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Abstract

In this work, we present WLB-LLM, a WorkLoad-Balanced
4D Parallelism for Large Language Model Training. We first
thoroughly analyze the workload imbalance issue in LLM
training and identify two primary sources of imbalance at the
pipeline parallelism and context parallelism levels. Then, to
address the imbalance issue, at the pipeline parallelism level,
WLB-LLM incorporates a workload-aware variable-length
document packing method to balance the computation and
communication workload across micro-batches. Additionally,
at the context parallelism level, WLB-LLM introduces a novel
fine-grained per-document sharding strategy, ensuring each
worker within a context parallelism group has an identical
workload. Comprehensive experiments under different model
scales demonstrate that WLB-LLM significantly mitigates the
workload imbalance during 4D parallelism LLM training and
achieves an average speedup of 1.23x when applying WLB-
LLM in our internal LLM training framework.

1 Introduction

Large language models (LLMs) have been widely adopted as
the backbone of various applications, such as coding assis-
tants [27,48], language translation [52], and chatbots [3,31].
The remarkable capabilities and promising potential of LLMs
have sparked a competition among big tech companies to train
LLMs with higher intelligence and broader versatility [2,6,41].
As the scale of LLMs and length of context window continue
to grow larger [14], the training of LLMs consumes a signif-
icant amount of computing power [33]. For instance, Meta
reports that the training of the LLaMA3-405B model uses
16K H100 GPUs for several months [6]. The tremendous com-
putational cost of LLM training makes every improvement in
end-to-end training efficiency translate to substantial savings.

Unfortunately, a significant portion of GPUs are underuti-
lized during large-scale LLM training jobs due to the work-
load imbalance issue. To illustrate this, Figure 1 (a) shows
the normalized computation latency on each GPU during a
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(a) Normalized computation latency in an 8K-GPU 405B LLM training job.
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(b) Reason of imbalance: input-dependent nature of attention computation
and the varying input document length.

Figure 1: Observed workload imbalance issue in large-scale
LLM training jobs and the reason of workload imbalance.

405B LLM training job executed across 8K H100 GPUs with
a context window of 128K. It can be observed that the com-
putation latency exhibits significant variance among GPUs.
The slowest GPU suffers a computation latency that is 1.44 x
longer than the others. This disparity in computing latency
causes a substantial degradation in training efficiency as the
synchronized nature of training requires all other GPUs to
wait for the slowest GPU to finish.

The root cause of the workload imbalance lies in the input-
dependent nature of attention computation and the varying
input document length of the training data. As shown in Fig-
ure | (b), input sequences are composed of multiple input
documents. To ensure model quality in long-context training,
attention masks are applied to prevent attention computation
between tokens from different documents within the same
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sequence [6]. This approach introduces heterogeneity in per-
token arithmetic intensity, as tokens at the tail positions of
long documents require more attention computation. As a
result, input sequences containing long documents incur sig-
nificantly higher computation workloads, even with the same
total sequence length.

However, existing LLM training frameworks [23,26, 35,38,
39] fail to recognize the heterogeneity in per-token arithmetic
intensity. Specifically, state-of-the-art LLM training solutions
employ a 4D parallelism paradigm that combines data par-
allelism (DP) [35], pipeline parallelism (PP) [25], context
parallelism (CP) [30], and tensor parallelism (TP) [38]. The
input documents are packed into sequences with fixed length
at the DP and PP levels, and then sharded and distributed into
chunks at the CP and TP levels. This fixed and static train-
ing flow treats all input tokens homogeneously and assigns
each GPU an equal number of tokens, inevitably resulting in
workload imbalance between GPUs. Furthermore, the trend
of larger models and longer context windows exacerbates this
issue, increasing the likelihood of an extremely long docu-
ment appearing in the input batches, thereby delaying the
entire training step.

An intuitive approach to address the workload imbalance
issue is to shuffle and repack input documents to distribute
the computation workload more evenly across micro-batches.
However, this method is not effective and practical for two
main reasons: Firstly, achieving effective balance through
shuffling and repacking requires a sufficiently large packing
window spanning multiple global batches. This impacts the
randomness of data sampling and loading, which can poten-
tially affect model convergence during training (as discussed
in Section 3.3). Secondly, shuffling and repacking only ad-
dress workload imbalances across micro-batches and cannot
resolve intra-document imbalances caused by sequence shard-
ing. In 4D parallelism training, input sequences are divided
into chunks and distributed across different GPUs. Document
chunks that include the tail end of a document incur a higher
computational workload because their tokens must attend to
more preceding tokens, causing an intra-document workload
imbalance across GPUs.

To overcome the challenges mentioned above and address
the severe workload imbalance issue in large-scale LLM train-
ing, we propose a flexible and input-aware document pack-
ing and sharding approach for the 4D parallelism training
paradigm. The data packing and sharding will no longer out-
put micro-batches with a fixed number of tokens. Instead,
each GPU aims to get input tokens that have an equal amount
of total computation and communication workload. Addition-
ally, to minimize the impact on data randomness, we propose
to only adjust the execution order of extremely long docu-
ments. This is based on our observation that the tokens of
long documents account for only a small proportion of the
total training tokens but have the most significant impact on
workload imbalance.

Based on the above design insight, we build WLB-LLM,
a WorkLoad-Balanced 4D Parallelism for Large Language
Model Training. We begin by thoroughly analyzing workload
imbalance in LLM training under 4D parallelism (§3), identi-
fying two primary sources of imbalance across specific paral-
lelism hierarchies: (1) Imbalance across micro-batches at the
pipeline parallelism level and (2) Imbalance across document
shards at the context parallelism level. To address these im-
balances, WLB-LLM provides novel solutions tailored specifi-
cally to each parallelism level. At the PP level, WLB-LLM in-
troduces variable-length document packing, allowing shorter
documents to be combined to form longer sequences, thereby
aligning the total computation workload to that of a single
long document (§4). Additionally, WLB-LLM adaptively de-
lays the execution of extremely long documents, achieving
near-optimal workload balance across micro-batches while
maintaining a relatively low per-token delay, thereby pre-
serving the randomness of the data loader. At the CP level,
WLB-LLM incorporates a novel per-document sharding strat-
egy, ensuring each worker within a CP group has an equal
workload (§5). Furthermore, we observe a tradeoff between
kernel efficiency and sharding balance with per-document
sharding. To maximize overall performance, we propose a
heuristic algorithm that adaptively selects the most efficient
sharding strategy based on the input sequence at runtime.

In summary, this paper makes the following contributions:

* To the best of our knowledge, we are the first to identify,
analyze, and address workload imbalance issues in large-
scale LLM training with 4D parallelism.

At the PP level, we design a variable-length input pack-
ing and adaptive outlier delay strategy to achieve near-
optimal workload balance across micro-batches, while
minimizing impacts on data loading randomness and
model convergence.

* At the CP level, we implement a fine-grained per-
document sharding method with an adaptive sharding
selection mechanism to achieve the most efficient shard-
ing for each input micro-batch at runtime.

* We conduct comprehensive evaluations and demonstrate
that WLB-LLM achieves an average speedup of 1.23x
across various model scales and context window sizes.

2 Background

In this section, we provide the background of 4D parallelism
LLM training and discuss the characteristics of input docu-
ments in long-context LLM training.

2.1 4D Parallelism LLM Training

Training extremely large LLMs with billions or even trillions
of parameters is challenging, involving a significant amount
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Figure 2: Overview of 4D parallelism for LLM training.

of engineering effort to tune the multi-level parallelism [55].
The state-of-the-art LLM training framework features a 4-
dimensional parallelism [9, 12], including data parallelism
(DP) [35], pipeline parallelism (PP) [25], context parallelism
(CP) [30], and tensor parallelism (TP) [38]. Figure 2 presents
an example of a (TP=2, CP=2, PP=4, DP=4) 4D parallelism.

Data Parallelism: In DP, the input global batch is parti-
tioned and distributed across DP workers, with each worker
owning a part of the global batch. By default, model parame-
ters are duplicated across DP workers. Some advanced tech-
niques like ZeRO [35] and FSDP [32] partition model pa-
rameters, gradients, and optimizer states across DP workers
to reduce memory consumption. During training, each DP
worker computes parameter updates using its local batch inde-
pendently and then synchronizes gradients with other workers
via AllReduce (or ReduceScatter when using FSDP).

Pipeline Parallelism: Within each DP worker, the de-
vices are further partitioned into multiple PP workers through
pipeline parallelism. In PP, the model is split in a layer-wise
manner, with each PP worker owning several chunks of layers.
The input batches of a DP worker are also divided into multi-
ple micro-batches. During training, a micro-batch traverses
through all PP workers from first to last, and then reverses
direction in the backward pass. Peer-to-peer (P2P) commu-
nication is required to send activations and gradients during
forward and backward passes, respectively.

Context Parallelism: CP is designed to address the large
memory consumption of activations in long-context training.
As shown in Figure 2, CP duplicates the model parameters
but shards the input and activations along the sequence length
dimension across CP workers. CP operates either in a ring-
based manner using P2P communication [24] or involves All-
Gather communication during the forward phase to collect the
KV (key and value) tensors of all tokens, and ReduceScatter
communication for the gradients of the KV tensors in back-
ward [6]. All other operators, such as Linear and LayerNorm,
operate independently on all workers, similar to DP.

Tensor Parallelism: TP splits the model parameters within
a layer (e.g., attention, FFN) and distributes them across mul-
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Figure 3: Characterization of input documents: Distribution
of input document lengths (left) and cumulative token ratio
by document length (right).

tiple TP workers. TP is often applied in conjunction with
Sequence Parallelism (SP) [15] to further split the input ten-
sor and activations. In this paper, when referring to TP, we
mean both TP and SP by default. With TP, each GPU only
has part of the input and parameters, resulting in intensive
AllGather and ReduceScatter communication during training.
Therefore, TP is typically applied within a single node, while
other levels of parallelism are applied across nodes.

2.2 Varying Input Document Length

In large-scale LLM training, the lengths of input documents
could vary significantly, especially when using a large con-
text window. To illustrate this, we profile the characteristics
of training data in our 128K context length training job, as
shown in Figure 3. From a per-document perspective, input
document lengths distribution is highly skewed. As shown in
the left part of Figure 3, the majority of input documents are
relatively short, while some extremely long documents exist,
with the longest reaching the full context window size. The
presence of an extremely long document in an input batch
can easily lead to significant workload imbalances across
micro-batches. This observation highlights the need for an
input-aware solution that dynamically balances workloads
by accounting for variations in document length. From a
per-token perspective, we compute the cumulative token
ratio across different document lengths. As shown in the right
part of Figure 3, the majority of training tokens come from
relatively short documents. For instance, documents shorter
than half the context window contribute over 75% of the total
training tokens. Although long documents significantly im-
pact workload balance, the tokens from these long documents
constitute only a small proportion of the training dataset. This
provides an opportunity to adaptively delay the execution of
extremely long documents to mitigate workload imbalance,
while minimizing the impact on data sampling randomness
for the majority of tokens.
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Figure 4: The workload imbalance comes from the PP-level
document packing and CP-level sequence sharding.

3 Motivation

To motivate the design of WLB-LLM, we first conduct an
in-depth analysis of workload imbalances across different
parallelism hierarchies in 4D parallelism LLM training. We
then introduce a baseline solution that shuffles and repacks
input documents across batches. Lastly, we discuss why this
baseline solution cannot fully eliminate workload imbalances
and investigate the tradeoff between input packing balance
and model convergence.

3.1 Imbalance Analysis

After analyzing the performance trace from our internal 8K-
GPU, 128K context window training job for a 405B LLM,
we identify two primary causes of workload imbalance: (1)
workload imbalance among micro-batches at the PP level,
and (2) imbalance across sequence shards at the CP level. To
demonstrate this, we accumulate the attention computation
latency on each GPU. The results have been given in Figure 4.

PP Level Imbalance: As shown in Figure 4 (a)(1), the
attention computation latency across DP workers varies sig-
nificantly. Within each DP worker, we observe “vertical lines”
formed by the data points, each representing a PP worker
within a DP worker. PP workers within the same DP worker
exhibit nearly identical workloads, as they process the same

Latency Propagation Chain in 4D Parallelism LLM Training
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Figure 5: The process of latency propagation in 4D paral-
lelism LLM training across different parallelism hierarchies.
The impact of workload imbalance is enlarged at the PP level.

set of micro-batches. Based on the results shown in Fig-
ure 4 (a)(1), we conclude that the workload imbalance at both
the DP and PP levels stems from the imbalance across micro-
batches, which is caused by the input packing process. As
illustrated in the left part of Figure 4 (b), input documents are
packed into sequences (micro-batches) of equal length. While
this fixed-length packing strategy ensures that each PP and
DP worker processes the same number of tokens, variations
in per-token computation intensity result in workload imbal-
ances at these levels. For instance, a micro-batch containing
only a single long document (highlighted in red) has larger
workload compared to a micro-batch composed of multiple
shorter documents (highlighted in green).

CP Level Imbalance: To better illustrate the imbalance at
the CP level, we zoom in on a specific PP worker (also referred
to as a CP group). As shown in Figure 4 (a)(2), significant
workload imbalances are observed across CP workers (indi-
cated by circles), while the TP workers within each CP worker
exhibit similar computation latencies (data points within each
circle). This imbalance across CP workers comes from the se-
quence sharding at the CP level. As shown in Figure 4 (b)(2),
an input sequence is divided into chunks with an equal num-
ber of tokens, which are then distributed to CP workers. The
state-of-the-art approach partitions the input sequence into
2 x CP_size chunks. The i-th CP worker is assigned the i-th
and (2 x CP_size — 1 —i)-th chunks to achieve better load
balancing [6]. This sharding strategy works well when the se-
quence only has a single document. However, if the sequence
is packed with multiple documents, it may lead to significant
workload imbalances across CP workers, as demonstrated in
the figure. Although sequence chunks are further divided and
distributed among TP workers, no imbalance is observed at
the TP level. This is because, prior to computation, all TP
workers perform an AllGather operation to collect the en-
tire sequence chunk. As a result, each TP worker within a
CP worker processes the same sequence chunk, eliminating
imbalances at the TP level.

Imbalance Propagation: During training, the workload
imbalance will be propagated from inner-level parallelism to
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Figure 6: A larger packing window improves workload bal-
ance but leads to an increase in training loss.

outer-level parallelism. The imbalance will be accumulated
and amplified, finally leading to a significant impact on end-to-
end training latency. In DP, CP, and TP, collective communi-
cation [28] such as AllReduce, AllGather, and ReduceScatter
is performed during training. All workers in these parallelism
hierarchies work in a synchronized manner. As a result, the
training latency of a given DP, CP, and TP group is determined
by the slowest worker within that group. In contrast, at the
PP level, different PP workers serve as producers and con-
sumers of each other. As shown in Figure 5, the critical path
of PP is the latency of the largest micro-batch traversing all
PP workers plus the forward and backward passes of remain-
ing micro-batches on the first PP worker. The distinct data
dependency relationship between PP workers amplifies the
imbalance, resulting larger impact on total latency. Due to the
imbalance propagation, higher micro-batch training latency
can arise from two main reasons: (1) Imbalances propagated
from inner-level hierarchies (e.g., CP sharding imbalances);
(2) Micro-batches with inherently larger workloads due to PP-
level packing. This highlights the importance of eliminating
the imbalance in all parallelism hierarchies.

3.2 Baseline Solution: Fixed-Length Packing

A potential solution to address the workload imbalance issue
is to optimize the packing of input documents. Current 4D
parallelism frameworks require all micro-batches to have a
uniform sequence length [6], equal to the context window size,
to enable efficient batching of input sequences. Building on
this fixed-length requirement, we implement a baseline shuf-
fling and packing optimization that packs input documents
into micro-batches of equal size. Formally, given a set of input
documents from one or more global batches, the objective is to
pack these documents into several micro-batches with a fixed
total length and balance the attention computation workload
among all micro-batches. Without loss of generality, we use
the causal mask as an example to calculate attention workload.
With causal mask, the attention computation workload of a
micro-batch is proportional to Zfil dl-z, where d; is the length
of each document within the micro-batch. The problem of
searching the optimal document packing is NP-hard, as it can

be extended from the classic Number Partition Problem [10]
by adding a number sum constraint and a square-sum objec-
tive. To search for the optimal packing, we formulate the task
as an integer linear programming (ILP) problem. Assuming
we have N documents, each has length d;, and we would like
to pack these documents into M micro-batches, each with a
total length of S. The objective is to minimize the maximum
workload among the micro-batches:

N
minimize max(Zx,-j~d<2),j: 1, .M

1
i=1
M
subject to Zx,-jzl, i=1,---,N
j=1

(1
N

inj'digs7 ]:]77M

i=1

xij € {0,1}

in which x;; is a binary variable representing the packing plan.
Specifically, x;; = 1 means document i is packed into micro-
batch j. With this ILP formulation, we then use a commercial
solver [8] to obtain the optimal packing plan.

3.3 Tradeoff Analysis

Optimizing input document packing across more global
batches could help achieve a higher degree of workload bal-
ance. However, it also manipulates the execution order of
more input documents, affecting the randomness of data sam-
pling and loading. This may negatively impact model qual-
ity and affect model convergence. To evaluate the tradeoff
between packing balance and model quality, we pretrain a
550M-parameter model for 52K steps using various pack-
ing window sizes. We then assess the degree of workload
imbalance of input batches after packing under different set-
tings. The imbalance degree is calculated as ’A”v“;—z’f:, where
Max_Attn represents the maximum attention computation
workload in the global batch, and Avg_Attn denotes the av-
erage attention computation workload of all micro-batches
in the global batch. As shown in Figure 6, when optimizing
the packing across a single global batch, the workload imbal-
ance across micro-batches still remains high. If the number
of global batches increases, the fixed-length packing opti-
mization could achieve a better workload balance. However,
the final training loss increases as more global batches are
involved in the packing optimization, due to reduced data
loading randomness caused by repacking a larger number
of input documents. These results indicate that naive fixed-
length packing optimization cannot achieve a good workload
balance without compromising model quality, highlighting
the need for more advanced solutions.

The tradeoff between packing balance and model quality
motivates us to break the fixed-length constraint of micro-
batches and design a more flexible packing strategy. In the fol-
lowing two sections, we will present the details of WLB-LLM,
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including the PP-level variable-length packing and heuristic
outlier document delay optimization (§4) and the CP-level
fine-grained and adaptive sharding optimization (§5).

4 Var-Len Packing and Outlier Delay for PP

At the PP level, we focus on balancing the workload across
micro-batches by repacking input documents in a workload-
aware manner. First, we design a variable-length packing
strategy to achieve a higher degree of workload balance within
the same packing window size compared to fixed-length pack-
ing (§4.1). Second, we propose an outlier document delay
method to adaptively delay the training of extremely long
documents. This approach helps minimize the impact on data
randomness while achieving near-optimal workload balance
across micro-batches (§4.2). Finally, we design and imple-
ment an efficient heuristic algorithm to optimize packing at
runtime with negligible overhead (§4.3).

4.1 Workload-Aware Var-Length Packing

The main limitation of the baseline fixed-length packing is
that it cannot achieve balance if there is an extremely long
document in a global batch. For example, if the length of
a document equals the context window size, it becomes im-
possible to create another micro-batch consisting of shorter
documents with an equal computation workload due to the
quadratic complexity of attention computation. To address
this limitation, we propose a variable-length packing strategy,
which allows each micro-batch to have a different sequence
length. The key insight behind our design is that the work-
load of a micro-batch is not solely determined by attention
computation. Other operations, such as GEMM computation,
element-wise operations, and collective communication (e.g.,
AllGather and ReduceScatter), also contribute significantly
to the training latency and are influenced by the documents
within each micro-batch. To demonstrate it, we present the
relationship between operation latency and document length

Workload-balanced
Micro-batches

||:| Outlier |
Data —_— _DEES_ J
Loader » —
:l Remained | i 1 '\_::l,'
Docs f[e=—d = TTTTETEEEEEEEETT
)

Global Batch

Figure 8: The process of outlier document delay combined
with var-length packing.

in Figure 7. The operation latency is measured from a train-
ing job of Llama2 7B model on 16 H100 GPUs and is nor-
malized to the attention computation latency at a document
length of 4096. It can be observed that attention computation
latency increases quadratically with the length of input doc-
uments, while other operations, such as GEMM, collective
communication, and element-wise operations, exhibit a linear
relationship between operation latency and document length.
This relationship presents an opportunity to further im-
prove workload balance beyond fixed-length packing. If a
long document has significantly higher attention computation
latency compared to other operations, we can pack multiple
shorter documents together to extend the latency of other
operations, thereby matching the total latency of the long
document. Specifically, we extend the fixed-length packing
to a variable-length approach. The optimization goal shifts
from balancing only the attention computation workload to
balancing the total workload, including all operations:

™=

minimize max() (W(xij-d;) +Wi(xij-d;))),

Il
=

I

j=1,-.M
M
subject to Zx;jzl, i=1-- N (2
=
ZXU di < Smax, j=1--M
=1
x,jE{O 1}

in which W,(-) and W;(-) are latency prediction functions that
compute the attention computation latency and the latency of
all other operations, respectively, based on document length.
Both W,(-) and W;(-) can be derived from offline profiling.
And S, represents the maximum sequence length permitted
by GPU memory constraints.

4.2 QOutlier Document Delay

Our variable-length packing strategy enables a higher degree
of balance by allowing short documents to be packed into a
longer sequence that exceeds the fixed context window size.
However, within a single global batch, the number of short se-
quences may be insufficient to fully balance the computation
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workload across all micro-batches. To address this challenge,
we propose adaptively delaying the execution of outlier docu-
ments, i.e., extremely long documents. This approach is based
on our observation that, although these outlier documents have
a significant impact on workload imbalance, they only con-
tribute a small proportion of tokens for training (as described
in §2.2). By selectively delaying the training of tokens from
a few extremely long documents, we could achieve a more
balanced workload across micro-batches while minimizing
the impact on data randomness.

Overall Workflow: As shown in Figure 8, we implement
a multi-level waiting queue for outlier documents. Assuming
we have n outlier queues, each queue is associated with a
hyperparameter L;, which specifies the minimum length of
documents in the i-th queue, where L} < Ly < --- < Ly41.
When a new global batch arrives, documents with lengths
greater than L are considered as outliers and are added to the
corresponding waiting queue i, where L; <d < L;11, and d de-
notes the document length. The execution of documents in the
outlier queue is delayed until the queue accumulates enough
outlier documents. Once the queue size reaches the number
of micro-batches in a global batch, the outlier documents
are popped from the queue and added to each micro-batch.
This ensures workload balance across micro-batches, as each
micro-batch receives an equal number of outlier documents.

Tuning Hyperparameter L;: The choice of hyperparam-
eters L; directly influences performance. A smaller gap be-
tween two consecutive hyperparameters L; and L;y; helps
achieve a higher degree of workload balance, as it ensures
that documents within the same queue have smaller differ-
ences in length. However, a smaller gap also causes docu-
ments within each queue to wait longer before accumulating
enough documents to be processed together, thereby increas-
ing the per-token delay. To select appropriate values for L;, we
sample a small subset of training documents and evaluate the
packing algorithm (described later in §4.3) on this subset by
measuring both the achieved workload balance across micro-
batches and the resulting per-token delay. We then choose
the optimal L; values that maximize workload balance while
maintaining a low per-token delay.

4.3 Heuristic Packing Algorithm

Although an ILP solver can derive the optimal packing for a
given set of input documents, its solving time is impractically
high to be paid at runtime. Optimizing document packing
offline is also infeasible, as it would introduce significant
storage overhead to store pre-packed datasets for different
training configurations. To address this, we design a heuristic
algorithm that combines variable-length packing with outlier
document delay optimization to efficiently produce packed
micro-batches with balanced workloads. As listed in Algo-
rithm 1, the algorithm takes a dataloader D, a multi-level
waiting queue Q for outlier documents operating in a FIFO

Algorithm 1: Heuristic Var-length Packing Algorithm

input :Dataloader: D, Multi-level waiting queue: Q,
The number of micro-batches per iteration: N,
Sequence length upper bound: S,;4x
output : Packed input batches for training: B
1 Remained_Doc =[],
2 for Cur_Batch in D do

3 New_Docs = [];
4 for Doc in Cur_Batch do
/* Delay the execution of outlier documents. i
5 if Doc.Is_Outlier() then
6 | Q.Add(Doc);
7 else
s New_Docs.Push(Doc);
9 end
10 end
11 for ¢ in Q do
12 if len(q) > N then
/* Pop outlier documents for the current batch. #/
13 New_Docs.Push(q.Pop(N));
14 end
15 end
/* Sort the documents in descending order by length. */
16 New_Docs.Sort_by_Length();
/* Packing remaining documents first. i
17 Doc_Set = Remained_Doc + New_Docs
18 Remained_Doc.Clear();
19 New_Batch = Create_Batch(N);
20 for Doc in Doc_Set do
/* Get micro-batches with minimum workload/length. */
21 W_idx = New_Batch.Get_Min_Workload();
22 L_idx = New_Batch.Get_Min_Length();
23 if New_Batch|W _idx].Len() + Doc.Len() < Spqx then
24 |  New_Batch[W_idx|.Push(Doc);
25 else
26 if New_Batch[L_idx].Len() + Doc.Len() < Syax then
7 |  New_Batch[L_idx).Push(Doc);
28 else
29 ‘ Remained_Doc.Push(Doc);
30 end
31 end
32 end
33 B.Push(New_Batch);

34 end

manner, the number of micro-batches per iteration N, and
the upper bound for sequence length S, as input. The algo-
rithm outputs a series of packed input batches with balanced
workloads for each training iteration. The packing process
begins by iterating over the input batches in the dataloader
D and adding all outlier documents into the corresponding
waiting queue in Q for delayed processing (Line 4-10). If any
queue g in Q reaches size N, the documents in g are popped
out and added to the pending document set for the current
batch (Line 11-15). Packing proceeds in a greedy manner:
it first processes the remaining documents, followed by the
newly added long documents. For each document, the algo-
rithm first attempts to pack it into the micro-batch with the
minimal workload (calculated using W,(-) and W;(-) as de-
fined in Equation 2), provided that the total length remains
within the upper bound §,,.,. If this is not feasible, it then
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Figure 9: Overview of fine-grained per-document sharding.

attempts to pack the document into the micro-batch with the
minimal current length (Lines 20-27). Documents that cannot
fit within these constraints are saved for the next iteration
(Line 29). Our heuristic approach effectively combines out-
lier document delay and variable-length packing to efficiently
balance computational workloads across all micro-batches.

S Fine-grained and Adaptive Sharding for CP

At the CP level, we aim to improve workload balance
across document shards by implementing a fine-grained per-
document sharding strategy, ensuring that each CP worker
receives an equal computation workload (§5.1). Additionally,
we observe a tradeoff between attention kernel efficiency and
sharding granularity (§5.2). To maximize overall performance,
we conduct an in-depth analysis and adaptively select the op-
timal sharding strategy for a given input sequence (§5.3).

5.1 Per-Document Sharding Design

At the CP level, the sequence of micro-batches is sharded
across CP workers. Each CP worker works on an exclusive
sequence shard. Existing CP implementation employs a Per-
Sequence Sharding strategy, which equally shards the entire
input sequence into 2 x CP_size chunks. This method could
easily lead to significant attention computation workload im-
balance when the input sequence is packed with multiple
documents. To eliminate the workload imbalance issue at the
CP level, we propose sharding the sequence in a fine-grained
manner. Specifically, we conduct Per-Document Sharding to
divide each document into 2 X CP_size document chunks. As
shown in Figure 9, each CP worker takes a symmetrical pair
of document chunks for each input document. With our fine-
grained per-document sharding strategy, each CP worker not
only receives the same number of tokens (ensuring workload
balance in GEMM computation and collective communica-
tion) but also gets the same attention computation workload.

Avoid Padding: Our fine-grained per-document sharding
strategy divides each input document into 2 x CP_size doc-
ument chunks. However, document lengths are not always
divisible by 2 x CP_size, requiring extending the document
length through adding some padding tokens. To avoid the
redundant computation introduced by document padding,
we design a padding-free per-document sharding method.

—+—Q_len=16 —=—Q_len=64 —— Q_len=256
Q_len=32 —=— Q_len=128

Q_len=128 —=—Q_len=512
——Q_len=256 ——Q_len=1024
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o
o
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o
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Figure 10: Attention kernel performance profiling: (Left) At-
tention forward latency; (Right) Achieved TFLOPs of the
attention forward kernel.

Specifically, we split each document into two parts: one di-
visible by 2 x CP_size and the remaining tokens. Assum-
ing the length of the i-th document is d;, where d; = e; + r;,
with e¢; = Lﬁimej We apply the standard per-document
sharding on the e; part, while the tokens in r; are distributed
to CP workers in a round-robin fashion. Since Y/ d; and
Y e are both divisible by 2 x CP_size, it follows that
Yo=Y (di—e) is also divisible by 2 x CP_size. This
ensures that each CP worker receives an equal number of
tokens, thereby eliminating the need for padding.

5.2 Kernel Efficiency vs. Sharding Balance

Our per-document sharding strategy fully eliminates work-
load imbalance at the CP level. However, splitting each doc-
ument into multiple shorter chunks may compromise kernel
efficiency. The kernel efficiency may drop with fine-grained
sharding due to two major reasons: (1) Tile-level Compu-
tation Wasting: The computation of attention is split into
smaller tiles and distributed to different thread blocks for exe-
cution on GPU. For example, in the attention forward kernel
of FlashAttention [5], the tile size is set to 128. If the number
of tokens is less than the tile size, the thread block will still
perform the full computation on 128 tokens, which will waste
a significant amount of computation. To illustrate this, we
profile the attention forward latency for query token lengths
ranging from 16 to 256. As shown in Figure 10 (Left), when
the number of query tokens (Q_len) increases from 16 to 128,
the kernel latency remains constant. This is because all short
documents with fewer than 128 tokens are padded to 128 to-
kens for computation at the kernel level. In contrast, as Q_len
increases from 128 to 256, the kernel latency rises signifi-
cantly. (2) Inefficient Tensor Memory Accelerator (TMA)
Usage: TMA is a feature introduced in the NVIDIA Hopper
architecture that enables asynchronous memory copying be-
tween global memory and shared memory on GPUs [1]. With
large document lengths (e.g., Q_len > 256), multiple thread
blocks process different Q tokens while sharing the same KV
tokens of the document chunk. This allows KV tensor load-
ing to be shared via the L2 cache using TMA load multicast,
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Figure 11: The process of adaptive CP sharding selection.

significantly reducing the latency of transferring KV tensors
from global memory to shared memory. As shown in Fig-
ure 10 (Right), when the length of the Query tensor increases
from 128 to 256, the achieved TFLOPs increase significantly,
demonstrating the impact of leverage TMA load multicast.

These profiling results clearly demonstrate the tradeoff be-
tween attention kernel efficiency and CP sharding balance.
If per-document sharding is applied to input sequences com-
posed of short documents, it can introduce redundant com-
putation at the kernel level and reduce the achieved TFLOPs,
ultimately leading to longer attention computation latency.

5.3 Adaptive Sharding Selection

Based on our analysis in Section 5.2, although fine-grained
per-document sharding achieves optimal workload balance
at the CP level, it does not necessarily guarantee better per-
formance, as the attention kernel may become less efficient
with the more fine-grained document chunks generated by
per-document sharding. To address this issue, we propose
to adaptively select the optimal sharding strategy for each
micro-batch at runtime. As shown in Figure 11, during the
forward pass at the CP level, an AllGather communication is
performed across CP workers to collect the full KV tensor. We
then calculate the input tensor shapes for the attention kernel
(number of query tokens and key/value tokens) in the per-
sequence and the per-document sharding cases. Finally, we
predict the attention kernel latency and select the CP sharding
strategy that yields lower attention computation latency.

To accurately estimate the attention kernel latency, we lever-
age the insights provided in §5.2. First, we calculate the total
floating point operations required for the attention computa-
tion. The kernel-level padding is also considered by padding
the document chunk to a multiple of the tiling size. Next,
we estimate the achieved TFLOPs for the given tensor shape
using the data collected from offline profiling which includes
the impact of TMA usage. Finally, the attention kernel latency
is estimated by dividing the amount of floating point opera-
tions by the achieved TFLOPs. By adaptively selecting CP
sharding, WLB-LLM minimizes the CP level training latency.

. Context 4D Parallelism Configs
Model Size o jow  #GPU (TP, CP, PP, DP)

64K 32 2,2,4,2)

>50M 128K 32 2.4,4.1)
- 64K 32 42.4.1)
128K 64 (8,2,4,1)

64K 64 824, 1)

30B 128K 128 84,4 1)
08 64K 256 (16,4, 4, 1)
128K 256 (16,4, 4, 1)

Table 1: Model and 4D parallelism configurations.

6 Implementation Detail

WLB-LLM is built on top of a widely adopted 4D parallelism
training paradigm, which integrates advanced distributed train-
ing techniques at each parallelism level. For DP, WLB-LLM
leverages Fully Sharded Data Parallel (FSDP) [54], a state-
of-the-art approach that uniformly shards model parameters
across DP workers, significantly reducing memory require-
ments compared to traditional DP methods. For PP, WLB-LLM
employs the interleaved 1F1B pipeline schedule [26]. To sup-
port variable-length packing optimization, WLB-LLM further
implements a variable-length pipeline, which enables micro-
batches to have variable sequence lengths. For CP, the per-
sequence sharding baseline follows the AllGather-based CP
approach used in Llama3 training [6], which performs an All-
Gather communication during the forward pass across all CP
workers to collect the full KV tensors for attention computa-
tion. Building on this, WLB-LLM implements fine-grained per-
document sharding by optimizing the document partitioning
and distribution. For TP, WLB-LLM performs 1D tensor par-
allelism with sequence parallelism enabled [15,38]. Addition-
ally, WLB-LLM incorporates computation—communication
overlapping to further improve TP training performance [46].

7 Evaluation

In this section, we evaluate WLB-LLM across various LLM
sizes and 4D parallelism configurations, with model sizes
ranging from 550M to 70B. We begin by presenting the im-
provements in end-to-end training latency. Next, we analyze
the speedup contributions from individual optimizations at the
PP level (§4) and the CP level (§5), respectively. Finally, we
demonstrate that the optimizations of WLB-LLM do not com-
promise model quality or model convergence by comparing
the training loss curve.

7.1 Experiments Setup

Hardware: We deploy WLB-LLM on a cluster with 32 nodes.
Each node is equipped with 8 x NVIDIA H100 SXM 80GB
GPUs interconnected via high-bandwidth NVLink, while
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Figure 12: Training performance speedups of WLB-LLM and Fixed-4D over Plain-4D across various configurations.

cross-node communication is facilitated by RDMA over Con-
verged Ethernet (RoCE).

Models and Parallelism Configurations: We conduct ex-
periments on a series of our internal LLaMA-like models,
spanning four different scales: 550M, 7B, 30B, and 70B. The
7B model shares the same architecture as the LLaMA2-7B
model [42]. The other models retain the same architecture
while proportionally adjusting the number of layers and model
dimension size. For each model, we evaluated performance
using two different context window sizes: 64K and 128K.
Each model scale and context window size is associated with
a corresponding 4D parallelism configuration. The global
batch size is set to PP_size X DP_size and we use bfloat16
precision for all evaluations. Details of the training setup and
parallelism configurations are provided in Table . When map-
ping 4D parallelism to the hardware, inner-level parallelism
dimensions (e.g., TP or CP) are prioritized for mapping to
intra-node GPUs, leveraging the high-bandwidth NVLink for
efficient communication. Outer-level parallelism dimensions,
such as DP, are subsequently mapped across multiple nodes.
Throughout the rest of the paper, we use Model Size-Context
Window Size to denote a specific configuration. For instance,
7B-128K refers to the 7B model with a 128K context window.

Baselines: We compare WLB-LLM with two baselines:

¢ Plain-4D: This is our internal codebase for large-scale
LLM training, supporting 4D parallelism to enable effi-
cient training and scaling up to 100K GPUs. Plain-4D
directly uses input batches obtained from the dataloader
for training without optimizing the input packing. For
CP sharding, Plain-4D employs a per-sequence sharding
method, which shards the input sequence at the whole-
sequence level.

* Fixed-4D: Fixed-4D applies the baseline fixed-length
packing optimization, as described in Section 3.2. To
minimize packing overhead, a greedy algorithm is used
instead of the solver, and the packing size is restricted
to a single global batch to preserve data loading ran-
domness and prevent an increase in training loss. For
CP sharding, Fixed-4D utilizes a fixed sharding strat-
egy throughout the entire training process, either per-
sequence or per-document. We then select the better-
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Figure 13: Performance breakdown of WLB-LLM on the 7B
model with a 128K context window.

performing result between the two sharding strategies
and use it for comparisons.

7.2 Training Performance

We run WLB-LLM and all baselines on diverse model size
and context window size:

Plain-4D vs. Fixed-4D: As shown in Figure 12, Fixed-4D
achieves only marginal improvements over Plain-4D, with
an average speedup of approximately 1.03x across all set-
tings. This limited gain is primarily because Fixed-4D ad-
justs document packing only within a single global batch
and is constrained by the context window size. It fails to
address the presence of outlier documents with extremely
long lengths (e.g., a document with a length equal to the con-
text window size). Given that attention computation scales
quadratically with document length, packing multiple short
documents within the constraints of the context window can-
not match the computation workload of an extremely long
document. Moreover, Fixed-4D employs either per-sequence
or per-document sharding at the CP level for all input batches.
This approach overlooks the tradeoff between attention ker-
nel efficiency and sharding balance, resulting in suboptimal
performance. These limitations constrain the improvements
of Fixed-4D over the Plain-4D baseline.

WLB-LLM vs. Baselines: Figure 12 shows that WLB-LLM
consistently outperforms all baselines across various model
sizes and 4D parallelism configurations. Specifically, WLB-
LLM achieves speedups of 1.23x and 1.19x over Plain-
4D and Fixed-4D, respectively. The significant improvement
stems from two key optimizations in WLB-LLM. At the PP
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Figure 14: Speedups of WLB-LLM on the 7B model across
context window sizes.

level, WLB-LLM employs a heuristic variable-length docu-
ment packing algorithm that is not constrained by the fixed
context window size. This algorithm also selectively delays
the training of outlier documents, achieving a higher degree
of workload balance compared to fixed-length packing. At
the CP level, WLB-LLM combines per-sequence and per-
document sharding, adaptively selecting the optimal sharding
strategy for each micro-batch to maximize the performance.

Across Model Size and Context Window Size: As shown
in Figure 12, WLB-LLM achieves slightly lower speedup on
larger models. This is because larger models involve more
GPUs for training, which increases the ratio of communica-
tion latency to computation latency, making the impact of
workload imbalance in the attention layer less significant. On
the other hand, increasing the context window size from 64K
to 128K improves the average speedup from 1.15x to 1.30x,
as longer contexts exacerbate workload imbalance issue. A
more detailed sensitivity analysis on the context window size
is provided in Section 7.3.

7.3 Breakdown and Sensitivity Analysis

In this section, we conduct a performance breakdown and
sensitivity analysis. Specifically, we first report the perfor-
mance breakdown to evaluate the impact of each optimization
technique. Then, we perform a sensitivity study by measuring
the speedups across different context window sizes.

Speedup Breakdown: We show the speedup breakdown in
Figure 13 by separately applying each optimization technique
proposed in WLB-LLM to Plain-4D for the 7B-128K train-
ing configuration. By utilizing the fine-grained per-document
sharding at the CP level, we observe a 1.02x speedup due to
the reduced imbalance among CP workers. The speedup is
limited due to the tradeoff between the kernel efficiency and
the sharding balance. As a result, performing per-document
sharding is not always beneficial and can potentially cause
performance degradation. By adaptively selecting the per-
document and per-sequence sharding strategies, we can im-
prove the speedup to 1.05x. We then apply the PP-level opti-
mizations on Plain-4D to study their effect. It can be observed
that combining the heuristic var-length packing with the out-
lier documents delay offers a significant speedup of 1.28x.
Finally, we incorporate both CP and PP-level optimizations
to maximally reduce the workload imbalance across the all

Packing Method Imbalance Packing
Method Config Degree Overhead (ms)
Original Packing / 1.44 0
#global batch=1 1.41 4
. #global batch=2 1.22 5
Fixed-Len Greedy #global batch=4 Tl 5
#global batch=8 1.08 5
#global batch=1 1.40 467
Fixed-Len Solver | #global batch=2 1.18 1488
#global batch=4 1.09 25313
#queue=1 1.24 8
WLB-LLM #queue=2 1.05 20
#queue=3 1.05 23

Table 2: Packing imbalance degree and overhead analysis.

parallelism hierarchies, leading to a final speedup of 1.33x.

Speedup across Context Window Sizes: We investigate the
impact of context window size on the performance improve-
ments delivered by WLB-LLM. Figure 14 shows the speedups
over Plain-4D on 7B model across different context window
sizes, varying from 32K to 160K. We observe that as the con-
text window size grows, the achieved speedup becomes more
significant, reaching 1.40x with a 160K context window. This
is because a larger context window raises the likelihood of
outlier documents appearing. Additionally, a larger context
window also increases the proportion of attention computation
and exacerbates the impact of imbalance on training latency.
The trend of increasing speedups demonstrates the signifi-
cant potential of WLB-LLM in handling the ever-expanding
context window sizes today.

7.4 Optimization Analysis

In this section, we first analyze the effectiveness of the pack-
ing and sharding optimization in WLB-LLM. Furthermore, we
demonstrate that the system optimizations in WLB-LLM do
not compromise model quality or slow down convergence.

Packing Balance and Overhead Analysis: To assess the bal-
ance degree of computation workload across micro-batches
with different packing strategies, we profile and compare the
forward latency of each micro-batch in a 7B-128K training job
with different packing methods and configurations applied.
As discussed in Section 3.1, the PP level latency is primarily
determined by the largest micro-batch. Therefore, we use the
following metric to represent the imbalance degree of a given
batch: %W, where Max_Latency is the forward
latency of the largest micro-batch and Total_Latency is the
total forward latency of all micro-batches. A lower imbal-
ance degree indicates that the given batch is more balanced
in terms of workload. The result of the imbalance degree and
the packing overhead (per-batch packing latency) of different
methods have been given in Table 2. We evaluate four differ-
ent packing methods: (1) Original Packing, which uses the
original input batch loaded from the dataloader; (2) Fixed-
Len Greedy is the packing method used in Fixed-4D baseline,
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Figure 15: CP sharding performance comparison.

which shuffles documents in several global batches in a greedy
manner to optimize workload balance across micro-batches;
(3) Fixed-Len Solver, which employs an ILP solver [8] to
solve Equation | and provides the optimal packing based on
the given global batches; and (4) WLB-LLM, which utilizes
var-len packing combined with outlier document delay. Addi-
tionally, we demonstrate the performance of WLB-LLM with
different numbers of outlier document queues.

As shown in Table 2, Fixed-Len Greedy can slightly miti-
gate workload imbalance when packing across a single global
batch. Packing across multiple global batches helps to achieve
lower imbalance degrees, while it will incur higher training
losses, as demonstrated in Figure 6. As for Fixed-Len Solver,
it achieves lower imbalance degrees compared to Fixed-Len
Greedy under the same number of global batches. However,
the solver-based solution suffers from significant packing
overhead. For instance, when packing across 4 global batches,
the average packing latency for each batch exceeds 25 seconds.
In contrast, WLB-LLM is the only solution which achieves
both near-optimal imbalance degree and low packing over-
head. For example, when having two outlier queues, WLB-
LLM achieves 1.05 imbalance degree. Additionally, the per-
batch packing latency is only 20 ms which is less than 0.65%
when compared to the per-step training latency.

CP Sharding Performance Analysis: To demonstrate the ef-
fectiveness of per-document sharding and the adaptive shard-
ing selection optimization at the CP level in WLB-LLM, we
conduct a case study on a single transformer layer of a 7B
model with CP size of 4. We compare the forward and back-
ward latency with different sharding strategies including: (1)
Per-Sequence Sharding (Per-Seq), (2) Per-Document Shard-
ing (Per-Doc), (3) WLB-LLM, which determines the sharding
between Per-Seq and Per-Doc adaptively based on the given
micro-batch at runtime, and (4) Optimal, which is the opti-
mal result. It always chooses the sharding from Per-Seq and
Per-Doc that yields lower latency.

As shown in Figure 15, Per-Document Sharding achieves a
speedup of 1.01x and 1.07x over the Per-Sequence Sharding
baseline under context window sizes of 64K and 128K, re-
spectively. These results demonstrate the effectiveness of Per-
Document Sharding in reducing the workload imbalance at the
CP level. However, the fine-grained Per-Document Sharding
may sacrifice kernel efficiency, particularly when the input se-
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Figure 16: Training loss comparison on a 550M model.

quence consists of many short documents. To overcome this
issue, WLB-LLM leverages an adaptive sharding selection
method to intelligently choose a better sharding strategy for
each micro-batch at runtime. The results in Figure 15 show
that WLB-LLM achieves a 7.5% and 3.4% improvement over
static Per-Seq and Per-Doc sharding, respectively. Further-
more, WLB-LLM is very close to the optimal result, demon-
strating the effectiveness of our adaptive selection method.

Model Convergence Analysis: WLB-LLM employs a heuris-
tic variable-length packing optimization that adjusts docu-
ment packing and delays the execution of outlier documents.
To demonstrate that this optimization does not affect model
convergence, we present the training loss curve of our 550M
model. As shown in Figure 16, packing across 8 global
batches results in a noticeable increase in training loss (1.6%
on average). This is because packing over multiple global
batches disrupts the randomness of data sampling in the dat-
aloader, which leads to a different data distributed per batch
than desired. In contrast, WLB-LLM follows almost the same
trend as fixed-length packing across a single global batch,
since the heuristic variable-length packing algorithm used by
WLB-LLM only delays outlier documents, which contributes
to a small proportion of all input tokens. According to our
profiling, each token is delayed by an average of 0.5 iterations
in WLB-LLM. This minimal delay preservers original data
distribution at best, allowing WLB-LLM to improve training
efficiency without compromising model quality.

8 Discussion

In this section, we discuss the compatibility of WLB-LLM
with other parallelism dimensions and potential opportunities
for improvement in future work.

Compatibility with Expert Parallelism: Beyond 4D par-
allelism, expert parallelism (EP) [20, 53] is a complementary
dimension tailored for Mixture-of-Experts (MoE) models [37].
In EP, different experts are distributed across workers, and
each input token is independently routed to one or more ex-
perts at runtime, which can introduce load imbalance when
expert capacity is exceeded [50]. Prior works mitigate this
by adding a load-balancing auxiliary loss [7,20] or inject-
ing expert-wise bias into the routing scores [45]. Thanks to
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these optimizations, state-of-the-art MoE training achieves
dropless token routing [22], guaranteeing that every token is
dispatched strictly according to its gating logits without any
capacity-driven drops. Consequently, the packing and shard-
ing optimizations in WLB-LLM will not affect EP routing
decisions, making WLB-LLM fully compatible with existing
EP load-balancing strategies.

Further Optimization Opportunity: The adaptive CP
sharding selection in WLB-LLM is performed at the granu-
larity of the entire input sequence, where either per-sequence
sharding or per-document sharding is applied to the whole se-
quence. Although this approach already achieves near-optimal
performance, there remains potential for further optimization.
In certain cases, such as when an input sequence contains both
extremely long documents and many short documents, it may
be beneficial to combine both sharding strategies and apply
them selectively based on document lengths. For instance,
per-document sharding could be applied to long documents
to balance the workload, while per-sequence sharding could
be applied to short documents to maximize attention kernel
efficiency. We hope this observation could motivate future
work to further improve the efficiency of CP training.

9 Related Work

Distributed LLM Training Frameworks: To address the
challenges of training extra-large LLMs, prior approaches
primarily rely on 3D parallelism [15, 26, 38, 40,43, 44,55],
which integrates tensor parallelism [15, 17,38], pipeline par-
allelism [11,19,21,26], and data parallelism [35, 36, 54]. Al-
though 3D parallelism has proven its effectiveness in scaling
model size, enabling the training of models with trillions of
parameters [40], it struggles to scale context window size
effectively. To address this limitation, a new dimension of par-
allelism called context parallelism has been introduced [30],
forming the 4D parallelism training paradigm. Context paral-
lelism splits input sequences into chunks, effectively reducing
the memory bottleneck associated with extremely long doc-
uments. Initially, context parallelism employs a ring-based
approach that overlaps communication and computation using
P2P communication [24]. More recent approaches leverage
collective communication methods (e.g., AllGather or All-
toAll) to aggregate key and value tensors, offering greater
flexibility and better support for various types of attention
masks [6, 12, 30]. The introduction of context parallelism
enables efficient training of LLMs with long context win-
dows. However, existing 4D parallelism frameworks overlook
the heterogeneity in per-token arithmetic intensity, leading to
significant workload imbalances across GPUs.

Input Padding and Packing for LLM Training: The input
of LLMs consists of samples with varying lengths. To batch
input documents together and optimize GPU utilization dur-
ing LLM training, the input documents must be organized into

tensors of identical lengths. This can be achieved through two
primary approaches: Padding [38] and Packing [16]. Padding
involves adding zero padding to shorter documents within a
micro-batch. However, this approach inevitably introduces re-
dundant computation, communication, and memory overhead.
To address this issue, prior works have designed more effi-
cient kernels to reduce redundant computation [49,51]. Other
works, such as DynaPipe [13], optimize batching strategies to
minimize padding. Although these approaches mitigate redun-
dant computation, the overhead caused by padding cannot be
fully eliminated. To further address this problem, recent works
propose packing short documents together to form a single
long input sequence [16,47]. After packing, an additional
attention mask must be applied to ensure tokens only attend
to others within the same document [6, 18,29, 34]. Due to its
efficiency in avoiding redundant computation, packing has
become the mainstream choice in LLM training. For example,
LLaMA3 adopts input packing [6] in its training process, and
state-of-the-art high-performance attention implementations
(e.g., FlashAttention [4, 5]) also support efficient attention
computation with document packing. WLB-LLM focuses on
input packing and addresses the workload imbalance issue
that arises when input documents are packed together.

10 Conclusion

In this paper, we present WLB-LLM, a workload-balanced
4D parallelism framework designed to enhance the efficiency
of LLM training. WLB-LLM systematically identifies and
addresses workload imbalances that arise across multiple par-
allelism hierarchies. At the pipeline parallelism level, WLB-
LLM introduces a novel heuristic variable-length document
packing algorithm combined with an outlier document delay
method that effectively mitigates workload imbalance across
micro-batches. At the context parallelism level, WLB-LLM
proposes a fine-grained per-document sharding method with
an adaptive sharding selection strategy to maximize CP train-
ing efficiency. Comprehensive experiments demonstrate that
WLB-LLM outperforms existing 4D parallelism frameworks
across various model sizes and parallelism configurations,
achieving an average speedup of 1.23x.
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A Artifact Appendix

Abstract

Our artifact provides an open-source implementation of the
context parallelism optimization of WLB-LLM. It includes
both the Per-Sequence baseline and the Per-Document shard-
ing optimization proposed by WLB-LLM. This implementa-
tion differs from the internal version used at Meta. We de-
velop this open-source version following the design proposed
in WLB-LLM, using open-source frameworks. The goal is to
make it easier for readers to experiment with and build upon
the context parallelism optimizations presented in WLB-LLM.

Scope

This artifact provides a user-friendly interface to perform
context parallelism training using both Per-Sequence and Per-
Document sharding strategies. It enables quick performance
comparisons between the two approaches, supporting the
claims made in the WLB-LLM paper. It also serves as a good
starting point for exploring further optimizations in context
parallelism.

Contents
The repository includes the following components:

1. Implementation of both Per-Sequence and Per-
Document sharding.

2. Code and scripts for verifying correctness.

3. Code and scripts for benchmarking the training effi-
ciency of Per-Sequence vs. Per-Document sharding.

4. A detailed README . md with usage instructions and setup
guidance.

Hosting

The artifact is open-sourced on GitHub at: https://github.
com/Ash-Zheng/WLB-LLM-CP. We are actively maintaining
the main branch of the repository to make it more comprehen-
sive. Clear and accessible documentation will be continuously
updated to reflect new features and improvements.

Requirements

We have tested and evaluated our artifact using the
nvcr.io/nvidia/pytorch:25.01-py3 Docker image, with
PyTorch 2.6.0, FlashAttention 2.4.2, and CUDA 12.8. Our
implementation has been validated on both NVIDIA A100
and H100 GPUs. To run performance comparisons between
Per-Sequence and Per-Document sharding, a minimum of two
GPUs is required.
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