi1

1Purdue University, 2 The Pennsylvania State University
{wu1377, zou116, dxu, daveti, antoniob}@purdue.edu, {arslankhan, tgkim}@psu.edu

Abstract

The usage of Deep Neural Network (DNN) models in edge

devices (e.g., IoT devices) has surged. In this usage scenario,

the inference phase of the DNN model is executed by a dedi-

cated, compiled piece of code (i.e., a DNN binary). From the

security standpoint, the ability to reverse engineer such bina-

ries (i.e., recovering the original, high-level representation of

the implemented DNN) enables several applications, such as

stealing DNN models, gray/white-box adversarial machine

learning attacks and defenses, and backdoor detection. While

a few recent works proposed dedicated approaches to reverse

engineer DNN binaries, these approaches are fundamentally

limited in the type of DNN binaries they support.

To address these limitations, in this paper, we propose

NEUROSCOPE, a novel data-driven approach based on dy-

namic analysis and machine learning to reverse engineer

DNN binaries. This compiler-independent and code-feature-

free approach enables NEUROSCOPE to support a larger va-

riety of DNN binaries across different DNN compilers and

hardware platforms, including binaries implementing DNN

models using an interpreter-based approach. We demonstrate

NEUROSCOPE’s capability by using it to reverse engineer

DNN binaries unsupported by previous approaches with high

accuracy. Moreover, we showcase how NEUROSCOPE can

reverse engineer a proprietary DNN binary compiled with

a closed-source compiler and enable gray-box adversarial

machine learning attacks.

1 Introduction

In recent years, there has been a surge in the usage of Deep

Neural Network (DNN) models to perform a variety of tasks,

such as image recognition, natural language processing, and

autonomous driving. While some of these models are de-

ployed on high-end GPU servers (and are accessible online),

others are deployed locally on edge devices, such as IoT de-

vices and other devices [2,51] in consideration of low latency,

high availability, and better privacy. An example of this sce-

nario is a smart-camera performing on-device face recogni-

tion [8]. In this case, the inference phase of a DNN is executed

by a dedicated, compiled piece of code, which we call a DNN

binary.

From the security standpoint, the ability to reverse engineer

such binaries (i.e., recovering the original, high-level represen-

tation of the implemented DNN) enables stealing DNN mod-

els, which are considered valuable intellectual properties [62].

Additionally, it also facilitates several downstream applica-

tions, including gray/white-box adversarial machine learning

attacks and defenses [41, 46], backdoor detection [30], or bi-

nary patching [63]. However, traditional, general-purpose de-

compilers [32,45] are not suitable for this task, since they can

only recover a C-like representation of the code [38,64,66,72].

Recent works proposed dedicated approaches to reverse

engineering DNN binaries to tackle this issue. Specifically,

DND [66] uses symbolic execution to reverse engineer DNN

binaries generated by dedicated DNN compilers. Additionally,

BTD [38] and NNReverse [19] first use dedicated machine

learning classifiers to identify the types of DNN operators

implemented in the DNN binary and then recover the high-

level representation of the implemented DNN using strategies

specific to certain DNN compilers.

Besides compiler dependency, the existing approaches tar-

get a specific type of DNN binaries in which each DNN op-

erator is implemented as a standalone function (i.e., DNN

binaries compiled using the Ahead of Time approach). For

this reason, they cannot handle DNN binaries that utilize the

interpreter-based approach, where a runtime interprets a data-

only, proprietary representation of a DNN. DNN binary code

does not reflect the structure of implemented DNNs by design.

Hence, the existing approaches, which rely on code features

(either extracted by symbolic execution or machine learning

techniques), cannot extract a high-level representation of the

DNNs from these binaries. Reliance on specific code features

also forces current approaches to retrain the machine learning

models or develop additional compiler-specific features for

each DNN compiler, CPU architecture, or even compiler ver-

sion. Similarly, these approaches are unsuitable for reverse



engineering DNN binaries leveraging hardware accelerators,

such as NPUs, because the internals of these accelerators and

the code they execute cannot be directly observed.

To address these limitations, we propose NEUROSCOPE,

a novel data-driven approach based on dynamic analysis

to reverse engineer DNN binaries. This approach enables

NEUROSCOPE to support a variety of DNN binaries, includ-

ing binaries implementing DNN models using the interpreter-

based approach. Our key observation is that, although DNNs

may be implemented differently by various compilers on dif-

ferent hardware platforms, the mathematical semantics of the

DNN operators (the basic building blocks of a DNN) remain

the same. Therefore, by examining the data that different

operators receive and output, we can infer the semantics of

operators in an SDK-independent and hardware-independent

fashion.

Accordingly, NEUROSCOPE first uses dynamic analysis to

identify the DNN operators implemented in the binary, and

then captures pairs of input/output data, i.e., pairs of data be-

ing processed by and returned from each DNN operator. Then,

it uses dedicated machine learning models to infer the DNN

semantics from input/output pairs enriched with statistical

features extracted from the input/output pairs. To acquire the

dataset for training such models, we propose a generic data

synthesizer that synthesizes input/output pairs of each DNN

operator type.

NEUROSCOPE successfully recovers five different DNN

models (LeNet-5 [69], ResNet-18 [31], MobileNet v2 [52],

Char-RNN [1], and LSTM-MNIST [10]) used in three differ-

ent edge devices (NXP i.MX RT1050, TI SK-TDA4VM, and

NXP i.MX 8M Plus). In addition, we demonstrate how we use

NEUROSCOPE to reverse engineer a proprietary DNN binary

compiled with a closed-source compiler and showcase how

NEUROSCOPE’s capability can be used to perform more pow-

erful gray-box adversarial machine learning attacks instead

of black-box ones.

In summary, these are the contributions of this paper:

1. We propose NEUROSCOPE, a compiler-independent and

hardware-independent DNN binary reverse engineer-

ing framework. NEUROSCOPE adopts a data-driven ap-

proach based on dynamic analysis to bypass limitations

affecting existing DNN reverse engineering tools.

2. We propose using machine learning models to infer the

semantics of DNN operators from their input and output,

and we develop a generic data synthesizer that synthe-

sizes the dataset for training such models.

3. We show how NEUROSCOPE can successfully recover

the high-level representation of three different DNN

models deployed with three different SDKs and on three

different hardware platforms. Additionally, we show-

case how this capability can be used to reverse engineer

a proprietary DNN binary. The results can be used to

boost adversarial machine learning attacks by enabling

gray-box attacks in place of black-box ones.

NEUROSCOPE’s source code is available via Github at

https://github.com/purseclab/NeuroScope.

2 Background

2.1 Deep Neural Network

Deep Neural Networks (DNNs) represent a category of ma-

chine learning algorithms that utilize a series of cascaded

DNN operators to extract and transform features. DNN op-

erators, including convolution, pooling, and activation, serve

as the fundamental building blocks of DNNs. Each DNN

operator receives the output of preceding operators as its in-

put (or the initial input to the DNN model in the absence of

prior operators) and calculates its output based on its operator

type and attributes. DNN operator attributes are the properties

of the operator that define the operator’s behavior, such as

the kernel size and stride of a convolution operator, and the

number of output channels of a fully connected operator. The

input and output of each DNN operator are tensors, which

represent multidimensional data.

DNN Architecture. DNN architecture refers to the struc-

ture of nodes that constitute a DNN, which is represented as

a directed computation graph, where each node, as a DNN

operator, performs a specific mathematical operation on its

inputs. Specifically, the DNN architecture includes the num-

ber of operators, the type/attributes of each operator, and the

topology among operators. The DNN architecture is crucial

because it influences the network’s ability to learn and gen-

eralize from data. Developing DNN model architectures usu-

ally demands significant human effort and extensive com-

puting resources. Consequently, the architecture itself has

evolved into intellectual property and a primary target for

attackers [27, 68]. Furthermore, knowledge of a DNN’s ar-

chitecture can serve as a basis for subsequent attacks, includ-

ing the model weights stealing [49], adversarial attacks [18],

membership inference [17, 56], and data reconstruction [14].

2.2 DNN Inference on Edge Devices

To help developers deploy DNN on edge devices, vendors usu-

ally provide their specific (and usually proprietary) software

development kits (SDKs), such as NXP eIQ ML software de-

velopment environment [54] and Texas Instruments Edge AI

Studio [12], which take a DNN model as input and generate a

binary that can be executed on vendors’ hardware. There are

two primary approaches to generate such a binary: ahead-of-

time (AOT) approach and interpreter-based approach [66].

For AOT, each DNN operator in a DNN model is compiled

into a separate function, where an AOT compiler specializes

the function for the specific operator attributes. For instance,



two convolution operators with different operator attributes

(e.g., kernel size), though sharing the same operator type, will

be compiled into two different functions.

On the contrary, the interpreter-based approach generates

a binary that contains a machine learning runtime library

and a DNN configuration file, which is often encoded in

a proprietary format by SDKs, such as the format used by

NXP eIQ DeepViewRT inference [4]. To execute the DNN,

the runtime first loads and parses the DNN configuration

file into a computation graph, and then interprets the com-

putation graph to perform the DNN inference. Due to the

portability and flexibility, the interpreter-based approach is

widely adopted, especially when deploying DNN on edge

devices with hardware accelerators, such as Tensorflow Lite

for Microcontrollers (TFLM) [22], Edge Impulse [3], and

DeepViewRT [4], Though implemented differently by differ-

ent vendors, the inference workflow is similar, as shown in

Listing 1.

1 void main(){
2 // Load DNN model.
3 model = load_model();
4 // Determine backends (e.g., CPU, accelerators).
5 model−>set_backends(get_backends());
6 // Partition into subgraphs according to backends.
7 model−>partition_graph();
8 // Perform inference.
9 while (data = get_data()) {

10 model−>set_input(data);
11 inference(model);
12 output = model−>get_output();
13 }
14 }
15

16 void inference(model){
17 // Invoke subgraph in topological order.
18 for (subgraph : model−>subgraphs()) {
19 if (subgraph−>backend() == CPU) {
20 for (op : subgraph.operators()) {
21 op−>invoke();
22 }
23 } else {
24 subgraph−>invoke_at_accelerator();
25 }
26 }
27 }

Listing 1: Pseudocode of simplified DNN inference workflow.

The workflow can be summarized as follows: ❶ The run-

time first loads the DNN model. ❷ The runtime then deter-

mines which hardware backends are used for DNN inference,

such as neural processing unit (NPU) and digital signal pro-

cessor (DSP). Hardware accelerators usually only support a

subset of DNN operators which are computationally intensive,

such as convolution and matrix multiplication [35]. For other

operators, the runtime needs to fall back to the CPU back-

end for operator execution [9], which is one of the reasons

why the CPU backend code is usually included in the binary

even when hardware accelerators are available. ❸ The runtime

then partitions the computation graph into multiple subgraphs,

each of which contains only the operators that are supported

by the same backend. ❹ With the subgraphs partitioned, the

runtime feeds the input data to the DNN model and iterates

over the subgraphs in the topological order. For subgraphs

executed on the hardware accelerators, the runtime transfers

them to the hardware accelerator, and they are executed on the

hardware accelerator as a whole. In other words, a subgraph

executed on the hardware accelerator is a black box where

we can only observe its input and output, instead of the inter-

mediate states of the operators in the subgraph. On the other

hand, for subgraphs executed on the CPU, each operator in

the subgraph is invoked sequentially, leaving the intermediate

states of the operators in the subgraph observable.

Note that, for DNN binaries generated with the interpreter-

based approach, each type of the DNN operator has a generic

implementation. For instance, if a DNN contains multiple

Convolution operators, the same Convolution operator im-

plementation will be invoked multiple times, with different

inputs, operator attributes, and parameters.

3 Motivation

Deploying DNNs on edge devices is becoming prevalent to

enable intelligence features, such as the usage of face recogni-

tion in smart cameras [8]. Since the firmware on edge devices

are, in general, accessible to the end users, the firmware imple-

menting DNN models are vulnerable to reverse engineering

attacks [19, 38, 66, 70], which recover the DNN model from

the binaries with static or dynamic binary analysis.

A few recent works have explored this topic. Specifically,

DnD [66] assumes certain code patterns (e.g., nested loop

structures) and data structure layouts exhibited by its target

DNN compilers (i.e., glow [43] and TVM [20]), and develops

pattern matching heuristics that are specifically designed for

the target DNN compilers to recover the semantics. BTD [38]

and NNReverse [19] operate in three steps. First, they recover

the DNN operator types using binary function similarity, i.e.,

they train NLP models on the assembly code generated by

a DNN compiler. Then, they use the trained models to clas-

sify the operator type from the assembly code. Finally, they

recover the operator attributes and parameters with compiler-

specific heuristics. We summarize the previous works in Ta-

ble 1 and compare them against NEUROSCOPE.

Table 1: NEUROSCOPE and representative works for DNN

binary reverse engineering.

Works Features Compiler Scheme Targeted Hardware

DnD [66] Binary Code AOT CPU

BTD [38] Binary Code AOT x86 CPU

NNReverse [19] Binary Code AOT CPU

NEUROSCOPE I/O Behavior Interpreter/AOT CPU with accelerator

Features. The existing approaches use binary code as features

to recover the DNN model. Specifically, DnD and BTD rely

on compiler-specific code patterns and data structure layouts

to develop compiler-specific heuristics to recover the DNN



model. BTD and NNReverse train an NLP model on the bi-

nary code generated by the target DNN compiler to classify

the operator types within the binary generated by the same

DNN compiler. BTD even requires training dedicated mod-

els for different versions and different optimization levels of

the same DNN compiler [38]. As mentioned in Section 2.2,

since DNNs on edge devices are deployed with a diverse

set of vendor-specific, proprietary, and frequently updated

DNN compilers, it is challenging to develop and maintain the

heuristics/models for each DNN compiler configuration.

Compiler Scheme. Existing works focus on DNN binaries

generated by AOT-based DNN compilers. Those DNN bina-

ries are standalone binaries and can only run fixed DNNs.

However, many DNN binaries on edge devices are gener-

ated by interpreter-based DNN compilers [3, 4, 29], which

encodes a DNN into a configuration file in a proprietary for-

mat and loads this DNN from the file only during inference.

Reverse engineering from DNNs generated by interpreter-

based DNN compilers is challenging for static-analysis-based

approaches, such as DnD and NNReverse. Specifically, to ex-

ecute a DNN, an interpreter reads and parses hyperparameters

from its configuration file, constructs a computation graph

on the fly, and iterates through the graph to invoke the cor-

responding operator functions. Unfortunately, the dynamic

nature and multiple levels of abstractions of DNN binaries

compiled with the interpreter-based approach make static re-

verse engineering difficult. For instance, to determine operator

types, static-analysis-based approaches must identify seman-

tics and dependencies between fields in a configuration file

and their corresponding operator function invocations. This

process requires precise binary-level interprocedural analy-

sis, which is not supported by previous static-analysis-based

approaches [66]. Note that BTD can handle DNN binaries

produced only by AOT-based DNN compilers, although it

employs dynamic binary analysis built upon Intel Pin.

Targeted Hardware. Existing works only support DNN bi-

naries that are executed on a CPU. For example, BTD only

supports the binaries on an x86 CPU, while many DNNs on

edge devices run on hardware accelerators whenever possible.

The goal of this work is to develop a framework that ad-

dresses the aforementioned limitations and complements the

capabilities of the aforementioned state-of-the-art works. In

the following paragraphs, we describe the challenges in ful-

filling the aforementioned goals and provide an overview of

how NEUROSCOPE addresses them.

Challenge 1: Supporting diverse and proprietary DNN

SDKs and hardware platforms. DNNs are compiled and

deployed into different hardware platforms, with different

vendor-specific SDKs. To a certain extent, the existing works

"overfit" target compilers, and it is challenging to have a

generic and easily extensible solution that recovers the DNN

semantics by analyzing the binary code due to variations of

DNN compiler semantics.

Solution 1: Our key observation is that, although DNNs may

be implemented differently by various compilers on differ-

ent hardware, the mathematical semantics of DNN operators,

the basic building blocks of a DNN, remain identical. More

importantly, the mathematical semantics can be inferred by ex-

amining their input-output behaviors, which are usually SDK-

and hardware-independent compared with examining their

binary code. For instance, given the same input, the output

of a Convolution operator should exhibit similar patterns

across different DNN SDKs and hardware platforms regard-

less of how they are implemented. To capture the input-output

behaviors, we develop a dynamic analysis framework to au-

tomatically locate the functions that implement each DNN

operator, identify the memory buffers that hold input/output

tensors, and record each input/output pairs as a pair of one-

dimensional arrays (Section 6.1).

Challenge 2: Inferring semantics from input/output pairs

with unknown tensor shape, operator attributes, and pa-

rameters. As mentioned earlier, we propose to infer the se-

mantics of DNN operators by examining their input-output

behaviors. However, inferring the semantics from input/out-

put pairs requires reasoning about the numeric relationship

between two sequences. Furthermore, we simply cannot enu-

merate all the possible DNN operators on the input tensor and

select the one that matches the output tensor because of the

unknown shape of the input/output tensors we acquire from

memory and the unknown operator attributes and parameters.

For instance, an array we acquire from memory containing

the values [1,2,3,4,5,6,7,8] may represent a tensor of shape

(2,2,2) (i.e., [[[1,2], [3,4]], [[5,6], [7,8]]]), or a tensor of shape

(4,2) (i.e., [[1,2], [3,4], [5,6], [7,8]]). Additionally, even if we

know the shape of the input/output tensors, the operator at-

tributes and parameters are still unknown and encompass a

wide range of possibilities, making it infeasible to enumerate

all the possibilities.

Solution 2: We propose using machine learning to infer the

DNN semantics from input/output pairs. Specifically, we uti-

lize the Seq2Seq model [58] to encode the input/output pairs

into a vector and enrich the encoded vector with statistical

features we extract from the input/output pairs (e.g., lengths

and averages) to recover the operator type and attributes (Sec-

tion 5.2).

To acquire the dataset for training such a model, we pro-

pose a data synthesizer that synthesizes input/output pairs of

each supported DNN operator type (Section 5.1). To ensure

the synthesized input/output pairs are valid, the data synthe-

sizer considers the constraints of each operator type (e.g., for

Convolution operator, the kernel size should be smaller than

the input width/height).

Challenge 3: Part of the DNN may be executed using hard-

ware accelerators. As described in Section 2.2, the runtime

on the edge device partitions the DNN computation graph

into multiple subgraphs, each of which usually contains mul-

tiple operators that are supported by the same backend. Some



subgraphs of the DNN may be executed using hardware accel-

erators available on the edge device. The internal function of

these accelerators is a black box, and we can only observe the

input and output of the whole subgraph, instead of the inter-

mediate states of each operator, preventing us from inferring

the semantics of each individual DNN operator executed by a

hardware accelerator.

Solution 3: For flexibility and portability considerations, cur-

rent DNN inference runtimes usually include the CPU back-

end code for all the operators in the binary even when hard-

ware accelerators are available [9, 22]. In this way, when

hardware accelerators are not available, the runtime can ro-

bustly fall back to the CPU backend for subgraph execution,

where we can observe the input/output of each operator in

the subgraph. Leveraging this observation, we use various

approaches to prevent the runtime from using the hardware

accelerators, forcing it to fall back to the CPU backend for

subgraph execution, and then use the aforementioned tech-

niques to infer the semantics of each operator in the subgraph

(Section 6.1.1). Note that this approach relies on a DNN

runtime’s capability to switch its execution from a hardware

accelerator to a CPU (i.e., CPU fallback) because we can-

not directly reverse-engineer a DNN running on a hardware

accelerator. We discuss the limitations of this approach and

potential solutions in Section 10.

4 NEUROSCOPE Overview

NEUROSCOPE supports recovering DNN architecture (i.e.,

operator types, attributes, and topology) from DNN binaries

and outputs the recovered architecture in ONNX format [25].

          ❹ Operator-level
                 Info Recovery

         ❸ I/O Data Collection

         ❶ Dataset Synthesis           ❷ Model Training

Target DNN Binary

Dumped I/O of 
each operator 

Trained models

Recovered operator 
type/attributes

Recovered DNN Architecture

Offline Phase

Online Phase
       ❺ Model Recovery

Figure 1: An overview of NEUROSCOPE pipeline.

Figure 1 shows an overview of NEUROSCOPE, which con-

sists of two phases: an offline phase (Section 5) and an online

phase (Section 6).

During the offline phase, given a set of input/output pairs,

NEUROSCOPE trains a classification neural network, MT ,

to recover the operator type, and a set of dedicated regres-

sion neural networks, MAtt , to recover the operator attributes.

To this aim, as the first step, NEUROSCOPE synthesizes a

training dataset consisting of numerous input/output pairs of

each supported DNN operator (Step ❶in Section 5.1). Then,

NEUROSCOPE trains MT and MAtt on the synthesized training

dataset. Later on, these trained models can, given input/output

pairs of an operator, recover its type and attributes, respec-

tively (Step ❷in Section 5.2).

In the online phase, NEUROSCOPE automatically reverse-

engineers the DNN architecture from the target DNN binary

using the collected input/output data and the trained neural

networks. Specifically, NEUROSCOPE first locates where the

mathematical operations for different DNN operators hap-

pen in the binary and the input/output buffers for each op-

erator. Then, it dumps the data in the input/output buffers

(Step ❸in Section 6.1). Later, NEUROSCOPE recovers the

operator-level information (i.e., operator type and attributes)

of each DNN operator from the dumped input/output data

using the MT and MAtt (Step ❹in Section 6.2) trained dur-

ing the offline phases. Finally, NEUROSCOPE recovers the

DNN topology i.e., the interconnections of the different DNN

operators, by identifying data dependencies between their

input/output buffers. As a last step, by combining the topol-

ogy information with the already recovered operator-level

information, NEUROSCOPE recovers the complete DNN ar-

chitecture (Step ❺in Section 6.3).

Note that the offline phase is conducted only once to train

MT and MAtt , and the online phase is conducted for each run

of the DNN binaries (i.e., once per input).

5 NEUROSCOPE Offline Phase

In this section, we describe the offline phase consisting of

two steps: (1) dataset synthesis (Section 5.1) and (2) model

training (Section 5.2). The offline phase is conducted only

once, and the trained neural networks will be used in the

online phase to recover the DNN architecture from different

DNN binaries on different edge devices.

5.1 Dataset Synthesis

As the first step, NEUROSCOPE synthesizes a dataset consist-

ing of numerous input/output pairs of each supported DNN

operator to train MT and MAtt . We chose to synthesize a

dataset instead of collecting from existing DNN binaries be-

cause we aim at training the generic MT and MAtt to support

binaries compiled by different and proprietary DNN SDKs.

To synthesize the dataset, NEUROSCOPE repeatedly

chooses a DNN operator type, generates random input ten-

sor shape, operator attributes, and operator parameters, and it

computes the corresponding output tensor. Since there are in-

herent constraints between the input tensor shape and operator

attributes, in order to ensure the correctness of the synthesized

dataset, NEUROSCOPE considers these constraints when gen-

erating the input tensor shape and operator attributes. Taking

the convolution operator (Conv) as an example, its output

shape size can be calculated as Out = (In−K +2∗P+1)/S,



where Out, In, K, P and S denote the output size, input size,

kernel size, padding size, and striding size, respectively. Fur-

thermore, Out and In must be positive integers, while K, P,

S must be non-negative integers. Besides the constraints be-

tween input tensor shape and operator attributes, operator

attributes also have their own valid ranges [27]. For instance,

the kernel size (K) of a convolution operator is usually in

the range [1,7], while the padding size (P) is usually in the

range [0,(K −1)/2] [27]. Table 3 summarizes these operator

attributes and their valid ranges.

Given the above constraints, NEUROSCOPE randomly gen-

erates the input tensor shapes, operator attributes, and operator

parameters satisfying the constraints, and computes the cor-

responding output tensors. Finally, NEUROSCOPE stores the

input/output tensor pairs along with their operator types, at-

tributes, and parameters in the dataset. Note that if a DNN

operator has two inputs, we represent them as a single tensor

by concatenating them.

5.2 Model Training

In this section, we first introduce the challenges and design

choices in modeling the problem of recovering DNN opera-

tors as a learning task (Section 5.2.1), and then we introduce

the architectures of MT and MAtt that we use to recover the

operator type and attributes (Section 5.2.2).

5.2.1 Challenges and Design Choices

We formulate the problem of recovering DNN operators as

follows: given an input/output tensor pair (⃗I, O⃗), where I⃗ and

O⃗ are the input and output tensors of a DNN operator, the goal

is to recover the operator type and its attributes. We enumerate

the challenges in modeling the problem as a learning task as

follows.

The first challenge is the inherent complexity of a multi-class

classification scenario. If we model recovering the operator

type and its attributes using a single classification model, the

number of output classes will be large, making the classifica-

tion hard to train. For instance, Conv operator has 5 attributes

(i.e., number of input channels, number of kernels, kernel size,

padding size, striding size, number of kernels), each of which

can take many choices. Assuming that each attribute can have

ten integer values, consequently, this leads to 105 attribute

combinations, solely for a Conv operator.

To tackle this challenge, we use a “divide-and-conquer” ap-

proach, decomposing the task into predicting the operator type

and predicting each attribute separately. Specifically, given an

input/output tensor pair of an operator, NEUROSCOPE first re-

covers its operator type with a classification model (MT ), and

then, based on the operator type recovered, recovers each of its

attributes using dedicated regression models (MAtt ). Note that

each attribute (e.g., kernel size and padding size) is recovered

by a dedicated regression neural network model.

The second challenge is the difficulty of modeling the re-

lationship between input and output tensors of an operator.

Unlike conventional sequence classification modeling, where

the model receives a single sequence as input, in this sce-

nario, rather than just reasoning one single sequence, the

model needs to capture the numerical relationship between

two sequences (i.e., input and output tensors of an operator).

Some existing work [23, 47] applies Sequence to Sequence

LSTM neural network (Seq2Seq) [58] with attention mecha-

nism [39] to capture the dependency between two sequences.

However, we find that the attention mechanism, such as a

transformer architecture, is not suitable for our problem, since

the sequences in our scenario are sometimes too long (e.g.,

the input sequence of a convolution operator can contain

64∗224∗224 = 3211264 elements), which makes the atten-

tion mechanism computationally expensive. However, with-

out the attention mechanism (as shown in the ablation study

in Section 8.1.2), the Seq2Seq alone fails to capture the de-

pendency between two sequences, possibly due to the lack of

the ability to capture the long-range dependency between two

sequences, leading to low accuracy of the recovered operator

type and attributes.

To tackle this challenge, we propose to enhance the

Seq2Seq neural network with statistical features extracted

from input/output sequences (as shown in Table 2) to accu-

rately capture the characteristics within and between the input

and output sequences. For example, we count the number of

zeros in the output tensor to distinguish Conv and Conv+Relu

operators. This is because the Relu operator, fused in the

Conv+Relu operator, transforms all negative elements to ze-

ros, resulting in more zeros in the output tensor than the Conv

operator alone. These many zeros serve as a strong indicator to

distinguish Conv and Conv+Relu operators. We will elaborate

on how the extracted statistical features are used in combina-

tion with the Seq2Seq neural network in Section 5.2.2.

Table 2: Extracted statistical features. I⃗, O⃗, len(X), and

range(X) denote the input sequence, output sequences, length

of a sequence X , and range of a sequence X , respectively.

Feature Type Feature

Sequence-level features Number of zero in I⃗, O⃗

Mean of I⃗, O⃗

Minimum of I⃗, O⃗

Maximum of I⃗, O⃗

Inter-sequence features len(⃗I)/len(O⃗)

range(⃗I)/range(O⃗)

5.2.2 Architectures of MT and MAtt

Figure 2 shows the architectures of MT and MAtt . For both

MT and MAtt , the input sequence (Input) of an operator is

fed into the first LSTM layer (I), and its final hidden state



is used as the initial hidden state of the second LSTM layer

(O) that processes the output sequence (Out put) of the same

operator. Both the input and output sequences are processed

at the tensor element level, where each element is a floating

point. Then, the final output state of the second LSTM layer

(O), along with each of the extracted statistical features in

Section 5.2.1 (F), is used as an input of the two consecutive

Fully Connected (FC) layers. For MT , the last FC layer outputs

a vector of the shape (1,C), where C is the number of output

classes, and a Softmax layer is applied to convert the output of

the last FC layer to a probability distribution over the output

classes. On the other hand, for MAtt , the last FC layer outputs

a floating-point value, which is the predicted value of the

attribute.

The design of MT and MAtt is inspired by neural pro-

gram synthesis techniques [23, 47]. Those techniques use

the Seq2Seq neural network to capture dependencies between

input and output sequences. However, as shown in the exper-

iments in Section 8.1.2, the Seq2Seq neural network alone

is not sufficient to capture dependencies between input and

output sequences. To enhance the Seq2Seq neural network,

we fuse the extracted statistical features and Seq2Seq neural

network with two consecutive FC layers. This combination

empirically shows a higher accuracy than that of the Seq2Seq

neural network alone. Note that we did not find it beneficial

to use an additional FC layer to fuse the statistical features

and the output of the Seq2Seq neural network.

We describe the hyperparameters of MT and MAtt and how

they are fine-tuned in Section 7.

I O
FC SoftMax

F
FC

I O
FC

F
FC MAtt

MT

Input

Output

Input

Output

Figure 2: The top and bottom figures show the architectures

of MT and MAtt , respectively. They share a similar architecture

except that MT has a Softmax layer at the end.

6 Online Phase

The online phase is conducted on the target DNN binary

on the edge device to recover the DNN architecture, which

consists of the following steps (as shown in Figure 1): ❸ I/O

data collection (Section 6.1), ❹ Operator-level Info Recovery

(Section 6.2), and ❺ Model Recovery (Section 6.3).

6.1 I/O Data Collection

In this section, we describe how NEUROSCOPE collects the

input/output data of the executed DNN operators, which will

be used to recover the operator-level information and the

DNN model in the following steps. The I/O data collection

consists of the following two steps: (1) Forcing the DNN run-

time to CPU mode and (2) Locating DNN operators and I/O

buffers. In the first step, as discussed in Section 3, in order to

have observability of the DNN runtime execution at an opera-

tor level, NEUROSCOPE forcibly executes the DNN runtime

on a CPU by hiding the hardware accelerator from the ma-

chine learning runtime (Section 6.1.1). Then, NEUROSCOPE

locates the implementations of all the used DNN operators

and their corresponding buffers that hold the input and output

data (Section 6.1.2).

6.1.1 Forcing the DNN Runtime to CPU Mode

To ensure the observability of the DNN execution at an oper-

ator level, NEUROSCOPE forcibly executes the DNN runtime

on a CPU. Embedded machine learning runtimes with hard-

ware acceleration support typically use Memory-Mapped I/O

(MMIO) to interface with the hardware accelerators, where an

accelerator’s I/O memory is directly mapped to the normal ad-

dress space, and a proprietary accelerator library is provided

as a shared library to manipulate the memory space. To hide

the hardware accelerator from the machine learning runtime,

we list the following techniques we used on the edge devices

we analyzed:

• Library Hiding: We can remove the shared libraries that

are used to communicate with the hardware accelerator.

• Configuration Tampering: Some machine learning run-

times, such as TIDL [13], use configuration files to spec-

ify the hardware accelerator to be used. We can modify

such configuration files to disable the usage of the hard-

ware accelerator.

Due to the robustness of the machine learning runtime,

we empirically found that the DNN binaries with hardware

acceleration support can still run in the CPU mode normally

after applying the above techniques. As shown in Section 8,

all the SDKs used for evaluation supported running in the

CPU mode. Note that our CPU mode enforcement technique

may be applicable only to certain edge devices. We discuss

the limitations of this CPU fallback approach and potential

solutions in Section 10.

6.1.2 Locating DNN Operators and I/O Buffers

In this section, we describe how NEUROSCOPE realizes the

operator-level I/O observability by locating the DNN operator

implementations and their corresponding buffers that hold the

I/O data.



Locating DNN Operator Implementations. As discussed in

Section 2.2, unlike the AOT approach that previous works [66]

focus on, the DNN binaries compiled with the interpreter-

based approach has generic implementations for each type of

DNN operator. To locate the DNN operator implementations,

we develop dedicated static and dynamic binary analyses.

Specifically, NEUROSCOPE first conducts static analysis to

locate DNN operator candidate functions. NEUROSCOPE con-

siders functions as DNN operator implementation candidates

if they have nested loops whose depth is more than 2 and con-

tain vectorized instructions (e.g., ARM NEON instructions)

since DNN operators are usually implemented with vectorized

instructions with nested loops [66]. This heuristic is based on

the observation that DNN operators, such as convolutions and

matrix multiplications, inherently involve repetitive computa-

tions over multi-dimensional data structures. These operators

are typically implemented using multiple nested loops with

vectorized instructions.

Next, NEUROSCOPE runs a target DNN binary and sets

breakpoints at entry addresses of a subset of candidate func-

tions. During execution, NEUROSCOPE monitors its execu-

tion to determine whether those candidate functions are ex-

ecuted. NEUROSCOPE can detect a candidate function ex-

ecution because an occurrence of a set breakpoint hit indi-

cates the execution of that candidate function. The reason

NEUROSCOPE only focuses on a subset of candidate func-

tions is that some edge devices have limitations on the number

of breakpoints that can be set at the same time. Since we only

focus, at each iteration, on a subset, we need to repeat the

process iteratively until NEUROSCOPE covers all candidate

functions. All the candidate functions that are executed are

considered DNN operator implementations.

Locating I/O Buffers. Once the DNN operator imple-

mentations invoked by the target DNN binary are found,

NEUROSCOPE locates their I/O data buffers and identifies

tensor element data types of data within those buffers. To

this end, we leverage the observation that the I/O buffers are

frequently accessed by the operator implementations in the

nested loops.

Specifically, for each DNN operator implementation,

NEUROSCOPE first conducts static binary analysis to identify

the entry point of the nested loops and all the memory ac-

cess instructions (e.g., ldr and str) within those loop bodies.

Then, NEUROSCOPE sets breakpoints at these memory access

instructions, resumes execution from the entry point of the

nested loops, and it collects the accessed memory addresses

until a target loop exits.

To locate the output buffer, NEUROSCOPE uses DB-

SCAN [24] to cluster the collected memory addresses updated

by DNN operators and then identifies the cluster with the

largest number of memory addresses as the output buffer. The

rationale behind this approach is that the majority of memory

addresses written by DNN operators are concentrated within

the output buffer, which is typically a contiguous memory

region. Similarly, for the input buffers, NEUROSCOPE uses

DBSCAN to cluster the collected memory addresses read

by DNN operators and then identifies the cluster with the

largest number of memory addresses as the input buffer. The

difference in locating the input and output buffers is that, for

input buffers, there may be two (e.g., Add operators have two

inputs). If two clusters have an equal number of memory ad-

dresses, NEUROSCOPE treats them as separate input buffers.

Otherwise, the cluster with the largest number of memory

addresses is considered the sole input buffer.

The reason NEUROSCOPE uses DBSCAN to cluster the

memory addresses is that the memory addresses of the in-

put/output buffers are usually contiguous, and DBSCAN is

suitable for clustering contiguous data points. NEUROSCOPE

repeats the above process for each invocation of the DNN

operator implementation, since, for some runtime, the I/O

buffers are dynamically allocated, and the location of the I/O

buffers can be different across different invocations.

Additionally, NEUROSCOPE identifies the tensor element

data type (e.g., 32-bit floating point or 8-bit integer) of

I/O buffers by analyzing the memory access instructions.

For instance, if the memory access instruction is str that

writes 32-bit data from a floating-point register to memory,

NEUROSCOPE considers the atomic data type of the buffer

as a 32-bit floating point.

Finally, NEUROSCOPE dumps the data within the identi-

fied input/output buffers to be used by Operator-level Info

Recovery (Section 6.2) and Model Recovery (Section 6.3).

6.2 Operator-level Info Recovery

NEUROSCOPE uses the MT and MAtt trained in the offline

phase to recover the operator type and attributes of every

DNN operator from their corresponding input/output buffer

dumps. Specifically, NEUROSCOPE feeds N different inputs

to the target DNN binary, and it collects the input/output buffer

dumps of each operator, as described in Section 6.1.2. That

is, for each operator in the target DNN binary, NEUROSCOPE

collects N different input/output buffer dumps. Then, for each

operator, NEUROSCOPE feeds these N different input/output

buffer dumps separately into the MT and decides the operator

type of each operator based on the majority vote of the pre-

dicted operator types. If multiple operator types are predicted

with the same highest vote, NEUROSCOPE randomly selects

one of them as the recovered operator type. After the opera-

tor type is determined, NEUROSCOPE infers the associated

attributes of the operator type using the MAtt , with the same

N input/output buffer dumps and the majority vote strategy

as used in the operator type recovery. N is set to 10 in our

evaluation, as it empirically achieves good performance.

Table 3 shows the attributes that NEUROSCOPE recovers.

As shown in the previous work [27, 38, 66], an operator’s at-

tributes can be deduced deterministically from other attributes

of the same operator, or can be deduced from the attributes of



the predecessor operator. For instance, the number of input

channels (Cin) of a convolution operator (Conv) is equal to the

number of kernels (Cout) of the predecessor operator. There-

fore, NEUROSCOPE only needs to recover some attributes of

each operator type, and the other attributes can be inferred

from the recovered attributes. We mark the attributes that

NEUROSCOPE needs to recover with ✓in Table 3. To recover

these marked attributes, NEUROSCOPE feeds the dumped I/O

data of each operator invocation into its associated MAtt and

uses the rounded predicted value as the recovered attribute.

Table 3: A list of attributes of operators. Conv and FC denote

the convolution and fully-connected operators. The Pooling

operator includes both MaxPool and AvgPool since their at-

tributes are identical. RNN and LSTM denote the recurrent neu-

ral network (RNN) operator and long short-term memory

(LSTM) operator, respectively. ✓in the column P denotes if

the attribute is predicted by a dedicated MAtt , the attributes

without the ✓are inferred from the other correlated attributes.

The assumed ranges are aligned with the recent works [27,40]

Operator Attribute Description P

Conv Cin Number of input channels.

Value is decided by the input or Cout

Cout Number of kernels. Its value is ✓

2n where n is in range [0, 8]

K Kernel size. Value is in range [1, 7]. ✓

S Stride size. Value is in {1, 2}. ✓

P Padding size. ✓

FC Fin Input size.

Value is decided by Fout or Fout

Fout Output size. ✓

Pooling K Kernel size. Value is in range [1, 7]. ✓

P Padding size. Value is in {0, 1}. ✓

S Stride size. Its value is in {1, 2} ✓

RNN Rhidden Hidden state size. ✓

LSTM Rhidden Hidden state size. ✓

6.3 Model Recovery

As the final step, NEUROSCOPE recovers the DNN topology

and combines it with the recovered operator-level information

to recover the complete DNN model.

Recovering DNN Topology. NEUROSCOPE recovers the

DNN topology by examining the data dependencies between

the identified I/O buffers of every operator invocation and their

invocation order. Specifically, NEUROSCOPE keeps track of

addresses of I/O buffers of each operator invocation and con-

nects two operator invocations if the successor invocation’s in-

puts match the predecessor invocation’s outputs. Through this

process, NEUROSCOPE identifies all the connections within

the DNN topology and eventually recovers the DNN topology.

Recovering DNN Model. NEUROSCOPE simply combines

the recovered DNN topology with the recovered operator-

level information, and outputs a high-level representation of

the recovered DNN architecture in the ONNX format [25].

7 Implementation

We implemented NEUROSCOPE in around 3,200 lines of

Python code.

Dataset Synthesis and Models. The dataset synthesis and

neural network models are implemented in Python using

PyTorch. Regarding the dataset synthesis, NEUROSCOPE

currently supports 12 DNN operators, including Add,

AvgPool, Concat, Conv, Conv+Relu, Fully Connected,

LSTM, MaxPool, Relu, RNN, Softmax, and Transpose. As

shown in the recent DNN reverse-engineering works [27, 68],

these operators are the most common operators composing

widely deployed DNN models, such as ResNet [31] and Mo-

bileNet [33]. We discuss NEUROSCOPE’s limitation regard-

ing unsupported operators/architectures (e.g., Transformer

Block operator in the transformer architecture [61]) and the

NEUROSCOPE extension plan as future work in Section 10.

Regarding the hyperparameters of MT and MAtt , we set the

hidden size of an LSTM layer to 16, and the output size of the

first FC layers to 32. To determine the optimal hyperparame-

ters, we conducted a grid search over a range of sizes: 8, 16,

32, and 64. Each configuration for those two sizes was used

to train the models on the training synthesized dataset and

evaluated on the validation synthesized dataset. As a result,

we selected the configuration with 16 for the hidden size of

an LSTM layer and 32 for the first FC layers because it shows

the best performance on the validation dataset. We use cross

entropy loss and mean squared error loss as the loss functions

to train MT and MAtt , respectively, and Adam optimizer to

train those models with a learning rate of 0.001. We did not

tune the learning rate, as we found that the default learning

rate worked well for our models.

Static Analysis. We implement our static analysis to iden-

tify the nested loop structures and some specific types of

instruction (e.g., vectorized instruction and memory access

instructions) using angr [57]. For the bare-metal edge devices,

we perform static analysis on the firmware binary, and for the

edge devices with an operating system, we perform static anal-

ysis on the shared library that contains the machine learning

runtime.

Dynamic Analysis. We utilize ptrace for Linux-based edge

devices to set breakpoints and collect memory access infor-

mation. For bare-metal edge devices, we utilize SEGGER

J-Link [6], a hardware debugger, to enable using GDB. We

discuss more details about how we can enable our dynamic

analysis in other scenarios in Section 10.

According to the static analysis results, the dynamic analy-

sis sets breakpoints and collects necessary information when

a breakpoint is triggered. During the collection of memory

access information, the analysis process can be slowed down

by the presence of complicated nested loops. To mitigate this

issue, we introduce a timeout for the analysis of each operator

implementation. If the analysis of an operator implementation

exceeds the timeout, we finish the analysis of the current oper-



ator implementation. If a timeout occurs, the boundary of the

I/O buffer is determined by comparing the memory content

before and after the invocation of the operator implementa-

tion. We empirically set the timeout as ten minutes, which is

sufficient in our experiments.

8 Evaluation

In this section, we evaluate the effectiveness of

NEUROSCOPE. First, we describe the synthesized dataset we

use to train our neural network models, and we measure the

models’ performance on the synthesized dataset (Section 8.1).

Then, we evaluate the full pipeline of NEUROSCOPE on two

real-world edge devices with different vendor-specific SDKs

and show the effectiveness of NEUROSCOPE in recovering

DNN architectures from the edge devices (Section 9.1).

Lastly, we present a case study to demonstrate how to

use NEUROSCOPE to reverse engineer a proprietary DNN

model shipped with the NXP i.MX 8M Plus board, a

System-on-Chip (SoC) designed for edge AI applications,

and then launch an adversarial attack by leveraging the

recovered DNN architecture (Section 9.2).

8.1 Synthesized Dataset and Evaluation

Here, we first describe the synthesized dataset we use to train

our neural network models and how we train MT and MAtt

in Section 8.1.1. Then, we evaluate the performance of our

trained models on the synthesized dataset in Section 8.1.2.

8.1.1 Synthesized Dataset and Training

We synthesize 100,000 input/output pairs for each operator

we support. In total, the synthesized dataset contains 1.2 mil-

lion pairs of input/output tensors. We split the synthesized

dataset into training, validation, and testing datasets with a

ratio of 8:1:1. Models were trained on the training dataset and

validated on the validation dataset. Models were trained for

30 epochs with batch size 128, and the model with the best

overall validation accuracy was selected as the final model.

Training for each model took approximately 8 hours, using a

single NVIDIA A100-80GB GPU.

8.1.2 Evaluation on Testing Synthesized Dataset

In this section, we evaluate the performance of our trained

models on the testing dataset.

9 Confusion matrix of the MT on the testing

synthesized dataset.

Operator type recovery. We show the accuracy of MT on re-

covering the operator type on the testing synthesized dataset,

and, as an ablation study, the accuracy of MT without using

CONV CONV_RELU FC AVG_POOLMAX_POOL RELU SOFTMAX ADD TRANSPOSE CONCAT RNN LSTM
Predicted Label

CO
NV

CO
NV

_R
EL

U
FC

AV
G_

PO
OL

M
AX

_P
OO

L
RE

LU
SO

FT
M

AX
AD

D
TR

AN
SP

OS
E

CO
NC

AT
RN

N
LS

TM
Tr

ue
 L

ab
el

99.09% 0.34% 0.53% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.24% 99.66% 0.00% 0.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.37% 0.00% 99.61% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.01% 0.00% 91.23% 4.25% 0.00% 0.02% 0.00% 0.03% 0.00% 0.09% 4.37%

0.00% 0.00% 0.00% 8.26% 91.66% 0.00% 0.00% 0.00% 0.04% 0.00% 0.04% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.98% 0.00% 0.02% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.21% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 99.78% 0.01%

0.00% 0.00% 0.00% 3.26% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 96.70%

Confusion Matrix (Percentage)

Figure 3: The confusion matrix of the MT on the testing

synthesized dataset.

the statistical features (i.e., only with the Seq2Seq model), in

Table 4. As shown in the table, MT achieves high accuracy in

recovering the operator type, demonstrating the effectiveness

of MT . Furthermore, MT achieves significantly higher accu-

racy using the statistical features compared to not using them.

This difference is more distinct when recovering computa-

tionally complex operator types, such as Conv, Conv+Relu,

and FC (e.g., 99.09% vs. 82.61% for Conv). This indicates the

effectiveness of incorporating statistical features in recovering

the operator type.

Although the accuracy for AveragePool and MaxPool

(around 91%) is slightly lower than other operator types, our

investigation of the confusion matrix (shown in Figure 3)

shows these two pooling operators are misclassified (i.e.,

AveragePool is misclassified as MaxPool or vice versa) be-

cause their functions in DNNs are similar. Additionally, the

number of pooling operators in DNNs is usually much smaller

than that of other operators, such as Conv and FC, which makes

their misclassification less impactful.

Operator attribute recovery. Since the neural networks that

recover the operator attributes are dedicated to each operator

type, we first split the testing dataset into subsets based on

the operator type and then evaluated the accuracy of each

dedicated neural network on the corresponding subset. We

consider the attribute recovery accurate if the predicted value

after rounding is equal to the ground truth value. As shown in

Table 5, the dedicated neural networks achieve high accuracy

in recovering the operator attributes.



Table 4: Accuracy of operator type recovery on the testing

synthesized dataset. We consider the recovery accurate if the

predicted operator type is equal to the ground truth. The Ac-

curacy column shows the accuracy of MT , and the Accuracy

w/o Features column shows the accuracy of the MAtt without

using the statistical features.

Operator Accuracy Accuracy w/o Features

Conv 99.09% 82.61%

Conv+Relu 99.66% 86.05%

FC 99.61% 88.19%

AvgPool 91.23% 76.59%

Maxpool 91.58% 71.92%

Relu 100.00% 96.22%

Softmax 100.00% 99.95%

Add 100.00% 99.78%

Transpose 100.00% 96.26%

Concat 100.00% 98.68%

RNN 99.78% 84.96%

LSTM 96.70% 83.36%

Overall 98.13% 88.71%

Table 5: Accuracy of operator attributes recovery on the test-

ing synthesized dataset. We consider the recovery results to

be accurate if the predicted value is equal to the ground truth.

Conv, FC, MaxPool, AvgPool, RNN, and LSTM respectively de-

note the convolution, fully-connected, max pooling, average

pooling, RNN, and LSTM operators.

Operator Attribute Recovery Accuracy

Conv Kernel size 99.75%

Number of kernels 99.97%

Stride size 99.10%

Padding size 99.68%

FC Output size 100.00%

MaxPool Kernel size 94.62%

Padding size 94.34%

Stride size 97.26%

AvgPool Kernel size 93.51%

Pad size 94.72%

Stride size 97.21%

RNN Hidden size 92.56%

LSTM Output size 93.14%

9.1 Evaluation on Edge Devices

In this section, we show our evaluation of NEUROSCOPE

on two real-world edge devices and show the effectiveness

of NEUROSCOPE in recovering DNN architectures from the

edge devices. We describe the target edge devices and DNN

models used for our evaluation in Section 9.1.1 and then

explain the evaluation setup in Section 9.1.2. We demonstrate

the evaluation results in Section 9.1.3.

9.1.1 Evaluation Targets

We choose the two edge devices shown in Table 6 for evaluat-

ing NEUROSCOPE.

Table 6: The edge device used for evaluation, their corre-

sponding SDKs for deploying DNNs, their operating system

support and accelerator support.

Hardware NXP i.MX RT1050 TI SK-TDA4VM

DNN SDK NXP eIQ TFLM [54] TI EdgeAI TIDL [13]

Operating System Bare-metal Linux-based

Accelerator No NPU

Regarding the models used in our evaluation, aligned

with prior model extraction attacks [66, 68], we use the

LeNet-5 [69], ResNet-18 [31], Char-RNN [1], and LSTM-

MNIST [10] models as the target DNN models for our evalu-

ation. We acquire the LeNet-5 and ResNet-18 models from

ONNX Model Zoo [26] and trained the Char-RNN and LSTM-

MNIST models by following their training instructions [1,10].

To deploy the target models on the target edge devices,

for each target model and each target edge device, we write

an application that iteratively reads inputs from a file and

performs the target DNN model inference by invoking the

interfaces provided by the corresponding SDKs, and com-

pile the application into a binary executable. Note that we

deploy the Char-RNN and LSTM-MNIST models only on the

TI SK-TDA4VM board because the DNN SDK [54] of the

NXP i.MX RT1050 board does not support RNN and LSTM

operators.

9.1.2 Evaluation Setup

We run the target DNN binary with an input and collect the in-

put/output buffer data of the invoked DNN operator. We repeat

this process 1,000 times for each target DNN binary to collect

1,000 input/output buffer dumps for each DNN operator. For

the LeNet-5 and the LSTM-MNIST models, the inputs are

randomly selected from the MNIST [69] and QMNIST [67]

datasets. For the target DNN model of ResNet-18, the inputs

are randomly selected from the ImageNet dataset [5] and the

Cifar-100 dataset [36]. Regarding the target DNN model of

Char-RNN, the inputs are randomly selected from the text

data provided by PyTorch [1].

To enable dynamic analysis, for the NXP i.MX RT1050

board, we use a hardware debugger (i.e., SEGGER J-Link

PRO debug probe) to enable GDB debugging. On the Linux-

based Texas Instruments SK-TDA4VM board, instead, we

rely on ptrace offered by Linux. Since the dynamic anal-

ysis (i.e., identifying the operators and their corresponding

input/output buffer) can be prolonged, to facilitate the eval-

uation, we only perform the dynamic analysis for the first

inference of each target DNN binary and use the analysis

results for the remaining inferences.



9.1.3 Recovery Accuracy

To evaluate the accuracy of NEUROSCOPE, we evaluate (1)

the correctness of the recovered DNN topology, (2) the accu-

racy of MT and MAtt , and (3) the accuracy of NEUROSCOPE

to recover DNN architecture. Note that the accuracy of

NEUROSCOPE is different from the accuracy of MT and MAtt

since NEUROSCOPE aggregates multiple recovered operator

types/attributes with the majority voting to decide the final

operator type/attributes as mentioned in Section 6.2.

DNN Topology Recovery. We manually compare the recov-

ered DNN topology (i.e., how different operators are con-

nected with each other) with the ground truth DNN topology

of the target DNN models, and we report that, for each target

DNN binary, the recovered DNN topology is identical to the

ground truth DNN topology.

Accuracy of MT and MAtt . As mentioned in Section 9.1.2,

for each target DNN binary, we collect 1,000 input/output

buffer dumps for each DNN operator. To evaluate the accu-

racy of MT , we feed these 1,000 input/output buffer dumps

to the trained MT , compare the predicted operator types with

the ground truth operator types, and we show the accuracy

of each operator type recovery and the overall accuracy in

Table 7. The overall accuracy is calculated as the number

of operators whose types are correctly recovered divided by

the total number of operators in the ground truth DNN archi-

tecture. Table 7 shows the accuracy of MT . NEUROSCOPE

achieves high accuracy in recovering the operator types for

the target DNN binaries on the edge devices. We observe

that the accuracy distribution is similar to the synthesized

dataset, where the accuracy of AveragePool and MaxPool

are slightly lower than other operator types, indicating that

the synthesized dataset is representative of the input/output

tensor pair distribution in real-world DNN binaries.

Similarly, we evaluate the accuracy of the operator’s at-

tributes recovery, and we show the accuracy of each operator’s

attributes in Table 8. As shown in the table, NEUROSCOPE

also achieves high accuracy in recovering the operator at-

tributes.

Accuracy of NEUROSCOPE. We randomly divide the col-

lected 1,000 input/output buffer dumps into 100 groups each

of which contains 10 input/output buffer dumps. For each

group, we separately feed the input/output buffer dumps to

the trained MT and MAtt , use the majority voting to decide

the final operator type/attributes, and recover the DNN ar-

chitecture. We evaluate the correctness of NEUROSCOPE by

comparing these 100 recovered DNN architecture with the

ground truth DNN architecture of the target DNN models and

show the percentage of the recovered DNN architectures that

are identical to their respective ground truth DNN architecture

in Table 9. As shown in Table 9, NEUROSCOPE shows high

accuracy in recovering the DNN architectures from the target

DNN binaries. We investigate the recovered DNN architec-

Table 7: Accuracy of operator type recovery for the target

DNN binaries. The denotations of the hardware/model com-

binations are as follows: NXP/L (NXP i.MX RT1050/LeNet-

5), NXP/R (NXP i.MX RT1050/ResNet-18), TI/L (TI

TDA4VM/LeNet-5), TI/R (TI TDA4VM/ResNet-18), TI/C

(TI TDA4VM/Char-RNN), and TI/LS (TI TDA4VM/LSTM-

MNIST). The overall accuracy is calculated as the weighted

average of the accuracy of each operator type, based on the

number of occurrences of each operator type in the target

DNN binaries. N/A denotes that the operator type does not

exist in the target DNN model.

Operator NXP/L NXP/R TI/L TI/R TI/C TI/LS

Conv N/A 97.6% N/A 96.8% N/A N/A

Conv+Relu 99.9% 100.0% 100.0% 100.0% N/A N/A

FC 99.6% 99.6% 96.4% 100.0% N/A N/A

AvgPool N/A 85.9% N/A 91.4% N/A N/A

MaxPool 94.0% N/A 94.3% N/A N/A N/A

Relu N/A 100.0% N/A 100.0% N/A N/A

Softmax N/A 100.0% N/A 100.0% 100.0% 100.0%

Add N/A 100.0% N/A 100.0% N/A N/A

RNN N/A N/A N/A N/A 98.84% N/A

LSTM N/A N/A N/A N/A N/A 96.26%

Overall 98.6% 98.6% 97.4% 99.0% 98.85% 96.26%

tures that are not identical to the respective ground truth DNN

architectures and find that all the errors are caused by the

misclassification between AvgPool and MaxPool operators.

Table 9: Percentage of the recovered DNN architecture that

is identical to the ground truth DNN architecture. The deno-

tations of the hardware/model combinations are as follows:

NXP/L (NXP i.MX RT1050/LeNet-5), NXP/R (NXP i.MX

RT1050/ResNet-18), TI/L (TI TDA4VM/LeNet-5), TI/R (TI

TDA4VM/ResNet-18), TI/C (TI TDA4VM/Char-RNN), and

TI/LS (TI TDA4VM/LSTM-MNIST).

NXP/L NXP/R TI/L TI/R TI/C TI/LS

Identical

percentage
100% 92% 100% 99% 100% 100%

9.2 Case Study

In this section, we demonstrate how we use NEUROSCOPE

to recover DNN architectures from a real-world proprietary

DNN binary shipped with the NXP i.MX 8M Plus board.

Since we do not have access to the ground truth DNN ar-

chitecture, we cannot directly verify the correctness of the

recovered DNN architecture. Nevertheless, we show the effec-

tiveness of NEUROSCOPE in boosting adversarial attacks by

leveraging the recovered DNN architecture. Specifically, we

first launch adversarial attacks on the target DNN binary, both

with and without knowledge of the recovered DNN architec-

ture, using a gray-box adversarial attack [41] and a black-box

adversarial attack [46], respectively. Then, we compare the

target DNN binary’s inference accuracy on the generated



Table 8: Accuracy of operator attributes recovery for the target DNN binaries. The denotations of the hardware/model combina-

tions are as follows: NXP/L (NXP i.MX RT1050/LeNet-5), NXP/R (NXP i.MX RT1050/ResNet-18), TI/L (TI TDA4VM/LeNet-

5), TI/R (TI TDA4VM/ResNet-18), TI/C (TI TDA4VM/Char-RNN), and TI/LS (TI TDA4VM/LSTM-MNIST). N/A denotes

that the operator type does not exist in the target DNN binaries.

Operator Attribute NXP/L NXP/R TI/L TI/R TI/C TI/LS

Conv Kernel size 99.3% 99.2% 98.8% 98.4% N/A N/A

# of kernels 98.2% 97.4% 99.7% 98.3% N/A N/A

Stride size 97.4% 98.8% 98.2% 99.0% N/A N/A

Padding size 98.8% 98.5% 99.1% 98.4% N/A N/A

FC Output size 99.3% 98.0% 100.0% 99.7% N/A N/A

MaxPool Kernel size 93.1% N/A 93.4% N/A N/A N/A

Padding size 93.5% N/A 94.7% N/A N/A N/A

Stride size 97.3% N/A 97.5% N/A N/A N/A

AvgPool Kernel size N/A 95.9% N/A 96.8% N/A N/A

Pad size N/A 94.3% N/A 96.6% N/A N/A

Stride size N/A 96.8% N/A 97.1% N/A N/A

RNN Hidden size N/A N/A N/A N/A 91.6% N/A

LSTM Output size 99.3% 98.0% 100.0% 99.7% N/A 93.9%

adversarial example (i.e., the lower the accuracy, the higher

the attack success rate). Our evaluation demonstrates that

the adversarial attack success rate is boosted by leveraging

the recovered DNN architecture, proving the effectiveness of

NEUROSCOPE.

9.2.1 Target Details

The NXP i.MX 8M Plus board is a Linux-based SoC designed

for edge AI applications and equipped with a neural process-

ing unit (NPU) that accelerates DNN inference. Au-Zone

DeepViewRT [4], a proprietary and closed-source SDK, is

provided for developing DNN applications on this board and

to leverage the NPU for DNN inference. In this case study,

we use a proprietary DNN binary shipped with DeepViewRT

SDK as the target DNN binary, which is a binary executable

that takes an image as input and outputs the classification

result of the image. From the labels of the classification result,

we observe that the DNN model is an image classification

model with the same labels as the ImageNet dataset [5].

9.2.2 DNN Architecture Extraction Attack

Since the NXP i.MX 8M Plus board is a Linux-based edge

device, we use ptrace to perform the dynamic analysis of

the target DNN binary. To force the target DNN binary to run

fully on a CPU, we modify the DeepViewRT runtime’s con-

figuration file to remove the use of NPU acceleration. We use

NEUROSCOPE to identify the DNN operator functions that

are invoked by the target DNN binary, dump the input/out-

put buffers of each DNN operator function invocation, and

recover the DNN architecture. The recovered DNN architec-

ture contains 58 operators, with consecutive pairs of Conv

and Relu operators, followed by AveragePool and Softmax

operators at the end. We investigate the recovered DNN ar-

chitecture and find that it is identical to MobileNet v2 [52], a

popular DNN architecture for image classification on mobile

and embedded devices. However, since we do not have the

source code/model of the target DNN binary, we cannot di-

rectly and completely verify the correctness of the recovered

DNN architecture.

9.2.3 Boosting Adversarial Attack

In the context of DNN adversarial attacks, an adversary aims

to manipulate the predicted labels of a DNN model by intro-

ducing minimal, often imperceptible, disturbances to the input

images that cause the DNN model to erroneously predict an

incorrect label [46]. Previous works show that adversarial

attacks can be boosted if the adversary has knowledge of

the DNN architecture [41] (i.e., the gray-box attack). Specifi-

cally, with the knowledge of the DNN architecture, gray-box

attacks train a surrogate model with the same architecture

as the target DNN model, conduct white-box attacks on the

surrogate model to generate adversarial examples, and then

use the adversarial examples to attack the target DNN model.

We demonstrate that the DNN architecture recovered by

NEUROSCOPE can be used to conduct gray-box adversarial

attacks. Specifically, we first randomly select 1,000 images

from the ImageNet dataset [5] as the input images and then

record the corresponding output logits. We also evaluate the

inference accuracy of the target DNN binary on these images

by comparing the predicted label with the ground truth label.

The inference accuracy of the target DNN binary on the 1,000

images is 74.4%.

To launch the gray-box attack, given the observation that

the recovered DNN architecture is identical to the Mo-

bileNet v2 model, we use the pre-trained MobileNet v2 model

on TorchVision [44] as the starting point and fine-tune the

pre-trained model. Specifically, as the fine-tuning procedure,

we train the pre-trained model with the 1,000 images and their

corresponding output logits as the training dataset, and we



train the model for 50 epochs. We use the fine-tuned model

as the surrogate model and use foolbox [50] to generate ad-

versarial examples with the surrogate model.

For the black-box attack, we start with the ResNet-50 pre-

trained model on TorchVision, fine-tune it with the same pro-

cedure and training hyperparameters as the gray-box attack,

and use the fine-tuned model to generate adversarial examples

with the same 1,000 images.

Table 10 shows the target DNN binary’s accuracy on the

adversarial examples generated by the black-box attack and

the gray-box attack enabled by NEUROSCOPE. The epsilon

denotes the perturbation magnitude, which represents the

maximum allowed perturbation to the original image. Larger

epsilon results in more noticeable perturbations. As shown

in Table 10, the inference accuracy under the gray-box at-

tack is significantly lower than the original inference accuracy

(i.e., 74.4%). More importantly, given the same epsilon,

the inference accuracy under the gray-box attack enabled

by NEUROSCOPE is lower than the inference accuracy un-

der the black-box attack, indicating that the adversarial at-

tack is boosted by leveraging DNN architecture recovered by

NEUROSCOPE.

Table 10: Accuracy of the victim DNN binary on the gener-

ated adversarial examples with and without the knowledge of

the recovered DNN architecture. The lower the accuracy, the

more successful the adversarial attack is.

epsilon Black-box attack Gray-box attack

0.01 63.8% 61.2%

0.1 49.9% 37.6%

0.3 35.6% 23.0%

10 Discussion

Handling Hardware Accelerators. NEUROSCOPE currently

supports edge devices equipped with hardware accelerators

by leveraging their CPU fallback capability and analyzing the

I/O behaviors of the code running on their CPUs. This design

is based on the observation that the CPU fallback is a com-

mon design choice for DNN runtimes on edge devices with

hardware accelerators, and it allows DNN runtimes to execute

DNN code on a CPU when a hardware accelerator is unavail-

able. As mentioned in Section 6.1.1, different mechanisms

can be used to trick the runtime into using the CPU backend.

For instance, if the runtime looks for shared libraries [11] or

a device file to use an accelerator, we can simulate an envi-

ronment without such an accelerator by pre-loading modified

versions of the used shared libraries [48]. Unfortunately, some

DNN runtimes (e.g., TensorRT on Nvidia Jetson) do not of-

fer this CPU fallback feature, limiting the applicability of

NEUROSCOPE.

To overcome this limitation, as future work, we plan to

support this type of DNN runtime by developing the capa-

bility of monitoring the interactions between a CPU and a

hardware accelerator (e.g., by monitoring memory-mapped

I/O (MMIO)). This capability will enable capturing the I/O

behaviors of DNN code running on a hardware accelerator.

Then, we can use the captured I/O data to recover the se-

mantics of DNN operators with trained neural networks as

NEUROSCOPE does. Alternatively, for accelerators using an

open ISA and providing debugging capability, we could adapt

our dynamic analysis approach to analyze code running on

those accelerators directly.

Supporting DNN Parameter Recovery. Some DNN oper-

ators (e.g., Convolution operators) carry parameters (i.e.,

weights). During inference, similar to the input data, the pa-

rameters are loaded from a buffer and used to perform the

computation. While the parameter buffers are usually smaller

than the input/output data buffers, they can be identified using

the same dynamic analysis approach we use to identify the

input/output data buffers (i.e., clustering the memory access

information). To precisely recover the parameters from the

parameter buffers, we need information about how the param-

eters are stored in the buffer (e.g., the layout of the parameters

in the buffer). As future work, we can leverage the operator

type and attributes recovered by NEUROSCOPE to guide the

recovery of the parameters. Specifically, given the recovered

operator type and attributes, we could enumerate the possible

parameter layouts. Then, for each possible parameter layout,

we could extract the parameters from the parameter buffer

according to the layout and verify by executing the operator

with the recovered parameters and input data and comparing

the output with the output we acquire from the output buffer.

Supporting Additional DNN Operators. As shown in the

previous research [27, 38], the DNN operators supported by

NEUROSCOPE are sufficient to cover many popular DNN

families. One limitation is that NEUROSCOPE does not cur-

rently support some DNN operators, such as the Transformer

Block in the transformer architecture [61] or the TopK oper-

ator. We believe NEUROSCOPE can be extended to support

these operators by synthesizing a dataset for them and retrain-

ing the classification and regression neural network models.

Based on our experience, we estimate that adding support for

a new operator requires 1 to 2 person-days of work, including

1 day for retraining for the machine-learning models, i.e., MT

and MAtt .

Enabling Debugging Features on Edge Devices. In sce-

narios where edge devices operate under an OS and DNN

binaries are executed as applications, software debuggers are

typically available. For bare-metal edge devices, to enable de-

bugging features, we can connect hardware debugging tools,

such as SEGGER J-Link [6], to a debug port or directly sol-

dered to debug pins. Note that we can identify debug pins by

checking a target board’s specification or employing hardware

reverse engineering tools, such as JTAGulator [7]. If they are



not applicable, we can utilize alternative methods, such as

firmware rehosting [21], and binary firmware patching [65],

to enable debugging access.

Handling DNN Binaries with Heavy Optimizations and

Obfuscations. We assume that our target DNN binaries are

compiled with DNN compilers, using their default compila-

tion options, that are shipped with the DNN SDK toolchains.

Because their compilation process usually does not employ

heavy optimizations and obfuscations, we do not consider

the impacts of heavy optimization or obfuscation in our ex-

periments. In principle, optimization and obfuscation should

not fundamentally affect the effectiveness of our approach be-

cause they do not alter the I/O behaviors of DNN code. How-

ever, in practice, they may make it difficult for NEUROSCOPE

to accurately locate the DNN operators and I/O buffers within

DNN binaries. In future work, we plan to investigate the

impact of heavy optimization and obfuscation on the effec-

tiveness of our approach and develop techniques to mitigate

the impacts of these challenges.

Possible Defenses Against NEUROSCOPE. Users can em-

ploy specific techniques to hinder NEUROSCOPE’s analy-

sis. For instance, a user familiar with NEUROSCOPE may

try to disrupt its dependencies to thwart NEUROSCOPE-

based reverse engineering. For instance, users can prevent

NEUROSCOPE’s dynamic analysis by disabling the debug-

ging features (e.g., removing debug ports and disabling

ptrace). Unfortunately, in this case, NEUROSCOPE cannot

reverse engineer the DNN binary. Furthermore, it is possible

to obfuscate the DNN binaries [53], making the identification

of DNN operators and I/O buffers more challenging.

11 Related Work

DNN Extraction Attacks. DNN Model extraction attacks

reveal a DNN’s model hyperparameters and/or parameters.

Three categories of DNN extraction attacks have been pro-

posed. The first category of extraction attack, including this

work, leverages static or dynamic binary analysis to recover

DNN models from the compiled DNN binaries [19,38,66,70].

The second category of extraction attack queries a black-box

DNN model and then trains a substitute model to approximate

input-output behaviors from the victim DNNs [60, 62]. These

attacks usually cannot recover DNN architecture/parameters

and require significant computational resources, which is a

key limitation when applied to edge devices. The third cat-

egory of attack exploits hardware or side channels, such as

PCIe traffic [34, 71], cache-based side-channel [68] and elec-

tromagnetic [15, 27, 28, 40], to launch attack. With the DNN

model extracted, the adversary can launch other attacks, such

as white-box adversarial attacks [18, 59], which assume an

attacker has prior knowledge of a victim DNN model, such

as model hyperparameters and parameters.

Program Induction and Synthesis by Examples. Program

induction and synthesis automatically generate programs that

satisfy the given requirements or specifications. The approach

that is most relevant to our work is neural program synthesis

by examples, which utilizes neural networks to synthesize

programs from input/output examples [16, 23, 47]. There are

also some works that leverage program synthesis to deobfus-

cate obfuscated programs [37, 42]. TF-Coder [55] is a recent

work that uses neural networks to synthesize TensorFlow pro-

grams from natural language descriptions of the program and

input/output examples. However, it requires the user to pro-

vide the natural language description of the program, which

is not available in our setting. Additionally, it requires the

knowledge of the exact information of the input/output ex-

amples, for example, the shape/dimension of the input/output

tensors, which are hard to infer given the flat memory region

our dynamic analysis identifies.

12 Conclusions

In this paper, we present NEUROSCOPE, a novel, data-driven

approach for reverse-engineering DNN binaries on edge de-

vices through a combination of dynamic analysis and machine

learning. Our approach does not rely on specific code fea-

tures of the analyzed DNN binary, enabling NEUROSCOPE to

support more DNN binaries, specifically those implementing

DNN models using an interpreter-based approach, than the ex-

isting approaches. Our evaluation shows that NEUROSCOPE

can accurately recover three different DNN models compiled

by three different SDKs on three different edge devices. As a

case study, we demonstrate that NEUROSCOPE can be used to

reverse-engineer a proprietary DNN binary which is compiled

by a closed-source SDK, and the reverse-engineered results

can be used to enable gray-box adversarial attacks.

Acknowledgments

This project was supported in part by the Defense Advanced

Research Projects Agency (DARPA) under contracts number

N6600120C4031, the National Science Foundation (NSF)

under contract number CNS2145744, the Office of Naval

Research (ONR) under contract number N000142312157,

and Lockheed Martin. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of United

States Government, any agency, or corporation thereof.

References

[1] Classifying names with a character-level rnn.

https://pytorch.org/tutorials/intermediate/

char_rnn_classification_tutorial.html.



[2] Deep learning meets the internet of things. https://

shorturl.at/bILT5.

[3] Edge impulse. https://edgeimpulse.com/.

[4] eiq® inference with deepviewrt™. https:

//www.nxp.com/design/design-center/

software/eiq-ml-development-environment/

eiq-inference-with-deepviewrt:

EIQ-INFERENCE-DEEPVIEWRT.

[5] Imagenet. https://image-net.org/index.php.

[6] J-link debug probes by segger – the embedded experts.

[7] Jtagulator. https://grandideastudio.com/

portfolio/security/jtagulator.

[8] Nxp edgeready mcu-based solution for secure face

recognition | nxp semiconductors.

[9] onnxruntime architecture. https://onnxruntime.

ai/docs/reference/high-level-design.html.

[10] Sequence classification with lstm on mnist.

https://notebook.community/santipuch590/

deeplearning-tf/dl_tf_BDU/3.RNN/ML0120EN-3.

1-Review-LSTM-MNIST-Database.

[11] Tensorflow lite delegates. https://www.tensorflow.

org/lite/performance/delegates. (Accessed on

08/14/2024).

[12] Texas instruments edge ai studio. https://dev.ti.

com/edgeaistudio/.

[13] Texasinstruments/edgeai-tidl-tools: Edgeai tidl

tools and examples. https://github.com/

TexasInstruments/edgeai-tidl-tools/tree/

master.

[14] Borja Balle, Giovanni Cherubin, and Jamie Hayes. Re-

constructing training data with informed adversaries. In

2022 IEEE Symposium on Security and Privacy, pages

1138–1156. IEEE, 2022.

[15] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan

Picek. CSI NN: Reverse engineering of neural network

architectures through electromagnetic side channel. In

Proceedings of the USENIX Security Symposium, 2019.

[16] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik

Sen, and Ion Stoica. Autopandas: neural-backed genera-

tors for program synthesis. Proceedings of the ACM on

Programming Languages, 3(OOPSLA):1–27, 2019.

[17] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song,

Andreas Terzis, and Florian Tramer. Membership in-

ference attacks from first principles. In 2022 IEEE

Symposium on Security and Privacy, pages 1897–1914.

IEEE, 2022.

[18] Nicholas Carlini and David Wagner. Towards evaluating

the robustness of neural networks. In Proceedings of

the IEEE Symposium on Security and Privacy, 2017.

[19] Simin Chen, Hamed Khanpour, Cong Liu, and Wei Yang.

Learning to reverse dnns from ai programs automatically.

arXiv preprint arXiv:2205.10364, 2022.

[20] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin

Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,

Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,

and Arvind Krishnamurthy. TVM: An automated

End-to-End optimizing compiler for deep learning. In

USENIX Symposium on Operating Systems Design and

Implementation, 2018.

[21] Abraham A Clements, Eric Gustafson, Tobias

Scharnowski, Paul Grosen, David Fritz, Christopher

Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias

Payer. Halucinator: Firmware re-hosting through

abstraction layer emulation. In Proceedings of 29th

USENIX Security Symposium, 2020.

[22] Robert David, Jared Duke, Advait Jain, Vijay

Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger,

Ian Nappier, Meghna Natraj, Tiezhen Wang, et al.

Tensorflow lite micro: Embedded machine learning for

tinyml systems. Proceedings of Machine Learning and

Systems, 3:800–811, 2021.

[23] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,

Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet

Kohli. Robustfill: Neural program learning under noisy

i/o. In International conference on machine learning,

pages 990–998. PMLR, 2017.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei

Xu, et al. A density-based algorithm for discovering

clusters in large spatial databases with noise. In kdd,

volume 96, pages 226–231, 1996.

[25] Linux Foundation. ONNX. https://onnx.ai/.

[26] Linux Foundation. ONNX model zoo. https://

github.com/onnx/models.

[27] Yansong Gao, Huming Qiu, Zhi Zhang, Binghui Wang,

Hua Ma, Alsharif Abuadbba, Minhui Xue, Anmin Fu,

and Surya Nepal. Deeptheft: Stealing dnn model ar-

chitectures through power side channel. In 2024 IEEE

Symposium on Security and Privacy. IEEE, 2024.

[28] Cheng Gongye, Yukui Luo, Xiaolin Xu, and Yunsi Fei.

Side-channel-assisted reverse-engineering of encrypted

dnn hardware accelerator ip and attack surface explo-

ration. In 2024 IEEE Symposium on Security and Pri-

vacy, pages 1–1. IEEE Computer Society, 2023.



[29] Google. Tensorflow lite for microcontrollers. https:

//www.tensorflow.org/lite/microcontrollers.

[30] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn

Song. Tabor: A highly accurate approach to inspecting

and restoring trojan backdoors in AI systems. arXiv

preprint arXiv:1908.01763, 2019.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016.

[32] Hex-Rays. https://hex-rays.com/.

[33] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. Mobilenets: Efficient

convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[34] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei

Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Tim-

othy Sherwood, et al. Deepsniffer: A dnn model ex-

traction framework based on learning architectural hints.

In Proceedings of the International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems, 2020.

[35] Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike

He, Thierry Tambe, Gus Henry Smith, Akash Gaonkar,

Vishal Canumalla, Gu-Yeon Wei, Aarti Gupta, Zachary

Tatlock, and Sharad Malik. Specialized accelerators and

compiler flows: Replacing accelerator apis with a formal

software/hardware interface. 2022.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-

tiple layers of features from tiny images. 2009.

[37] Jaehyung Lee and Woosuk Lee. Simplifying mixed

boolean-arithmetic obfuscation by program synthesis

and term rewriting. In Proceedings of the 2023 ACM

SIGSAC Conference on Computer and Communications

Security, pages 2351–2365, 2023.

[38] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie,

and Lei Ma. Decompiling x86 deep neural network

executables. In 32nd USENIX Security Symposium,

pages 7357–7374, 2023.

[39] Minh-Thang Luong, Hieu Pham, and Christopher D

Manning. Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025,

2015.

[40] Henrique Teles Maia, Chang Xiao, Dingzeyu Li, Eitan

Grinspun, and Changxi Zheng. Can one hear the shape

of a neural network?: Snooping the gpu via magnetic

side channel. In Proceedings of the USENIX Security

Symposium, 2022.

[41] Dongyu Meng and Hao Chen. Magnet: a two-pronged

defense against adversarial examples. In Proceedings

of the 2017 ACM SIGSAC conference on computer and

communications security, pages 135–147, 2017.

[42] Grégoire Menguy, Sébastien Bardin, Richard Bonichon,

and Cauim de Souza Lima. Search-based local black-

box deobfuscation: understand, improve and mitigate.

In Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security, pages 2513–

2525, 2021.

[43] Meta. glow. https://github.com/pytorch/glow.

[44] Meta. Torchvision datasets. http://pytorch.org/

vision/main/datasets.html.

[45] NSA. Ghidra. https://ghidra-sre.org.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,

Somesh Jha, Z Berkay Celik, and Ananthram Swami.

Practical black-box attacks against machine learning. In

Proceedings of the ACM on Asia Conference on Com-

puter and Communications Security, 2017.

[47] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh

Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.

Neuro-symbolic program synthesis. arXiv preprint

arXiv:1611.01855, 2016.

[48] Kevin Pulo. Fun with ld_preload. In linux. conf. au,

volume 153, page 103, 2009.

[49] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan

Yao, and Deliang Fan. Deepsteal: Advanced model ex-

tractions leveraging efficient weight stealing in memo-

ries. In 2022 IEEE Symposium on Security and Privacy,

pages 1157–1174. IEEE, 2022.

[50] Jonas Rauber, Wieland Brendel, and Matthias Bethge.

Foolbox: A python toolbox to benchmark the robustness

of machine learning models. In Reliable Machine Learn-

ing in the Wild Workshop, International Conference on

Machine Learning, 2017.

[51] Tirias Research. Smart inference devices.

https://www.tiriasresearch.com/wp-content/

uploads/2020/04/TIRIAS_Research-Smart_

Inference_Devices.pdf.



[52] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-

verted residuals and linear bottlenecks. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, 2018.

[53] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes

Kinder, Georg Merzdovnik, and Edgar Weippl. Pro-

tecting software through obfuscation: Can it keep pace

with progress in code analysis? Acm computing surveys,

49(1):1–37, 2016.

[54] NXP Semiconductors. eiq® ml software development

environment | nxp semiconductors. https://www.nxp.

com/design/software/development-software/

eiq-ml-development-environment:EIQ.

[55] Kensen Shi, David Bieber, and Rishabh Singh. Tf-coder:

Program synthesis for tensor manipulations. ACM

Transactions on Programming Languages and Systems,

44(2):1–36, 2022.

[56] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-

taly Shmatikov. Membership inference attacks against

machine learning models. In Proceedings of the IEEE

Symposium on Security and Privacy, 2017.

[57] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,

Nick Stephens, Mario Polino, Audrey Dutcher, John

Grosen, Siji Feng, Christophe Hauser, Christopher

Kruegel, and Giovanni Vigna. SoK: (State of) The Art

of War: Offensive Techniques in Binary Analysis. In

Proceedings of the IEEE Symposium on Security and

Privacy, 2016.

[58] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence

to sequence learning with neural networks. Advances in

neural information processing systems, 27, 2014.

[59] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,

Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob

Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[60] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,

and Thomas Ristenpart. Stealing machine learning mod-

els via prediction apis. In Proceedings of the USENIX

Security Symposium, 2016.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,

and Illia Polosukhin. Attention is all you need. Advances

in neural information processing systems, 30, 2017.

[62] Binghui Wang and Neil Zhenqiang Gong. Stealing

hyperparameters in machine learning. In Proceedings

of the IEEE Symposium on Security and Privacy, 2018.

[63] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,

Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-

ral cleanse: Identifying and mitigating backdoor attacks

in neural networks. In Proceedings of the IEEE Sympo-

sium on Security and Privacy, 2019.

[64] Hongwei Wu, Jianliang Wu, Ruoyu Wu, Ayushi Sharma,

Aravind Machiry, and Antonio Bianchi. Veribin: Adap-

tive verification of patches at the binary level.

[65] Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias

Payer, Nils Ole Tippenhauer, Dongyan Xu, Dave Jing

Tian, and Antonio Bianchi. Lightblue: Automatic

profile-aware debloating of bluetooth stacks. In 30th

USENIX Security Symposium, pages 339–356, 2021.

[66] Ruoyu Wu, Taegyu Kim, Dave Jing Tian, Antonio

Bianchi, and Dongyan Xu. {DnD}: A {Cross-

Architecture} deep neural network decompiler. In 31st

USENIX Security Symposium, pages 2135–2152, 2022.

[67] Chhavi Yadav and Léon Bottou. Cold case: The lost

mnist digits. Advances in Neural Information Process-

ing Systems, 32, 2019.

[68] Mengjia Yan, Christopher W. Fletcher, and Josep Tor-

rellas. Cache telepathy: Leveraging shared resource

attacks to learn DNN architectures. In Proceedings of

the USENIX Security Symposium, 2020.

[69] Corinna Cortes Yann LeCun and Chris Burges. Mnist

handwritten digit database. http://yann.lecun.com/

exdb/mnist/.

[70] Jinquan Zhang, Pei Wang, and Dinghao Wu. Libsteal:

Model extraction attack towards deep learning compilers

by reversing dnn binary library. In Proceedings of the

18th International Conference on Evaluation of Novel

Approaches to Software Engineering, 2023.

[71] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and

Yantao Lu. Hermes attack: Steal DNN models with loss-

less inference accuracy. In Proceedings of the USENIX

Security Symposium, 2021.

[72] Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio

Bianchi, and Dave Jing Tian. D-helix: A generic decom-

piler testing framework using symbolic differentiation.

In 33rd USENIX Security Symposium, pages 397–414,

2024.


	Introduction
	Background
	Deep Neural Network
	DNN Inference on Edge Devices

	Motivation
	NeuroScope Overview
	NeuroScope Offline Phase
	Dataset Synthesis
	Model Training
	Challenges and Design Choices
	Architectures of MT and MAtt


	Online Phase
	I/O Data Collection
	Forcing the DNN Runtime to CPU Mode
	Locating DNN Operators and I/O Buffers

	Operator-level Info Recovery
	Model Recovery

	Implementation
	Evaluation
	Synthesized Dataset and Evaluation
	Synthesized Dataset and Training
	Evaluation on Testing Synthesized Dataset


	Confusion matrix of the MT on the testing synthesized dataset.
	Evaluation on Edge Devices
	Evaluation Targets
	Evaluation Setup
	Recovery Accuracy

	Case Study
	Target Details
	DNN Architecture Extraction Attack
	Boosting Adversarial Attack


	Discussion
	Related Work
	Conclusions

