
KVFlow: Efficient Prefix Caching for Accelerating
LLM-Based Multi-Agent Workflows

Zaifeng Pan1 Ajjkumar Patel1 Yipeng Shen1 Zhengding Hu1→ Yue Guan1

Wan-Lu Li1 Lianhui Qin1 Yida Wang2 Yufei Ding1

1 UCSD 2 AWS

Abstract

Large language model (LLM) based agentic workflows have become a popular
paradigm for coordinating multiple specialized agents to solve complex tasks. To
improve serving efficiency, existing LLM systems employ prefix caching to reuse
key-value (KV) tensors corresponding to agents’ fixed prompts, thereby avoiding
redundant computation across repeated invocations. However, current systems
typically evict KV caches using a Least Recently Used (LRU) policy, which fails
to anticipate future agent usage and often discards KV caches shortly before their
reuse. This leads to frequent cache misses and substantial recomputation or swap-
ping overhead. We present KVFlow, a workflow-aware KV cache management
framework tailored for agentic workloads. KVFlow abstracts the agent execution
schedule as an Agent Step Graph and assigns each agent a steps-to-execution value
that estimates its temporal proximity to future activation. These values guide a
fine-grained eviction policy at the KV node level, allowing KVFlow to preserve
entries likely to be reused and efficiently manage shared prefixes in tree-structured
caches. Moreover, KVFlow introduces a fully overlapped KV prefetching mecha-
nism, which proactively loads required tensors from CPU to GPU in background
threads for agents scheduled in the next step, thereby avoiding cache miss stalls
during generation. Compared to SGLang with hierarchical radix cache, KVFlow
achieves up to 1.83→ speedup for single workflows with large prompts, and up to
2.19→ speedup for scenarios with many concurrent workflows.

1 Introduction

LLM-based agentic workflows coordinate multiple specialized agents, each defined by a fixed prompt
and responsible for a specific subtask, to solve complex problems in a modular and interpretable
way [1, 2, 3, 4, 5]. For example, MetaGPT [3] structures agent collaboration around software
engineering roles such as Product Manager and Engineer. While this design improves reusability and
coherence, it also leads to high inference latency due to the need to repeatedly invoke LLMs for each
agent throughout the workflow.

To alleviate this overhead, existing agentic frameworks and applications [3, 6, 7, 8, 9, 10] rely on
LLM serving systems [11, 12, 13] equipped with system-level optimizations. A prevalent technique
is prefix caching [12, 14], which reuses the key-value (KV) tensors produced by self-attention layers
for static prompt tokens across decoding steps and requests. This is particularly beneficial in agentic
workflows, where each agent is initialized with a fixed prompt specifying its name, responsibilities,
and behavioral traits. Since these prompts remain constant across iterations, prefix caching avoids
redundant computation on static content and significantly reduces per-agent inference latency.

→Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Timestamp=13

Current Active Agent

Agentic Workflow

Planner

Executor

Expresser

Reviewer

Last access time
of the KV cache

You need to
integrate,
correct, and ...

You are skilled
at analyzing
issues …

Answer user
questions from
different ...

Rewriting or
breaking down
the …

Prefix Cache Usage Flow

Least recently
used, evicted!

10

9

11

12

12

13
update

Expresser

Cache Miss

Timestamp=14

Increased
prefill latency!

Figure 1: A cyclic agentic workflow abstraction consisting of four agents, Planner, Executor, Ex-
presser, and Reviewer, adapted from [5]. At timestamp 13, the Executor is active and its KV cache is
updated, which causes the Expresser’s cache to be evicted due to the LRU policy. At timestamp 14,
when the Expresser becomes active again, a cache miss occurs and results in increased prefill latency.

However, prefix caching alone is insufficient in the presence of limited GPU memory. Existing
systems typically adopt a Least Recently Used (LRU) policy to evict KV caches that have not been
accessed recently. We observe that this strategy can lead to suboptimal performance in agentic
workflows. For instance, as illustrated in Figure 1, consider a workflow [5] where four agents are
organized into a sequential execution pipeline that is invoked iteratively. During the execution of
the Executor agent shown in the figure, the LRU policy identifies the Expresser’s KV cache as
the eviction candidate since it has not been accessed recently. This results in a cache miss when
the workflow proceeds to the Expresser agent, despite its imminent reuse. Such eviction behavior
introduces unnecessary recomputation and degrades the overall efficiency of agentic execution.

To address the limitations of existing LLM serving systems in agentic workflows, we present KVFlow,
a workflow-aware KV cache management framework. We first introduce the Agent Step Graph, a
flexible abstraction that captures execution dependencies among agents and supports a wide range
of workflow structures, including conditional branching and synchronization barriers. Each agent
node in the graph is associated with a computed steps-to-execution value, which estimates how soon
the agent is expected to run. This value is derived through step aggregation functions that propagate
across the graph, enabling KVFlow to reason about dynamic and structured execution patterns.

At runtime, KVFlow leverages this information to optimize cache behavior in two key ways. First,
instead of using LRU, KVFlow adopts a workflow-aware eviction strategy that prioritizes evicting KV
caches belonging to agents with large steps-to-execution. Since multiple agents can share common
prefixes through a tree-structured cache, we further assign eviction priorities at the cache node level
to enable fine-grained and efficient management. Second, KVFlow introduces a fully overlapped KV
prefetching mechanism that proactively loads required KV tensors from CPU to GPU ahead of time,
as we can predict the next invoked agents from the Agent Step Graph. This effectively eliminates
prefix cache misses without stalling generation. Together, these optimizations significantly improve
cache efficiency and reduce latency in executing agentic workflows.

In summary, this paper makes the following contributions:

• We identify a fundamental inefficiency in existing LLM serving systems, where the widely
used LRU-based KV cache eviction strategy leads to suboptimal performance under agentic
workflows.

• We propose KVFlow, a workflow-aware KV cache management optimization that prioritizes
eviction based on agent execution order and eliminates cache miss overhead via fully
overlapped prefetching.

• We conduct a comprehensive evaluation for KVFlow, showing that it significantly reduces
cache miss overhead, achieving up to 1.83→ and 2.19→ speedups over SGLang with hi-
erarchical radix cache under single workflows with large prompts and many concurrent
workflows, respectively.

2

2 Background

Prefix Caching in LLM Serving Systems. To facilitate fine-grained prefix reuse and eliminate
redundant storage, modern LLM serving systems [11, 12] organize the KV cache into a tree structure
on the GPU, where each node stores a segment of tokens and its corresponding KV tensors. Upon
receiving a new request, the system matches the prefix from the root of the tree and concatenates
the KV tensors along the matched path to reconstruct the full cached prefix. When GPU memory
becomes insufficient, the system evicts nodes based on an LRU policy. Memory exhaustion can arise
for two reasons. One common scenario is a high volume of concurrent user requests, each executing
different agentic workflows, which leads to a large number of active KV cache entries. Another
scenario occurs when the agent prompts are very large while the hardware capacity is limited.

Additionally, CPU memory can be configured as a secondary cache layer to back up evicted KV
tensors, allowing cache swapping over PCIe. Despite the PCIe latency, swapping remains significantly
faster than recomputing the KV tensors [15, 16].

Agentic Workflow. An agentic workflow [8, 10, 9, 7] is an LLM application paradigm that struc-
tures multiple agents into an execution graph to collaboratively solve complex tasks. Compared to
fully autonomous agents [17, 18, 19], agentic workflows leverage human domain expertise to achieve
more consistent and robust performance across diverse tasks [3, 20, 21, 22, 23, 24, 25, 26]. The
execution of each agent typically involves one or multiple LLM calls, with prompts composed of a
fixed part and a task-specific dynamic part. The fixed part usually encodes the agent’s role, behavioral
instructions, task description, and few-shot learning examples, and can be substantially large. For
example, the fixed prompts of the TestBench Agent and the RTL Generator Agent in [22] contain
lengthy few-shot learning examples, with over 3000 and 1000 tokens, respectively. Consequently,
caching the corresponding KV of the fixed parts can significantly reduce prefill latency and improve
the overall workflow execution efficiency. In contrast, the dynamic parts often contain the input
questions or instructions from users, which are less valuable for caching.

3 Design of KVFlow

In this section, we present the design of KVFlow, which enhances prefix cache management for
agentic workflows through two key techniques. First, we introduce a workflow-aware eviction policy
that prioritizes KV nodes based on future usage, improving over the default LRU strategy. Second,
we propose an overlapped KV prefetching mechanism that hides CPU-GPU transfer latency via
proactive loading and status-aware scheduling.

3.1 Workflow-Aware Eviction Policy

Existing LLM serving systems typically adopt an LRU eviction policy, which becomes suboptimal
under agentic workflows. Specifically, an agent that is about to execute may have been idle for a
long time, while an agent that has just completed its execution might not be needed again in the near
future. Moreover, the suffixes dynamically generated by a recently executed agent often vary rapidly
with task progress and are unlikely to be reused, yet they are still temporarily retained in the cache.
With workflow information, we can predict the upcoming execution sequence of agents, enabling
more informed eviction decisions and avoiding the inefficiencies caused by LRU.

Agent Step Graph and Steps-to-Execution. To make eviction decisions based on workflow
structure, we first need to capture the dependency relationships among agents. However, agent
interactions in real-world workflows are highly diverse. As illustrated in Figure 2(a), the two
workflows differ significantly: in the upper example, the Expresser agent depends on both Executor1
and Executor2; in contrast, the lower workflow contains conditional branches, where Expresser can
be triggered after either executor completes. Traditional abstractions such as control-flow graphs
(CFGs) or DAGs are insufficient to uniformly capture such diverse execution semantics.

To address this, we introduce the Agent Step Graph abstraction, where each node corresponds to an
agent invocation and edges encode dependency relations. Unlike conventional graphs, each node
in the Agent Step Graph is associated with a step aggregation function that determines how its

3

Max(E1, E2)+1

Executor 1

1Planner

0 Executor 2

2

Expresser

3

Searcher

1

Input: E1 AND E2

Executor 1

1Planner

0 Executor 2

2

Expresser

2

Searcher

1

Min(E1, E2)+1

Conditional
branches

Input: E1 OR E2

Steps-to-execution

Step-aggr function

0

Sync barrier

(a) Agents with their steps-to-execution in two different
Agent Step Graphs

Executor 2

0

1

0
1

1

0

2

Planner

Searcher

Executor 1

Eviction Priority
Propagation

Merge with the
Lowest Priority

+∞

+∞

+∞

+∞

+∞

+∞

Agent
Last KV node of the
agent’s fixed prompt

Va
ry

in
g

Su
ffi

xe
s

(H
ig

he
st

 P
rio

rit
y)

Higher priority → More likely to evict

(b) Eviction priority assignment for each KV node
within a cache tree, where multiple agents can
share partial prefix prompts.

Figure 2: Illustration of the workflow-aware eviction policy. (a) Each agentic workflow is abstracted
as an Agent Step Graph, where steps-to-execution values are computed using step aggregation
functions over dependency edges. (b) These values are propagated through the cache tree to assign
eviction priorities at the KV node level. Nodes with smaller steps-to-execution are retained longer,
reducing the chance of premature eviction.

steps-to-execution is derived from its predecessors. For prefix cache management, we focus solely on
the earliest possible execution step of each agent and abstract away the specific type of dependency.

For example, in the upper workflow of Figure 2(a), the Expresser agent requires both upstream
executors to complete, so its step value is computed as max(E1, E2) + 1. In the lower workflow,
either path suffices, so the step value becomes min(E1, E2) + 1. By applying these aggregation
functions recursively, the Agent Step Graph enables unified computation of steps-to-execution across
arbitrary multi-agent workflows.

Workflow-Aware Eviction Priority Assignment. Based on the steps-to-execution in the Agent
Step Graph, we design a fine-grained eviction strategy that assigns priorities to KV cache nodes.
As illustrated in Figure 2(b), agents with larger steps-to-execution are more likely to be evicted.
Importantly, since agents may share common prefix segments in a tree-structured cache layout, we
assign eviction priorities at the cache node level rather than at the agent level.

Specifically, we assign priorities only to the fixed prompt portion of each agent; all varying suffixes
are always given the highest eviction priority to facilitate early eviction. For each agent, its steps-
to-execution value is assigned to the last node of its fixed prompt and propagated upwards through
the tree. When a node aggregates inputs from multiple agents, we assign it the minimum (i.e., least
evictable) priority among its children, ensuring that shared nodes are retained as long as they are
useful to any agent in the near future.

This propagation scheme yields a priority map over the cache tree that dynamically reflects workflow-
driven reuse potential. When GPU memory becomes constrained, KVFlow first evicts varying suffixes,
and then incrementally evicts prefix KV nodes in descending order of their assigned priority, favoring
eviction of those unlikely to be reused soon. This design naturally accommodates multiple concurrent
workflows, with conflicts at shared nodes resolved by choosing the lowest (most conservative) priority
across workflows.

Pseudocode. To more clearly illustrate how KVFlow integrates with KV cache management, we
include pseudocode for both eviction priority assignment and the eviction procedure. When a new
agent request arrives with its Agent Step Graph (ASG) information, KVFlow updates the eviction
priority of each cache node following Algorithm 1. When the system needs to evict cache nodes on
the GPU to free memory (e.g., during prefill, decode, or prefetch), it proceeds from the leaf nodes in
the cache tree based on their priorities, as shown in Algorithm 2.

4

Load Executor 1

Executor 1 Executor 2Planner

prefetch

+ Proactive Prefetching
GPU

CPU

Timeline

Load Executor 1

Executor 1Executor 2Planner

schedule in-GPU agents first*

+ Status-Aware SchedulingGPU

CPU update status

Load Executor 1

Executor 1 Executor 2Planner

cache miss

Reactive Loading
GPU

CPU
Executor 1

Executor 2

Status of
KV Node

In GPU memory

Backup in CPU

Offloading

Loading

Figure 3: Illustration of overlapped KV prefetching. Compared to reactive loading, KVFlow combines
proactive prefetching that loads upcoming agents in advance with status-aware scheduling, minimizing
the CPU-GPU transfer overhead. *The in-GPU agents can be within the same workflow or from
another concurrent one.

Algorithm 1: Priority Assignment
Function PriorityAssign(ASG)

for step, agent in ASG

node =
agent.last_fixed_prompt_node;

while node != root

node.counter[step] += 1;
node.priority =

min(node.priority, step);
node = node.parent;

Algorithm 2: Eviction Procedure
Function Evict(tree_cache, required)

leaves = get_leaf_nodes(tree_cache);
heapify(leaves) ; // Construct max
heap based on priority

while free_gpu_memory < required

node = heappop(leaves);
free_gpu_memory += evict(node);
if node.parent becomes a leaf

heappush(leaves, node.parent);

3.2 Overlapped KV Prefetching

While the workflow-aware eviction strategy avoids prematurely evicting agents that are about to
execute, cache misses can still occur when an agent needs to run again after its KV cache has been
evicted. This is particularly costly for long prompts, as recomputing the KV cache from scratch
incurs significant overhead. To mitigate this, we treat CPU memory as a secondary cache for storing
the fixed prompt KV of evicted agents.

When CPU caching is available, existing systems typically adopt a reactive loading strategy, as
illustrated in the top timeline of Figure 3. For instance, if Executor 1’s prefix cache has been offloaded
to CPU memory, the system reactively loads it back only when Executor 1 is scheduled, thereby
avoiding recomputation. However, CPU-to-GPU data transfers still introduce noticeable latency,
especially for long prefixes.

Proactive Prefetching. To reduce this transfer overhead, we propose a proactive prefetching

mechanism that leverages workflow information to asynchronously load the required KV cache
in advance. As shown in the second timeline of Figure 3, while Planner is executing, the system
anticipates that Executor 1 will be invoked next and proactively prefetches its KV cache from CPU to
GPU. Since the execution of agents primarily involves model forward on the GPU and next token
sampling (with model outputs transferred from the GPU to the CPU), and KV loading involves
CPU-to-GPU transfer, the two operations utilize different hardware resources and can proceed in
parallel without interference. Notably, PCIe enables full-duplex transfers, allowing bidirectional
communication between CPU and GPU without contention. When the workflow contains branching,
the system conservatively prefetches all agents that may be executed next based on the Step Graph,
within a predefined limit on the number of concurrent prefetches.

However, prefetching alone is not always sufficient. When the current agent’s execution time is
shorter than the prefetch duration, generation may still be blocked by incomplete KV loading. This is
common in high-concurrency settings, where multiple workflows compete for CPU-GPU bandwidth

5

and cause queuing delays. This scenario is depicted in the second timeline of Figure 3, where
Executor 1’s generation is stalled despite prefetching.

Status-Aware Scheduling. To further reduce GPU idle time, we enhance the request scheduling
policy with status awareness. In each scheduling step, if a request’s prefix cache is still in the loading
process, the scheduler temporarily skips it and prioritizes other ready requests, such as Executor 2
in Figure 3 or those from other concurrent workflows. To support this, we associate each cache
node with a status variable, which can be one of four states: in GPU memory, backup in CPU,
loading, or offloading. The scheduler inspects all nodes required by a request, skips any with loading

status to avoid redundant load attempts, and only dispatches the request once all dependencies are
available. Upon completion, the background load thread updates the status of the cache nodes,
informing readiness to the scheduler. Similarly, nodes in the offloading state are excluded from
eviction decisions to avoid race conditions during memory reclaiming.

As illustrated in the third timeline of Figure 3, by combining proactive prefetching with status-aware
scheduling, KVFlow effectively eliminates cache misses and fully overlaps GPU computation with
prefetching, thereby hiding the CPU-GPU transfer latency.

3.3 Implementation

We implement the prototype of KVFlow based on SGLang v0.4.4 [12], an efficient LLM serving
system that provides both a backend for LLM execution and a frontend interface for application
development. SGLang’s backend manages the prefix KV cache using a radix tree. We extend this
mechanism to support our workflow-aware eviction policy and fully overlapped KV prefetching. In
addition, we modify both the frontend and backend of SGLang to support the transmission of agentic
workflow information.

While our current prototype is integrated into SGLang’s frontend API, our method is not limited to
SGLang. It can be adapted to other agentic workflow frameworks by modifying the HTTP requests
that the frontend sends to the server. Our backend optimization can also generalize to other LLM
serving systems. For instance, vLLM [11] internally adopts automatic prefix caching and applies
LRU at the block level. Our workflow-aware eviction logic can be applied at this block granularity by
maintaining a priority score for each block, enabling anticipatory eviction and prefetching.

Step Information Capture. Capturing the steps-to-execution information generated from the Agent
Step Graph is essential for guiding our optimizations at runtime. In our implementation, we assume
that each sgl.function corresponds to an independent agent. During execution, we perform a
just-in-time substitution of the LLM call to embed workflow metadata into the HTTP request. This
metadata includes the identity of the current agent and the steps-to-execution of all agents within the
Agent Step Graph, indicating which agents may be invoked in subsequent steps. Upon receiving this
information, the backend can update eviction priorities in the KV cache tree accordingly and trigger
prefetching if the evictable GPU memory is large enough.

Prompt Segmentation. Besides capturing the step graph topology, we also need to track the last
KV nodes of each agent’s fixed prompt, as shown in Figure 2. Distinguishing the fixed and dynamic
parts of the prompt within a request presents a challenge. We offer two alternative solutions. First,
we introduce a primitive interface that allows users to explicitly mark the end position of the fixed
part. Second, we design a heuristic approach that tracks the agent’s cache hit history and treats
the consistently hit prefix as the fixed part. To avoid stale entries, KVFlow supports an adaptive
mechanism that automatically removes fixed prompt nodes if they have not been reused beyond a
threshold period.

Client Tracking. In serving scenarios, multiple agentic workflows may execute concurrently on
the same backend instance. Existing serving systems do not distinguish between request sources,
potentially leading to naming conflicts. For example, two different workflows might both define
an agent named “Planner”. To address this, we assign a unique client ID to each application. The
client ID is attached to every request sent to the backend, allowing the system to disambiguate agent
identities and avoid interference between workflows originating from different clients.

6

3.4 Limitations

Our primary focus is on structured agentic workflows where future agent invocations can be estimated.
KVFlow can handle dynamic workflows as long as the execution order of agents within a certain
future window can be predicted at the current step. However, in highly unpredictable workflows
where future execution cannot be inferred, KVFlow does not offer performance gains. In such cases,
KVFlow gracefully falls back to SGLang’s default behavior by setting equal priority for all agent
cache and disabling prefetching, without introducing additional overhead or correctness issues.

4 Evaluation

We evaluate KVFlow across a range of microbenchmarks to understand its performance under
different caching and execution conditions. Our experiments aim to answer the following key
questions: (1) Can KVFlow reduce end-to-end latency for individual workflows with large prompt
prefixes and limited GPU memory? (2) How does KVFlow perform under high concurrency, where
multiple workflows run in parallel? To answer these questions, we first analyze single-workflow
latency in Section 4.1, and then study multi-workflow execution in Section 4.2.

Since KVFlow only modifies system-level cache management without affecting the model weights,
prompts, or decoding logic, it is guaranteed to preserve the semantic correctness of the output.
Therefore, our evaluation focuses exclusively on system performance metrics like the latency.

4.1 Single-Workflow Latency

We begin by evaluating the latency of executing a single agentic workflow under batch size = 1. This
single-request latency reflects interactive usage scenarios where workflows are triggered individually
by a user, such as in notebooks or development tools. Unlike online serving systems that rely on
batching for throughput, these settings prioritize responsiveness for individual requests.

We benchmark a sequential 10-stage agentic workflow. As described in Section 2, each agent’s input
prompt consists of a fixed prefix (shared across invocations) and a dynamic suffix (which varies across
runs). We generate synthetic input prompts by randomly sampling token sequences with controlled
lengths for both parts. We evaluate two variants: (a) fully deterministic sequential workflows where
each stage only has one agent, i.e., branches=1; and (b) moderately dynamic workflows, where each
stage randomly selects one of two agents with partially shared prefixes, i.e., branches=2. The latter
one introduces moderate unpredictability while still preserves opportunities for prefetching.

Models and testbeds. We conduct experiments on Qwen2.5-32B on an NVIDIA H100 GPU with
80GB memory and 64 GB/s PCIe Gen5 bandwidth. Qwen uses 40 attention heads and 8 KV heads.
We adopt deterministic decoding (temperature = 0, greedy sampling) to ensure consistent latency
measurements. This setting represents scenarios with tight GPU memory constraints when long fixed
prefixes contend for cache space.

Baselines. We compare KVFlow against two SGLang configurations. The first, denoted as SGLang,
maintains a radix-structured KV cache in GPU memory without CPU backup. When GPU memory
is insufficient, prefix nodes are evicted and must be recomputed from scratch upon reuse. For the
second configuration, denoted as SGLang w/ HiCache, we enable the hierarchical radix cache in
SGLang, which is SGLang’s default CPU-based cache extension. It extends SGLang’s radix tree by
asynchronously backing up frequently used cache nodes to host memory. If a node is accessed after
eviction, it is loaded back from the CPU instead of being recomputed. To further reduce CPU-GPU
transfer cost, SGLang with HiCache overlaps the GPU computation of layer l with the loading of
layer l+1, forming a simple two-stage pipeline. Both of SGLang and SGLang w/ HiCache use LRU
eviction policy when GPU memory is used up. We also include vLLM [11] as a baseline, which
organizes KV cache into blocks and adopts an LRU-based block eviction policy.

Evaluation Methods. We first warm up the cache by executing each agent’s fixed prompt multiple
times, ensuring its prefix cache is constructed and backed up to CPU memory (for HiCache). We then
execute the 10-stage workflow ten times, each with a varying dynamic suffix, to obtain the end-to-end
latency for these ten runs. This simulates realistic usage patterns with repeated workflow invocations

7

�
��
�	
��
	�

�
��
��
��
��
��

�
��
�	
��
	�

�
��
��
��
��
��

���

���

���

���

�
"
�
�
�
$
"
�!
%
�
#
��
�
�
�

�

���� � ������� %��� ����!&

(a) Qwen2.5-32B on H100, branches=1

�
��
�	
��
	�

�
��
��
��
��
��

�
��
�	
��
	�

�
��
��
��
��
��

���

���

���

���

�
"
�
�
�
$
"
�!
%
�
#
��
�
�
�

�

���� � ������� %��� ����!&

(b) Qwen2.5-32B on H100, branches=2

Figure 4: Speedup over SGLang (GPU-only cache) on Qwen2.5-32B for a 10-stage workflow. Left:
branches=1 (deterministic sequential). Right: branches=2 (each stage randomly selects one of two
agents). Horizontal axis: Fixed part token / Dynamic part token / Output token.

or loop-like behavior [5]. We then repeat this process ten times to report the average latency and the
standard deviation.

Results. Figure 4 shows the speedup over SGLang (GPU-only cache) with error bars under different
prompt configurations Fixed / Dynamic / Output. We intentionally test large fixed prefix sizes (e.g.,
8192 tokens) to exceed GPU memory and force evictions.

Across all settings, KVFlow consistently achieves the highest speedup, demonstrating its effectiveness
in both fully deterministic workflows (branches=1) and moderately dynamic workflows (branches=2).
For instance, under 4096/32/32 with branches=1, KVFlow outperforms SGLang w/ HiCache by
1.24→, and the GPU-only SGLang baseline by 1.42→. This is because our workflow-aware eviction
and prefetch strategy effectively hides the CPU-GPU transfer overhead. While HiCache reduces
recomputation overhead, it still suffers from pipeline cold-start and limited overlap when compute is
shorter than transfer.

We also observe that SGLang w/ HiCache generally performs better than the GPU-only SGLang
baseline, as loading from CPU is typically faster than recomputing. However, in some large-context
settings on H100 (e.g., 8192/32/32), HiCache shows marginal or degraded performance. This may
stem from suboptimal scheduling in SGLang’s pipelining logic, where CPU-GPU transfer is not
effectively overlapped under memory contention or high transfer volume.

As the number of output tokens increases, the relative gain from KVFlow diminishes. The reason is
that in these settings, the LLM decoding latency dominates total runtime, reducing the proportion of
time affected by cache loading. There are many works optimizing the time-consuming decoding steps
for the auto-regressive LLMs, including speculative decoding [27, 28, 29], KV cache sparsity [30],
and early exit [31], which are orthogonal to our work and can be co-applied with KVFlow.

Meanwhile, the speedup from KVFlow increases with fixed prompt length. When fixed tokens are
set to 8192, the average speedup reaches 1.30→, compared to only 1.22→ at fixed = 4096. This is
because the cache miss incurs higher overhead as the prefix length grows, and KVFlow’s proactive
cache management becomes increasingly beneficial.

Optimization Breakdown. We perform a breakdown analysis of KVFlow’s two optimization
components on top of SGLang w/ HiCache on H100. We observe that by enabling workflow-aware
eviction alone on top of HiCache provides an average 1.11→ speedup. By further enabling overlapped
prefetching optimization in addition to eviction, we can improve the speedup to 1.29→, demonstrating
that both components contribute significantly.

Overhead Analysis. KVFlow adds negligible overhead. First, CPU-side priority assignment and
prefetch scheduling overlap with GPU computation under SGLang’s zero-overhead batch scheduler,
and our profiling shows no exposed CPU cost. Second, prefetching does not interfere with decoding
because token generation incurs no PCIe transfers, so KV movement overlaps with compute. Third,
when prefetched KV is unused, neither PCIe bandwidth nor memory is wasted, as transfers run only
during active compute, and buffers are overwritten in place.

8

��	�	
����

(!

��	���
����

(!

���

���

���

�+�$	���
	�

��	��
	����

(!

��	��

����

(!

�"�#�
���

�
&

�
�

�
)

&
�%

*
�

'
��

�
�

�
$

�

����$� ����$��+��� ����� ���"%+

Figure 5: High-concurrency workflow
performance comparison under different
fixed-prompt/concurrency settings on an
H100.

� ��� 	�� ���

������������

�����

�����

�����

�����

����	

����

�
�
�
�
��
!

� �� �!����� ������

Figure 6: Token distribution
for fixed, dynamic, and output
parts across PEER-style work-
flows.

�
(
�!
��
��
��
%�

��
�
��
�	
��
��
%�

���

��

���

�
#
�
�
�
&
#
�"
'
�
$
��
�
�
�
!
� ����!�

��
����

����"(

Figure 7: Speedup of
KVFlow over SGLang
and HiCache on PEER-
style multi-agent applica-
tions.

4.2 High-Concurrency Workflow Performance

We further evaluate system performance under high concurrency by simultaneously launching
multiple independent workflows on a single H100 GPU. These workflows are all sequential workflows
(branches=1), and they are assumed to be non-interacting and non-sharing. As shown in Figure 5, we
benchmark four configurations with models Qwen2.5-32B and Llama-3.1-8B, each labeled by the
fixed prompt length per agent and the number of concurrent workflows. The dynamic and output
token lengths are fixed at 256. For each setting, we choose a proper concurrency that the GPU can
accommodate without exhausting memory for prefix caching. If concurrency is too high, all available
memory is consumed by active requests, and the system can no longer maintain reusable prefix
caches, placing it beyond the scope of our optimization.

Results. According to Figure 5, across all settings, KVFlow consistently outperforms both SGLang
and HiCache, achieving an up to 1.25→ speedup. The performance improvement of KVFlow with
1024 fixed prompt tokens is higher than 512, as the cache miss overhead is higher. Notably, HiCache
performs particularly poorly under high concurrency, even falling behind SGLang in multiple cases.
For example, it only achieves 0.57→ performance of SGLang without CPU-based cache under
1024 fixed prompt tokens with 64 concurrent workflows. We suspect this is due to frequent cache
misses triggering reactive load-back operations, which disrupt SGLang’s schedule-compute pipeline.
Additionally, due to the fragmented layout of KV storage in SGLang, the PCIe bandwidth cannot
be fully utilized. While KVFlow also does not resolve the fragmentation issue, it achieves much
better overlap of PCIe transfers and GPU compute through more reasonable evictions and proactive
prefetching. As a result, it yields an up to 2.19→ performance gain over the naive LRU-based HiCache
with reactive loading.

Realistic Workflow Simulation. To better reflect real-world deployment scenarios, we simulate
agentic workflows based on the PEER [5] framework. In our setup, each workflow consists of four
agents, instantiated using the workflow templates provided by PEER. For each agent, we sample
a role and an instruction, and prompt an LLM to generate the agent’s prompt. Due to the inherent
randomness in LLM sampling, the generated prompts exhibit variability even when the roles and
instructions are similar. Meanwhile, since all agents operate under the same application context, their
prompts often share partially overlapping prefixes. This results in workflows that are both diverse
and partially redundant, reflecting the common characteristics of real-world multi-agent applications.

We use the Financial QA dataset from PEER as the workflow input. The resulting workloads
are moderate in scale, with agent prompts typically ranging from a few dozen to several hundred
tokens. Figure 6 shows the distribution of fixed, dynamic, and output token lengths across all
agents. Figure 7 presents the performance comparison between KVFlow, SGLang, and SGLang with
HiCache. KVFlow achieves clear improvements over both SGLang and HiCache, resulting in up to
1.12→ and 1.08→ speedups. The results demonstrate the strong practical potential of KVFlow for
multi-application serving in realistic deployment settings.

9

5 Related Work

LLM Serving Optimizations. A broad line of work improves online LLM serving by optimizing
request scheduling, including continuous batching (also known as iteration-level scheduling) [32],
multi-level feedback queues to mitigate head-of-line blocking [33], quality-of-experience aware
schedulers tailored to streaming scenarios [34], etc. Another set of efforts focus on KV cache
management. vLLM proposes PagedAttention [11] to reduce memory fragmentation via paged
storage of KV tensors, while SGLang introduces RadixAttention [12] to eliminate redundancy
in prefix caching. Several works also target chatbot scenarios with specialized prefix caching
strategies [16, 35]. InferCept [36] predicts tool calling durations and uses a cost model to decide
whether to retain, swap, or discard the KV cache of intercepted requests. These optimizations are
orthogonal to KVFlow, which focuses on workflows formed by multiple agents. While Autellix [37]
and ParrotServe [38] explore request scheduling in agentic workflows, they do not consider prefix
cache management, making their objectives complementary to ours.

Agentic Workflow Frameworks Recent works have proposed diverse multi-agent frameworks [3,
4, 6, 7, 39, 40, 41] that organize agents into structured roles to collaboratively solve complex tasks.
These frameworks provide built-in mechanisms for message passing and dependency construction
between agents, convenient integration of tool usage and reasoning methods within agent actions,
predefined abstractions for common agent roles and behaviors, and efficient multi-threaded execution
to support concurrent agent collaboration. Some of these systems abstract the agentic workflow as a
computation graph, where nodes represent LLM-invoking agents and edges denote control flow or
message dependencies. This abstraction enables the application of graph-level transformations, such
as edge pruning [42], operator insertion [8], or topology optimization [7, 10], to improve application
correctness or quality. However, these frameworks remain focused on application-layer construction
and rely on conventional LLM serving infrastructures to handle generation. In contrast, our work
leverages the structure of agentic workflows to optimize the serving system itself, targeting backend
efficiency under multi-agent execution workloads.

6 Conclusion

We present KVFlow, a workflow-aware KV cache management framework for optimizing LLM
serving in agentic workflows. By abstracting agent execution as a Step Graph and computing each
agent’s steps-to-execution, KVFlow enables a principled eviction strategy that anticipates future usage.
It further introduces a fully overlapped KV prefetching mechanism to proactively eliminate cache
miss stalls. Our evaluations show that KVFlow significantly improves serving efficiency over existing
systems in workflows with long prompts or high concurrency. While prior work on multi-agent
systems has predominantly focused on designing frontend application logic and interaction protocols,
KVFlow highlights the importance of workflow semantics in enabling system-level optimizations.

7 Acknowledgment

We sincerely thank the anonymous NeurIPS reviewers for their valuable feedback and insightful
suggestions. We also appreciate the UCSD MLSys Group for their helpful comments. This work was
supported in part by NSF grant 2124039, UC AI LEAP fund, and the Amazon research award.

References
[1] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan

Cao. React: Synergizing reasoning and acting in language models. In International Conference

on Learning Representations (ICLR), 2023.

[2] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information

Processing Systems, 36:8634–8652, 2023.

[3] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

10

[4] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for" mind" exploration of large language model society. Advances in

Neural Information Processing Systems, 36:51991–52008, 2023.

[5] Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi
Zhang, Fei Yu, Zewei Zhao, et al. Peer: Expertizing domain-specific tasks with a multi-agent
framework and tuning methods. arXiv preprint arXiv:2407.06985, 2024.

[6] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via
multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

[7] Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International

Conference on Machine Learning, 2024.

[8] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow
generation. arXiv preprint arXiv:2410.10762, 2024.

[9] Xuchen Pan, Dawei Gao, Yuexiang Xie, Yushuo Chen, Zhewei Wei, Yaliang Li, Bolin Ding,
Ji-Rong Wen, and Jingren Zhou. Very large-scale multi-agent simulation in agentscope. arXiv

preprint arXiv:2407.17789, 2024.

[10] Zijian He, Reyna Abhyankar, Vikranth Srivatsa, and Yiying Zhang. Cognify: Supercharging
gen-ai workflows with hierarchical autotuning. arXiv preprint arXiv:2502.08056, 2025.

[11] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems

Principles, pages 611–626, 2023.

[12] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark W. Barrett, and Ying Sheng.
Sglang: Efficient execution of structured language model programs. Advances in Neural

Information Processing Systems, 37:62557–62583, 2024.

[13] NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2025.

[14] vLLM Team. Automatic Prefix Caching. https://docs.vllm.ai/en/latest/features/
automatic_prefix_caching.html, 2025.

[15] Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint

arXiv:2404.12457, 2024.

[16] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun
Yang, Zhou Yu, and Pengfei Zuo. {Cost-Efficient} large language model serving for multi-
turn conversations with {CachedAttention}. In 2024 USENIX Annual Technical Conference

(USENIX ATC 24), pages 111–126, 2024.

[17] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-

ings of the 36th annual acm symposium on user interface software and technology, pages 1–22,
2023.

[18] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous
agents. Frontiers of Computer Science, 18(6):186345, 2024.

[19] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

11

https://github.com/NVIDIA/TensorRT-LLM
https://docs.vllm.ai/en/latest/features/automatic_prefix_caching.html
https://docs.vllm.ai/en/latest/features/automatic_prefix_caching.html

[20] Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From
prompt engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

[21] Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
the emergent cognitive synergy in large language models: A task-solving agent through multi-
persona self-collaboration. arXiv preprint arXiv:2307.05300, 2023.

[22] Yujie Zhao, Hejia Zhang, Hanxian Huang, Zhongming Yu, and Jishen Zhao. Mage: A multi-
agent engine for automated rtl code generation. arXiv preprint arXiv:2412.07822, 2024.

[23] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development.
arXiv preprint arXiv:2307.07924, 2023.

[24] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. In Forty-first

International Conference on Machine Learning, 2023.

[25] Genghan Zhang, Weixin Liang, Olivia Hsu, and Kunle Olukotun. Adaptive self-improvement
llm agentic system for ml library development. arXiv preprint arXiv:2502.02534, 2025.

[26] Yile Gu, Yifan Xiong, Jonathan Mace, Yuting Jiang, Yigong Hu, Baris Kasikci, and Peng
Cheng. Argos: Agentic time-series anomaly detection with autonomous rule generation via
large language models. arXiv preprint arXiv:2501.14170, 2025.

[27] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv

preprint arXiv:2302.01318, 2023.

[28] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[29] Apoorv Saxena. Prompt lookup decoding, November 2023.

[30] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023.

[31] Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

[32] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for {Transformer-Based} generative models. In 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 22), pages 521–538, 2022.

[33] Bingyang Wu, Yinmin Zhong, Zili Zhang, Shengyu Liu, Fangyue Liu, Yuanhang Sun, Gang
Huang, Xuanzhe Liu, and Xin Jin. Fast distributed inference serving for large language models.
arXiv preprint arXiv:2305.05920, 2023.

[34] Jiachen Liu, Jae-Won Chung, Zhiyu Wu, Fan Lai, Myungjin Lee, and Mosharaf Chowdhury.
Andes: Defining and enhancing quality-of-experience in llm-based text streaming services.
arXiv preprint arXiv:2404.16283, 2024.

[35] Lingfan Yu, Jinkun Lin, and Jinyang Li. Stateful large language model serving with pensieve.
In Proceedings of the Twentieth European Conference on Computer Systems, pages 144–158,
2025.

[36] Reyna Abhyankar, Zijian He, Vikranth Srivatsa, Hao Zhang, and Yiying Zhang. Infercept:
Efficient intercept support for augmented large language model inference. arXiv preprint

arXiv:2402.01869, 2024.

[37] Michael Luo, Xiaoxiang Shi, Colin Cai, Tianjun Zhang, Justin Wong, Yichuan Wang, Chi Wang,
Yanping Huang, Zhifeng Chen, Joseph E Gonzalez, et al. Autellix: An efficient serving engine
for llm agents as general programs. arXiv preprint arXiv:2502.13965, 2025.

12

[38] Chaofan Lin, Zhenhua Han, Chengruidong Zhang, Yuqing Yang, Fan Yang, Chen Chen, and
Lili Qiu. Parrot: Efficient serving of {LLM-based} applications with semantic variable. In
18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24), pages
929–945, 2024.

[39] LangChain. LangGraph. https://github.com/langchain-ai/langgraph, 2025.

[40] Anthropic. Building effective agents. https://www.anthropic.com/engineering/
building-effective-agents, 2024.

[41] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, et al. Agentscope: A flexible yet robust multi-agent
platform. arXiv preprint arXiv:2402.14034, 2024.

[42] Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei
Cheng, Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication
pipeline for llm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024.

13

https://github.com/langchain-ai/langgraph
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect the paper’s contributions in
optimizing the prefix caching for multi-agent workflows.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly include a limitation section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: This paper does not contain any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed SGLang version (v0.4.4) and hardware setups for
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [No]
Justification: We will open source our codes at https://github.com/PanZaifeng/
KVFlow.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the experiments details in our evaluation section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We perform the experiments repeatedly and report the standard deviations in
the main result figure.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://github.com/PanZaifeng/KVFlow
https://github.com/PanZaifeng/KVFlow
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We provide the specific hardware types but do not explicitly include the
execution time. However, the execution time should be short as we only perform inference
jobs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is conducted in the paper conform in every respect with NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents system optimizations for accelerating executing agentic
workflows, without bringing any societal impacts directly.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper only involves serving system optimizations and puses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all assets properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs for polishing papers and helping writing several scripts.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Design of KVFlow
	Workflow-Aware Eviction Policy
	Overlapped KV Prefetching
	Implementation
	Limitations

	Evaluation
	Single-Workflow Latency
	High-Concurrency Workflow Performance

	Related Work
	Conclusion
	Acknowledgment

