NEUROSCOPE: Reverse Engineering Deep Neural Network on Edge Devices
using Dynamic Analysis

Ruoyu Wul, Mugqi Zou!, Arslan Khan?, Taegyu Kim?,
Dongyan Xu!, Dave (Jing) Tian!, and Antonio Bianchi'

"Purdue University, > The Pennsylvania State University
{wul377, zoul 16, dxu, daveti, antoniob} @purdue.edu, {arslankhan, tgkim}@psu.edu

Abstract

The usage of Deep Neural Network (DNN) models in edge
devices (e.g., IoT devices) has surged. In this usage scenario,
the inference phase of the DNN model is executed by a dedi-
cated, compiled piece of code (i.e., a DNN binary). From the
security standpoint, the ability to reverse engineer such bina-
ries (i.e., recovering the original, high-level representation of
the implemented DNN) enables several applications, such as
stealing DNN models, gray/white-box adversarial machine
learning attacks and defenses, and backdoor detection. While
a few recent works proposed dedicated approaches to reverse
engineer DNN binaries, these approaches are fundamentally
limited in the type of DNN binaries they support.

To address these limitations, in this paper, we propose
NEUROSCOPE, a novel data-driven approach based on dy-
namic analysis and machine learning to reverse engineer
DNN binaries. This compiler-independent and code-feature-
free approach enables NEUROSCOPE to support a larger va-
riety of DNN binaries across different DNN compilers and
hardware platforms, including binaries implementing DNN
models using an interpreter-based approach. We demonstrate
NEUROSCOPE’s capability by using it to reverse engineer
DNN binaries unsupported by previous approaches with high
accuracy. Moreover, we showcase how NEUROSCOPE can
reverse engineer a proprietary DNN binary compiled with
a closed-source compiler and enable gray-box adversarial
machine learning attacks.

1 Introduction

In recent years, there has been a surge in the usage of Deep
Neural Network (DNN) models to perform a variety of tasks,
such as image recognition, natural language processing, and
autonomous driving. While some of these models are de-
ployed on high-end GPU servers (and are accessible online),
others are deployed locally on edge devices, such as IoT de-
vices and other devices [2,51] in consideration of low latency,
high availability, and better privacy. An example of this sce-

nario is a smart-camera performing on-device face recogni-
tion [8]. In this case, the inference phase of a DNN is executed
by a dedicated, compiled piece of code, which we call a DNN
binary.

From the security standpoint, the ability to reverse engineer
such binaries (i.e., recovering the original, high-level represen-
tation of the implemented DNN) enables stealing DNN mod-
els, which are considered valuable intellectual properties [62].
Additionally, it also facilitates several downstream applica-
tions, including gray/white-box adversarial machine learning
attacks and defenses [41,46], backdoor detection [30], or bi-
nary patching [63]. However, traditional, general-purpose de-
compilers [32,45] are not suitable for this task, since they can
only recover a C-like representation of the code [38,64,66,72].

Recent works proposed dedicated approaches to reverse
engineering DNN binaries to tackle this issue. Specifically,
DND [66] uses symbolic execution to reverse engineer DNN
binaries generated by dedicated DNN compilers. Additionally,
BTD [38] and NNReverse [19] first use dedicated machine
learning classifiers to identify the types of DNN operators
implemented in the DNN binary and then recover the high-
level representation of the implemented DNN using strategies
specific to certain DNN compilers.

Besides compiler dependency, the existing approaches tar-
get a specific type of DNN binaries in which each DNN op-
erator is implemented as a standalone function (i.e., DNN
binaries compiled using the Ahead of Time approach). For
this reason, they cannot handle DNN binaries that utilize the
interpreter-based approach, where a runtime interprets a data-
only, proprietary representation of a DNN. DNN binary code
does not reflect the structure of implemented DNNs by design.
Hence, the existing approaches, which rely on code features
(either extracted by symbolic execution or machine learning
techniques), cannot extract a high-level representation of the
DNN:s from these binaries. Reliance on specific code features
also forces current approaches to retrain the machine learning
models or develop additional compiler-specific features for
each DNN compiler, CPU architecture, or even compiler ver-
sion. Similarly, these approaches are unsuitable for reverse

engineering DNN binaries leveraging hardware accelerators,
such as NPUs, because the internals of these accelerators and
the code they execute cannot be directly observed.

To address these limitations, we propose NEUROSCOPE,
a novel data-driven approach based on dynamic analysis
to reverse engineer DNN binaries. This approach enables
NEUROSCOPE to support a variety of DNN binaries, includ-
ing binaries implementing DNN models using the interpreter-
based approach. Our key observation is that, although DNN's
may be implemented differently by various compilers on dif-
ferent hardware platforms, the mathematical semantics of the
DNN operators (the basic building blocks of a DNN) remain
the same. Therefore, by examining the data that different
operators receive and output, we can infer the semantics of
operators in an SDK-independent and hardware-independent
fashion.

Accordingly, NEUROSCOPE first uses dynamic analysis to
identify the DNN operators implemented in the binary, and
then captures pairs of input/output data, i.e., pairs of data be-
ing processed by and returned from each DNN operator. Then,
it uses dedicated machine learning models to infer the DNN
semantics from input/output pairs enriched with statistical
features extracted from the input/output pairs. To acquire the
dataset for training such models, we propose a generic data
synthesizer that synthesizes input/output pairs of each DNN
operator type.

NEUROSCOPE successfully recovers five different DNN
models (LeNet-5 [69], ResNet-18 [31], MobileNet v2 [52],
Char-RNN [1], and LSTM-MNIST [10]) used in three differ-
ent edge devices (NXP i.MX RT1050, TI SK-TDA4VM, and
NXP i.MX 8M Plus). In addition, we demonstrate how we use
NEUROSCOPE to reverse engineer a proprietary DNN binary
compiled with a closed-source compiler and showcase how
NEUROSCOPE’s capability can be used to perform more pow-
erful gray-box adversarial machine learning attacks instead
of black-box ones.

In summary, these are the contributions of this paper:

1. We propose NEUROSCOPE, a compiler-independent and
hardware-independent DNN binary reverse engineer-
ing framework. NEUROSCOPE adopts a data-driven ap-
proach based on dynamic analysis to bypass limitations
affecting existing DNN reverse engineering tools.

2. We propose using machine learning models to infer the
semantics of DNN operators from their input and output,
and we develop a generic data synthesizer that synthe-
sizes the dataset for training such models.

3. We show how NEUROSCOPE can successfully recover
the high-level representation of three different DNN
models deployed with three different SDKs and on three
different hardware platforms. Additionally, we show-
case how this capability can be used to reverse engineer

a proprietary DNN binary. The results can be used to
boost adversarial machine learning attacks by enabling
gray-box attacks in place of black-box ones.

NEUROSCOPE’s source code is available via Github at
https://github.com/purseclab/NeuroScope.

2 Background

2.1 Deep Neural Network

Deep Neural Networks (DNN5s) represent a category of ma-
chine learning algorithms that utilize a series of cascaded
DNN operators to extract and transform features. DNN op-
erators, including convolution, pooling, and activation, serve
as the fundamental building blocks of DNNs. Each DNN
operator receives the output of preceding operators as its in-
put (or the initial input to the DNN model in the absence of
prior operators) and calculates its output based on its operator
type and attributes. DNN operator attributes are the properties
of the operator that define the operator’s behavior, such as
the kernel size and stride of a convolution operator, and the
number of output channels of a fully connected operator. The
input and output of each DNN operator are tensors, which
represent multidimensional data.

DNN Architecture. DNN architecture refers to the struc-
ture of nodes that constitute a DNN, which is represented as
a directed computation graph, where each node, as a DNN
operator, performs a specific mathematical operation on its
inputs. Specifically, the DNN architecture includes the num-
ber of operators, the type/attributes of each operator, and the
topology among operators. The DNN architecture is crucial
because it influences the network’s ability to learn and gen-
eralize from data. Developing DNN model architectures usu-
ally demands significant human effort and extensive com-
puting resources. Consequently, the architecture itself has
evolved into intellectual property and a primary target for
attackers [27, 68]. Furthermore, knowledge of a DNN'’s ar-
chitecture can serve as a basis for subsequent attacks, includ-
ing the model weights stealing [49], adversarial attacks [18],
membership inference [17,56], and data reconstruction [14].

2.2 DNN Inference on Edge Devices

To help developers deploy DNN on edge devices, vendors usu-
ally provide their specific (and usually proprietary) software
development kits (SDKs), such as NXP eIQ ML software de-
velopment environment [54] and Texas Instruments Edge Al
Studio [12], which take a DNN model as input and generate a
binary that can be executed on vendors’ hardware. There are
two primary approaches to generate such a binary: ahead-of-
time (AOT) approach and interpreter-based approach [66].
For AOT, each DNN operator in a DNN model is compiled
into a separate function, where an AOT compiler specializes
the function for the specific operator attributes. For instance,

two convolution operators with different operator attributes
(e.g., kernel size), though sharing the same operator type, will
be compiled into two different functions.

On the contrary, the interpreter-based approach generates
a binary that contains a machine learning runtime library
and a DNN configuration file, which is often encoded in
a proprietary format by SDKs, such as the format used by
NXP elQ DeepViewRT inference [4]. To execute the DNN,
the runtime first loads and parses the DNN configuration
file into a computation graph, and then interprets the com-
putation graph to perform the DNN inference. Due to the
portability and flexibility, the interpreter-based approach is
widely adopted, especially when deploying DNN on edge
devices with hardware accelerators, such as Tensorflow Lite
for Microcontrollers (TFLM) [22], Edge Impulse [3], and
DeepViewRT [4], Though implemented differently by differ-
ent vendors, the inference workflow is similar, as shown in
Listing 1.

void main(){
// Load DNN model.
model = load_model();
// Determine backends (e.g., CPU, accelerators).
model->set_backends (get_backends());
// Partition into subgraphs according to backends.
model->partition_graph();
// Perform inference.
while (data = get_data()) {
model->set_input (data);
inference (model);
output = model->get_output();
}
}

void inference (model){
// Invoke subgraph in topological order.
for (subgraph : model->subgraphs()) {
if (subgraph->backend() == CPU) {

for (op : subgraph.operators()) {
op->invoke () ;
}
} else {

subgraph->invoke_at_accelerator () ;

}
}

Listing 1: Pseudocode of simplified DNN inference workflow.

The workflow can be summarized as follows: @ The run-
time first loads the DNN model. ® The runtime then deter-
mines which hardware backends are used for DNN inference,
such as neural processing unit (NPU) and digital signal pro-
cessor (DSP). Hardware accelerators usually only support a
subset of DNN operators which are computationally intensive,
such as convolution and matrix multiplication [35]. For other
operators, the runtime needs to fall back to the CPU back-
end for operator execution [9], which is one of the reasons
why the CPU backend code is usually included in the binary
even when hardware accelerators are available. ® The runtime
then partitions the computation graph into multiple subgraphs,
each of which contains only the operators that are supported
by the same backend. @ With the subgraphs partitioned, the
runtime feeds the input data to the DNN model and iterates

over the subgraphs in the topological order. For subgraphs
executed on the hardware accelerators, the runtime transfers
them to the hardware accelerator, and they are executed on the
hardware accelerator as a whole. In other words, a subgraph
executed on the hardware accelerator is a black box where
we can only observe its input and output, instead of the inter-
mediate states of the operators in the subgraph. On the other
hand, for subgraphs executed on the CPU, each operator in
the subgraph is invoked sequentially, leaving the intermediate
states of the operators in the subgraph observable.

Note that, for DNN binaries generated with the interpreter-
based approach, each type of the DNN operator has a generic
implementation. For instance, if a DNN contains multiple
Convolution operators, the same Convolution operator im-
plementation will be invoked multiple times, with different
inputs, operator attributes, and parameters.

3 Motivation

Deploying DNNs on edge devices is becoming prevalent to
enable intelligence features, such as the usage of face recogni-
tion in smart cameras [8]. Since the firmware on edge devices
are, in general, accessible to the end users, the firmware imple-
menting DNN models are vulnerable to reverse engineering
attacks [19, 38,66, 70], which recover the DNN model from
the binaries with static or dynamic binary analysis.

A few recent works have explored this topic. Specifically,
DnD [66] assumes certain code patterns (e.g., nested loop
structures) and data structure layouts exhibited by its target
DNN compilers (i.e., glow [43] and TVM [20]), and develops
pattern matching heuristics that are specifically designed for
the target DNN compilers to recover the semantics. BTD [38]
and NNReverse [19] operate in three steps. First, they recover
the DNN operator types using binary function similarity, i.e.,
they train NLP models on the assembly code generated by
a DNN compiler. Then, they use the trained models to clas-
sify the operator type from the assembly code. Finally, they
recover the operator attributes and parameters with compiler-
specific heuristics. We summarize the previous works in Ta-
ble | and compare them against NEUROSCOPE.

Table 1: NEUROSCOPE and representative works for DNN
binary reverse engineering.

Works Features Compiler Scheme Targeted Hardware
DnD [66] Binary Code AOT CPU

BTD [38] Binary Code AOT x86 CPU
NNReverse [19] Binary Code AOT CPU
NEUROSCOPE 1/0 Behavior Interpreter/AOT CPU with accelerator

Features. The existing approaches use binary code as features
to recover the DNN model. Specifically, DnD and BTD rely
on compiler-specific code patterns and data structure layouts
to develop compiler-specific heuristics to recover the DNN

model. BTD and NNReverse train an NLP model on the bi-
nary code generated by the target DNN compiler to classify
the operator types within the binary generated by the same
DNN compiler. BTD even requires training dedicated mod-
els for different versions and different optimization levels of
the same DNN compiler [38]. As mentioned in Section 2.2,
since DNNs on edge devices are deployed with a diverse
set of vendor-specific, proprietary, and frequently updated
DNN compilers, it is challenging to develop and maintain the
heuristics/models for each DNN compiler configuration.

Compiler Scheme. Existing works focus on DNN binaries
generated by AOT-based DNN compilers. Those DNN bina-
ries are standalone binaries and can only run fixed DNNs.
However, many DNN binaries on edge devices are gener-
ated by interpreter-based DNN compilers [3, 4, 29], which
encodes a DNN into a configuration file in a proprietary for-
mat and loads this DNN from the file only during inference.
Reverse engineering from DNNs generated by interpreter-
based DNN compilers is challenging for static-analysis-based
approaches, such as DnD and NNReverse. Specifically, to ex-
ecute a DNN, an interpreter reads and parses hyperparameters
from its configuration file, constructs a computation graph
on the fly, and iterates through the graph to invoke the cor-
responding operator functions. Unfortunately, the dynamic
nature and multiple levels of abstractions of DNN binaries
compiled with the interpreter-based approach make static re-
verse engineering difficult. For instance, to determine operator
types, static-analysis-based approaches must identify seman-
tics and dependencies between fields in a configuration file
and their corresponding operator function invocations. This
process requires precise binary-level interprocedural analy-
sis, which is not supported by previous static-analysis-based
approaches [66]. Note that BTD can handle DNN binaries
produced only by AOT-based DNN compilers, although it
employs dynamic binary analysis built upon Intel Pin.

Targeted Hardware. Existing works only support DNN bi-
naries that are executed on a CPU. For example, BTD only
supports the binaries on an x86 CPU, while many DNNs on
edge devices run on hardware accelerators whenever possible.

The goal of this work is to develop a framework that ad-
dresses the aforementioned limitations and complements the
capabilities of the aforementioned state-of-the-art works. In
the following paragraphs, we describe the challenges in ful-
filling the aforementioned goals and provide an overview of
how NEUROSCOPE addresses them.

Challenge 1: Supporting diverse and proprietary DNN
SDKs and hardware platforms. DNNs are compiled and
deployed into different hardware platforms, with different
vendor-specific SDKs. To a certain extent, the existing works
"overfit" target compilers, and it is challenging to have a
generic and easily extensible solution that recovers the DNN
semantics by analyzing the binary code due to variations of
DNN compiler semantics.

Solution 1: Our key observation is that, although DNNs may
be implemented differently by various compilers on differ-
ent hardware, the mathematical semantics of DNN operators,
the basic building blocks of a DNN, remain identical. More
importantly, the mathematical semantics can be inferred by ex-
amining their input-output behaviors, which are usually SDK-
and hardware-independent compared with examining their
binary code. For instance, given the same input, the output
of a Convolution operator should exhibit similar patterns
across different DNN SDKs and hardware platforms regard-
less of how they are implemented. To capture the input-output
behaviors, we develop a dynamic analysis framework to au-
tomatically locate the functions that implement each DNN
operator, identify the memory buffers that hold input/output
tensors, and record each input/output pairs as a pair of one-
dimensional arrays (Section 6.1).

Challenge 2: Inferring semantics from input/output pairs
with unknown tensor shape, operator attributes, and pa-
rameters. As mentioned earlier, we propose to infer the se-
mantics of DNN operators by examining their input-output
behaviors. However, inferring the semantics from input/out-
put pairs requires reasoning about the numeric relationship
between two sequences. Furthermore, we simply cannot enu-
merate all the possible DNN operators on the input tensor and
select the one that matches the output tensor because of the
unknown shape of the input/output tensors we acquire from
memory and the unknown operator attributes and parameters.
For instance, an array we acquire from memory containing
the values [1,2,3,4,5,6,7,8] may represent a tensor of shape
(2,2,2) (ie., [[[1,2],[3,4]],[[5,6],[7,8]]]), or a tensor of shape
(4,2) (i.e., [[1,2],]3,4],[5,6],[7,8]]). Additionally, even if we
know the shape of the input/output tensors, the operator at-
tributes and parameters are still unknown and encompass a
wide range of possibilities, making it infeasible to enumerate
all the possibilities.

Solution 2: We propose using machine learning to infer the
DNN semantics from input/output pairs. Specifically, we uti-
lize the Seq2Seq model [58] to encode the input/output pairs
into a vector and enrich the encoded vector with statistical
features we extract from the input/output pairs (e.g., lengths
and averages) to recover the operator type and attributes (Sec-
tion 5.2).

To acquire the dataset for training such a model, we pro-
pose a data synthesizer that synthesizes input/output pairs of
each supported DNN operator type (Section 5.1). To ensure
the synthesized input/output pairs are valid, the data synthe-
sizer considers the constraints of each operator type (e.g., for
Convolution operator, the kernel size should be smaller than
the input width/height).

Challenge 3: Part of the DNN may be executed using hard-
ware accelerators. As described in Section 2.2, the runtime
on the edge device partitions the DNN computation graph
into multiple subgraphs, each of which usually contains mul-
tiple operators that are supported by the same backend. Some

subgraphs of the DNN may be executed using hardware accel-
erators available on the edge device. The internal function of
these accelerators is a black box, and we can only observe the
input and output of the whole subgraph, instead of the inter-
mediate states of each operator, preventing us from inferring
the semantics of each individual DNN operator executed by a
hardware accelerator.

Solution 3: For flexibility and portability considerations, cur-
rent DNN inference runtimes usually include the CPU back-
end code for all the operators in the binary even when hard-
ware accelerators are available [9, 22]. In this way, when
hardware accelerators are not available, the runtime can ro-
bustly fall back to the CPU backend for subgraph execution,
where we can observe the input/output of each operator in
the subgraph. Leveraging this observation, we use various
approaches to prevent the runtime from using the hardware
accelerators, forcing it to fall back to the CPU backend for
subgraph execution, and then use the aforementioned tech-
niques to infer the semantics of each operator in the subgraph
(Section 6.1.1). Note that this approach relies on a DNN
runtime’s capability to switch its execution from a hardware
accelerator to a CPU (i.e., CPU fallback) because we can-
not directly reverse-engineer a DNN running on a hardware
accelerator. We discuss the limitations of this approach and
potential solutions in Section 10.

4 NEUROSCOPE Overview

NEUROSCOPE supports recovering DNN architecture (i.e.,
operator types, attributes, and topology) from DNN binaries
and outputs the recovered architecture in ONNX format [25].

Offline Phase

[é@ © Dataset Synthesis © Model Training]—> '\\{;f_;’- Trained models

; © /0 Data Collection E§©~ Dumpedl/Oof __, m O Operator-level
= /™ each operator Al Info Recove :

Target DNN Binary

Recovered operator
! @ © Model Recovery | type/attributes |
! Online Phase # H

% Recovered DNN Architecture

Figure 1: An overview of NEUROSCOPE pipeline.

Figure | shows an overview of NEUROSCOPE, which con-
sists of two phases: an offline phase (Section 5) and an online
phase (Section 06).

During the offline phase, given a set of input/output pairs,
NEUROSCOPE trains a classification neural network, Mr,
to recover the operator type, and a set of dedicated regres-
sion neural networks, M4, to recover the operator attributes.
To this aim, as the first step, NEUROSCOPE synthesizes a
training dataset consisting of numerous input/output pairs of

each supported DNN operator (Step @in Section 5.1). Then,
NEUROSCOPE trains M7 and My, on the synthesized training
dataset. Later on, these trained models can, given input/output
pairs of an operator, recover its type and attributes, respec-
tively (Step @®in Section 5.2).

In the online phase, NEUROSCOPE automatically reverse-
engineers the DNN architecture from the target DNN binary
using the collected input/output data and the trained neural
networks. Specifically, NEUROSCOPE first locates where the
mathematical operations for different DNN operators hap-
pen in the binary and the input/output buffers for each op-
erator. Then, it dumps the data in the input/output buffers
(Step ®in Section 6.1). Later, NEUROSCOPE recovers the
operator-level information (i.e., operator type and attributes)
of each DNN operator from the dumped input/output data
using the M7 and My, (Step @in Section 6.2) trained dur-
ing the offline phases. Finally, NEUROSCOPE recovers the
DNN topology i.e., the interconnections of the different DNN
operators, by identifying data dependencies between their
input/output buffers. As a last step, by combining the topol-
ogy information with the already recovered operator-level
information, NEUROSCOPE recovers the complete DNN ar-
chitecture (Step ®in Section 6.3).

Note that the offline phase is conducted only once to train
M7 and My, and the online phase is conducted for each run
of the DNN binaries (i.e., once per input).

5 NEUROSCOPE Offline Phase

In this section, we describe the offline phase consisting of
two steps: (1) dataset synthesis (Section 5.1) and (2) model
training (Section 5.2). The offline phase is conducted only
once, and the trained neural networks will be used in the
online phase to recover the DNN architecture from different
DNN binaries on different edge devices.

5.1 Dataset Synthesis

As the first step, NEUROSCOPE synthesizes a dataset consist-
ing of numerous input/output pairs of each supported DNN
operator to train M7 and My,. We chose to synthesize a
dataset instead of collecting from existing DNN binaries be-
cause we aim at training the generic M7 and My, to support
binaries compiled by different and proprietary DNN SDKGs.
To synthesize the dataset, NEUROSCOPE repeatedly
chooses a DNN operator type, generates random input ten-
sor shape, operator attributes, and operator parameters, and it
computes the corresponding output tensor. Since there are in-
herent constraints between the input tensor shape and operator
attributes, in order to ensure the correctness of the synthesized
dataset, NEUROSCOPE considers these constraints when gen-
erating the input tensor shape and operator attributes. Taking
the convolution operator (Conv) as an example, its output
shape size can be calculated as Out = (In—K+2xP+1)/S,

where Out, In, K, P and S denote the output size, input size,
kernel size, padding size, and striding size, respectively. Fur-
thermore, Out and In must be positive integers, while K, P,
S must be non-negative integers. Besides the constraints be-
tween input tensor shape and operator attributes, operator
attributes also have their own valid ranges [27]. For instance,
the kernel size (K) of a convolution operator is usually in
the range [1,7], while the padding size (P) is usually in the
range [0, (K — 1)/2] [27]. Table 3 summarizes these operator
attributes and their valid ranges.

Given the above constraints, NEUROSCOPE randomly gen-
erates the input tensor shapes, operator attributes, and operator
parameters satisfying the constraints, and computes the cor-
responding output tensors. Finally, NEUROSCOPE stores the
input/output tensor pairs along with their operator types, at-
tributes, and parameters in the dataset. Note that if a DNN
operator has two inputs, we represent them as a single tensor
by concatenating them.

5.2 Model Training

In this section, we first introduce the challenges and design
choices in modeling the problem of recovering DNN opera-
tors as a learning task (Section 5.2.1), and then we introduce
the architectures of M1 and My,, that we use to recover the
operator type and attributes (Section 5.2.2).

5.2.1 Challenges and Design Choices

We formulate the problem of recovering DNN operators as
follows: given an input/output tensor pair (7 , 6), where I and
O are the input and output tensors of a DNN operator, the goal
is to recover the operator type and its attributes. We enumerate
the challenges in modeling the problem as a learning task as
follows.

The first challenge is the inherent complexity of a multi-class
classification scenario. If we model recovering the operator
type and its attributes using a single classification model, the
number of output classes will be large, making the classifica-
tion hard to train. For instance, Conv operator has 5 attributes
(i.e., number of input channels, number of kernels, kernel size,
padding size, striding size, number of kernels), each of which
can take many choices. Assuming that each attribute can have
ten integer values, consequently, this leads to 10° attribute
combinations, solely for a Conv operator.

To tackle this challenge, we use a “divide-and-conquer” ap-
proach, decomposing the task into predicting the operator type
and predicting each attribute separately. Specifically, given an
input/output tensor pair of an operator, NEUROSCOPE first re-
covers its operator type with a classification model (M7), and
then, based on the operator type recovered, recovers each of its
attributes using dedicated regression models (M4,). Note that
each attribute (e.g., kernel size and padding size) is recovered
by a dedicated regression neural network model.

The second challenge is the difficulty of modeling the re-
lationship between input and output tensors of an operator.
Unlike conventional sequence classification modeling, where
the model receives a single sequence as input, in this sce-
nario, rather than just reasoning one single sequence, the
model needs to capture the numerical relationship between
two sequences (i.e., input and output tensors of an operator).
Some existing work [23,47] applies Sequence to Sequence
LSTM neural network (Seq2Seq) [58] with attention mecha-
nism [39] to capture the dependency between two sequences.
However, we find that the attention mechanism, such as a
transformer architecture, is not suitable for our problem, since
the sequences in our scenario are sometimes too long (e.g.,
the input sequence of a convolution operator can contain
64 %224 %224 = 3211264 elements), which makes the atten-
tion mechanism computationally expensive. However, with-
out the attention mechanism (as shown in the ablation study
in Section 8.1.2), the Seq2Seq alone fails to capture the de-
pendency between two sequences, possibly due to the lack of
the ability to capture the long-range dependency between two
sequences, leading to low accuracy of the recovered operator
type and attributes.

To tackle this challenge, we propose to enhance the
Seq2Seq neural network with statistical features extracted
from input/output sequences (as shown in Table 2) to accu-
rately capture the characteristics within and between the input
and output sequences. For example, we count the number of
zeros in the output tensor to distinguish Conv and Conv+Relu
operators. This is because the Relu operator, fused in the
Conv+Relu operator, transforms all negative elements to ze-
ros, resulting in more zeros in the output tensor than the Conv
operator alone. These many zeros serve as a strong indicator to
distinguish Conv and Conv+Relu operators. We will elaborate
on how the extracted statistical features are used in combina-
tion with the Seq2Seq neural network in Section 5.2.2.

Table 2: Extracted statistical features. I, O, len(X), and
range(X) denote the input sequence, output sequences, length
of a sequence X, and range of a sequence X, respectively.

Feature

Number of zero in 1, O
Mean of 1. S 0
Minimum of f, 0
Maximum of f, 0
len(T) /len(O)
range(I) /range(O)

Feature Type
Sequence-level features

Inter-sequence features

5.2.2 Architectures of M and My,

Figure 2 shows the architectures of M7 and My,,. For both
M7 and My, the input sequence (Input) of an operator is
fed into the first LSTM layer (I), and its final hidden state

is used as the initial hidden state of the second LSTM layer
(O) that processes the output sequence (Out put) of the same
operator. Both the input and output sequences are processed
at the tensor element level, where each element is a floating
point. Then, the final output state of the second LSTM layer
(O), along with each of the extracted statistical features in
Section 5.2.1 (F), is used as an input of the two consecutive
Fully Connected (FC) layers. For Mr, the last FC layer outputs
a vector of the shape (1,C), where C is the number of output
classes, and a Softmax layer is applied to convert the output of
the last FC layer to a probability distribution over the output
classes. On the other hand, for My,,, the last FC layer outputs
a floating-point value, which is the predicted value of the
attribute.

The design of M7 and My, is inspired by neural pro-
gram synthesis techniques [23,47]. Those techniques use
the Seq2Seq neural network to capture dependencies between
input and output sequences. However, as shown in the exper-
iments in Section 8.1.2, the Seq2Seq neural network alone
is not sufficient to capture dependencies between input and
output sequences. To enhance the Seq2Seq neural network,
we fuse the extracted statistical features and Seq2Seq neural
network with two consecutive FC layers. This combination
empirically shows a higher accuracy than that of the Seq2Seq
neural network alone. Note that we did not find it beneficial
to use an additional FC layer to fuse the statistical features
and the output of the Seq2Seq neural network.

We describe the hyperparameters of M7 and My, and how
they are fine-tuned in Section 7.

Output

|

Input (1]

FC {FC }—{Softmax] M,

Att

Figure 2: The top and bottom figures show the architectures
of M7 and My,,, respectively. They share a similar architecture
except that M7 has a Softmax layer at the end.

6 Online Phase

The online phase is conducted on the target DNN binary
on the edge device to recover the DNN architecture, which
consists of the following steps (as shown in Figure 1): @ I/O
data collection (Section 6.1), @ Operator-level Info Recovery
(Section 6.2), and @ Model Recovery (Section 6.3).

6.1 1/0 Data Collection

In this section, we describe how NEUROSCOPE collects the
input/output data of the executed DNN operators, which will
be used to recover the operator-level information and the
DNN model in the following steps. The I/O data collection
consists of the following two steps: (1) Forcing the DNN run-
time to CPU mode and (2) Locating DNN operators and I/0
buffers. In the first step, as discussed in Section 3, in order to
have observability of the DNN runtime execution at an opera-
tor level, NEUROSCOPE forcibly executes the DNN runtime
on a CPU by hiding the hardware accelerator from the ma-
chine learning runtime (Section 6.1.1). Then, NEUROSCOPE
locates the implementations of all the used DNN operators
and their corresponding buffers that hold the input and output
data (Section 6.1.2).

6.1.1 Forcing the DNN Runtime to CPU Mode

To ensure the observability of the DNN execution at an oper-
ator level, NEUROSCOPE forcibly executes the DNN runtime
on a CPU. Embedded machine learning runtimes with hard-
ware acceleration support typically use Memory-Mapped 1/O
(MMIO) to interface with the hardware accelerators, where an
accelerator’s I/O memory is directly mapped to the normal ad-
dress space, and a proprietary accelerator library is provided
as a shared library to manipulate the memory space. To hide
the hardware accelerator from the machine learning runtime,
we list the following techniques we used on the edge devices
we analyzed:

e Library Hiding: We can remove the shared libraries that

are used to communicate with the hardware accelerator.

* Configuration Tampering: Some machine learning run-

times, such as TIDL [13], use configuration files to spec-
ify the hardware accelerator to be used. We can modify
such configuration files to disable the usage of the hard-
ware accelerator.

Due to the robustness of the machine learning runtime,
we empirically found that the DNN binaries with hardware
acceleration support can still run in the CPU mode normally
after applying the above techniques. As shown in Section 8§,
all the SDKs used for evaluation supported running in the
CPU mode. Note that our CPU mode enforcement technique
may be applicable only to certain edge devices. We discuss
the limitations of this CPU fallback approach and potential
solutions in Section 10.

6.1.2 Locating DNN Operators and I/0 Buffers

In this section, we describe how NEUROSCOPE realizes the
operator-level I/O observability by locating the DNN operator
implementations and their corresponding buffers that hold the
I/0 data.

Locating DNN Operator Implementations. As discussed in
Section 2.2, unlike the AOT approach that previous works [66]
focus on, the DNN binaries compiled with the interpreter-
based approach has generic implementations for each type of
DNN operator. To locate the DNN operator implementations,
we develop dedicated static and dynamic binary analyses.
Specifically, NEUROSCOPE first conducts static analysis to
locate DNN operator candidate functions. NEUROSCOPE con-
siders functions as DNN operator implementation candidates
if they have nested loops whose depth is more than 2 and con-
tain vectorized instructions (e.g., ARM NEON instructions)
since DNN operators are usually implemented with vectorized
instructions with nested loops [66]. This heuristic is based on
the observation that DNN operators, such as convolutions and
matrix multiplications, inherently involve repetitive computa-
tions over multi-dimensional data structures. These operators
are typically implemented using multiple nested loops with
vectorized instructions.

Next, NEUROSCOPE runs a target DNN binary and sets

breakpoints at entry addresses of a subset of candidate func-
tions. During execution, NEUROSCOPE monitors its execu-
tion to determine whether those candidate functions are ex-
ecuted. NEUROSCOPE can detect a candidate function ex-
ecution because an occurrence of a set breakpoint hit indi-
cates the execution of that candidate function. The reason
NEUROSCOPE only focuses on a subset of candidate func-
tions is that some edge devices have limitations on the number
of breakpoints that can be set at the same time. Since we only
focus, at each iteration, on a subset, we need to repeat the
process iteratively until NEUROSCOPE covers all candidate
functions. All the candidate functions that are executed are
considered DNN operator implementations.
Locating I/O Buffers. Once the DNN operator imple-
mentations invoked by the target DNN binary are found,
NEUROSCOPE locates their I/O data buffers and identifies
tensor element data types of data within those buffers. To
this end, we leverage the observation that the I/O buffers are
frequently accessed by the operator implementations in the
nested loops.

Specifically, for each DNN operator implementation,
NEUROSCOPE first conducts static binary analysis to identify
the entry point of the nested loops and all the memory ac-
cess instructions (e.g., 1dr and str) within those loop bodies.
Then, NEUROSCOPE sets breakpoints at these memory access
instructions, resumes execution from the entry point of the
nested loops, and it collects the accessed memory addresses
until a target loop exits.

To locate the output buffer, NEUROSCOPE uses DB-
SCAN [24] to cluster the collected memory addresses updated
by DNN operators and then identifies the cluster with the
largest number of memory addresses as the output buffer. The
rationale behind this approach is that the majority of memory
addresses written by DNN operators are concentrated within
the output buffer, which is typically a contiguous memory

region. Similarly, for the input buffers, NEUROSCOPE uses
DBSCAN to cluster the collected memory addresses read
by DNN operators and then identifies the cluster with the
largest number of memory addresses as the input buffer. The
difference in locating the input and output buffers is that, for
input buffers, there may be two (e.g., Add operators have two
inputs). If two clusters have an equal number of memory ad-
dresses, NEUROSCOPE treats them as separate input buffers.
Otherwise, the cluster with the largest number of memory
addresses is considered the sole input buffer.

The reason NEUROSCOPE uses DBSCAN to cluster the
memory addresses is that the memory addresses of the in-
put/output buffers are usually contiguous, and DBSCAN is
suitable for clustering contiguous data points. NEUROSCOPE
repeats the above process for each invocation of the DNN
operator implementation, since, for some runtime, the I/O
buffers are dynamically allocated, and the location of the I/O
buffers can be different across different invocations.

Additionally, NEUROSCOPE identifies the tensor element
data type (e.g., 32-bit floating point or 8-bit integer) of
I/O buffers by analyzing the memory access instructions.
For instance, if the memory access instruction is str that
writes 32-bit data from a floating-point register to memory,
NEUROSCOPE considers the atomic data type of the buffer
as a 32-bit floating point.

Finally, NEUROSCOPE dumps the data within the identi-
fied input/output buffers to be used by Operator-level Info
Recovery (Section 6.2) and Model Recovery (Section 6.3).

6.2 Operator-level Info Recovery

NEUROSCOPE uses the M7 and My, trained in the offline
phase to recover the operator type and attributes of every
DNN operator from their corresponding input/output buffer
dumps. Specifically, NEUROSCOPE feeds N different inputs
to the target DNN binary, and it collects the input/output buffer
dumps of each operator, as described in Section 6.1.2. That
is, for each operator in the target DNN binary, NEUROSCOPE
collects N different input/output buffer dumps. Then, for each
operator, NEUROSCOPE feeds these N different input/output
buffer dumps separately into the M7 and decides the operator
type of each operator based on the majority vote of the pre-
dicted operator types. If multiple operator types are predicted
with the same highest vote, NEUROSCOPE randomly selects
one of them as the recovered operator type. After the opera-
tor type is determined, NEUROSCOPE infers the associated
attributes of the operator type using the My,,, with the same
N input/output buffer dumps and the majority vote strategy
as used in the operator type recovery. N is set to 10 in our
evaluation, as it empirically achieves good performance.
Table 3 shows the attributes that NEUROSCOPE recovers.
As shown in the previous work [27,38,66], an operator’s at-
tributes can be deduced deterministically from other attributes
of the same operator, or can be deduced from the attributes of

the predecessor operator. For instance, the number of input
channels (Cj,) of a convolution operator (Conv) is equal to the
number of kernels (C,,;) of the predecessor operator. There-
fore, NEUROSCOPE only needs to recover some attributes of
each operator type, and the other attributes can be inferred
from the recovered attributes. We mark the attributes that
NEUROSCOPE needs to recover with v'in Table 3. To recover
these marked attributes, NEUROSCOPE feeds the dumped I/O
data of each operator invocation into its associated M4 and
uses the rounded predicted value as the recovered attribute.

Table 3: A list of attributes of operators. Conv and FC denote
the convolution and fully-connected operators. The Pooling
operator includes both MaxPool and AvgPool since their at-
tributes are identical. RNN and LSTM denote the recurrent neu-
ral network (RNN) operator and long short-term memory
(LSTM) operator, respectively. v'in the column P denotes if
the attribute is predicted by a dedicated My,,, the attributes
without the v"are inferred from the other correlated attributes.
The assumed ranges are aligned with the recent works [27,40]

Operator Attribute Description P
Conv Cin Number of input channels.
Value is decided by the input or C,,;
Cour Number of kernels. Its value is v
2" where n is in range [0, 8]
K Kernel size. Value is in range [1, 7]. v
S Stride size. Value is in {1, 2}. v
P Padding size. v
FC F, Input size.
Value is decided by F,,; or Fp
Four Output size. v
Pooling K Kernel size. Value is in range [1, 7]. v
P Padding size. Value is in {0, 1}. v
S Stride size. Its value is in {1, 2} v
RNN Rhidden Hidden state size. v
LSTM Rhidden Hidden state size. v

6.3 Model Recovery

As the final step, NEUROSCOPE recovers the DNN topology
and combines it with the recovered operator-level information
to recover the complete DNN model.

Recovering DNN Topology. NEUROSCOPE recovers the
DNN topology by examining the data dependencies between
the identified I/O buffers of every operator invocation and their
invocation order. Specifically, NEUROSCOPE keeps track of
addresses of I/O buffers of each operator invocation and con-
nects two operator invocations if the successor invocation’s in-
puts match the predecessor invocation’s outputs. Through this
process, NEUROSCOPE identifies all the connections within
the DNN topology and eventually recovers the DNN topology.
Recovering DNN Model. NEUROSCOPE simply combines
the recovered DNN topology with the recovered operator-
level information, and outputs a high-level representation of
the recovered DNN architecture in the ONNX format [25].

7 Implementation

We implemented NEUROSCOPE in around 3,200 lines of
Python code.

Dataset Synthesis and Models. The dataset synthesis and
neural network models are implemented in Python using
PyTorch. Regarding the dataset synthesis, NEUROSCOPE
currently supports 12 DNN operators, including Add,
AvgPool, Concat, Conv, Conv+Relu, Fully Connected,
LSTM, MaxPool, Relu, RNN, Softmax, and Transpose. As
shown in the recent DNN reverse-engineering works [27, 68],
these operators are the most common operators composing
widely deployed DNN models, such as ResNet [31] and Mo-
bileNet [33]. We discuss NEUROSCOPE’s limitation regard-
ing unsupported operators/architectures (e.g., Transformer
Block operator in the transformer architecture [61]) and the
NEUROSCOPE extension plan as future work in Section 10.

Regarding the hyperparameters of M7 and My, we set the
hidden size of an LSTM layer to 16, and the output size of the
first FC layers to 32. To determine the optimal hyperparame-
ters, we conducted a grid search over a range of sizes: 8, 16,
32, and 64. Each configuration for those two sizes was used
to train the models on the training synthesized dataset and
evaluated on the validation synthesized dataset. As a result,
we selected the configuration with 16 for the hidden size of
an LSTM layer and 32 for the first FC layers because it shows
the best performance on the validation dataset. We use cross
entropy loss and mean squared error loss as the loss functions
to train Mt and My, respectively, and Adam optimizer to
train those models with a learning rate of 0.001. We did not
tune the learning rate, as we found that the default learning
rate worked well for our models.

Static Analysis. We implement our static analysis to iden-
tify the nested loop structures and some specific types of
instruction (e.g., vectorized instruction and memory access
instructions) using angr [57]. For the bare-metal edge devices,
we perform static analysis on the firmware binary, and for the
edge devices with an operating system, we perform static anal-
ysis on the shared library that contains the machine learning
runtime.

Dynamic Analysis. We utilize pt race for Linux-based edge
devices to set breakpoints and collect memory access infor-
mation. For bare-metal edge devices, we utilize SEGGER
J-Link [6], a hardware debugger, to enable using GDB. We
discuss more details about how we can enable our dynamic
analysis in other scenarios in Section 10.

According to the static analysis results, the dynamic analy-
sis sets breakpoints and collects necessary information when
a breakpoint is triggered. During the collection of memory
access information, the analysis process can be slowed down
by the presence of complicated nested loops. To mitigate this
issue, we introduce a timeout for the analysis of each operator
implementation. If the analysis of an operator implementation
exceeds the timeout, we finish the analysis of the current oper-

ator implementation. If a timeout occurs, the boundary of the
I/O buffer is determined by comparing the memory content
before and after the invocation of the operator implementa-
tion. We empirically set the timeout as ten minutes, which is
sufficient in our experiments.

8 Evaluation

In this section, we evaluate the effectiveness of
NEUROSCOPE. First, we describe the synthesized dataset we
use to train our neural network models, and we measure the
models’ performance on the synthesized dataset (Section 8.1).
Then, we evaluate the full pipeline of NEUROSCOPE on two
real-world edge devices with different vendor-specific SDKs
and show the effectiveness of NEUROSCOPE in recovering
DNN architectures from the edge devices (Section 9.1).
Lastly, we present a case study to demonstrate how to
use NEUROSCOPE to reverse engineer a proprietary DNN
model shipped with the NXP iMX 8M Plus board, a
System-on-Chip (SoC) designed for edge Al applications,
and then launch an adversarial attack by leveraging the
recovered DNN architecture (Section 9.2).

8.1 Synthesized Dataset and Evaluation

Here, we first describe the synthesized dataset we use to train
our neural network models and how we train M7 and My,
in Section 8.1.1. Then, we evaluate the performance of our
trained models on the synthesized dataset in Section 8.1.2.

8.1.1 Synthesized Dataset and Training

We synthesize 100,000 input/output pairs for each operator
we support. In total, the synthesized dataset contains 1.2 mil-
lion pairs of input/output tensors. We split the synthesized
dataset into training, validation, and testing datasets with a
ratio of 8:1:1. Models were trained on the training dataset and
validated on the validation dataset. Models were trained for
30 epochs with batch size 128, and the model with the best
overall validation accuracy was selected as the final model.
Training for each model took approximately 8 hours, using a
single NVIDIA A100-80GB GPU.

8.1.2 [Evaluation on Testing Synthesized Dataset

In this section, we evaluate the performance of our trained
models on the testing dataset.

9 Confusion matrix of the M7 on the testing
synthesized dataset.

Operator type recovery. We show the accuracy of M7 on re-
covering the operator type on the testing synthesized dataset,
and, as an ablation study, the accuracy of M7 without using

Confusion Matrix (Percentage)

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

FC CONV_RELU CONV

0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.03% 0.00% 0.09% 4.37%

0.00% 0.04% 0.00% 0.04% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00%

True Label
SOFTMAX ~ RELU MAX_POOLAVG_POOL

100.00% 0.00%

- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00%

- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

CONCAT TRANSPOSE ~ ADD

- 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

- 0.00% 0.00% 0.00% 021% 0.0l1% 0.00% 0.00% 0.00%

RNN

LSTM

- 0.00% 0.00% 0.00% 326% 001% 000% 0.00% 0.00% 0.00% 0.00%

CONV CONV_RELU FC ~ AVG_POOLMAX POOL RELU SOFTMAX ~ ADD TRANSPOSE CONCAT RNN LSTM
Predicted Label

Figure 3: The confusion matrix of the My on the testing
synthesized dataset.

the statistical features (i.e., only with the Seq2Seq model), in
Table 4. As shown in the table, M7 achieves high accuracy in
recovering the operator type, demonstrating the effectiveness
of Mr. Furthermore, Mt achieves significantly higher accu-
racy using the statistical features compared to not using them.
This difference is more distinct when recovering computa-
tionally complex operator types, such as Conv, Conv+Relu,
and FC (e.g., 99.09% vs. 82.61% for Conv). This indicates the
effectiveness of incorporating statistical features in recovering
the operator type.

Although the accuracy for AveragePool and MaxPool

(around 91%) is slightly lower than other operator types, our
investigation of the confusion matrix (shown in Figure 3)
shows these two pooling operators are misclassified (i.e.,
AveragePool is misclassified as MaxPool or vice versa) be-
cause their functions in DNNs are similar. Additionally, the
number of pooling operators in DNNs is usually much smaller
than that of other operators, such as Conv and FC, which makes
their misclassification less impactful.
Operator attribute recovery. Since the neural networks that
recover the operator attributes are dedicated to each operator
type, we first split the testing dataset into subsets based on
the operator type and then evaluated the accuracy of each
dedicated neural network on the corresponding subset. We
consider the attribute recovery accurate if the predicted value
after rounding is equal to the ground truth value. As shown in
Table 5, the dedicated neural networks achieve high accuracy
in recovering the operator attributes.

Table 4: Accuracy of operator type recovery on the testing
synthesized dataset. We consider the recovery accurate if the
predicted operator type is equal to the ground truth. The Ac-
curacy column shows the accuracy of Mr, and the Accuracy
w/o Features column shows the accuracy of the My, without
using the statistical features.

Operator Accuracy Accuracy w/o Features
Conv 99.09% 82.61%
Conv+Relu 99.66% 86.05%
FC 99.61% 88.19%
AvgPool 91.23% 76.59%
Maxpool 91.58% 71.92%
Relu 100.00% 96.22%
Softmax 100.00% 99.95%
Add 100.00% 99.78%
Transpose 100.00% 96.26%
Concat 100.00% 98.68%
RNN 99.78% 84.96%
LSTM 96.70% 83.36%
Overall 98.13% 88.71%

Table 5: Accuracy of operator attributes recovery on the test-
ing synthesized dataset. We consider the recovery results to
be accurate if the predicted value is equal to the ground truth.
Conv, FC, MaxPool, AvgPool, RNN, and LSTM respectively de-
note the convolution, fully-connected, max pooling, average
pooling, RNN, and LSTM operators.

Operator Attribute Recovery Accuracy
Conv Kernel size 99.75%
Number of kernels 99.97%
Stride size 99.10%
Padding size 99.68%
FC Output size 100.00%
MaxPool Kernel size 94.62%
Padding size 94.34%
Stride size 97.26%
AvgPool Kernel size 93.51%
Pad size 94.72%
Stride size 97.21%
RNN Hidden size 92.56%
LSTM Output size 93.14%

9.1 Evaluation on Edge Devices

In this section, we show our evaluation of NEUROSCOPE
on two real-world edge devices and show the effectiveness
of NEUROSCOPE in recovering DNN architectures from the
edge devices. We describe the target edge devices and DNN
models used for our evaluation in Section 9.1.1 and then
explain the evaluation setup in Section 9.1.2. We demonstrate
the evaluation results in Section 9.1.3.

9.1.1 Evaluation Targets

We choose the two edge devices shown in Table 6 for evaluat-
ing NEUROSCOPE.

Table 6: The edge device used for evaluation, their corre-
sponding SDKs for deploying DNNSs, their operating system
support and accelerator support.

Hardware NXP i.MX RT1050 TI SK-TDA4VM
DNN SDK NXP elQ TFLM [54] TI EdgeAI TIDL [13]
Operating System Bare-metal Linux-based
Accelerator No NPU

Regarding the models used in our evaluation, aligned
with prior model extraction attacks [66, 68], we use the
LeNet-5 [69], ResNet-18 [31], Char-RNN [1], and LSTM-
MNIST [10] models as the target DNN models for our evalu-
ation. We acquire the LeNet-5 and ResNet-18 models from
ONNX Model Zoo [26] and trained the Char-RNN and LSTM-
MNIST models by following their training instructions [1,10].

To deploy the target models on the target edge devices,
for each target model and each target edge device, we write
an application that iteratively reads inputs from a file and
performs the target DNN model inference by invoking the
interfaces provided by the corresponding SDKs, and com-
pile the application into a binary executable. Note that we
deploy the Char-RNN and LSTM-MNIST models only on the
TI SK-TDA4VM board because the DNN SDK [54] of the
NXP i.MX RT1050 board does not support RNN and LSTM
operators.

9.1.2 Evaluation Setup

We run the target DNN binary with an input and collect the in-
put/output buffer data of the invoked DNN operator. We repeat
this process 1,000 times for each target DNN binary to collect
1,000 input/output buffer dumps for each DNN operator. For
the LeNet-5 and the LSTM-MNIST models, the inputs are
randomly selected from the MNIST [69] and QMNIST [67]
datasets. For the target DNN model of ResNet-18, the inputs
are randomly selected from the ImageNet dataset [5] and the
Cifar-100 dataset [36]. Regarding the target DNN model of
Char-RNN, the inputs are randomly selected from the text
data provided by PyTorch [1].

To enable dynamic analysis, for the NXP i.MX RT1050
board, we use a hardware debugger (i.e., SEGGER J-Link
PRO debug probe) to enable GDB debugging. On the Linux-
based Texas Instruments SK-TDA4VM board, instead, we
rely on ptrace offered by Linux. Since the dynamic anal-
ysis (i.e., identifying the operators and their corresponding
input/output buffer) can be prolonged, to facilitate the eval-
uation, we only perform the dynamic analysis for the first
inference of each target DNN binary and use the analysis
results for the remaining inferences.

9.1.3 Recovery Accuracy

To evaluate the accuracy of NEUROSCOPE, we evaluate (1)
the correctness of the recovered DNN topology, (2) the accu-
racy of M7 and My, and (3) the accuracy of NEUROSCOPE
to recover DNN architecture. Note that the accuracy of
NEUROSCOPE is different from the accuracy of My and Muy,
since NEUROSCOPE aggregates multiple recovered operator
types/attributes with the majority voting to decide the final
operator type/attributes as mentioned in Section 6.2.

DNN Topology Recovery. We manually compare the recov-
ered DNN topology (i.e., how different operators are con-
nected with each other) with the ground truth DNN topology
of the target DNN models, and we report that, for each target
DNN binary, the recovered DNN topology is identical to the
ground truth DNN topology.

Accuracy of My and My,,. As mentioned in Section 9.1.2,
for each target DNN binary, we collect 1,000 input/output
buffer dumps for each DNN operator. To evaluate the accu-
racy of My, we feed these 1,000 input/output buffer dumps
to the trained M7, compare the predicted operator types with
the ground truth operator types, and we show the accuracy
of each operator type recovery and the overall accuracy in
Table 7. The overall accuracy is calculated as the number
of operators whose types are correctly recovered divided by
the total number of operators in the ground truth DNN archi-
tecture. Table 7 shows the accuracy of Mr. NEUROSCOPE
achieves high accuracy in recovering the operator types for
the target DNN binaries on the edge devices. We observe
that the accuracy distribution is similar to the synthesized
dataset, where the accuracy of AveragePool and MaxPool
are slightly lower than other operator types, indicating that
the synthesized dataset is representative of the input/output
tensor pair distribution in real-world DNN binaries.

Similarly, we evaluate the accuracy of the operator’s at-
tributes recovery, and we show the accuracy of each operator’s
attributes in Table 8. As shown in the table, NEUROSCOPE
also achieves high accuracy in recovering the operator at-
tributes.

Accuracy of NEUROSCOPE. We randomly divide the col-
lected 1,000 input/output buffer dumps into 100 groups each
of which contains 10 input/output buffer dumps. For each
group, we separately feed the input/output buffer dumps to
the trained M7 and My, use the majority voting to decide
the final operator type/attributes, and recover the DNN ar-
chitecture. We evaluate the correctness of NEUROSCOPE by
comparing these 100 recovered DNN architecture with the
ground truth DNN architecture of the target DNN models and
show the percentage of the recovered DNN architectures that
are identical to their respective ground truth DNN architecture
in Table 9. As shown in Table 9, NEUROSCOPE shows high
accuracy in recovering the DNN architectures from the target
DNN binaries. We investigate the recovered DNN architec-

Table 7: Accuracy of operator type recovery for the target
DNN binaries. The denotations of the hardware/model com-
binations are as follows: NXP/L (NXP i.MX RT1050/LeNet-
5), NXP/R (NXP i.MX RT1050/ResNet-18), TI/L. (TI
TDA4VM/LeNet-5), TI/R (TI TDA4VM/ResNet-18), TI/C
(TI TDA4VM/Char-RNN), and TI/LS (TI TDA4VM/LSTM-
MNIST). The overall accuracy is calculated as the weighted
average of the accuracy of each operator type, based on the
number of occurrences of each operator type in the target
DNN binaries. N/A denotes that the operator type does not
exist in the target DNN model.

Operator NXP/LL. NXP/R TI/L TI/R TI/C TI/LS
Conv N/A 97.6% N/A 96.8% N/A N/A
Conv+Relu 99.9% 100.0% 100.0% 100.0% N/A N/A
FC 99.6% 99.6% 96.4% 100.0% N/A N/A
AvgPool N/A 85.9% N/A 91.4% N/A N/A
MaxPool 94.0% N/A 94.3% N/A N/A N/A
Relu N/A 100.0% N/A 100.0% N/A N/A
Softmax N/A 100.0% N/A 100.0% 100.0% 100.0%
Add N/A 100.0% N/A 100.0% N/A N/A
RNN N/A N/A N/A N/A 98.84% N/A
LSTM N/A N/A N/A N/A N/A 96.26%
Overall 98.6% 98.6% 97.4% 99.0% 98.85% 96.26%

tures that are not identical to the respective ground truth DNN
architectures and find that all the errors are caused by the
misclassification between AvgPool and MaxPool operators.

Table 9: Percentage of the recovered DNN architecture that
is identical to the ground truth DNN architecture. The deno-
tations of the hardware/model combinations are as follows:
NXP/L (NXP i.MX RT1050/LeNet-5), NXP/R (NXP i. MX
RT1050/ResNet-18), TI/L (TI TDA4VM/LeNet-5), TI/R (TI
TDA4VM/ResNet-18), TI/C (TI TDA4VM/Char-RNN), and
TI/LS (TI TDA4VM/LSTM-MNIST).

NXP/L NXP/R TI/L TI/R TI/C TILS

Identical

100% 92% 100% 99% 100% 100%
percentage

9.2 Case Study

In this section, we demonstrate how we use NEUROSCOPE
to recover DNN architectures from a real-world proprietary
DNN binary shipped with the NXP i. MX 8M Plus board.
Since we do not have access to the ground truth DNN ar-
chitecture, we cannot directly verify the correctness of the
recovered DNN architecture. Nevertheless, we show the effec-
tiveness of NEUROSCOPE in boosting adversarial attacks by
leveraging the recovered DNN architecture. Specifically, we
first launch adversarial attacks on the target DNN binary, both
with and without knowledge of the recovered DNN architec-
ture, using a gray-box adversarial attack [41] and a black-box
adversarial attack [46], respectively. Then, we compare the
target DNN binary’s inference accuracy on the generated

Table 8: Accuracy of operator attributes recovery for the target DNN binaries. The denotations of the hardware/model combina-
tions are as follows: NXP/L (NXP i.MX RT1050/LeNet-5), NXP/R (NXP i.MX RT1050/ResNet-18), TI/L (TI TDA4VM/LeNet-
5), TI/R (TI TDA4VM/ResNet-18), TI/C (TI TDA4VM/Char-RNN), and TI/LS (TI TDA4VM/LSTM-MNIST). N/A denotes

that the operator type does not exist in the target DNN binaries.

Operator Attribute NXP/LL NXP/R TI/L TI/R TI/C TI/LS
Conv Kernel size 99.3% 99.2% 98.8% 98.4% N/A N/A
of kernels 98.2% 97.4% 99.7% 98.3% N/A N/A
Stride size 97.4% 98.8% 98.2% 99.0% N/A N/A
Padding size ~ 98.8% 98.5% 99.1% 98.4% N/A N/A
FC Output size 99.3% 98.0% 100.0% 99.7% N/A N/A
MaxPool Kernel size 93.1% N/A 93.4% N/A N/A N/A
Padding size ~ 93.5% N/A 94.7% N/A N/A N/A
Stride size 97.3% N/A 97.5% N/A N/A N/A
AvgPool Kernel size N/A 95.9% N/A 96.8% N/A N/A
Pad size N/A 94.3% N/A 96.6% N/A N/A
Stride size N/A 96.8% N/A 97.1% N/A N/A
RNN Hidden size N/A N/A N/A N/A 91.6% N/A
LSTM Output size 99.3% 98.0% 100.0% 99.7% N/A 93.9%

adversarial example (i.e., the lower the accuracy, the higher
the attack success rate). Our evaluation demonstrates that
the adversarial attack success rate is boosted by leveraging
the recovered DNN architecture, proving the effectiveness of
NEUROSCOPE.

9.2.1 Target Details

The NXP i.MX 8M Plus board is a Linux-based SoC designed
for edge Al applications and equipped with a neural process-
ing unit (NPU) that accelerates DNN inference. Au-Zone
DeepViewRT [4], a proprietary and closed-source SDK, is
provided for developing DNN applications on this board and
to leverage the NPU for DNN inference. In this case study,
we use a proprietary DNN binary shipped with DeepViewRT
SDK as the target DNN binary, which is a binary executable
that takes an image as input and outputs the classification
result of the image. From the labels of the classification result,
we observe that the DNN model is an image classification
model with the same labels as the ImageNet dataset [5].

9.2.2 DNN Architecture Extraction Attack

Since the NXP i.MX 8M Plus board is a Linux-based edge
device, we use ptrace to perform the dynamic analysis of
the target DNN binary. To force the target DNN binary to run
fully on a CPU, we modify the DeepViewRT runtime’s con-
figuration file to remove the use of NPU acceleration. We use
NEUROSCOPE to identify the DNN operator functions that
are invoked by the target DNN binary, dump the input/out-
put buffers of each DNN operator function invocation, and
recover the DNN architecture. The recovered DNN architec-
ture contains 58 operators, with consecutive pairs of Conv
and Relu operators, followed by AveragePool and Softmax
operators at the end. We investigate the recovered DNN ar-
chitecture and find that it is identical to MobileNet v2 [52], a

popular DNN architecture for image classification on mobile
and embedded devices. However, since we do not have the
source code/model of the target DNN binary, we cannot di-
rectly and completely verify the correctness of the recovered
DNN architecture.

9.2.3 Boosting Adversarial Attack

In the context of DNN adversarial attacks, an adversary aims
to manipulate the predicted labels of a DNN model by intro-
ducing minimal, often imperceptible, disturbances to the input
images that cause the DNN model to erroneously predict an
incorrect label [46]. Previous works show that adversarial
attacks can be boosted if the adversary has knowledge of
the DNN architecture [41] (i.e., the gray-box attack). Specifi-
cally, with the knowledge of the DNN architecture, gray-box
attacks train a surrogate model with the same architecture
as the target DNN model, conduct white-box attacks on the
surrogate model to generate adversarial examples, and then
use the adversarial examples to attack the target DNN model.

We demonstrate that the DNN architecture recovered by
NEUROSCOPE can be used to conduct gray-box adversarial
attacks. Specifically, we first randomly select 1,000 images
from the ImageNet dataset [5] as the input images and then
record the corresponding output logits. We also evaluate the
inference accuracy of the target DNN binary on these images
by comparing the predicted label with the ground truth label.
The inference accuracy of the target DNN binary on the 1,000
images is 74.4%.

To launch the gray-box attack, given the observation that
the recovered DNN architecture is identical to the Mo-
bileNet v2 model, we use the pre-trained MobileNet v2 model
on TorchVision [44] as the starting point and fine-tune the
pre-trained model. Specifically, as the fine-tuning procedure,
we train the pre-trained model with the 1,000 images and their
corresponding output logits as the training dataset, and we

train the model for 50 epochs. We use the fine-tuned model
as the surrogate model and use foolbox [50] to generate ad-
versarial examples with the surrogate model.

For the black-box attack, we start with the ResNet-50 pre-
trained model on TorchVision, fine-tune it with the same pro-
cedure and training hyperparameters as the gray-box attack,
and use the fine-tuned model to generate adversarial examples
with the same 1,000 images.

Table 10 shows the target DNN binary’s accuracy on the
adversarial examples generated by the black-box attack and
the gray-box attack enabled by NEUROSCOPE. The epsilon
denotes the perturbation magnitude, which represents the
maximum allowed perturbation to the original image. Larger
epsilon results in more noticeable perturbations. As shown
in Table 10, the inference accuracy under the gray-box at-
tack is significantly lower than the original inference accuracy
(i.e., 74.4%). More importantly, given the same epsilon,
the inference accuracy under the gray-box attack enabled
by NEUROSCOPE is lower than the inference accuracy un-
der the black-box attack, indicating that the adversarial at-
tack is boosted by leveraging DNN architecture recovered by
NEUROSCOPE.

Table 10: Accuracy of the victim DNN binary on the gener-
ated adversarial examples with and without the knowledge of
the recovered DNN architecture. The lower the accuracy, the
more successful the adversarial attack is.

epsilon Black-box attack Gray-box attack
0.01 63.8% 61.2%
0.1 49.9% 37.6%
0.3 35.6% 23.0%

10 Discussion

Handling Hardware Accelerators. NEUROSCOPE currently
supports edge devices equipped with hardware accelerators
by leveraging their CPU fallback capability and analyzing the
I/0 behaviors of the code running on their CPUs. This design
is based on the observation that the CPU fallback is a com-
mon design choice for DNN runtimes on edge devices with
hardware accelerators, and it allows DNN runtimes to execute
DNN code on a CPU when a hardware accelerator is unavail-
able. As mentioned in Section 6.1.1, different mechanisms
can be used to trick the runtime into using the CPU backend.
For instance, if the runtime looks for shared libraries [11] or
a device file to use an accelerator, we can simulate an envi-
ronment without such an accelerator by pre-loading modified
versions of the used shared libraries [48]. Unfortunately, some
DNN runtimes (e.g., TensorRT on Nvidia Jetson) do not of-
fer this CPU fallback feature, limiting the applicability of
NEUROSCOPE.

To overcome this limitation, as future work, we plan to
support this type of DNN runtime by developing the capa-
bility of monitoring the interactions between a CPU and a
hardware accelerator (e.g., by monitoring memory-mapped
/O (MMIO)). This capability will enable capturing the I/O
behaviors of DNN code running on a hardware accelerator.
Then, we can use the captured I/O data to recover the se-
mantics of DNN operators with trained neural networks as
NEUROSCOPE does. Alternatively, for accelerators using an
open ISA and providing debugging capability, we could adapt
our dynamic analysis approach to analyze code running on
those accelerators directly.

Supporting DNN Parameter Recovery. Some DNN oper-
ators (e.g., Convolution operators) carry parameters (i.e.,
weights). During inference, similar to the input data, the pa-
rameters are loaded from a buffer and used to perform the
computation. While the parameter buffers are usually smaller
than the input/output data buffers, they can be identified using
the same dynamic analysis approach we use to identify the
input/output data buffers (i.e., clustering the memory access
information). To precisely recover the parameters from the
parameter buffers, we need information about how the param-
eters are stored in the buffer (e.g., the layout of the parameters
in the buffer). As future work, we can leverage the operator
type and attributes recovered by NEUROSCOPE to guide the
recovery of the parameters. Specifically, given the recovered
operator type and attributes, we could enumerate the possible
parameter layouts. Then, for each possible parameter layout,
we could extract the parameters from the parameter buffer
according to the layout and verify by executing the operator
with the recovered parameters and input data and comparing
the output with the output we acquire from the output buffer.
Supporting Additional DNN Operators. As shown in the
previous research [27,38], the DNN operators supported by
NEUROSCOPE are sufficient to cover many popular DNN
families. One limitation is that NEUROSCOPE does not cur-
rently support some DNN operators, such as the Transformer
Block in the transformer architecture [61] or the TopK oper-
ator. We believe NEUROSCOPE can be extended to support
these operators by synthesizing a dataset for them and retrain-
ing the classification and regression neural network models.
Based on our experience, we estimate that adding support for
a new operator requires 1 to 2 person-days of work, including
1 day for retraining for the machine-learning models, i.e., Mt
and M.

Enabling Debugging Features on Edge Devices. In sce-
narios where edge devices operate under an OS and DNN
binaries are executed as applications, software debuggers are
typically available. For bare-metal edge devices, to enable de-
bugging features, we can connect hardware debugging tools,
such as SEGGER J-Link [6], to a debug port or directly sol-
dered to debug pins. Note that we can identify debug pins by
checking a target board’s specification or employing hardware
reverse engineering tools, such as JTAGulator [7]. If they are

not applicable, we can utilize alternative methods, such as
firmware rehosting [21], and binary firmware patching [65],
to enable debugging access.

Handling DNN Binaries with Heavy Optimizations and
Obfuscations. We assume that our target DNN binaries are
compiled with DNN compilers, using their default compila-
tion options, that are shipped with the DNN SDK toolchains.
Because their compilation process usually does not employ
heavy optimizations and obfuscations, we do not consider
the impacts of heavy optimization or obfuscation in our ex-
periments. In principle, optimization and obfuscation should
not fundamentally affect the effectiveness of our approach be-
cause they do not alter the I/O behaviors of DNN code. How-
ever, in practice, they may make it difficult for NEUROSCOPE
to accurately locate the DNN operators and I/O buffers within
DNN binaries. In future work, we plan to investigate the
impact of heavy optimization and obfuscation on the effec-
tiveness of our approach and develop techniques to mitigate
the impacts of these challenges.

Possible Defenses Against NEUROSCOPE. Users can em-
ploy specific techniques to hinder NEUROSCOPE’s analy-
sis. For instance, a user familiar with NEUROSCOPE may
try to disrupt its dependencies to thwart NEUROSCOPE-
based reverse engineering. For instance, users can prevent
NEUROSCOPE’s dynamic analysis by disabling the debug-
ging features (e.g., removing debug ports and disabling
ptrace). Unfortunately, in this case, NEUROSCOPE cannot
reverse engineer the DNN binary. Furthermore, it is possible
to obfuscate the DNN binaries [53], making the identification
of DNN operators and I/O buffers more challenging.

11 Related Work

DNN Extraction Attacks. DNN Model extraction attacks
reveal a DNN’s model hyperparameters and/or parameters.
Three categories of DNN extraction attacks have been pro-
posed. The first category of extraction attack, including this
work, leverages static or dynamic binary analysis to recover
DNN models from the compiled DNN binaries [19,38,66,70].
The second category of extraction attack queries a black-box
DNN model and then trains a substitute model to approximate
input-output behaviors from the victim DNNs [60, 62]. These
attacks usually cannot recover DNN architecture/parameters
and require significant computational resources, which is a
key limitation when applied to edge devices. The third cat-
egory of attack exploits hardware or side channels, such as
PCle traffic [34,71], cache-based side-channel [68] and elec-
tromagnetic [15,27,28,40], to launch attack. With the DNN
model extracted, the adversary can launch other attacks, such
as white-box adversarial attacks [18,59], which assume an
attacker has prior knowledge of a victim DNN model, such
as model hyperparameters and parameters.

Program Induction and Synthesis by Examples. Program
induction and synthesis automatically generate programs that
satisfy the given requirements or specifications. The approach
that is most relevant to our work is neural program synthesis
by examples, which utilizes neural networks to synthesize
programs from input/output examples [16,23,47]. There are
also some works that leverage program synthesis to deobfus-
cate obfuscated programs [37,42]. TF-Coder [55] is a recent
work that uses neural networks to synthesize TensorFlow pro-
grams from natural language descriptions of the program and
input/output examples. However, it requires the user to pro-
vide the natural language description of the program, which
is not available in our setting. Additionally, it requires the
knowledge of the exact information of the input/output ex-
amples, for example, the shape/dimension of the input/output
tensors, which are hard to infer given the flat memory region
our dynamic analysis identifies.

12 Conclusions

In this paper, we present NEUROSCOPE, a novel, data-driven
approach for reverse-engineering DNN binaries on edge de-
vices through a combination of dynamic analysis and machine
learning. Our approach does not rely on specific code fea-
tures of the analyzed DNN binary, enabling NEUROSCOPE to
support more DNN binaries, specifically those implementing
DNN models using an interpreter-based approach, than the ex-
isting approaches. Our evaluation shows that NEUROSCOPE
can accurately recover three different DNN models compiled
by three different SDKs on three different edge devices. As a
case study, we demonstrate that NEUROSCOPE can be used to
reverse-engineer a proprietary DNN binary which is compiled
by a closed-source SDK, and the reverse-engineered results
can be used to enable gray-box adversarial attacks.

Acknowledgments

This project was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under contracts number
N6600120C4031, the National Science Foundation (NSF)
under contract number CNS2145744, the Office of Naval
Research (ONR) under contract number NO00142312157,
and Lockheed Martin. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of United
States Government, any agency, or corporation thereof.

References

[1] Classifying names with a character-level rnn.
https://pytorch.org/tutorials/intermediate/
char_rnn_classification_tutorial.html.

[2] Deep learning meets the internet of things. https://
shorturl.at/bILTS.

[3] Edge impulse. https://edgeimpulse.com/.

[4] eiq® inference with deepviewrt™.
//www.nxp.com/design/design-center/
software/eig-ml-development-environment/

https:

eig-inference-with-deepviewrt:
EIQ-INFERENCE-DEEPVIEWRT.

[5] Imagenet. https://image-net.org/index.php.
[6] J-link debug probes by segger — the embedded experts.

[7] Jtagulator. https://grandideastudio.com/
portfolio/security/Jjtagulator.

[8] Nxp edgeready mcu-based solution for secure face
recognition | nxp semiconductors.

[9] onnxruntime architecture.
ai/docs/reference/high-level-design.html.

[10] Sequence classification with Istm on mnist.
https://notebook.community/santipuch590/
deeplearning-tf/dl_tf_BDU/3.RNN/MLO120EN-3.
1-Review-LSTM-MNIST-Database.

[11] Tensorflow lite delegates. https://www.tensorflow.

org/lite/performance/delegates. (Accessed on
08/14/2024).

[12] Texas instruments edge ai studio. https://dev.ti.

com/edgeaistudio/.

[13] Texasinstruments/edgeai-tidl-tools: Edgeai tidl
tools and examples. https://github.com/
TexasInstruments/edgeai-tidl-tools/tree/
master.

[14] Borja Balle, Giovanni Cherubin, and Jamie Hayes. Re-
constructing training data with informed adversaries. In
2022 IEEE Symposium on Security and Privacy, pages
1138-1156. IEEE, 2022.

[15] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In
Proceedings of the USENIX Security Symposium, 2019.

[16] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik
Sen, and Ion Stoica. Autopandas: neural-backed genera-
tors for program synthesis. Proceedings of the ACM on
Programming Languages, 3(O0OPSLA):1-27, 2019.

[17] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song,
Andreas Terzis, and Florian Tramer. Membership in-
ference attacks from first principles. In 2022 IEEE
Symposium on Security and Privacy, pages 1897-1914.
IEEE, 2022.

https://onnxruntime.

[18] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In Proceedings of
the IEEE Symposium on Security and Privacy, 2017.

[19] Simin Chen, Hamed Khanpour, Cong Liu, and Wei Yang.
Learning to reverse dnns from ai programs automatically.
arXiv preprint arXiv:2205.10364, 2022.

[20] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated
End-to-End optimizing compiler for deep learning. In
USENIX Symposium on Operating Systems Design and
Implementation, 2018.

[21] Abraham A Clements, Eric Gustafson, Tobias
Scharnowski, Paul Grosen, David Fritz, Christopher
Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias
Payer. Halucinator: Firmware re-hosting through
abstraction layer emulation. In Proceedings of 29th
USENIX Security Symposium, 2020.

[22] Robert David, Jared Duke, Advait Jain, Vijay
Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger,
Tan Nappier, Meghna Natraj, Tiezhen Wang, et al.
Tensorflow lite micro: Embedded machine learning for
tinyml systems. Proceedings of Machine Learning and
Systems, 3:800-811, 2021.

[23] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy
i/o. In International conference on machine learning,
pages 990-998. PMLR, 2017.

[24] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei
Xu, et al. A density-based algorithm for discovering

clusters in large spatial databases with noise. In kdd,
volume 96, pages 226-231, 1996.

[25] Linux Foundation. ONNX. https://onnx.ai/.

[26] Linux Foundation. ONNX model zoo. https://
github.com/onnx/models.

[27] Yansong Gao, Huming Qiu, Zhi Zhang, Binghui Wang,
Hua Ma, Alsharif Abuadbba, Minhui Xue, Anmin Fu,
and Surya Nepal. Deeptheft: Stealing dnn model ar-
chitectures through power side channel. In 2024 I[EEE
Symposium on Security and Privacy. IEEE, 2024.

[28] Cheng Gongye, Yukui Luo, Xiaolin Xu, and Yunsi Fei.
Side-channel-assisted reverse-engineering of encrypted
dnn hardware accelerator ip and attack surface explo-
ration. In 2024 IEEE Symposium on Security and Pri-
vacy, pages 1-1. IEEE Computer Society, 2023.

[29] Google. Tensorflow lite for microcontrollers. https:
//www.tensorflow.org/lite/microcontrollers.

[30] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn
Song. Tabor: A highly accurate approach to inspecting
and restoring trojan backdoors in Al systems. arXiv
preprint arXiv:1908.01763, 2019.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[32] Hex-Rays. https://hex-rays.com/.

[33] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[34] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei
Zuo, Yu Ji, Xinfeng Xie, Yufei Ding, Chang Liu, Tim-
othy Sherwood, et al. Deepsniffer: A dnn model ex-
traction framework based on learning architectural hints.
In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2020.

[35] Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike
He, Thierry Tambe, Gus Henry Smith, Akash Gaonkar,
Vishal Canumalla, Gu-Yeon Wei, Aarti Gupta, Zachary
Tatlock, and Sharad Malik. Specialized accelerators and
compiler flows: Replacing accelerator apis with a formal
software/hardware interface. 2022.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[37] Jaehyung Lee and Woosuk Lee. Simplifying mixed
boolean-arithmetic obfuscation by program synthesis
and term rewriting. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security, pages 2351-2365, 2023.

[38] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie,
and Lei Ma. Decompiling x86 deep neural network
executables. In 32nd USENIX Security Symposium,
pages 7357-7374, 2023.

[39] Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025,
2015.

[40] Henrique Teles Maia, Chang Xiao, Dingzeyu Li, Eitan
Grinspun, and Changxi Zheng. Can one hear the shape
of a neural network?: Snooping the gpu via magnetic
side channel. In Proceedings of the USENIX Security
Symposium, 2022.

[41] Dongyu Meng and Hao Chen. Magnet: a two-pronged
defense against adversarial examples. In Proceedings
of the 2017 ACM SIGSAC conference on computer and
communications security, pages 135-147, 2017.

[42] Grégoire Menguy, Sébastien Bardin, Richard Bonichon,
and Cauim de Souza Lima. Search-based local black-
box deobfuscation: understand, improve and mitigate.
In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2513—
2525, 2021.

[43] Meta. glow. https://github.com/pytorch/glow.

[44] Meta. Torchvision datasets. http://pytorch.org/
vision/main/datasets.html.

[45] NSA. Ghidra. https://ghidra-sre.org.

[46] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the ACM on Asia Conference on Com-
puter and Communications Security, 2017.

[47] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.
Neuro-symbolic program synthesis. arXiv preprint
arXiv:1611.01855, 2016.

[48] Kevin Pulo. Fun with 1d_preload. In linux. conf. au,
volume 153, page 103, 2009.

[49] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan
Yao, and Deliang Fan. Deepsteal: Advanced model ex-
tractions leveraging efficient weight stealing in memo-
ries. In 2022 IEEE Symposium on Security and Privacy,
pages 1157-1174. IEEE, 2022.

[50] Jonas Rauber, Wieland Brendel, and Matthias Bethge.
Foolbox: A python toolbox to benchmark the robustness
of machine learning models. In Reliable Machine Learn-
ing in the Wild Workshop, International Conference on
Machine Learning, 2017.

[51] Tirias Research. Smart inference devices.
https://www.tiriasresearch.com/wp-content/
uploads/2020/04/TIRIAS_Research-Smart_
Inference_Devices.pdf.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2018.

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes
Kinder, Georg Merzdovnik, and Edgar Weippl. Pro-
tecting software through obfuscation: Can it keep pace

with progress in code analysis? Acm computing surveys,
49(1):1-37, 2016.

NXP Semiconductors. eiq® ml software development
environment | nxp semiconductors. https://www.nxp.
com/design/software/development-software/
eig-ml-development-environment :EIQ.

Kensen Shi, David Bieber, and Rishabh Singh. Tf-coder:
Program synthesis for tensor manipulations. ACM
Transactions on Programming Languages and Systems,
44(2):1-36, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In Proceedings of the IEEE
Symposium on Security and Privacy, 2017.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. Advances in
neural information processing systems, 27, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

Florian Tramer, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing machine learning mod-
els via prediction apis. In Proceedings of the USENIX
Security Symposium, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Binghui Wang and Neil Zhengiang Gong. Stealing
hyperparameters in machine learning. In Proceedings
of the IEEE Symposium on Security and Privacy, 2018.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2019.

Hongwei Wu, Jianliang Wu, Ruoyu Wu, Ayushi Sharma,
Aravind Machiry, and Antonio Bianchi. Veribin: Adap-
tive verification of patches at the binary level.

Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias
Payer, Nils Ole Tippenhauer, Dongyan Xu, Dave Jing
Tian, and Antonio Bianchi. Lightblue: Automatic
profile-aware debloating of bluetooth stacks. In 30th
USENIX Security Symposium, pages 339-356, 2021.

Ruoyu Wu, Taegyu Kim, Dave Jing Tian, Antonio
Bianchi, and Dongyan Xu. {DnD}: A {Cross-
Architecture} deep neural network decompiler. In 3 /st
USENIX Security Symposium, pages 2135-2152, 2022.

Chhavi Yadav and Léon Bottou. Cold case: The lost
mnist digits. Advances in Neural Information Process-
ing Systems, 32, 2019.

Mengjia Yan, Christopher W. Fletcher, and Josep Tor-
rellas. Cache telepathy: Leveraging shared resource
attacks to learn DNN architectures. In Proceedings of
the USENIX Security Symposium, 2020.

Corinna Cortes Yann LeCun and Chris Burges. Mnist
handwritten digit database. http://yann.lecun.com/
exdb/mnist/.

Jinquan Zhang, Pei Wang, and Dinghao Wu. Libsteal:
Model extraction attack towards deep learning compilers
by reversing dnn binary library. In Proceedings of the
18th International Conference on Evaluation of Novel
Approaches to Software Engineering, 2023.

Yuankun Zhu, Yuegiang Cheng, Husheng Zhou, and
Yantao Lu. Hermes attack: Steal DNN models with loss-
less inference accuracy. In Proceedings of the USENIX
Security Symposium, 2021.

Mugqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio
Bianchi, and Dave Jing Tian. D-helix: A generic decom-
piler testing framework using symbolic differentiation.
In 33rd USENIX Security Symposium, pages 397-414,
2024.

	Introduction
	Background
	Deep Neural Network
	DNN Inference on Edge Devices

	Motivation
	NeuroScope Overview
	NeuroScope Offline Phase
	Dataset Synthesis
	Model Training
	Challenges and Design Choices
	Architectures of MT and MAtt

	Online Phase
	I/O Data Collection
	Forcing the DNN Runtime to CPU Mode
	Locating DNN Operators and I/O Buffers

	Operator-level Info Recovery
	Model Recovery

	Implementation
	Evaluation
	Synthesized Dataset and Evaluation
	Synthesized Dataset and Training
	Evaluation on Testing Synthesized Dataset

	Confusion matrix of the MT on the testing synthesized dataset.
	Evaluation on Edge Devices
	Evaluation Targets
	Evaluation Setup
	Recovery Accuracy

	Case Study
	Target Details
	DNN Architecture Extraction Attack
	Boosting Adversarial Attack

	Discussion
	Related Work
	Conclusions

