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Abstract

Multimodal models often experience a significant performance drop when one or more modal-
ities are missing during inference. To address this challenge, we propose a simple yet e!ective
approach that enhances robustness to missing modalities while maintaining strong perfor-
mance when all modalities are available. Our method introduces cross-modal proxy tokens
(CMPTs), which approximate the class token of a missing modality by attending only to the
tokens of the available modality without requiring explicit modality generation or auxiliary
networks. To e"ciently learn these approximations with minimal computational overhead,
we employ low-rank adapters in frozen unimodal encoders and jointly optimize an alignment
loss with a task-specific loss. Extensive experiments on five multimodal datasets show that
our method outperforms state-of-the-art baselines across various missing rates while achiev-
ing competitive results in complete-modality settings. Overall, our method o!ers a flexible
and e"cient solution for robust multimodal learning. The code for this paper is available
at: https://github.com/CSIPlab/Cross-Modal-Proxy-Tokens.

1 Introduction

Multimodal learning (Ngiam et al., 2011; Xu et al., 2023) integrates information from multiple (diverse)
input sources to improve the performance on downstream tasks. For example, examining a movie poster
image along with a short text synopsis can provide a greater insight into the movie’s type and genre. In
recent years, a number of methods have been proposed to e!ectively combine information from multiple
modalities, including early-stage fusion (Mo & Morgado, 2024), token-level fusion (Wang et al., 2022b),
channel exchange (Wang et al., 2020b), and bottleneck mid-fusion (Nagrani et al., 2021a). Furthermore,
specialized architectures have been proposed for specific multimodal applications, such as vision-language
tasks (Kim et al., 2021; Li et al., 2019; Lu et al., 2019), action recognition (Woo et al., 2023; Zhou et al.,
2022), and segmentation (Zhang et al., 2023a; Reza et al., 2024b). Most of these approaches assume that
all modalities are available for every sample during both training and inference, yielding better performance
than unimodal baselines. However, their performance drops sharply when one or more modalities get missing
(Reza et al., 2024a; Ma et al., 2022).

In practical applications, input modalities can be missing during training and/or inference for various reasons;
such as lack of synchronous data capture (limited paired data during training) and sensor failure or privacy
concerns (modalities missing during inference). Ma et al. (2022) observed that multimodal transformers
such as ViLT (Kim et al., 2021) exhibit a drastic performance drop when one or more modalities are missing
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(a) Illustration of our proposed method. (b) Performance comparison.

Figure 1: (a) We introduce Cross-Modal Proxy Tokens (CMPTs), a novel approach to address missing modality
challenges. CMPTs e!ectively learn to approximate missing modality class tokens by adapting pretrained encoders
through a joint optimization of alignment and task-specific objectives. Our approach accommodates both complete
and missing modalities during training and inference, thereby enhancing robustness across varying missing modality
scenarios. (b) CMPTs achieve state-of-the-art performance, consistently outperforming recent baseline methods in
both complete and missing modality scenarios. Following the experimental setup of Lee et al. (2023); Kim & Kim
(2024), the radar plot illustrates F1-macro scores on the MM-IMDb dataset across varying modality availability.

during inference as shown in Figure 1b (yellow curve). They developed an optimal fusion strategy to
recover the performance loss of multimodal transformers in the missing modality scenarios (purple curve).
Subsequently, Lee et al. (2023) developed a prompt tuning technique (pink and blue curves), and Kim & Kim
(2024) combined the prompt-based approach with Variance Covariance Invariance regularization (VICReg)
(brown curve) to further improve the robustness of multimodal models to missing modalities. Despite these
e!orts, achieving consistently strong performance under varying degrees of missing modalities remains an
open challenge. In this work, we aim to improve robustness across a wide range of missing modality conditions
while maintaining strong performance when all modalities are available.

In this paper, we introduce a simple yet e!ective framework to approximate missing modalities from the avail-
able ones for robust multimodal learning. Specifically, we introduce cross-modal proxy tokens (CMPTs),
which learn to approximate the class tokens of missing modalities by attending to all tokens of the available
modality, enabling e!ective handling of various missing modality scenarios. As illustrated in Figure 1a, our
framework integrates pre-trained unimodal encoders into a multimodal learning setting while introducing
CMPTs to partially bridge the performance gap in missing modality scenarios. To ensure e"cient learning
of CMPTs with minimal additional learnable parameters, we employ low-rank adapters within the frozen
unimodal encoders and jointly optimize both an alignment loss and a task-specific loss. The radar plot
in Figure 1b demonstrates the superior performance of our approach compared to five existing methods
(Kim et al., 2021; Lee et al., 2023; Kim & Kim, 2024; Ma et al., 2022) across six di!erent complete and
missing modality scenarios on the MM-IMDb dataset. Our CMPT-based model consistently outperforms
all baselines across all the scenarios. We conduct extensive experiments on five multimodal datasets, com-
paring our approach against existing state-of-the-art baselines. Results show that our framework achieves
state-of-the-art performance in both missing modality (Section 4.3) and complete modality (Section 4.4)
scenarios, while maintaining a minimal number of learnable parameters. Ablation studies further confirm
that our method significantly improves performance even in severe missing-modality scenarios and provides
performance enhancement across most of the classes, leading to an overall performance boost (Section 4.6).
Main contributions of our work are as follows.

• We propose CMPTs to e!ectively learn an approximation of the missing modality from the available
modality with minimal adaption of pre-trained unimodal encoders via an alignment loss.
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• Our approach outperforms 12 recent baseline methods across four multimodal datasets in various missing-
modality scenarios, demonstrating state-of-the-art performance (Section 4.3).

• Across five datasets, our method achieves on-par or superior performance compared to state-of-the-art
techniques when all modalities are present during training and inference (Section 4.4).

• We demonstrate that CMPTs generalize e!ectively to unseen missing rates (Section 4.5) and boost per-
formance in most of the classes (Section 4.6).

2 Related Work

Recent works (Ma et al., 2022; Hazarika et al., 2022; Reza et al., 2024a) show that performance can degrade
significantly when modalities are missing, as multimodal models are not inherently robust to such scenarios.
Several approaches have been proposed to address this issue. In this section, we primarily discuss works
where the main focus is on making multimodal models robust to missing modalities. More broader related
work on multimodal learning is discussed in appendix Section A1.

Robust model design is one of the approaches for handling missing modalities. Recently, Shin et al.
(2024) developed a robust framework utilizing modality masking and knowledge distillation. Wang et al.
(2023) proposed ShaSpec to impute missing features through modality-specific and modality-shared feature
learning. Wang et al. (2022a) proposed TokenFusion, which dynamically replaces uninformative tokens to
enhance robustness. Additionally, di!erent fusion strategies (Choi & Lee, 2019; Fan et al., 2023a; Lin et al.,
2023) have been developed to improve robustness across various missing-modality scenarios. However, many
of these approaches are task-specific, limiting their generalization to other multimodal tasks. In our work, we
focus on reusing pre-trained unimodal encoders, making it flexible for extension to di!erent input modalities
and multimodal tasks.

Robust training and model adaptation can enhance missing modality robustness. Recently, Reza
et al. (2024a) proposed a parameter-e"cient adaptation framework for di!erent multimodal tasks. Shi
et al. (2024) introduced a modality-aware low-rank adaptation method (MoRA) that uses a shared down-
projection layer to map inputs to a low-dimensional space, and then applies modality-specific up-projections
for missing modality adaptation. Nezakati et al. (2024) trained a single model to infer missing information
by projecting available modalities. Ma et al. (2021) introduced SMIL, a Bayesian meta-learning method for
flexible handling of missing modalities during both training and testing. Ma et al. (2022) proposed a multi-
task optimization approach with a di!erentiable algorithm for optimal fusion strategy selection. Maheshwari
et al. (2024) developed a semi-supervised framework that leverages unlabeled data to improve robustness,
while Wei et al. (2023) used a teacher network to transfer multimodal information for improved missing
modality robustness. These methods, however, either require extensive adaptation or specialized training
procedures. In our approach, we employ lightweight adaptation of unimodal encoders (using Rank-1 LoRA
adapters) and a single extra loss term to explicitly learn cross-modal relationships. Hence, the overall training
flow is mostly left unchanged.

Prompt tuning methods improve missing modality performance by incorporating learnable prompts across
multiple layers of the model. Lee et al. (2023) introduced missing-aware prompts that learns a separate set
of prompts for each modality combination. Later, Jang et al. (2024) simplified the approach, showing that
a single set of prompts per modality can achieve similar performance. More recently, Dai et al. (2024)
proposed a multi-step adaptive prompt learning method through modality alignment, while Kim & Kim
(2024) introduced a read-only prompt tuning approach with Variance Covariance Invariance regularization.
Although e!ective, these methods require learning and storing a large number of prompts, typically 16
prompts (Lee et al., 2023; Jang et al., 2024) per modality per layer, for each missing modality scenario. In
contrast, our method uses a single cross-modal proxy token per modality to estimate the missing modality
feature from the available modality, thereby reducing the complexity.

We carry out extensive experimental comparisons with all the above prompt-based techniques to demonstrate
superior performance across various missing modality scenarios. Furthermore, our approach is e"cient, uses
few learnable parameters, and is robust to missing modalities in both training and testing which we discuss
in Section 4.
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3 Proposed Approach

In this paper, we propose a new framework to train multimodal systems such that they retain strong
performance under di!erent scenarios of missing modalities during inference. Furthermore, we seek to
develop a simple and e"cient framework that can be used for di!erent multimodal tasks and datasets
without any specialized (task-specific) changes. To achieve these objectives, we propose cross-modal proxy
tokens (CMPTs), which e!ectively learn to approximate the class tokens of missing modalities by adapting
pretrained, modality-specific (transformer-based) encoders through a joint optimization of alignment and
task-specific objectives, as illustrated in Figure 1a.

3.1 Multimodal embedding tokens

Let us consider a multimodal dataset containing two modalities M = {m1, m2}. We denote the available
dataset as D = {Dc, Dm1 , Dm2}, which can be further divided into three subsets: Dc = {xm1 , xm2 , y} where
both modalities are present with corresponding output labels y; Dm1 = {xm1 ,⊋, y} where only modality m1
(xm1) is available with corresponding labels y; Dm2 = {⊋, xm2 , y} where only modality m2 (xm2) is available
with corresponding labels y. Here, ⊋ denotes a placeholder for the missing modality (e.g., empty string for
text, zeros for image, audio, or video) following prior works (Lee et al., 2023; Reza et al., 2024a).

For each input modality, we assume that a transformer-based encoder, pre-trained on some large dataset,
is available. This is a common and e!ective practice in modern multimodal learning, particularly given the
wide variety of high-performing, pre-trained models now readily accessible (Devlin et al., 2019; Dosovitskiy
et al., 2021; Gong et al., 2021). Leveraging these modality-specific encoders trained on extensive data leads to
improved performance and faster convergence (Han et al., 2023; Xu et al., 2023). Specifically, each modality
m → M is processed through a pre-trained embedding layer, EmbeddingLayerm, with parameters !e,m. The
input xm for each modality is passed through its corresponding embedding layer to generate modality-specific
tokens as

Tm = EmbeddingLayerm(xm; !e,m), (1)
where Tm → RN→d denotes N tokens, each of dimension d, for modality m. During training, we keep the
pretrained parameters !e,m frozen.

3.2 Cross-Modal Proxy Tokens (CMPTs)

To compensate for the missing modalities, we introduce cross-modal proxy tokens (CMPTs) that approximate
the missing modality by attending only to the tokens of the available modality. For each modality m → M,
we concatenate one CMPT (TCMPT,m → R1→d) with the class token (CLS) (TCLS,m → R1→d) and all the
modality specific tokens Tm to generate the modified embedding tokens T̃m → R(N+2)→d as

T̃m = Concat({TCMPT,m, TCLS,m, Tm}). (2)

Note that the proposed CMPT serves as an extra token, similar to the class token (Dosovitskiy et al., 2021;
Devlin et al., 2019; Gong et al., 2021), but with a complementary purpose. Class token attends to all the
tokens of a given modality to aggregate information and learn a rich feature representation of that modality.
In contrast, CMPT attends to all the tokens of a given modality to learn an approximation of the class token
of the other modality (e.g., TCMPT,m1 approximates TCLS,m2 while attending to Tm1).

3.3 Learn CMPTs by alignment and adaptation

For each modality, we assume that a pretrained transformer encoder fm with parameters !f,m is available.
The encoder for each modality needs to be updated so that they can learn the corresponding CMPTs. To
keep the number of trainable parameters minimal, we use low-rank adaptation (LoRA) (Hu et al., 2022) to
learn a small number of parameters ”f,m. The modified embedding tokens for modality m, T̃m, are then
passed through the adapted encoder for modality m to get the final output tokens as

T̂m = fm(T̃m; !f,m, ”f,m), (3)
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where T̂m → R(N+2)→d represents the CMPT, CLS, and remaining tokens from the last encoder layer. Note
that the pretrained encoder parameters !f,m remain frozen while we only learn ”f,m.

We aim to train the CMPTs such that they act as a proxy of the class token of the missing modality at the
inference time. In particular, we want the CMPT T̂CMPT,m1 of modality m1 to approximate the class token
T̂CLS,m2 of modality m2, and vice versa. To achieve this, we use an alignment loss Lalign, defined as

Lalign = 1
NDc

∑

x↑Dc

LMSE(T̂CMPT,m1 , T̂CLS,m2) +
LMSE(T̂CMPT,m2 , T̂CLS,m1), (4)

where LMSE denotes the mean squared error loss and NDc denotes the number of samples in the training
data where both modalities are present.

3.4 Gating module and fusion

After computing the final output tokens T̂m, we extract the class token (T̂CLS,m) and the CMPT (T̂CMPT,m)
for both modalities and pass them through the gating module. If both modalities are available, the gating
module returns the class tokens from each modality. If one modality is missing, the gating module substitutes
the missing class token with the CMPT from the available modality. The returned tokens are then fused
using additive fusion to produce the final fused feature token T → R1→d as

T =






T̂CLS,m1 + T̂CLS,m2 , m1, m2 are available,
T̂CLS,m2 + T̂CMPT,m2 , m1 is missing,
T̂CLS,m1 + T̂CMPT,m1 , m2 is missing.

(5)

The fused feature token T is then passed through a linear classifier head to make a prediction ŷ as

ŷ = h(T ; !h). (6)

!h represents the parameters of the classifier head that are learned during training.

Finally, we learn the low-rank factors for each encoder ({”f,m}) and classifier head (!h) by minimizing
the task-specific loss Ltask, which for our purposes is a standard cross-entropy loss for classification tasks,
combined with the alignment loss:

Ltotal = Ltask + ωLalign, (7)

where ω is a hyperparameter that we set to ω = 0.20 in all our experiments. As discussed in Section 4.6.3,
this value provides a balance in performance across di!erent scenarios.

3.5 Handling missing modalities

Our model can handle missing modalities during both training and inference. During training on complete
modality data, we apply random modality dropout, where we either use both modalities or randomly drop
one in each iteration. This way, the model learns to make correct predictions in missing modality scenarios
using the CMPTs from the available modality. When training data contains missing modalities, we learn
the CMPTs by optimizing the alignment loss using only the samples with complete modalities, as shown
in equation 4. For missing modalities, we employ placeholders (e.g., an empty string for text and zeros for
images, audio, and video) following standard practices (Lee et al., 2023; Reza et al., 2024a), and use the
CMPT from the available modality as an approximation to make predictions, as described in equation 5.

To enhance training e"ciency, we leverage LoRA (Hu et al., 2022) with a rank of 1 to fine-tune the encoders
in a parameter-e"cient manner. LoRA layers are inserted after the query, key, value, and output layers in
every attention blocks within the encoders. Our experiments demonstrate that LoRA with rank 1 is su"cient
to achieve better performance compared to existing state-of-the-art methods, as discussed in Section 4.4 and
Section A4. Our method is also compatible with newer parameter-e"cient adaptation techniques such as
DoRA (Liu et al., 2024) and VeRA (Kopiczko et al., 2024), as discussed in Section A10.
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Table 1: Performance comparison when modality gets missing during both training and inference. We train and
evaluate our model with same modality ratio following existing baselines (Lee et al., 2023; Jang et al., 2024; Kim &
Kim, 2024) and report the mean and standard deviation (SD) of three independent runs with di!erent seeds.

Datasets % availability ViLT MAP (2023) MSP VisualBERT Ma et al. Kim & Kim MuAP (2024) CMPT (Ours)
Image Text (2021) Input Attn. (2024) (2019) (2022) (2024) Head Cross Mean ± SD

MM-IMDb
(F1-Macro)

30% 100% 37.61 46.30 44.74 47.45 38.63 46.63 56.03 47.21 46.73 60.21 ± 0.40
65% 65% 36.30 42.66 41.56 42.03 37.23 41.28 49.24 42.57 43.92 54.04 ± 0.23
100% 30% 34.71 39.22 38.16 38.34 36.41 38.65 43.21 41.37 39.88 52.61 ± 0.12

UPMC
Food-101
(Accuracy)

30% 100% 76.93 86.18 86.05 86.34 77.41 86.38 87.11 86.90 86.59 87.48 ± 0.13
65% 65% 69.03 79.08 78.09 78.89 71.06 78.58 82.67 77.87 78.95 82.83 ± 0.25
100% 30% 66.29 74.53 72.57 73.77 67.78 73.41 78.81 74.61 74.60 80.37 ± 0.18

Table 2: Performance comparison when a complete modality gets missing during inference. We report % accuracy
for all the datasets. Our method shows overall better performance compared to recent state-of-the-art methods.

Datasets Available Modality Missing Modality FiLM BiGated OGM-GE QMF MLA CMPT
(2018) (2018) (2022) (2023b) (2024) (Ours)

CREMA-D
Audio Video 53.89 51.49 53.76 59.41 59.27 67.20
Video Audio 18.67 17.34 28.09 39.11 64.91 76.21

Audio - Video - 60.07 59.21 68.14 63.71 79.70 88.84

KS
Audio Video 48.67 49.96 48.87 51.57 54.67 68.27
Video Audio 23.15 23.77 29.73 32.19 51.03 85.77

Audio - Video - 63.33 63.72 65.74 65.78 71.35 91.21

UPMC Food-101
Image Text 4.68 14.20 22.35 45.74 69.60 75.66
Text Image 85.84 85.79 85.17 84.13 86.47 85.31

Image - Text - 87.21 88.87 87.54 92.87 93.33 94.47

4 Experiments and Results

4.1 Datasets

We evaluate our approach on five popular multimodal datasets across di!erent tasks. A brief description of
each dataset is provided here, with further details in Section A2 in the appendix.

UPMC Food-101 (Wang et al., 2015) is a multimodal classification dataset consisting of 101 food classes.
It contains 90,704 image-text pairs, divided into a training set of 67,988 pairs and a test set of 22,716 pairs.

MM-IMDb (Arevalo et al., 2017) has 25,959 samples with image and text modalities for multi-label movie
genre classification. It is split into 15,552 training, 2,608 validation, and 7,799 test samples across 23 classes.

Kinetics-Sound (KS) (Arandjelovic & Zisserman, 2017) is a subset of Kinetics400 dataset (Kay et al.,
2017) for human action recognition using audio and video as input modalities. It has 31 classes, with 14,739
samples in the training set and 2,594 samples in the test set.

Audio-Visual Event (AVE) dataset (Tian et al., 2018) contains 4,143 10-second videos for multimodal
event localization. It is divided into train/val/test sets containing 3,339/402/402 samples across 28 categories.

CREMA-D dataset (Cao et al., 2014) includes 7,442 short video clips from 91 actors expressing six emotion
categories. It contains 6,698 training and 744 test samples for multimodal emotion recognition.

4.2 Implementation details

Vision-Language datasets. We use pretrained ViT-B (Dosovitskiy et al., 2021) from CLIP model (Radford
et al., 2021) as image encoder and BERT-base-uncased model (Lu et al., 2019) as text encoder. The max
token length is set to 40 for UPMC Food-101 and 256 for MM-IMDb dataset, respectively.
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Table 3: Performance comparison with both modalities
available during training and inference on Image-Text
datasets. We report % accuracy for UPMC Food-101
and F1-Macro/F1-Micro score for MM-IMDb dataset.
Here, ‘-’ indicate results that are not reported in corre-
sponding papers.

Methods Parameters (M) UPMC MM-IMDbTotal Learnable Food-101

ViLT (2021) 112.63 112.63 92.00 55.30 / 64.70
MBT (2021b) 196.00 196.00 93.56 59.60 / 64.81
MMBT (2019) 170.00 170.00 94.10 60.80 / 66.10
MMLoRA (2023) 196.10 196.10 93.70 61.70 / 67.20
PMF (2023) 198.43 2.54 91.51 58.77 / 64.51
PMF-L (2023) 643.95 4.44 91.68 61.66 / 66.72
MLA (2024) 218.26 218.26 93.33 - / -
CMPT (Ours) 195.51 0.27 94.47 63.58 / 69.23

Table 4: Performance (% accuracy) comparison with
both modalities available during training and inference
on Audio-Video datasets. Here, ‘→’ denotes results gen-
erated using existing code.

Method Parameters (M) KS AVE CREMA-DTotal Learnable

G-Blend (2020a) 22.36 22.36 62.20 65.50 58.70
FiLM (2018) 22.35 22.35 63.33 - 60.07
BiGated (2018) 22.35 22.35 63.72 - 59.21
OGM-GE (2022) 22.35 22.35 65.74 76.90 68.14
QMF (2023b) 22.36 22.36 65.78 68.16↓ 63.71
PMR (2023b) 22.36 22.36 - 66.40 61.80
MLA (2024) 22.37 22.37 71.35 64.68↓ 79.70
MBT (2019) 172.00 172.00 85.00 77.80 -
MMLoRA (2023) 172.19 172.19 91.40 96.20 88.60
CMPT (Ours) 172.16 0.17 91.21 96.77 88.84

Audio-Video datasets. We use AST model (Gong et al., 2021) pretrained on AudioSet dataset (Gemmeke
et al., 2017) as audio encoder and ViT-B (Dosovitskiy et al., 2021) from CLIP model (Radford et al., 2021)
as video encoder. Raw audio is converted to a 128-bin mel spectrogram at 16 kHz, with a maximum length
of 1024 frames. For video, we sample 3 frames randomly while training and uniformly while testing. Other
pre-processing steps are similar to (Zhang et al., 2024; Peng et al., 2022; Du et al., 2023).

Hyperparameter settings. We use Python 3.8.19 and PyTorch 2.2.2 for training and evaluating our
models. All the models are trained using two NVIDIA RTX 2080Ti GPUs. For vision-language datasets,
we set the learning rate to 10↔3 and train the models for 10 epochs with a batch size of 8. For audio-video
datasets, the learning rate is set to 5 ↑ 10↔5 and models are trained for 100 epochs with a batch size of
4. We use AdamW (Loshchilov & Hutter, 2019) optimizer with ε = 10↔8 and weight decay = 0.02. While
training, we utilize cross entropy loss, polynomial learning rate scheduler with power=0.9 and set the first 5
epoch as warm-up. The learning rate is set to 0.1 times the original learning rate during warm-up epochs.
We set LoRA (Hu et al., 2022) rank = 1 and insert them after query, key, value and output layers of each
transformer block. Further details with all the hyperparameters can be found in Section A3 in the appendix.

For each task and dataset, we compare against state-of-the-art published work. For this reason, the set of
baselines varies across experiments based on the availability of published results. In each table, the best and
second best results are bold and underlined, respectively.

4.3 Performance when modalities are missing

Existing literature considers missing modalities at both training and inference or only at inference. Our
method achieves state-of-the-art performance in both scenarios, as detailed in the next two sections.

4.3.1 Missing modality during training and inference

In the first setup, a modality is missing at a fixed rate during both training and inference, as studied by Lee
et al. (2023); Jang et al. (2024); Kim & Kim (2024). We follow their experiment setup and compare our
method against seven state-of-the-art approaches on MM-IMDb and UPMC Food-101 datasets. As shown
in Table 1, our method consistently outperforms all baselines across various missing modality configurations.
Specifically, compared to the most recent approach by Kim & Kim (2024), we achieve a 4.18%–9.40%
improvement in F1-macro score on MM-IMDb dataset and a 0.16%–1.56% improvement in accuracy on
UPMC Food-101 dataset across di!erent missing modality scenarios. It is worth noting that while the
performance of Kim & Kim (2024) on UPMC Food-101 dataset is comparable to ours in two scenarios, our
method still performs best in every configuration. These results also suggest that the CMPTs can provide
good proxy for the missing class tokens, which significantly improves the model robustness. To ensure a
reliable evaluation, we run our method with three di!erent random seeds and report the mean and standard
deviation (SD) for various missing scenarios. The low SD values indicate the stability and reliability of our
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(a) Dataset: MM-IMDb (b) Dataset: UPMC Food-101

Figure 2: Generalization to varying missing rates during inference. Models are trained with 100% image + 100%
text and evaluated with 100% image + x% text following Ma et al. (2022); Kim & Kim (2024). Our approach
demonstrates better generalization, particularly under severe modality loss.

method. We also assessed the performance of the models with di!erent distributions of modality ratios at
training and testing, for which the results are presented in Section A5 of the appendix.

4.3.2 Missing modality during inference only

In the second setup, following the work of Zhang et al. (2024), we evaluate our model when all modalities
are available during training, but one modality is completely missing during inference. As shown in Table 2,
our method outperforms existing baselines in most cases. For instance, when the audio modality is missing,
all methods except MLA (Zhang et al., 2024) experience a significant performance drop on the CREMA-
D and Kinetics-Sound (KS) datasets. On the CREMA-D dataset, our method achieves 7.93% and 11.30%
improvements over the most recent MLA approach, when video and audio are missing, respectively. Similarly,
on the KS dataset, our method outperforms MLA with 13.60% and 34.74% improvements when video and
audio are missing, respectively. While MLA performs slightly better when the image modality is missing
on the UPMC Food-101 dataset, it su!ers a larger performance drop when text is missing. In contrast,
our method maintains a balanced performance across di!erent missing modalities. Furthermore, across all
datasets, our method achieves the best performance when all modalities are available and demonstrates
superior robustness compared to other approaches. These results highlight the e!ectiveness of our method
in handling scenarios where a modality is entirely absent during inference.

4.4 Performance when all modalities are available

A method designed to handle missing modalities should not compromise performance when all modalities
are present. In this subsection, we demonstrate that our approach also achieves comparable or superior
performance to state-of-the-art models across five datasets when all modalities are available.

To evaluate this, we train and test our method when all modalities are available during training and inference.
Results in Table 3 demonstrate that our proposed method achieves state-of-the-art performance on both
UPMC Food-101 and MM-IMDb datasets. Our method surpasses the most recent MLA approach (Zhang
et al., 2024) by 1.14% on UPMC Food-101. Our method achieves 1.88% and 2.03% improvement in F1-macro
and F1-micro scores, respectively, over second-best performing MMLoRA (Du et al., 2023) on MM-IMDb.

We present the results for audio-video datasets in Table 4, where we compare our method against nine state-
of-the-art methods. Our approach consistently achieves comparable or superior performance across all three
datasets, while using the fewest number of learnable parameters. These results highlights that incorporating
CMPTs does not introduce any drawback when all modalities remain available.
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(a) Available: Text, Missing: Image. (b) Available: Image, Missing: Text.

Figure 3: E!ectiveness of CMPTs on the MM-IMDb dataset. All models are trained with 100% image and 100%
text data, then evaluated under varying amount of missing modalities. CMPTs achieve significant performance
improvement, especially under severe missing modality scenarios.

(a) Available: Image, Missing: Text. (b) Available: Text, Missing: Image.

Figure 4: CMPTs improve performance across most of the classes when modalities are missing. However, it fails to
accurately predict certain classes (e.g., short/documentary) in the absence of text, likely due to the image modality’s
insu"cient information for those classes. Classes are sorted based on the amount of performance improvement.

4.5 Generalization to di!erent missing rates

In real-world scenarios, the missing rates for modalities during inference can be unpredictable. Any method
designed to handle missing modalities needs to generalize e!ectively across varying levels of missing modality
rates during inference. To evaluate this capability, we trained our models on complete multimodal data and
assessed their performance under varying levels of missing modalities during inference. Specifically, we follow
the experiment setup similar to Ma et al. (2022); Kim & Kim (2024) where models are trained with 100%
image + 100% text data and evaluated with 100% image + x% text.

As illustrated in Figure 2, our method consistently outperforms all baselines across di!erent missing scenarios,
demonstrating superior robustness. We observe a decline in performance of all methods as the amount of
available text decreases, but our approach maintains stronger resilience compared to other methods. For
instance, on the MM-IMDb dataset, our method achieves a 5.8% higher F1-Macro score than the most recent
method by Kim & Kim (2024) and a 25.6% improvement over ViLT (Kim et al., 2021) when only 10% of
text is available. A similar trend is observed on the UPMC Food-101 dataset, where our method consistently
yields superior performance, confirming its robustness to missing modalities at inference.

Note that published work by Ma et al. (2022); Kim & Kim (2024); Kim et al. (2021) did not report results for
di!erent missing rates of images, which prevents us from reporting a direct comparison in that setting. Nev-
ertheless, our results highlight the e!ectiveness of CMPTs in handling di!erent missing modality scenarios,
making it a more generalizable solution for real-world applications.
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Table 5: Ablation study on the alignment loss weight ω. We report performance on the UPMC Food-101 and AVE
datasets across both complete and missing modality scenarios.

Dataset Available Modality Missing Modality ω = 0.0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5

UPMC Food-101
Image Text 73.12 73.48 75.66 73.72 74.39 74.46
Text Image 84.31 84.79 85.31 84.51 84.81 84.88

Image - Text - 93.96 94.14 94.47 94.13 94.34 94.21

AVE
Audio Video 84.82 84.33 85.21 84.82 84.33 84.82
Video Audio 82.83 83.08 84.58 85.32 81.84 84.83

Audio - Video - 95.77 96.02 96.77 96.52 96.52 96.27

4.6 Ablation studies

4.6.1 E!ectiveness of CMPTs

To evaluate the e!ectiveness of CMPTs in handling missing modalities, we compare our method against
two baselines: (i) a standard model trained without modality dropout or CMPTs (baseline) and (ii) a
model trained with modality dropout, where modalities are randomly removed during training to improve
robustness to missing data. For a fair comparison, all models were fine-tuned on the downstream task using
LoRA with a rank of 1.

Figure 3 presents the main results for MM-IMDb dataset, where the baseline model experiences a sharp
performance drop as the proportion of missing modalities increases. While modality dropout improves ro-
bustness, the performance gap remains large. Incorporating CMPTs further enhance performance, achieving
a 32.06% improvement over the baseline and 11.55% over modality dropout when the image modality is en-
tirely missing as shown in Figure 3a. A similar trend is observed when text is missing as shown in Figure 3b.
Notably, CMPTs become increasingly e!ective as the amount of missing data increases, demonstrating its
strong ability to substantially mitigate performance degradation in the presence of severe modality loss.
Similar trend appears in UPMC Food-101 dataset, which we discuss in Sec. A6 in the appendix.

4.6.2 E!ects of CMPTs on di!erent classes

When analyzing the e!ectiveness of CMPTs, a key question is whether the overall performance gains are
driven by just a few classes or if CMPTs consistently improves performance across most classes. To address
this, we conducted a per-class performance analysis with and without CMPTs.

As shown in Figure 4, CMPTs improve performance across nearly all classes in both text-missing and
image-missing scenarios. Notably, it significantly mitigates performance degradation in modality-sensitive
classes. For example, when text is missing, classes like Horror, Animation, and War experience severe drops
in performance, but CMPTs e!ectively recover much of the loss (Figure 4a). Similarly, when images are
missing, CMPTs provide substantial gains in Thriller, Action, and Romance (Figure 4b). A slight drop is
observed in Short and Documentary classes when text is missing, likely due to insu"cient information in
the image modality alone for those classes. These results demonstrate that CMPTs enhance performance
across most classes, leading to a strong overall performance improvement. A similar trend is observed on
the UPMC Food-101 dataset which is discussed in Section A7 of the appendix.

4.6.3 Determining the Optimal Alignment Loss Weight ω

To determine the optimal value for the alignment loss weight ω, we performed an ablation study on the
UPMC Food-101 and AVE datasets, varying ω from 0.0 to 0.5. The results, shown in Table 5, indicate that
the choice of ω is crucial for performance in di!erent scenarios. For our experiments, ω = 0.20 provides an
overall better performance compared to other values. On the UPMC Food-101 dataset, setting ω = 0.20
consistently achieves the best performance across all conditions: with missing text, missing image, and with
both modalities available. Using ω = 0.0, which is equivalent to removing the alignment loss, results in a
significant performance drop, highlighting the importance of the alignment objective.
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Figure 5: t-SNE plots of the fused feature tokens T for ten classes under di!erent modality settings. The t-SNE
plots show that fused features without CMPTs (red) deviate significantly from the complete multimodal features
(green). Incorporating CMPTs (blue) provides embeddings that closely align with the complete multimodal features,
indicating improved semantic alignment and robustness.

On the AVE dataset, the results show a similar trend. A weight of ω = 0.20 yields the best performance when
video is missing and when both modalities are available. ω = 0.30 shows a slight performance improvement in
the video-only scenario. Given that ω = 0.20 demonstrates superior or near-optimal performance consistently
across both datasets, we set ω = 0.20 for all our experiments, as it provides a balance in performance across
di!erent modality conditions.

4.6.4 Qualitative Analysis of CMPT E!ectiveness

To gain deeper insights into how CMPTs enhance robustness in missing modality scenarios, we conducted
a qualitative analysis on the UPMC Food-101 dataset using both fused feature projections and attention
visualizations. Figure 5 presents t-SNE plots of the fused feature T for ten representative food classes where
CMPTs yield notable performance gains. We compare three settings: (i) complete multimodal input (green),
(ii) missing modality without CMPTs (red), and (iii) missing modality with CMPTs (blue). The t-SNE plots
show that fused features without CMPTs (red) deviate significantly from the complete multimodal features
(green) in missing modality scenarios. Incorporating CMPTs (blue) provides embeddings that closely align
with the complete multimodal features, indicating improved semantic alignment and robustness.

We also analyze the attention maps from the last layer of the vision encoder for the CLS token and CMPTs
in the text-missing scenario, as shown in Figure 6. We selected random examples from six classes where fused
features without CMPTs provide incorrect predictions, but including the CMPTs leads to correct predictions
(approximately 15% samples in the dataset show this behavior). The attention maps show that CLS tokens
attend to semantically-irrelevant regions, which likely leads to incorrect predictions. In contrast, CMPTs
attend to semantically-relevant regions for the respective classes and lead to accurate predictions. These
visualizations demonstrate that CMPTs not only act as proxies for the missing modality but also reshape
the model’s attention to reflect modality-relevant cues. For the sake of completeness, we have also included
attention maps for some cases when the fused features with and without CMPTs provide correct predictions
(approximately 60% samples show this pattern) and when the fused features with CMPTs lead to incorrect
predictions (approximately 3% samples show this pattern) in Section A8.
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Figure 6: Attention map visualizations from the last layer of the vision encoder for the CLS token and CMPTs
in the text-missing scenario on the UPMC Food-101 dataset. The attention maps show that CLS tokens attend to
semantically-irrelevant regions, which likely leads to incorrect predictions. In contrast, CMPTs attend to semantically-
relevant regions for the respective classes and lead to accurate predictions.

5 Limitations and Future Directions

While our approach demonstrates consistent performance improvements over existing methods in di!erent
missing modality scenarios, the remaining performance drop—especially in extreme cases—indicates room
for further improvement. Additionally, we observe that certain classes are heavily dependent on a specific
modality, which leads to significant performance drop in those classes when that specific modality is missing.
A natural question arises as how can we design a better training strategy that encourages more uniform
reliance on di!erent modalities while maintaining overall performance in both complete and missing modality
scenarios? Future work can also explore developing a general framework for explaining modality contribution
and expected performance drop under di!erent missing modality scenarios. Finally, this paper primarily
focused on two-modality settings due to the availability of standard benchmarks and baselines that enable
direct and fair comparisons. Extending the CMPT framework is a natural next step, and we are actively
investigating this direction as part of our ongoing work.

6 Conclusion

We presented a simple yet e!ective framework for utilizing pre-trained unimodal encoders for robust mul-
timodal learning. Our proposed framework enables training of multimodal systems that o!er robust per-
formance under di!erent scenarios of missing modalities during training and inference. To compensate
for missing modalities, we propose to learn cross-modal proxy tokens (CMPTs) to approximate the missing
modality class tokens from the available modality using an alignment loss during training. Instead of training
the unimodal encoders from scratch, we only learn rank-1 adapters along with task-specific classifier heads.
Our extensive evaluations across diverse tasks and datasets demonstrate the robustness and adaptability of
our approach in both complete and missing modality scenarios. Our analysis also reveals that CMPTs can
generalize well to di!erent missing scenarios and enhance performance across most of the classes to provide

12



Published in Transactions on Machine Learning Research (10/2025)

an overall performance boost. Overall, our approach provides a robust and e"cient solution for multimodal
learning that maintains high performance in di!erent real-world scenarios.
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A Appendix

A1 Related Work on Multimodal Learning

In this section, we provide a general overview of multimodal learning, which involves integrating information
from di!erent input sources to improve performance on downstream tasks. We can broadly divide multimodal
learning approaches into two main categories: designing specialized models and adapting existing models.

Designing specialized models to e!ectively fuse multiple input sources is a common strategy in multi-
modal learning. For vision-language tasks, models such as ViLT (Kim et al., 2021), ViLBERT (Lu et al.,
2019), and Visual-BERT (Li et al., 2019) process image patches and text tokens directly within a trans-
former architecture for tasks like image captioning and visual question answering. MMBT (Kiela et al.,
2019) integrates both text and images within a BERT-based framework (Devlin et al., 2019) to model cross-
modal dependencies. MBT (Nagrani et al., 2021b) leverages fusion bottlenecks for e"cient modality-specific
interaction, particularly in audio-video tasks. Specialized multimodal models have also been proposed for
other applications, including action recognition (Woo et al., 2023; Zhou et al., 2022), segmentation (Zhang
et al., 2023a; Wang et al., 2022b; Reza et al., 2024b), and sentiment analysis (Woo et al., 2023; Tsai et al.,
2019). While these models excel in specific tasks, extending them to new modalities or domains often proves
to be challenging and resource-intensive, as it requires retraining or significant modification of the model
architecture.

Adapting existing models o!ers an alternative approach to multimodal learning, focusing on the use
of pre-trained unimodal models and adapting them for multimodal tasks. One such strategy is gradient
modulation, where techniques like G-Blend (Wang et al., 2020a) modulate gradients to combine unimodal
and multimodal knowledge. OGM-GE (Peng et al., 2022) improves upon this by emphasizing modality-
specific information, enhancing the model’s ability to leverage unique features from each input source. PMR
(Fan et al., 2023b) further refines this approach by modulating parameter groups based on the relevance of
each modality, while QMF (Zhang et al., 2023b) introduces quadratic modulation for adaptive fusion. More
recently, MLA (Zhang et al., 2024) proposed alternating adaptation, which toggles between unimodal adap-
tation and gradient modulation to enable more e"cient cross-modal learning. Another notable approach,
MMLoRA (Du et al., 2023), uses a two-phase strategy: unimodal fine-tuning followed by multimodal adap-
tation, which helps achieve optimal performance across a variety of tasks. However, while these methods
allow for e!ective cross-modal learning, they often require significant computational resources and learning
a large number of parameters to achieve optimal performance on downstream tasks.

A2 Detailed Dataset Description

UPMC Food-101 dataset (Wang et al., 2015) is a popular and challenging multimodal classification dataset.
It has two input modalities: image and text. The dataset has 90,704 samples divided into training and test
sets having 67,988 and 22,716 samples, respectively. It contains 101 classes, which are the same as those in
the ETHZ Food-101 dataset (Bossard et al., 2014). The samples are noisy, each category contains around
5% irrelevant images as they were collected in an uncontrolled environment without any human human
intervention during the data collection process.

MM-IMDb dataset (Arevalo et al., 2017) is a widely used multimodal dataset for multi-label movie genre
classification task. It consists of 25,959 samples, each containing both image and text as input modality.
The dataset is divided into three subsets: 15,552 samples for training, 2,608 for validation, and 7,799 for
testing. It has 23 classes and each sample can have one or more genre. This dataset serves as a standard
benchmark for evaluating multimodal models in the multi-label classification task.

Kinetics-Sound (KS) dataset (Arandjelovic & Zisserman, 2017) is a subset of the Kinetics-400 dataset
(Kay et al., 2017). It is used for human action recognition using audio and video as input modalities.
This dataset includes 31 di!erent action classes that span a variety of everyday human activities, making it
suitable for evaluating multimodal models. The dataset is split into two subsets: a training set containing
14,739 samples and a test set containing 2,594 samples.
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Table 6: List of all the hyperparameters used in our experiments.

Hyperparameters Image-Text Audio-Video
Datasets Datasets

Learning Rate 10↔3 5 ↑ 10↔5

Scheduler Polynomial Polynomial
Power 0.9 0.9
Num Epochs 10 100
Warmup Epochs 5 5
Optimizer AdamW AdamW
ε 10↔8 10↔8

Weight Decay 0.02 0.02
ω 0.20 0.20
LoRA Rank 1 1
LoRA Alpha 1 1
LoRA Dropout 0.1 0.1
Image Encoder ViT-B ViT-B
Text Encoder BERT-Base -
Audio Encoder - AST
Image Resolution 224 ↑ 224 224 ↑ 224
Patch Size 16 ↑ 16 16 ↑ 16
Batch Size 8 4
Audio Sampling Rate - 16 kHz
Frequency Bins - 128
Maximum Length - 1024 Frames
Frames Per Video - 3
Python Version 3.8.19 3.8.19
PyTorch Version 2.2.2 2.2.2
GPU Model RTX 2080Ti RTX 2080Ti
Num GPUs 2 1

Audio-Visual Event (AVE) Localization dataset (Tian et al., 2018) is a benchmark dataset used for
multimodal event localization task. It contains 4,143 10-second videos. The dataset is divided into training,
validation, and test sets, with 3,339 videos for training, 402 for validation, and 402 for testing. The dataset
encompasses 28 di!erent event categories providing a broad range of scenarios where both audio and visual
signals are crucial for accurate event detection. All videos in the AVE dataset are collected from YouTube.

CREMA-D dataset (Cao et al., 2014) is used for multimodal emotion recognition. It has audio and video
as input modalities. The dataset contains 7,442 short video clips performed by 91 actors. The clips cover
six emotions: angry, happy, sad, neutral, disgust, and fear. Emotion labels were obtained from 2,443 crowd-
sourced raters to ensure diverse evaluations. The dataset is divided into 6,698 samples for training and 744
samples for testing.

A3 Implementation Details

In Section 4.2 of the main paper, we briefly discussed the hyperparameter settings used in our experiments.
Here, we provide a complete list of all the hyperparameters and their values in Table 6. The “Image-
Text Datasets" column includes the hyperparameters for UPMC Food-101 and MM-IMDb datasets, while
the “Audio-Video Datasets" column lists the hyperparameters for Kinetics-Sound, AVE, and CREMA-D
datasets.
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Table 7: Performance comparison with di!erent LoRA ranks (r). The models are trained on complete multimodal
data and tested on both complete and missing modality scenarios. The best Accuracy (Acc.) for each scenario is
highlighted in bold. Params (M) indicates the number of learnable parameters in millions.

Datasets Available Modality Missing Modality r = 1 r = 2 r = 4
Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

UPMC Food-101
Image Text

0.271
75.66

0.376
75.62

0.671
70.38

Text Image 85.31 85.61 83.92
Image - Text - 94.47 94.64 93.30

AVE
Audio Video

0.173
85.21

0.319
85.07

0.614
84.33

Video Audio 84.58 84.30 80.84
Audio - Video - 96.77 96.77 96.27

CREMA-D
Audio Video

0.157
67.20

0.303
65.32

0.598
65.46

Video Audio 76.21 75.54 76.61
Audio - Video - 88.84 87.63 87.77

KS
Audio Video

0.176
68.27

0.322
69.93

0.617
69.54

Video Audio 85.77 85.20 86.43
Audio - Video - 91.21 91.06 90.59

A4 Determining the Optimal LoRA Rank

To determine the optimal LoRA rank, we conducted an ablation study evaluating ranks r → {1, 2, 4}. For
this analysis, we trained our models on modality-complete data and evaluated their performance in both
complete and missing modality scenarios, with the results presented in Table 7.

Our analysis indicates that increasing the rank, and thereby the number of learnable parameters, does not
guarantee a consistent improvement in performance. For instance, on the AVE dataset, a rank of r = 1
consistently achieves the highest accuracy. On the UPMC Food-101 dataset, performance between r = 1
and r = 2 is comparable. While r = 2 o!ers a marginal improvement in two scenarios, it requires a 38.7%
increase in learnable parameters. In contrast, using r = 4 consistently resulted in degraded performance in
both of these datasets compared to r = 1. A similar trend is observed for the CREMA-D dataset, where
r = 1 performs best in two of the three scenarios. Conversely, the KS dataset presented mixed results, with
di!erent ranks yielding optimal performance in di!erent scenarios.

Overall, a rank of r = 1 demonstrates competitive, and often superior performance across a majority of the
tested scenarios. The performance degradation at higher ranks, such as r = 4, suggest that a larger number
of learnable parameters may not be necessary for these tasks and could introduce a risk of overfitting. This
aligns with the common characteristic of LoRA, where a low rank is often su"cient to capture essential
task-specific information. Based on these observations, we use LoRA with r = 1 for all our experiments as
it provides an optimal balance, delivering robust performance with the greatest parameter e"ciency.

A5 Di!erent Modality Ratios During Training and Inference

A robust multimodal learning method should maintain strong performance even when the missing modality
ratio during inference di!ers from that during training. To evaluate the robustness of our approach, we follow
the experimental setup of Jang et al. (2024); Kim & Kim (2024) and train and test our model with varying
modality ratios. Let ϑ denote the missing rate. We consider three scenarios: missing-text, missing-image,
and missing-both. In the first two cases, ϑ% of the samples contain only images or only text, while (1 ↓ ϑ)%
retain both modalities. For the missing-both case, ω

2 % of the samples contain only texts, ω
2 % contain only

images, and (1↓ϑ)% include both modalities. We set ϑ = 70 throughout our experiments, following existing
baselines (Jang et al., 2024; Kim & Kim, 2024).

As summarized in Table 8, our method consistently outperforms existing state-of-the-art approaches in most
scenarios. While the method proposed by Kim & Kim (2024) performs well in certain cases, our approach
demonstrates superior performance across both the MM-IMDb and UPMC Food-101 datasets. To ensure
a rigorous evaluation, we report the mean and standard deviation (SD) over three independent runs with
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Table 8: Performance comparison when modality gets missing during both training and inference. We train and
evaluate our model with di!erent modality ratio following existing baselines (Jang et al., 2024; Kim & Kim, 2024)
and report the mean and standard deviation (SD) of three independent runs with di!erent seeds.

Datasets Missing Train Inference ViLT MAP MSP Kim & Kim CMPT (Ours)
Rate (ϑ) Image Text Image Text (2021) (2023) (2024) (2024) (Mean ± SD)

MM-IMDb
(F1-Macro) 70%

30% 100%
30% 100% 37.63 47.18 47.45 56.03 60.21 ± 0.40
65% 65% 34.47 37.25 42.17 49.81 50.05 ± 0.53
100% 30% 30.00 24.31 34.32 43.07 36.10 ± 0.19

65% 65%
30% 100% 36.48 42.72 44.81 55.26 57.45 ± 0.21
65% 65% 36.54 40.84 42.03 49.24 54.04 ± 0.23
100% 30% 33.76 37.80 37.30 42.46 50.05 ± 0.29

100% 30%
30% 100% 27.25 20.17 34.11 54.67 44.72 ± 0.46
65% 65% 32.51 29.79 36.97 49.09 49.26 ± 0.42
100% 30% 34.26 36.89 38.34 43.21 52.61 ± 0.12

UPMC
Food-101
(Accuracy)

70%

30% 100%
30% 100% 76.40 86.34 86.34 87.11 87.48 ± 0.13
65% 65% 59.03 57.92 71.88 81.22 77.52 ± 0.29
100% 30% 41.94 29.71 56.87 75.41 67.60 ± 0.26

65% 65%
30% 100% 73.62 85.55 85.91 87.35 87.36 ± 0.20
65% 65% 68.60 78.49 78.89 82.67 82.83 ± 0.25
100% 30% 64.25 71.17 71.58 78.13 78.40 ± 0.09

100% 30%
30% 100% 43.67 27.46 57.22 86.90 85.34 ± 0.15
65% 65% 54.75 50.79 65.13 82.35 82.78 ± 0.22
100% 30% 66.01 73.71 73.77 78.81 80.37 ± 0.18

(a) Available: Text, Missing: Image. (b) Available: Image, Missing: Text.

Figure 7: E!ectiveness of CMPTs in handling missing modalities on UPMC Food-101 dataset. CMPTs significantly
improves performance when modalities are severely missing. Models are trained on 100% image + 100% text and
tested with varying levels of missing modalities.

di!erent seeds. The low SD values further indicate the stability and reliability of our method. These results
substantiate our claim that CMPTs can e!ectively estimate missing modality features, enhancing robustness
to varying missing modality conditions. Other methods reported in Table 1 do not report results for this
specific experimental setup, and thus we are unable to compare with them.

A6 E!ectiveness of CMPTs

We extend the study from Section 4.6.1 to evaluate the e!ectiveness of CMPTs in handling missing modalities
on the UPMC Food-101 dataset. We compare it against two baselines: (i) a standard model trained without
modality dropout or CMPTs (baseline) and (ii) a model trained with modality dropout, where modalities
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Figure 8: CMPTs improve performance across most of the classes when text modality is missing on UPMC Food-
101 dataset. However, it fails to accurately predict certain classes (e.g., bibimbap/sashimi), likely due to the image
modality’s insu"cient information for those classes. Classes are sorted based on the amount of performance improve-
ment.

are randomly removed during training to improve robustness to missing data. For a fair comparison, all
models were fine-tuned on the downstream task using LoRA with a rank of 1.

As illustrated in Figure 7, the baseline model experiences a significant performance drop as the proportion
of missing modalities increases. While modality dropout improves robustness, it fails to fully recover the
lost performance. Incorporating CMPTs further enhances performance, achieving a 5.07% improvement
over the baseline and 3.81% over modality dropout when the image modality is entirely missing as shown
in Figure 7a. A similar trend is observed when text is missing as shown in Figure 7b, where CMPTs
achieves 25.59% and 11.96% higher accuracy compared to the baseline and modality dropout, respectively.
Consistent with our previous findings, CMPTs becomes increasingly e!ective as the proportion of missing
data increases, demonstrating its strong capability to substantially mitigate performance degradation in the
presence of severe modality loss.
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Figure 9: CMPTs improve performance across most of the classes when image modality is missing on UPMC
Food-101 dataset. However, it fails to accurately predict certain classes (e.g., lobster_roll_sandwitch/cheese_plate),
likely due to the text modality’s insu"cient information for those classes. Classes are sorted based on the amount of
performance improvement.

A7 Do CMPTs Benefit All Classes?

To further evaluate CMPT’s e!ectiveness, we conduct a per-class performance analysis on the UPMC Food-
101 dataset, following the approach from Section 4.6.2.

As shown in Figure 8 and 9, CMPTs improve or maintain performance across most of the classes in both text-
missing and image-missing scenarios. Notably, it mitigates performance degradation in modality-sensitive
classes. For instance, when text is missing, classes such as guacamole, pancakes, and foie_gras experience
severe drops in performance, but CMPTs e!ectively recovers much of the loss as shown in Figure 7b. Similarly,
in image-missing scenarios, CMPTs provide substantial gains for sushi, cup_cakes, and pizza as shown in
Figure 3a. However, a slight performance drop is observed in certain classes when either text or image
is absent. For instance, CMPT fails to recover performance for classes such as bibimbap and sashimi in
the absence of text, and for classes like lobster_roll_sandwich and cheese_plate when the image modality
is missing. This is likely due to insu"cient information in the available modality alone for those classes.

6



Published in Transactions on Machine Learning Research (10/2025)

Figure 10: t-SNE plots of the fused feature tokens T for ten classes where the performance gains from CMPTs
are limited. In these cases, the fused feature embeddings with CMPTs (blue) remain di!use and overlapping, and
exhibit weak alignment with the complete multimodal features (green). Although CMPTs show improvement over
the baseline without CMPTs (red), the alignment remains insu"cient to form consistently discriminative clusters,
indicating limited or no improvement in missing modality robustness in these classes.

Overall, these results reinforce our previous findings, demonstrating that CMPTs enhance performance across
most classes, leading to a strong overall performance improvement.

A8 Limitations and Failure Case Analysis

While CMPTs demonstrate notable improvements in robustness, it is essential to understand their limita-
tions. Figure 10 presents t-SNE plots of the fused feature tokens T for ten classes on the UPMC Food-101
dataset where the performance gains from CMPTs are limited. In these cases, the fused feature embed-
dings with CMPTs (blue) remain di!use and overlapping, and exhibit weak alignment with the complete
multimodal features (green). This is particularly evident for visually ambiguous classes or classes with high
intra-class variance in the feature embedding space. Although CMPTs show improvement over the base-
line without CMPTs (red), the alignment remains insu"cient to form consistently discriminative clusters,
indicating limited or no improvement in missing modality robustness.

We also analyze the attention maps from the last layer of the vision encoder for the CLS token and CMPTs
in the text-missing scenario, as shown in Figure 11. The left half of the figure includes examples when the
fused features with and without CMPTs provide correct predictions (approximately 60% samples show this
pattern). For these cases, the CLS token already attends to semantically-relevant regions and make the
correct prediction. CMPTs further refine the attention but do not change the model’s prediction, as it is
already correct. Thus, the inclusion of CMPTs does not necessarily improve performance. The right half of
the figure shows examples when the fused features with CMPTs lead to incorrect predictions (approximately
3% samples show this pattern). We observe that CMPTs attend to semantically-relevant regions of the image
but still lead to incorrect predictions. For example, in the French Onion Soup sample, the CMPT focuses
heavily on the melted cheese surface—a visually salient but ambiguous feature—leading to a misclassification
as Shrimp and Grits. Similarly, for the Lobster Roll Sandwich, the CMPT fails to recover from the original
misclassification and predicts Foie Gras based on misleading visual cues. These examples highlight scenarios
where either the available modality is insu"cient or the learned cross-modal associations are misleading,
resulting in CMPTs contributing to incorrect predictions rather than correcting them.
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Figure 11: Attention map visualizations from the last layer of the vision encoder for the CLS token and CMPTs in
the text-missing scenario on the UPMC Food-101 dataset. Left: Cases where the fused features with and without
CMPTs provide correct predictions. Here, CLS tokens already attend to semantically-relevant regions and CMPTs
provide further refinement, but do not change the prediction. Right: Cases where CMPTs attend to semantically-
relevant regions but lead to incorrect predictions. The last example illustrates a scenario where both the fused features
with and without CMPTs result in incorrect predictions. These examples highlight limitations of CMPTs when the
available modality lacks su"cient discriminative information or when learned cross-modal associations are imprecise.

Figure 12: Per class performance analysis on MM-IMDb dataset. Certain classes show strong dependence on a
specific modality.

A9 Analysis of Modality Dependence

We observe that the impact of missing modalities varies significantly across classes. Certain classes show
strong dependence on a specific modality. In this experiment, we train our model on modality-complete data
and evaluate it on both modality-complete and modality-incomplete test samples.

Figure 12 presents per-class performance on the MM-IMDb dataset, revealing heterogeneous e!ects of miss-
ing modalities. For instance, the Drama and Thriller classes maintain consistent performance regardless
of missing modalities. In contrast, the Biography and Documentary classes experience significant decline in
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Figure 13: Per class performance analysis on UPMC Food-101 dataset. Certain classes show strong dependence on
a specific modality.

performance when text is missing, even if images are available. Interestingly, certain classes like Animation
show slightly higher performance with single-modality inputs, particularly in image-only scenario. Similar
patterns emerge in Sport and Music categories, where text-only samples performs slightly better than com-
plete modality. This discrepancy may stem from the simple sum-fusion strategy we use, which might not
e!ectively model complex modality interactions. These findings indicate that the e!ect of missing modalities
is not uniform across classes, with some being more modality-dependent than others.

Extending this analysis to UPMC Food-101, we observe that multimodal (image-text) data consistently
outperforms unimodal inputs across all classes as shown in Figure 13. However, the reliance on specific
modalities varies widely among food categories.

Classes such as dumplings, Frozen_yogurt, and Ice cream depend heavily on text, showing strong perfor-
mance with text-only inputs but experiencing significant drops when text is missing. Conversely, categories
like tuna_tartare, beef_carpaccio, and beet_salad rely more on image information, with performance dete-
riorating notably when images are absent. This observation suggests that some classes rely more on texts,
while others depend heavily on images for accurate classification.

Interestingly, some classes such as beef_tartare, chicken_quesadilla, and croque_madame exhibit poor perfor-
mance with unimodal inputs but improve significantly with both image and text, reinforcing the importance
of multimodal data. Performance on these classes improve significantly when we utilize both image and
text. Overall, these findings confirm that while multimodal information universally enhances performance,
the degree of modality dependence remains heterogeneous across classes.
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Table 9: Performance comparison with three di!erent parameter e"cient adaptation methods. We used rank=1
for all the methods. The best Accuracy (Acc.) for each scenario is highlighted in bold. Params (M) indicates the
number of learnable parameters in millions.

Datasets Available Modality Missing Modality LoRA DoRA VeRA
Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

UPMC Food-101
Image Text

0.271
75.66

0.302
69.03

0.155
70.82

Text Image 85.31 83.52 82.85
Image - Text - 94.47 92.59 92.34

AVE
Audio Video

0.173
85.21

0.246
86.57

0.098
89.05

Video Audio 84.58 91.79 90.05
Audio - Video - 96.77 96.27 96.27

CREMA-D
Audio Video

0.157
67.20

0.229
67.07

0.082
66.13

Video Audio 76.21 73.12 71.64
Audio - Video - 88.84 88.04 86.02

KS
Audio Video

0.176
68.27

0.248
68.77

0.101
69.93

Video Audio 85.77 85.97 83.69
Audio - Video - 91.21 91.32 90.71

A10 Generalizability to Other Parameter-E"cient Adaptation Methods

To demonstrate that CMPTs are not restricted to a particular parameter-e"cient adaptation method, we
extend our analysis beyond LoRA (Hu et al., 2022), which is used in our primary experiments. Specifically,
we evaluate CMPTs with two recent alternatives: DoRA (Liu et al., 2024) and VeRA (Kopiczko et al., 2024).
For a fair comparison, we fix the rank to 1 across all methods. We train the models on modality-complete
data and evaluate them on both modality-complete and modality-incomplete scenarios. The results are
summarized in Table 9.

We find that the number of learnable parameters di!ers across methods, with VeRA being the most
parameter-e"cient and DoRA the least. In terms of performance, no single method consistently outper-
forms the others across all datasets. LoRA achieves the best overall results on the UPMC Food-101 and
CREMA-D datasets, while DoRA shows superior performance on the Kinetics-Sound dataset and remains
highly competitive on AVE. VeRA, while using substantially fewer parameters, delivers strong performance
but is generally slightly below LoRA and DoRA, suggesting a trade-o! between parameter e"ciency and
maximal performance.

Most importantly, our framework maintains robust performance in missing-modality scenarios regardless of
the underlying adaptation method. The relative stability observed between complete and missing-modality
settings is consistent across all three adaptation techniques. These findings confirm that CMPTs function
as a modular approach whose e!ectiveness is not tied to any specific adaptation strategy, underscoring their
scalability and versatility across di!erent parameter-e"cient methods.

A11 Applicability to SigLIP-Based Models

To assess the architectural flexibility of our method, we replaced the ViT encoder (Dosovitskiy et al., 2021)
with a pretrained SigLIP model (Zhai et al., 2023), which employs Global Attention Pooling (GAP) instead of
a CLS token. For audio–video datasets, we retained the AST model as the audio encoder, and for image–text
datasets, we used BERT as the text encoder. In this setup, CMPT tokens must perform a cross-architectural
reconstruction: inferring missing audio or text features from SigLIP’s vision embedding, and vice versa.

We train the models on modality-complete data and evaluate them on both modality-complete and modality-
incomplete scenarios. The results in Table 10 show that our method is not restricted to a single encoder
type. On UPMC Food-101 dataset, the SigLIP-based model consistently outperforms the ViT-based model,
demonstrating that CMPTs can be e!ectively applied to GAP-based vision backbones for vision–language
tasks. In contrast, for audio–video datasets, SigLIP exhibits sharp performance degradation when audio
is missing. Here, CMPTs struggle to recover audio features from global video embeddings, likely because

10



Published in Transactions on Machine Learning Research (10/2025)

Table 10: Performance comparison of our method with a ViT versus a SigLIP model as the vision backbone. The
models are trained on complete multimodal data and tested on both complete and missing modality scenarios. We
report % accuracy as the performance metric, and the highest score for each scenario is highlighted in bold.

Datasets Available Modality Missing Modality ViT SigLIP
(Dosovitskiy et al. (2021)) (Zhai et al. (2023))

UPMC Food-101
Image Text 75.66 77.50
Text Image 85.31 85.58

Image - Text - 94.47 94.58

AVE
Audio Video 85.21 86.32
Video Audio 84.58 30.60

Audio - Video - 96.77 94.78

CREMA-D
Audio Video 67.20 65.73
Video Audio 76.21 35.35

Audio - Video - 88.84 84.68

KS
Audio Video 68.27 69.66
Video Audio 85.77 30.76

Audio - Video - 91.21 89.44

Table 11: Performance comparison of our method using Base versus Large ViT and BERT models. The models
are trained on complete multimodal data and tested on both complete and missing modality scenarios. We report
% accuracy for UPMC Food-101 and F1-Macro score for MM-IMDb dataset. Params (M) indicates the number of
learnable parameters in millions. The best performance for each scenario is highlighted in bold.

Datasets Available Missing ViT-Base and BERT-Base ViT-Large and BERT-Large
Modality Modality Params (M) Performance Params (M) Performance

MM-IMDb
(F1-Macro)

Image Text
0.211

46.97
0.540

53.42
Text Image 56.32 59.92

Image - Text - 63.58 64.00

UPMC
Food-101
(Accuracy)

Image Text
0.271

75.66
0.501

77.17
Text Image 85.31 83.91

Image - Text - 94.47 93.74

GAP discards the fine-grained temporal information that is critical for inferring a corresponding audio
representation. The reverse process, however, is more successful. When the video modality is missing,
AST’s audio features provide a strong basis for reconstructing SigLIP’s global video representation. This
suggests that AST’s feature space is more compatible with SigLIP than vice versa.

Overall, these findings indicate that CMPTs remain applicable to GAP-based models like SigLIP, but their
e!ectiveness depends on the modality. While GAP facilitates e"cient vision embeddings, it limits the rep-
resentational richness required for audio reconstruction, constraining CMPTs in certain cases. Nonetheless,
the results confirm that CMPTs are not inherently incompatible with SigLIP, though their utility is shaped
by architectural and modality-specific factors.

A12 Scalability with Larger Vision and Text Encoders

To assess the scalability of our framework with larger encoders, we replaced the ViT-Base and BERT-
Base encoders used in our primary experiments with ViT-Large and BERT-Large. We train the models on
modality-complete data and evaluate them on both modality-complete and modality-incomplete scenarios
on the UPMC Food-101 and MM-IMDb datasets.

The results, summarized in Table 11, show that our framework can leverage the increased capacity of
larger backbones. On MM-IMDb, scaling yields consistent improvements in F1-Macro across all scenarios.
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The gains are particularly notable in missing-modality cases, with a +6.45% increase when text modality
is missing and +3.60% when image modality is missing. These results suggest that stronger backbone
representations improve CMPT’s ability to reconstruct missing features and maintain robust predictions.

On UPMC Food-101, the larger backbone improves image-only accuracy by +1.51% but shows a decline of
-1.41% for text-only performance. With both modalities available, performance remains comparable (94.47
vs. 93.74). This indicates a potential trade-o!, where the added capacity may overfit to the text modality,
reducing generalization when the image is absent.

In summary, CMPT scales e!ectively with larger backbones, particularly on complex datasets such as MM-
IMDb. At the same time, the results highlight that the benefits of scaling depend on dataset and modality
characteristics, underscoring the need for careful backbone selection to balance capacity and generalization.
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