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Abstract—As microelectronics flourish and outsourcing of the
design and manufacturing stages of integrated circuits (ICs)
and printed circuit boards (PCBs) becomes the norm, micro-
electronics stakeholders must also confront a new wave of
security challenges, including the threats posed by hardware
Trojans, counterfeit electronics, and reverse engineering attacks.
Traditional detection and prevention methods like testing and
side-channel analysis have limitations in reliability and scalability.
Automated reverse engineering by deep learning (DL) models is
a foolproof approach to hardware assurance, but faces challenges
due to limited data. By pooling data from different stakeholders
(competitors in industry, governments, etc.), DL models can be
more effectively trained but privacy of intellectual property (IP) is
a significant concern. Federated Learning (FL) has been proposed
as a potential alternative allowing for the collaborative training of
a DL model without sharing raw data. While FL has been widely
used in healthcare, IoT, and finance, its application in hardware
assurance remains underexplored. This study investigates, for
the first time, FL-based DL for hardware assurance, demon-
strating that FL outperforms single-client centralized learning
in segmentation tasks for reverse engineering. Our results show
that increasing the number of clients improves FL performance
by collaboratively training the model with more data. However,
and more importantly, a major pitfall of FL is also exposed – it
remains vulnerable to gradient inversion attacks. We show that
SEM images used in FL can be recovered by attackers, which
would therefore expose the sensitive and proprietary IPs that FL
was supposed to protect. We highlight these privacy risks and
also suggest future research directions to improve security and
effectiveness in hardware assurance.

Index Terms—Federated Learning, Gradient Inversion At-
tacks, Hardware Security, Deep Learning, Segmentation

I. INTRODUCTION

While microelectronics technology has rapidly proliferated
in modern life due to reduced development time and costs,
it has also increased security threats [1], such as hardware
Trojans and the rise of counterfeit electronic components. Un-
trusted foundries may overproduce ICs [2] or even leak/steal
IP. Attackers can employ reverse engineering (RE) techniques
to recover semiconductor intellectual property (IP); this allows
them to build/source counterfeit integrated circuits (ICs) that
are unsafe, which can be costly to IP owners and reduce
consumer confidence. Hardware assurance approaches aim to
verify device integrity and authenticity, but existing techniques
face challenges, such as increased resource demands, vulner-
ability to tampering, and low reliability in detecting small-
scale Trojans. Hardware assurance approaches help ensure
some level of trust by showing that the device has not

been maliciously modified and confirming that the device is
not counterfeit. However, existing techniques are limited and
ineffective in achieving assurance and trust.

As data-driven paradigms (e.g., machine learning and deep
learning) are increasingly used in hardware assurance, par-
ticularly verification by automated reverse engineering (RE),
a number of vulnerabilities arise due to the incorporation of
sensitive IP in these workflows. IC designers, entities, and
third parties are reluctant to share their sensitive or private
data with others since it could in turn be stolen or analyzed to
identify vulnerabilities. This motivates the need for other data-
driven paradigms that address data privacy concerns. One such
paradigm, Federated Learning (FL), is seen as an innovative
approach to address these issues with the use of distributed
learning across multiple participants. Each participant keeps
their data locally and aggregated models are created on a
central server. This approach aims to maintain a balance be-
tween collaboration and model performance while protecting
privacy. FL has been actively researched and utilized in a
variety of fields, such as healthcare, IoT, and finance, but it
has received relatively little attention in hardware assurance,
and there are few practical applications in the field. In this
study, we examine a use case for FL in hardware assurance.

FL is often regarded as a privacy-preserving technique, but
recent research threatens this assumption. Notably, Gradient
Inversion Attacks (GIA) underscore the privacy limitations of
FL and demonstrate that the sensitivity of data and model
updates can be exploited. Attacks like these are a major factor
in weakening FL’s practical privacy proposition. This study
focuses on situations where all participants use the deployed
model without alterations to the data or the model itself (i.e.,
“honest-but-curious” setting [3], [4]). We aim to verify the
benefits of FL in hardware assurance while examining the
feasibility of gradient inversion attacks that may counter those
benefits. The paper makes the following contributions:

• To the best of our knowledge, we are the first to apply
Federated Learning (FL) in hardware assurance using
deep learning for a segmentation task on Scanning Elec-
tron Microscope (SEM) images.

• We examine the advantages and challenges of applying
FL to hardware assurance, highlighting it alone cannot
prevent privacy threats. Key considerations of privacy
threat (e.g., GIA) include combining the two loss func-
tions, the approximation of gradients derived from model



weights, use of a more complex model and a high-
resolution image that made success of the GIA harder,
and the realistic attack scenario where the attacker has
limited access to a ground truth mask.

• We offer suggestions for future research directions to
explore other privacy-preserving techniques and attacks
on AI systems.

The remainder of this paper is organized as follows. Section
II provides background on (1) hardware assurance with deep
learning; (2) federated learning and its benefits and limitations
for hardware assurance; and (3) segmentation task for IC
reverse engineering. The threat model and privacy risks in
federated learning are discussed in Section III. Section IV
describes the methodology, including segmentation tasks in
federated learning and the gradient inversion attack. Section V
presents the experimental results. Section VI discusses poten-
tial future research directions. Finally, Section VII summarizes
the study’s conclusions.

II. BACKGROUND

This section provides overviews of hardware assurance
using deep learning and its challenges, as well as federated
learning and its benefits and limitations in hardware assurance.

A. Deep Learning-based Hardware Assurance

Due to increasing demands and the growing complexity
of ICs, many semiconductor manufacturers rely on third-
party IP and external vendors for multiple phases of the IC
supply chain [5]. This collaboration has enhanced efficiency
and reduced costs; however, it has also introduced signif-
icant security risks, including hardware Trojans, IP piracy,
IC counterfeiting, and IC overproduction [6]. Ensuring that
electronic hardware functions as intended and remains free
from vulnerabilities or malicious modifications is critical,
making hardware assurance a key area of research. In fact,
the CHIPS Act [7] reinforces this by promoting domestic
semiconductor manufacturing and secure supply chains. It also
encourages investment in security technologies and fosters
collaboration among industry, academia, and government to
develop best practices and standards for ensuring hardware
integrity and reliability.

Deep learning (DL)-based hardware assurance methods
address limitations in traditional techniques by enhancing
detection capabilities and automating security analysis. One
of the critical areas where DL has been applied is hardware
Trojan detection. Hardware Trojans, which are malicious
modifications inserted at multiple phases of the IC supply
chain, compromise chip security and functionality. For exam-
ple, [8] developed DL models using neural networks and an
autoencoder to detect Trojans that existing approaches, such
as support vector machines (SVMs) and K-nearest neighbors
(KNN) classifiers, could not detect. [5] proposed the deep
convolutional neural networks (CNNs) to detect Trojans from
IC layout images.

Beyond hardware Trojan detection, DL has been widely
adopted in other hardware assurance applications, including
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Fig. 1: Overall workflow of federated learning.

fault detection and IC reverse engineering (RE). Fault detec-
tion is essential in industries like aerospace, automotive diag-
nostics, and industrial automation, where undetected defects
can have severe consequences. Traditionally, fault detection
has relied on experienced labor, which is time consuming
and prone to human error [9]. [10] addressed these chal-
lenges by introducing a parallel deep convolutional model,
the Parallel Spatial Pyramid Pooling Network (PSPP-net), for
LED chip defect classification, achieving high accuracy in
defect identification. Meanwhile, RE is another crucial aspect
of hardware assurance, used to detect hardware Trojans and
verify IP compliance through destructive physical analysis.
Recent research has leveraged DL models for IC reverse
engineering, particularly in analyzing scanning electron mi-
croscopy (SEM) images. [11] utilized Fully Convolutional
Networks (FCNs) with a VGG-16 backbone to segment vias,
contacts, and metal lines in SEM images, reducing annotation
errors compared to traditional methods. [12] introduced the
SEM2GDS framework, a two-stage deep learning pipeline
that converts SEM images into GDS layouts using U-Net-
based segmentation models. Image-to-image translation using
generative adversarial networks (pix2pix and cycleGAN) and
blind denoising models (DnCNN and CBDNet) were also ex-
plored for segmentation. Although both types of DL methods
produced near perfect results based on metrics such as SSIM,
IoU, CC-US/OS, denoising models produced better overall
segmentation results due to their understanding of residual
noise in image [13], [14].

Machine learning, and in particular DL models require
substantial amounts of data to effectively train. Given the
extensive time and resources required to de-layer and perform
SEM images on a single chip, let alone many chips in each
technology node, obtaining this data and thus generating
effective models is a challenge for any single organization.

B. Federated Learning

Federated Learning (FL) [15] is a collaborative machine
learning approach where parties work together without sharing
private data. Instead of training on a centralized server, each
party locally trains the model and shares only model updates.
This process protects data privacy by preventing potential data



leaks stemming from sharing private data for training. FL also
enables more secure collaboration among organizations, such
as IP vendors, manufacturers, and researchers, allowing them
to develop DL models without (ideally) exposing confidential
data or IP. As shown in Fig. 1, FL follows these main steps
[16]:

1) For the current iteration of the model (global model),
the server chooses a group of parties to participate.

2) The server provides the global model, which is the most
recent version, to the chosen parties.

3) Every chosen party calculates the local parameters with
its own private data and the current model (local model),
e.g., obtains the local gradient updates by running the
gradient descent algorithm on its own data, initialized
by the current model.

4) To update the global model, the server gathers local
parameters or local gradient updates from the chosen
parties and aggregates them.

C. Application of FL in DL-based Hardware Assurance

This section explores potential strengths and challenges of
applying FL in hardware assurance using deep learning DL
and the limited application of FL in hardware assurance using
DL by comparing its use in other domains like healthcare, IoT,
and finance.

1) Applications in Other Domains: FL has been success-
fully implemented across different fields to boost collabora-
tion, improve model performance, and address data privacy
concerns. In healthcare, FL helps train DL models for tasks
like disease diagnosis and classification. For example, [17]
used FL for breast cancer classification, while [18] applied
it to brain tumor detection with MRI images. In IoT, FL
enables privacy-preserving AI applications in smart cities,
smart industries, smart healthcare, and smart transportation
by reducing reliance on centralized data processing, which
can lead to security risks [19]. [20] proposed a multi-task
deep neural network for a variety of network-related tasks.
It performs traffic classification, network anomaly detection,
and VPN traffic recognition simultaneously. [21] proposed a
federated meta-learning framework for localization (FeMLoc)
that allows indoor localization systems to achieve higher accu-
racy and robustness. In the financial industry, machine learning
algorithmic models are widely used in various fields such
as fraud detection, investment advising, algorithmic trading,
robo-advising, and loan screening. However, due to a lack
of sufficient data, unreliable alternative data are often used,
which can lead to bias in the measurement process. Due to
this problem, many researchers in the finance industry focus
on a novel approach using FL to address this challenge. [22]
proposed a new approach for financial fraud detection using
FL and Explainable AI (XAI). [23] presented a FL prototype
that allows smaller financial institutions (FIs) to compete with
large FIs that have better-performing models for credit risk
assessment by training with larger datasets.

2) Benefits of FL in DL-based Hardware Assurance: The
successful application of FL and DL in these other fields

strongly suggests that they could also have great potential
in hardware assurance. Similar to the rest of these fields,
hardware assurance requires large-scale data and likewise
shares the common challenge of simultaneously maintaining
data privacy and security. Therefore, improving the hard-
ware assurance process through FL-based DL technology is
expected to enhance the reliability of the assurance system
and significantly improve the level of cooperation required in
the global supply chain. Hardware assurance is essential for
evaluating the quality, reliability, and security of electronic
devices and semiconductors, and FL can strengthen these in
the following ways:

• Quality and Defect Detection: DL models can be uti-
lized in image analysis and pattern recognition for hard-
ware defect detection and quality assessment. FL can
contribute to improving defect detection performance
by learning data from various competing manufacturers
(TSMC, Intel, Samsung, etc.).

• Privacy Preservation in Data Integration: Allows training
locally without exposing data, enabling global model
learning while protecting sensitive hardware IP, process,
and manufacturing data.

• Model Generalization: By applying FL, models trained
on data collected from a variety of manufacturing envi-
ronments facilitate generalization in hardware assurance
processes, providing robust models that can operate under
various conditions and technology nodes.

3) Limitations of FL in DL-based Hardware Assurance:
We investigated the case of applying DL and FL to hardware
assurance. For this purpose, related papers and case studies in
this field were systematically searched, but few studies using
both FL and DL were found. Challenges and limitations of
applying FL and DL techniques in hardware assurance include:

• Lack of data standardization between stakeholders: The
hardware industry has a complex ecosystem in which
multiple stakeholders, including various manufacturers,
design companies, and test companies, collaborate. How-
ever, the formats and storage methods of data used
by each stakeholder are not standardized, making data
integration for FL model training difficult.

• Hardware datasets are highly specialized and non-
overlapping across stakeholders: Not only is data in the
hardware field highly specialized, but the data held by
each stakeholder is unique, with little overlap. The non-
overlapping quality of the data makes useful generaliza-
tions difficult in FL-based DL model training.

• IP is often the core business value in the hardware
field: In the hardware industry, IP is considered a core
business value for companies, and security requirements
to protect it are very high. FL offers the advantage
of learning models without sharing data directly, but
companies have a strong tendency to avoid even the risk
of indirect exposure1. In particular, if sensitive design

1Our analysis of gradient inversion attacks later in the paper will substan-
tiate this concern.



or data is exposed, there is a possibility of leaking
important business information to competitors or external
adversaries, making the adoption of FL more difficult.

• Reverse engineering risks in hardware are higher than
in healthcare, IoT, and finance: Hardware RE carries
national security concerns absent in the other domains.
If a shared model falls into the hands of a malicious
user, there is a possibility that the model can be reverse-
engineered to extract sensitive data or IP. This increases
the risk of leaking technical details of the hardware design
and key elements of the assurance system, and makes it
difficult to ensure the safety of collaboration through the
FL model.

• Use of various technology nodes: Hardware design and
manufacturing processes use different technology nodes
(e.g., 32nm, 90nm, etc.). Each technology node has its
own data characteristics and production process, and it
is very difficult to learn them comprehensively in one
FL model. These differences between processes further
deepen the heterogeneity of the data and create additional
technical challenges during model training.

The challenges mentioned above are the main reasons why
the application of FL and deep learning in the field of hard-
ware assurance is progressing more slowly compared to other
domains. To solve these problems, it is essential to standardize
data, develop technologies for IP protection, improve the
security of the FL model, and develop an integrated model that
encompasses various node technologies. As a first step toward
filling this gap, this study seeks to discuss the applicability,
potential benefits, and pitfalls of FL and DL in hardware
assurance.

D. IC Reverse Engineering with SEM in FL

IC RE plays a crucial role in hardware assurance by
reconstructing circuit layouts from images of physical struc-
tures. This process is essential for verifying designs, detecting
unauthorized modifications, and ensuring the integrity of semi-
conductor devices. This process relies heavily on image seg-
mentation, particularly when working with Scanning Electron
Microscope (SEM) images to separate key circuit components.
Image segmentation is the process of partitioning an image
into meaningful areas of interest, facilitating easier analysis
and interpretation of its contents by identifying and isolating
objects or areas of interest. In the case of hardware RE,
segments would include diffusion regions, polysilicon or metal
gates, contacts and vias, and metal interconnects. Accurate
segmentation remains a challenge due to variations in image
quality, noise, and complex semiconductor structures. While
various segmentation techniques exist, DL-based approaches
such as U-Net have shown superior performance in extracting
complex semiconductor structures compared to traditional
image processing methods [13], [24], [25].

Despite the effectiveness of deep learning in image segmen-
tation, applying it to IC reverse engineering raises concerns
about data privacy. Semiconductor manufacturers and research
institutions often work with proprietary datasets that cannot

be shared due to confidentiality constraints. This challenge
motivates the exploration of FL, which enables collaborative
model training without exposing raw SEM images. By lever-
aging FL, multiple companies can contribute to improving a
segmentation model while preserving the security of their data.

To the best of our knowledge, no prior work has investigated
the use of FL for IC segmentation tasks using SEM images.
This gap presents an opportunity to explore how FL can
enhance segmentation accuracy while addressing data privacy
concerns in semiconductor analysis. In this study, we apply FL
to train a U-Net-based segmentation model, aiming to extract
functional circuit elements from SEM images. Through this
approach, we aim to demonstrate that FL can improve the
performance of segmentation models but fails to provide the
desired level of data privacy on its own upon deeper inspection.

III. THREAT MODEL

FL models are deployed in a distributive configuration,
dispersing their risks across multiple devices. Without def-
erence to which device gets affected with potential threats
in FL systems, both the server (e.g., central) or client (e.g.,
user) models are considered untrusted entities. In addition to
the devices and models themselves, attackers can exploit the
communication among these devices via bus snooping or man-
in-the-middle attacks to gather model or data information,
such as weights, biases, and gradients/losses. This is especially
effective when communication is not encrypted. There are
also multiple vulnerabilities throughout the machine learning
pipeline. During the model training phase, model or data
information can be stolen during transmission between the dif-
ferent devices in an FL system. In addition, during the model
deployment phase (i.e., post-model training), gradients/losses
can be leaked during transmission and used to reconstruct
sensitive information about the dataset or the model.

A. Privacy Threats in FL

FL is attracting attention as an innovative technology that
can learn high-performance models while ensuring data pri-
vacy. However, FL alone cannot completely prevent all types
of privacy violations and may be vulnerable to the following
attacks. Table I presents a detailed comparison between Mem-
bership Inference Attack (MIA) and Gradient Inversion Attack
(GIA), highlighting their goals, attack methods, targets, threat
models, impacts, common defenses, severity levels, and use
case in a hardware assurance setting.

• Membership Inference Attacks: A membership inference
attack is an attack technique that attempts to determine
whether a specific data was part of the training set. This
can leak sensitive information about the training data.
For example, assuming there is a model trained on a
specific SEM image, an attacker tries to apply that model
to two node technologies (32nm and 90nm). If the model
generates a very high confidence output for a particular
technology node (e.g., 32nm), the attacker may conclude
that the 32nm technology node is likely to have been
used in the training set. In another example, the attacker



TABLE I: Comparison of Membership Inference Attack (MIA) and Gradient Inversion Attack (GIA).

Feature Membership Inference Attack (MIA) Gradient Inversion Attack (GIA)

Goal Determine whether a specific data sample was used in training. Reconstruct input data from shared gradients.

Attack
Method

Uses model outputs (e.g., confidence scores, loss values) to infer
membership.

Exploits gradients in FL or training to reconstruct the original
input.

Target Trained model (black-box or white-box). Shared gradients in distributed learning (e.g., FL).

Threat
Model

Adversary queries the model with known/unknown data. Adversary intercepts gradients shared during training.

Impact Privacy leakage about training data presence. Full reconstruction of private data, causing severe privacy risks.

Common
Defenses

Differential privacy, adversarial regularization, confidence
masking.

Gradient clipping, differential privacy, secure aggregation.

Use Case Checking if PDK or technology node was used to train a model Extracting a SEM image from a federated learning update.

Severity Moderate (leaks membership info). High (can recover full private data).
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Fig. 2: Gradient Inversion Attacks

may know the standard cell library of a foundry’s process
design kit (PDK) of a particular node. The attacker can
use membership inference to identify that SEM images
used during training were from that library. These attacks
threaten the confidentiality of training data and can lead
to the leakage of sensitive information.

• Gradient Inversion Attacks: Gradient inversion attacks
refer to attempts to restore original data by exploiting
updates shared during the FL process (e.g., model weights
or gradients). For example, if an attacker (e.g., adversary
server) has access to the gradient updates from other users
during the FL process, they can reverse engineer them
to restore the original data that contributed to generating
those updates. Gradient Inversion Attacks can directly vi-

olate the confidentiality and privacy of data. Fig. 2 shows
the general concept of the gradient inversion attacks in
the hardware assurance setting where SEM images are
the input data. The adversary server initializes dummy
data with random values and iteratively optimizes it to
approximate the user’s private data. This optimization
process minimizes the discrepancy between the dummy
data’s gradients and those of the user’s actual data,
effectively reconstructing sensitive information.

IV. METHODOLOGY

In this section, we discuss the applicability and potential
benefits of FL and DL in hardware assurance. We have applied
FL in IC reverse engineering with SEM. All experiments were
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conducted on an AMD EPYC ROME CPU with 32GB of
RAM and an NVIDIA A100 GPU with 80GB of GPU RAM.

A. Dataset and Environment Setup

The segmentation task in FL requires access to SEM images
of different layers of an IC, the design layout images, and the
corresponding ground-truth images (i.e., ideal segmentation
results) for training. The openly accessible REFICS dataset
provides the necessary data to evaluate such a segmentation
task for proof-of-concept [13]. The REFICS2 dataset consists
of 800,000 synthetic SEM images taken at various Fields-of-
View (FoVs) and dwelling times per pixel. These images were
generated from the doping, metal, polysilicon, and contact
layers of ICs from two technology nodes: 32nm and 90nm. For
the purpose of our segmentation task, we utilized the doped
layers of the 32nm technology node but we expect our results
should generalize to other layers. From the tool packaged with
the REFICS dataset, we generated a subset of 100 images with
shot noise parameter set to 20 and 10 µsec/pixel dwelling
time. The background and foreground means are 75 and 135,
respectively, with a standard deviation of 20. To accommodate
input requirements of our segmentation model, images were
resized to 256×256 pixels.

B. Workflow

As shown in Fig. 3, our experimental workflow consists of
three main processes designed to evaluate the effectiveness of
FL in segmentation tasks and to demonstrate that FL alone
is not sufficient to protect data privacy. First, data generation,
where we prepare SEM image datasets divided among multiple
clients to simulate a realistic FL environment. Second, the
segmentation task using FL, in which clients collaboratively
train a global segmentation model without sharing raw data.
Third, gradient inversion attack, which is performed on the
shared gradients to investigate the vulnerability of FL to
privacy attacks and to assess whether sensitive data can be

2Link: https://trust-hub.org/#/data/refics

reconstructed from model updates. Through these steps, we
aim to analyze not only the segmentation performance but also
the privacy risks associated with FL in practical scenarios.

1) Demonstrating Segmentation Task Performance in FL:
In this study, we applied FedAVG [26], a fundamental fed-
erated learning algorithm, to train a segmentation model for
IC reverse engineering using SEM images. In FedAVG, each
client receives a global model from a central server and trains
it locally using its own private data for a set number of epochs.
After local training, each client sends updated parameters to
the central server; the server then averages these results to
update the global model. This updated global model is then
redistributed back to the clients, and this process is repeated
in an iterative fashion.

To demonstrate the benefits of applying FL to segmentation
tasks, we conducted several experiments. The goal is to com-
pare segmentation performance between centralized learning
(CL) using a single client and FL settings using multiple
clients. FL settings allow multiple clients to collaborate on
their own datasets, allowing for much larger datasets than
CL. Through this, we aim to demonstrate the efficiency of FL
and performance improvement through collaboration between
multiple clients without sharing their sensitive data.

For this experiment, we prepared a dataset of SEM images
from the 32nm technology node, ensuring an independent and
identically distributed (iid) setup. In the CL training case, we
set up a virtual Client 1 with a subset of the data, consisting of
10 SEM images referred to as “Subset A”. We then trained a U-
Net model on these data centrally, using only the virtual Client
1 and the “Subset A” data without collaboration from other
clients, representing the scenario where a single client with
limited data trains its model independently. This case allows
us to assess the baseline performance when data availability
is limited.

In another CL training case, we set up a virtual Client 1
with a larger subset, consisting of 90 SEM images combining
data from all other clients referred to as “Subset K”. We then



TABLE II: Hyperparameter settings for Centralized Learning
(CL) and Federated Learning (FL).

Hyperparameter CL FL

Total Epochs 100 100

Local Epochs - 1

Server Rounds - 100

Learning Rate 0.00008 0.00008

Batch Size 1 1

trained a U-Net model on these data centrally, using only the
virtual Client 1 and the “Subset K” data. This case serves as a
performance upper bound for comparison with FL settings, as
centralized training with full data typically achieves the best
possible performance at the cost of less privacy.

In the FL training case, we partitioned the dataset across
nine virtual clients (Clients 1 to 9), each assigned 10 SEM
images, referred to as “Subsets A, B, C, D, E, F, G, H, and
I”, respectively. Each client trained a local model on its own
subset, and model updates were aggregated at a central server
following the FedAvg algorithm. This setup allowed a total
of 90 images to be utilized collaboratively while maintaining
data locality to preserve data privacy. All models are trained
with hyperparameters found in Table II.
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Fig. 4: Example evolution of the gradient inversion attack on
32nm technology node data. On the left is the original private
image, whereas the following images are the reconstructions
at different attack iterations.

2) Exposing Privacy Vulnerabilities: The goal of this study
is to experimentally demonstrate that SEM images can be
successfully reconstructed using only gradients shared in a
FL environment using a gradient inversion attack (GIA).
Through this, we would like to hypothesize that FL alone
is not sufficient to protect privacy. In order to evaluate if
FL environment is vulnerable to privacy attacks, we modified
GIAs optimized for our first task, image segmentation, based
on the existing techniques [27] and [28].

Most prior works on GIAs involve image classification
tasks [29], whereas this study concerns image segmentation
models. Since image segmentation models generate pixel-by-
pixel image outputs, rather than simple class predictions like
classification models, segmentation models are more struc-
turally complex, and are thus relatively less vulnerable to

GIAs. Therefore, in this study, we propose a GIA optimized
for image segmentation tasks by modifying the loss function.

By combining the loss functions used in previous studies,
we optimize our proposed GIA to be more suitable for image
segmentation. The Mean Squared Error (MSE) loss function
maximizes pixel-wise accuracy, enabling more precise recon-
structions. On the other hand, the Cosine Similarity (CS) loss
function is advantageous for capturing global structures and
high-level features, helping to maintain the overall shape of the
image. By combining these two loss functions, the proposed
approach effectively reconstructs both fine patterns and the
overall structure of SEM images. The trade-off between MSE
and CS loss is controlled by the parameter α, which can be
interpreted as a regularization strength. A higher value of α
places greater emphasis on pixel-wise accuracy, while a lower
value prioritizes global structure preservation. Fig. 4 shows
an example of the evolution of our GIA on 32nm technology
node data.

Loss = α×MSE + (1− α)× CS (1)

This allows the model to adapt to the specific needs of the
task and data, and can be tuned during the training process to
achieve the best results.

In this study, we assume that the server acts as an adversary
in the FL, and perform a simulation to recover the original
SEM image by collecting gradients or model weights trans-
mitted from one of the clients. The adversary performs reverse
engineering using the shared gradient from the client and eval-
uates the possibility of restoring sensitive original data with
only the information delivered during the learning process of
the model. As we applied the Federated Averaging (FedAVG)
algorithm for the segmentation task, we aim to demonstrate
how gradient inversion attacks can be carried out in a FedAVG
setting, where only model weights, not gradients, are shared.
To demonstrate the proof-of-concept of the attack, we assume
users train the model with a single sample image and share the
updated weights after completing one epoch of local training.
This is based on findings from [28], which demonstrated that
although the GIA is possible with multiple images, the results
are less accurate. Additionally, [29] discussed the limitations
of the GIA, emphasizing that it is predominantly effective with
one image, a conclusion supported by other studies.

Federated Stochastic Gradient Descent (FedSGD) and Fed-
erated Averaging (FedAVG) [26] can both be used in feder-
ated learning, but they differ in how they approach gradient
inverse attacks. In FedSGD, each client learns a model with
private local data and then sends the gradients to the central
server, which averages them to update the global model. In
this process, the client directly transmits the gradient, so an
attacker can use the gradient sent to the server to perform a
gradient inversion attack that can infer the original data. On
the other hand, in FedAVG, each client trains the model locally
for several epochs, then sends the new model weights to the
server, which averages the weights from each of the clients to
update the global model. In this case, because FedAVG does
not directly share the gradient but only transmits the weight,



TABLE III: Performance comparison between Centralized and Federated learning settings using a 32nm technology node
dataset.
Metrics are reported as mean ± standard deviation over 5 independent experiments.

Setting Total Number of Data Metrics (Mean ± SD)

MSE IoU (Jaccard) SSIM Total training time (sec)

CL 1 client 10 0.02064 ± 0.00151 0.93452 ± 0.00419 0.69728 ± 0.00809 52.78 ± 19.73
FL 2 clients 20 0.01815 ± 0.00159 0.93895 ± 0.00459 0.83387 ± 0.01033 175.90 ± 16.27
FL 3 clients 30 0.01738 ± 0.00029 0.94134 ± 0.00084 0.83873 ± 0.00641 186.80 ± 21.66
FL 4 clients 40 0.01614 ± 0.00048 0.94476 ± 0.00144 0.83580 ± 0.01229 188.82 ± 27.28
FL 5 clients 50 0.01437 ± 0.00052 0.95006 ± 0.00154 0.85933 ± 0.01275 199.50 ± 33.15
FL 6 clients 60 0.01395 ± 0.00053 0.95119 ± 0.00161 0.85793 ± 0.00812 215.51 ± 30.33
FL 7 clients 70 0.01355 ± 0.00009 0.95247 ± 0.00033 0.85591 ± 0.00546 221.54 ± 38.89
FL 8 clients 80 0.01301 ± 0.00037 0.95425 ± 0.00115 0.85288 ± 0.00348 219.94 ± 23.71
FL 9 clients 90 0.01291 ± 0.00020 0.95452 ± 0.00065 0.85858 ± 0.00626 221.78 ± 22.13
CL 1 client 90 0.01312 ± 0.00046 0.95657 ± 0.00141 0.90564 ± 0.00574 217.99 ± 27.65

the attacker can use the difference between the new weight
and the previous weight to estimate the gradient and perform
a gradient inversion attack based on this.

To retrieve the gradients from these shared weights, we rely
on the fact that the weight updates are a result of the gradient-
based optimization algorithm, e.g., Stochastic Gradient De-
scent (SGD). By subtracting the previous model weights (Old
Weights) from the updated model weights (New Weights), we
can approximate the gradient using the formula:

∇Li(θ
t
i) ≈

Old Weights − New Weights
η

(2)

where η is the learning rate. This allows us to infer the
gradients, which are crucial for the GIA. Once we have the
approximate gradients, we can then apply gradient inversion
techniques to reconstruct the original SEM images.

C. Evaluation

To evaluate segmentation accuracy, we employ Intersection-
over-Union (IoU) using the Jaccard index to measure shape
localization accuracy, Mean Squared Error (MSE) to quantify
pixel-wise differences from the ground truth, and Structural
Similarity Index Measure (SSIM) to assess the structural
fidelity of the reconstructed layout. Each listed metric focuses
on a different facet of the image and, when aggregated, enables
a holistic assessment of similarity to the ground truth image
i.e., assess if most features are preserved. For evaluation, we
used a separate hold-out set of 10 SEM images referred to
as “Subset J” assigned to virtual Client 10. To evaluate GIA
effectiveness, we compared the SEM image reconstructed from
GIA to the original SEM image quantitatively using MSE,
SSIM, and Peak Signal-to-Noise Ratio (PSNR).

V. RESULTS AND DISCUSSION

In this section, we show results and discuss their impli-
cations. We analyze not only the segmentation performance
but also the privacy risks associated with FL considering
vulnerabilities to gradient inversion attacks (GIAs).

Original Image Segmentation Mask Predicted Mask

Fig. 5: Example segmentation result in FL, with 32nm tech-
nology node.

A. Segmentation Task Performance in FL

The MSE, IoU, and SSIM scores for each configuration
are presented in Table III. The trained segmentation model
in the 9-client FL scenario, which achieved scores of 0.955
IoU, 0.013 MSE, and 0.860 SSIM, demonstrated its ability
to produce high-quality segmentation masks for unseen SEM
images (shown in Fig. 5). Our results provide several key
insights. As expected, CL training with limited data (10
images) produced the worst segmentation performance due to
insufficient information for robust pattern recognition. This
highlights the challenges of training accurate models when
data availability is limited. FL with multiple clients signifi-
cantly outperformed centralized training with 10 images, and
performance improved as the number of clients increased, as
evidenced by higher IoU and SSIM and lower MSE. This
result underscores the benefit of collaborative training in FL,
where distributed data contributions lead to enhanced model
generalization while preserving client privacy. However, FL
still underperformed compared to centralized training with full
access to all 90 images, highlighting that, despite preserving
privacy, FL may not fully match the performance achievable
when all data is aggregated centrally.

In this study, we observed that FL achieved lower MSE
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Fig. 6: Test Loss and IoU comparison between Centralized and Federated learning settings using a 32nm technology node
dataset.
CL∗: centralized training with 10 samples
FL #: federated training with # of clients, each with 10 samples
Results are reported as mean over 5 independent experiments.

than centralized training with 90 images. This occurs because
MSE reflects pixel-wise similarity and may favor smoother,
blurry predictions that avoid sharp pixel errors. While these
predictions achieve lower MSE, they often fail to capture
accurate object boundaries and structures, leading to reduced
IoU and SSIM. In contrast, models from CL training with 90
images that produce sharper segmentation masks may incur
higher MSE due to pixel-level deviations but better capture the
shape and structure of the objects, resulting in higher IoU and
SSIM. This highlights that MSE alone may not fully represent
segmentation quality, and structural metrics like IoU and SSIM
are essential to evaluate true segmentation performance.

For training time analysis, we assumed instantaneous com-
munication (uploads and downloads) to focus on local training
and server-side aggregation. Our measurements show that FL
requires more training time than centralized training with 10
images, as it involves multiple rounds of local updates and
global aggregation. Additionally, as the number of clients
increases, the training time also increases due to the additional
overhead of server-side model aggregation. However, FL was
often faster than centralized training with 90 images, which
requires more extensive computation on the entire dataset in
each epoch. Furthermore, consistent with [30], when FL was
trained with a total of 90 images, equivalent to CL training,
both its performance and training time were worse than CL
training, confirming the trade-offs between data privacy and
efficiency.

Although FL allows model training without directly ac-
cessing clients’ raw data, this privacy-preserving approach
comes at the cost of higher computation and potentially lower
performance compared to centralized learning on aggregated
data. As [30] mentioned, in some real-world scenarios, the
computational cost of FL is not straightforward to compute.
Thus, its use must be evaluated for each potential task.

Fig. 6 presents the performance evaluation of a segmentation

TABLE IV: The average outcome of the gradient inversion
attack for 100 samples.

Images MSE PSNR SSIM

100 images 0.0830 ± 0.0138 10.87 dB ± 0.7387 0.2918 ± 0.1114

model in a FL setting, relative to a CL setup with a single
client. The first figure presents the “Test Loss for Different
Total Numbers of Clients.” This plot demonstrates that the
test loss converges to a lower value as the number of clients
in the FL setup increases (from 1 to 9). These results indicate
that as more clients participate in the training, the test loss
decreases within the same total number of epochs, highlighting
the advantage of the FL approach over the centralized learning
(CL) setup with a single client.

The second figure illustrates the “Test IoU for Different
Total Numbers of Clients.” This plot shows the IoU metric,
a widely used evaluation criterion for segmentation tasks.
Similar to the test loss, the IoU improves more rapidly as the
number of clients in the FL setup increases, achieving higher
values compared to the CL setup with a single client.

Overall, these figures provide a comprehensive evaluation
of the segmentation model’s performance and demonstrate the
benefits of the FL approach in terms of better convergence to
lower test loss and improved segmentation accuracy within the
same number of training epochs, compared to the CL setup.

Our experiments demonstrate that FL offers a promising
privacy-preserving alternative to centralized learning for seg-
mentation tasks, enabling multiple clients to collaboratively
train models without exposing sensitive data. FL can sig-
nificantly improve segmentation performance compared to
single-client training on limited data, and that increasing the
number of participating clients further enhances performance.
However, FL still falls short of centralized training with
full access to all data in terms of ultimate performance and
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training efficiency. These results highlight the practical trade-
offs between maintaining data privacy and achieving optimal
performance. These insights are essential for practitioners
considering FL for segmentation tasks, particularly in fields
where data privacy and distribution constraints are critical.

B. Privacy Vulnerabilities

As shown in Table IV and Figures 7 and 8, the experimental
results demonstrated that the GIA can successfully reconstruct
SEM images in a FL environment, suggesting that FL alone
is not sufficient to protect privacy. Our U-Net model is more
complex than the ResNet model commonly used for image
classification in most GIA studies. Despite these complexities
posing additional challenges for the success of the GIA, we
successfully reconstructed a SEM image. Furthermore, our im-

age data has a higher resolution of 256x256 pixels, compared
to the 224x224 pixel resolution, which is the highest used in
previous studies where most employ even lower resolutions
[29]. This higher resolution, combined with the increased
model complexity, poses additional challenges for the GIA.
Nevertheless, our results indicate the success of the attack
even under these more demanding conditions. Furthermore,
while [32] were the first to demonstrate GIA on segmentation
tasks, they did GIA in a setting that provided the attacker
with the ground truth segmentation mask rather than a dummy
mask (randomly initialized mask) during the GIA process to
facilitate convergence and acceptable reconstructions for large
models. In contrast, our scenario does not assume access to
a ground truth segmentation mask reflecting a more realistic
and severe attack. Despite this, our results 7 and 8 show that
the worst-case reconstruction is still recognizable to human
observers. From a privacy perspective, this is critical due to
the revealing of identifiable or sensitive features by partial or
imperfect reconstruction can comprise a serious breach. A par-
tially reconstructed image can reveal technology information
such as technology node (e.g., 32nm vs 90nm), via sizes, and
layering structures. Even if the reconstruction is not perfect
at the pixel level, it still reveals sensitive content that could
reveal functional aspects of the chip layout and design features.
This finding emphasizes the severe privacy risks latent in FL-
based segmentation operations, even in settings that are more
challenging than those considered previously such as using
lower complexity models and resolution images, and having
ground truth segmentation masks.

The presence of noise in the reconstructed image can
negatively impact the SSIM score, even if the structural
information is preserved. To mitigate the effect of noise



and focus the SSIM evaluation on structural similarity, we
applied the LASRE segmentation algorithm [31], which is
both unsupervised and robust to the presence of noise, to the
reconstructed image prior to calculating the SSIM. LASRE
was also chosen considering the fact that the adversary may
not have access to ground-truth data to train state-of-the-art
segmentation algorithms. This step helps remove the noise-
induced variations in pixel values while preserving the struc-
tural information in the image. By applying this algorithm,
we can obtain a more accurate assessment of the structural
similarity between the original mask and reconstructed images,
without the confounding effects of noise.

To ensure a consistent and meaningful interpretation of the
Mean Squared Error (MSE) metric, we first normalized the
pixel values of the original and reconstructed images to the
range of 0 to 1. This normalization step is crucial, as the
raw pixel values can vary depending on the image format and
bit depth, which would affect the absolute scale of the MSE.
By constraining the pixel values to the [0, 1] range, we were
able to calculate the MSE on a standardized scale, allowing
for a more direct comparison of the reconstruction quality
across different images. Once the MSE was computed on the
normalized pixel values, we then derived the Peak Signal-to-
Noise Ratio (PSNR) based on this MSE score.

VI. FUTURE RESEARCH DIRECTIONS

There are a number of potential research opportunities
for future work. Blue team opportunities include exploring
the benefits and limitations of other privacy-preserving tech-
niques that may be combined with FL, such as Differential
Privacy (DP), Generative Adversarial Networks (GAN), and
combinations. Frameworks for integrating such techniques
and combinations in hardware security and metrics to help
identify and address weaknesses could help researchers and
practitioners increase defenses against AI attacks.

Red team opportunities include exploration of gradient
inversion attacks for other AI models used in hardware assur-
ance, such as transformer, language, or multimodal models,
and applying GIA on multiple images to better understand the
attack’s practicality in more realistic scenarios. In addition,
there are a variety of other attacks to be explored, such as
model stealing, membership/property inference attacks, model
poisoning, and combinations. In model stealing, adversaries
could effectively reverse-engineer trained models and pro-
duce counterfeits at low-to-no development costs. In member-
ship/property inference attacks, sensitive IP from the training
data could be leaked. In model poisoning, adversaries could
degrade model integrity and reduce user trust. In addition, we
also plan to apply our attack to other chip layers and evaluate
our attack’s robustness in non-independent and identically
distributed (non-iid) settings.

In any case, there is a great need for comprehensive frame-
works or taxonomies of AI attacks, defenses, and counter-
measures specifically in the context of hardware security and
assurance. There is also a great need for publicly-accessible
resources in this area, including case studies, datasets, tools,

and reproducibility/comparison studies. Such future directions
are crucial for facilitating the development of novel method-
ologies and increasing collaboration among researchers and
practitioners in academia, industry, and government.

VII. CONCLUSIONS

This study explored the potential and limitations of ap-
plying deep learning and federated learning (FL) to hard-
ware assurance. While FL has been widely used in fields
like healthcare, IoT, and finance, its application in hardware
assurance remains limited due to the challenges discussed
in Section II. This highlights the need for further research
and specialized approaches in this area. Our segmentation
task using SEM images demonstrates that FL allows multiple
participants to collaboratively train models without sharing
raw data, improving model performance. However, it does
not fully eliminate privacy risks. As shown in our Gradient
Inversion Attack experiment, sensitive data can still be recon-
structed. These challenges indicate that FL alone is insufficient
to guarantee privacy, emphasizing the need for additional
privacy-preserving techniques.
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