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Abstract

We study the estimation of Zipfian distri-
butions under L; loss, and provide near
minimax optimal bounds in several regimes.
Specifically, we assume observations arrive
from a known alphabet, and with a known
decay rate parametrizing the Zipfian, but we
do not know a priori which alphabet ele-
ments have larger probability than others.
We present a novel Sort and Snap estima-
tor, which uses the empirical proportions to
sort the alphabet, and then snaps them to
the associated term from the Zipfian distri-
bution. For arbitrary decay rates and smaller
alphabet sizes, as well as for large decay rates
and large alphabet sizes, we show an exact or
minor variant of this estimator is near min-
imax optimal and has exponential improve-
ment over the standard empirical proportion
estimator. However, for small decay rates
and larger alphabet sizes a simulation study
indicates the standard empirical proportion
estimator is competitive with Sort and Snap
procedures. In addition to providing nearly
tight bounds for important high-dimensional
estimation problems, we believe the Sort and
Snap estimator, and its analysis, will have
independent interest.

1 INTRODUCTION

A increasingly common task in data analysis is col-
lecting, measuring, and estimating complex and dis-
crete data. We consider data drawn from an alpha-
bet [k] = {1,2,...,k}, which may model IP addresses,
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words or subwords in natural language, cities among
addresses, or first names among people. What is com-
mon is that some values are much more common than
others, but the domain size k is extremely large and
may be (almost) endless. We aim to model this with
a discrete probability distribution of dimension &, de-
noted p = (p(1),p(2),...,p(k)). The most common
discrete probability distribution for modeling such pat-
terns is the s—Zipfian, which holds if there exists a
permutation function 7 such that for each j € [k]

N
p(n(4)) = S

Zipfian probability distributions arise naturally in nat-
ural (Dahui et al., 2005; Li, 1992; Piantadosi, 2014;
Ferrer-i Cancho, 2005, 2016) and Al-generated (Dia-
mond, 2023) languages as the proportion of words or
subwords within a language or a given corpus of text.
And the alphabet sizes can be very large, with over
200,000 words in English and over 80,000 sinograms in
Chinese (Han et al., 2015).

We consider the problem of estimating the distribu-
tion p from a series of n samples drawn independently
from a k-dimensional s-Zipfian distribution. While
there are many reasonable choices for a loss function,
the choice of L loss is both common and well moti-
vated in the study of estimation of high dimensional
probability distributions (see Han et al. (2015); Co-
hen et al. (2020)): if u, v are two discrete distributions
with a common size k alphabet, and Li(u,v) = e,
then for any subgroup of words A, |u(A) — v(A)] < e.
The other extremely commonly used loss for discrete
distribution estimation, Kullback-Liebler (KL), (see
Paninski (2004); Orlitsky and Suresh (2015); Falahat-
gar et al. (2017)) only offers that if KL(P,Q) = ¢,
|u(A) — v(4)] < ve. In our analysis we model the
alphabet size k = |n”], as a function of n, parameter-
ized by some S > 0; what Han et al. (2015) call the
High Dimensional Asymptotics setting.

For an LLM example, Meta’s Llama 3.0 has a vo-
cabulary of k = 128,000 tokens, and is trained on
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n = 15,000,000,000 (15 trillion) tokens. For data of
this magnitude, can we learn the distribution of these
tokens? If we know the distribution is s-Zipfian, can
we improve upon the empirical estimate? If we consid-
ered a very small context size of say 2, so a vocabulary
size of k2, how does that effect our ability to learn
this distribution directly, including if we know it is
still s-Zipfian? While modeling Zipfian properties in
learning has proven important (Chan et al., 2022a,b),
these basic questions are still not well understood in
the context of such high-vocabulary Zipfian distribu-
tions, especially under L; loss. We provide numerous
results towards understanding these questions.

Prior Work The default way to estimate a dis-
crete distribution is the Empirical Proportion Estima-
tor (EPE), which provides the sample estimate for
each index. The study of tight estimates of the ex-
pected absolute deviation of a binomial distribution
from its mean performed by Berend and Kontorovich
(2013) provides a general tool for finding the risk of the
EPE under L; when sufficient information about the
distribution is known. Cohen et al. (2020) develop a
data-dependent bound for the EPE under L; loss suit-
able for use in unconstrained estimation settings. Han
et al. (2015) shows that the EPE is minimax optimal
for estimating a completely unconstrained probability
distribution in the L; norm in the High Dimensional
Asymptotics setting provided f < 1; when 8 > 1 (so
k > n), consistent estimation is not necessarily pos-
sible in the unconstrained setting. What this work
silently leaves open is if we can do better if we know the
data comes from an s-Zipfian distribution. Falahat-
gar et al. (2017) addresses this question when the dis-
tance of interest is Kullback-Leibler (KL) and k grows
at least as quickly as n and s > 1; in this case they
show that a modification of the EPE, known as Ab-
solute Discounting, is minimax optimal for estimating
the permutation ordering of the s-Zipfian distribution
under KL distance. But they do not delineate whether
for more slowly increasing k (i.e § < 1), if leveraging
that the probability values are known can yield esti-
mators with improved convergence rates. And they do
not present any results regarding minimax optimality
under L, loss even in the # > 1 case, nor do they study
s < 1 under any circumstances.

The parameter s indexes a family of distributions that
have the same probability values but different order —
a permutation invariant class. A question of concern
in Competitive Distribution Estimation (Orlitsky and
Suresh, 2015) regarding a permutation invariant class
is: what is the difference between the worst case risk of
a minimax estimator for this class and the worst case
risk of an estimator ¢, operating on this class with-
out knowledge of the probability values? This is the

competitive regret of g, for the permutation invariant
class. Orlitsky and Suresh (2015) prove under KL loss
that regardless of the permutation invariant class con-
sidered, a variant of Good-Turing achieves competitive
regret not asymptotically larger than n~2. Hao and
Orlitsky (2019b), still working with KL loss, improve
this with an estimator that achieves worst case asymp-
totic regret of min(n~ T, n"2) specifically for s > 0
Zipfian permutation invariant classes (regardless of di-
mension) while also guaranteeing strong competitive
regret under a wide variety of different permutation
classes. However, the work on rigorous competitive re-
gret analysis under L, is less well developed. Valiant
and Valiant (2016) study this quantity for general per-
mutation invariant classes, and show the existence of
an estimator achieving the much weaker, asymptoti-
cally poly(@) magnitude regret.

There are various other works focusing on the uncon-
strained large discrete distribution estimation prob-
lem. Canonne et al. (2023) provides concentration of
measure statements for the Laplace estimator under
the KL loss. Kontorovich and Painsky (2024) pro-
vides a data dependent bound for the EPE loss under
L. Painsky (2023) develops confidence intervals for
the distribution.

Several authors have studied estimation of the decay
parameter s in low dimensional Zipfian laws (Izsdk,
2006; Zornig and Altmann, 1995), while authors (Hsu
et al., 2019; Aamand et al., 2019) in the sketching
communities have designed small space estimators for
streams from a s-Zipfian distribution.

Our Contributions Our first main contribution is
the introduction of the Sort and Snap estimator for es-
timating high-dimensional discrete distributions. This
starts with the EPE estimator for each j € [k], and
then sorts these estimated values. It uses this sorted
order to estimate 7, and then updates the estimates to
that of the known s-Zipfian distribution, in a thresh-
olding step we refer to as snapping. We also introduce
the Truncated Sort and Snap estimator, which applies
Sort and Snap to the largest estimates, but retains the
EPE for the smaller values.

Second we provide new upper bounds under L; er-
ror for the Sort and Snap estimators. Notably, there
are two regimes where Sort and Snap outperforms the
EPE estimator. The first is when 8 < B%S) where
B(s) = 2 + max(s, 1); i.e the growth rate of k = |n”|
is not too fast, so the alphabet is not too large (Theo-
rem 4.2). This surprisingly achieves exponential con-
vergence! The second is for Truncated Sort and Snap
when s > 2, so the rate of decay is very fast (Theorem
4.3). Comparison with the EPE requires providing
a tight characterization of its performance, which we
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also derive for s-Zipfian distributions (Theorem 4.1).

Third, we provide minimax lower bounds for all these
regimes. We show in the § < 55 regime that Sort
and Snap matches the polynomial in the fastest de-
caying term of the lower bound precisely (Theorem
4.2) and matches the constant in the fastest decaying
term of the lower bound up to a factor 16. In the

1 . . ..
s > 2,0 > ;15 setting, we provide a minimax lower

bound of n~ 5% almost matching our pTFE T upper
bound achieved by Truncated Sort and Snap (Theorem
4.3) where 7 > 0 is an arbitrarily small constant.

In all, this work elucidates a gap in the understand-
ing of estimating structured discrete distributions, and
introduces the Sort and Snap mechanism to close it.
Before it was not possible to provide tight minimax
bounds for such structured distributions in several
growing k regimes, and our work explains why the
standard EPE estimator fell short in the L; norm.
This work also opens up future directions. One such
direction is determining the lowest possible competi-
tive regret in the Zipfian setting under L. Our results
aid in this pursuit because we have characterized the s
known near minimax rate in several important regimes
and the EPE performance has been fully characterized;
therefore EPE competitive regret calculations can be
performed from our results in several cases. Other
new directions include tightening a few intermediate
regimes and in showing the more general applicability
of this approach of snapping to one of a discrete set of
options from a function class.

2 NOTATION AND DEFINITIONS

Let Sk denote the k—1 dimensional probability simplex
for k > 2 and let [k] = {1,2,...,k}. For p € Sk,
we denote the probability of the j** category as p(j).
We will be studying probability patterns as k grows.
Specifically, let

F:={f:RT - R"; fis monotonically decreasing }

and for k € {1,2,...,}, let My be the permutation
functions on [k]. We refer to families of probability
distributions at a given dimension k£ > 2 generated by

f as

) m(J

'Pfyk = {p :p € Sp,dm € My, s.t p(]) = M}

> i f(m(d))
(1)

This paper focuses on s-Zipfian probability patterns.

That is, for s > 0, we study

fs(x)=a7"%.

Let Hy s E?le_s and for s > 1, R(s)
limy_, o0 Hy s is the Riemann-Zeta function.

For f € F and p* € Py 1 (with permutation function
), consider n samples

iid
Ylk)a}/ka"'7Y’l’Lk? ~p.

That is, for ¢ € {1,2,...,n}, and j € {1,2,...,k},

P(Yik:j):%. For j € {1,2,...,k}, let

Xjp = 1Y = j) (2)
i=1

be the observed count of the jth element.

Define the inverse of the intermediate dimension
B(s) :=2+max(1l,s) = s+ 2+ max(0,1 —s) (3)

This will be an important function used in defining k,
as a function of n, to place boundaries on where our
analysis can provide significant improvement for Sort
and Snap over the EPE estimator.

X ~ Multinomial(n,p = (p1,p2,...,pr)) means X
has the probability mass function resulting from drop-
ping n balls into bins labeled 1,2,...,k where each
ball is dropped independently and the probability a
ball falls in bin j is p;.

For functions g, f defined on all sufficiently large in-
tegers, the notation g(n) < f(n) means there ex-
ists a constant C' > 0 and a N such that for n >
N, g(n) < Cf(n). The notation g(n) = o(f(n)) means
lim,, 00 % = 0. The notation g(n) =< f(n) means

there exists a constant C' € R such that lim,, % =

C'. Note that while k = k(n) will always be a function
of the sample size parameter n, we often write k in

place of k(n).

3 SORT AND SNAP ESTIMATORS

We introduce the Sort and Snap (SS) estimator. For
f € F, the sorted order of the counts by category are
determined; then the j** largest probability in laws
from Py, e is snapped on to one category

i f(0)
(index) with the j'* largest count. More formally, let
7 € My, satisfy that index 7(j) gives the j*" largest
count. That is,

Xire = Xaee = 2 Xaryk-

Note 7 is not unique because of possible ties. Then
the Full Sort and Snap Estimator is

AY))
S FG)

Next we formalize the EPE as

Xk

phj) = o

(4)
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Now the Truncated Sort and Snap FEstimator
(TSS) is defined as follows which uses Sort and Snap
for the common categories (the head), and EPE for
the uncommon (the tail). For a truncation threshold

T e{1,2,...,} TSS is defined
L 5G) e ). A (min(T k)
Purli) = {pﬁm (K] — {(#(1),.... #(min(T, k))}

While these estimators are not uniquely defined (be-
cause a procedure for resolving ties is not specified),
the analyses we provide for Sort and Snap procedures
does not depend on the way ties are resolved.

4 ERROR BOUNDS

All mathematical results are rigorously stated in this
section; full proofs are deferred to the appendix, but an
overview of main analysis ideas are presented in Sec-
tion 5. A pictorial summary of our results on Sort and
Snap, Truncated Sorted Snap, the EPE, and minimax
lower bounds is displayed in Figure 1 as a function of
parameters B and s. The main takeaways are that (a)
for B < ;7. SS’s exponential decay beats EPE, and is
nearly trght to the minimax lower bound; (b) for s > 2
TSS improves upon EPE and approaches the minimax
lower bound as s grows; and (c) otherwise, we leave as

an open problem if a TSS or SS variant can improve
upon EPE.

We first state upper and lower bounds for the per-
formance of the EPE in estimating growing, exact s-
Zipfian probability laws.

Theorem 4.1 (EPE for Exact s-Zipfian Laws). Sup-
pose s > 0. Further let 0 < 8 < oo, p¥ € Py, 1 and
k = |n?] for n sufficiently large so that [nP| > 2.

Also,

iid L
Yig,Yop, ..., Y01 ~p

and Pt is the corresponding EPE. Then

n=2(1=F) 0<s<1,8<1
1 0<s<1,8>1
i)
L Tlegm . S=LA=1
Elpy —p"[li < 1 s=1,8>1
nm2tB1-3) 1<s<28< 1
ns—1 l<s<2,82>1
liﬁ({é) s=2
nz 5>2

In estimation of a completely unconstrained p”* in the
simplex, Han et al. (2015) shows that in the Ly loss,

the EPE is minimax optimal. But in the constrained
problem of estimating a probability vector in Py,
this is not always the case.

Sort And Snap Bounds The next theorem, one of
the main contributions of this work, shows that pro-
vided the growth rate of k& as a function of n is not
too fast, then full Sort and Snap, but not the EPE,
is a minimax optimal estimator (at least with respect
to the polynomial in n and constants depending only
on s and S inside the exponential). Before stating the
theorem, we introduce a useful constant

1-s5 0<s<1
:BZZ % s=1 (6)
Rgs) s> 1.

Theorem 4.2 (SS Upper and Lower Bounds). Sup-
pose s >0,0< B < (S) and for each n large enough

so that |nP| > 2, k:= [n®] and 0 < 7 < 1 — BB(s).
Then the Full Sort and Snap Estimator i),’i achieves
that suppep, , Ellpy, —pl

n-BB(9)-2) Cry(1=7) pl=BB)
S oD oy &P T IG=1)
log™*="(n) 16 log*="(n)
when 0 < f < ﬁ and Supyep, EHIBZ —pll1
—B(B(s)-2) cr.(1—71 1-BB(s)
S nﬂfhnsﬁexp - e ) nH =
log"=V(n) "7 16 log!*=Y ()

when 8 < (S) and hy, ¢ 5 = n2BEEOFN=A=7)) " Also,

fﬂn SuppE’PfS,kIE”:U’n p”1
nlfﬁB(s)
logﬂ(szl)(n)

where Py, 1. is the collection of all k-dimensional s—

Zipifan probability distributions. And the inf is taken

Y“Ndp

n—B(B(s)-1)

>0 exp | —Cr (14T
logﬂ(szl)(n) < aB( )

over all functions of the n samples Y1,Y>, ..

Full Sort and Snap thus clearly outperforms the EPE
in the 8 < S) growth setting, because according to
Theorem 4.1, in no regimes does the EPE achieve bet-
ter than polynomial decay. Note regarding the mini-
max optimality of Full Sort and Snap that the poly-
nomial inside the exponential is matched precisely in
Theorem 4.2 and the constant in the exponential is
mismatched only by a factor 16.

Truncated Sort And Snap Bounds The next the-
orem shows that a Truncation of Sort and Snap can
outperform the EPE even when k grows quickly with
n, so long as s > 2; recall for every s > 2, the EPE
never outperforms n~2 and for s > 2 > 5

’ a+2
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SS and TSS Upper Bounds

S

1H(B(s)+1) 12 1/max(1.s)
1/B(s) ]

(2

'-“ Tss:in bRl e
ss: n—MB{sLZ)HZ(H[E[:]M]—(14]))8xp[ (1-1c;, s j]
) 16

(16
04 04

0.2 | ;-:i-;lr:ir-i )
5 nHEE Dy [ & 1-pB( ))

0.0

EPE Tight Bound

Minimax Lower Bounds

e (1-s)(1-5) N

nPeEVexp(— (1+1)C] n' o)

0 1 2 3 0 1
s

Figure 1: Bounds on the error rates as a function of n, plotted in (s,

2 3 0 1 2 3

B) parameter space. The left panel shows

upper bounds for SS and TSS the mlddle tight bounds for EPE, and the right minimax lower bounds. The

region separating curves are ,—, , and

(B(s )» )

Theorem 4.3. (TSS Upper and Lower Bounds) Sup-
pose s > 2, B > B( and k = |n?] for each n large
enough so that |n®| > 2. And let T, = I(k,1,¢) — 1
(where I(k,1,€) is defined in equation 92). Then there
exists Usg1,Us,p2 > 0 such that for any 0 < € <
Us,B,l and 0 <7< US’B’Q

sup Ellpy r,  —plli S0 a7 (7)
PEPy, &
Also, for any s > 0 and [ > B%s)’

infy, SUppep, El fin — plh
> — £l Bmax(0,1-s)(1- ££) log™ (szl)%(n) (8)

where again the inf is taken over all functions of the

id
Y%p

n samples Y1,Ys, ..
Note that in Theorem 4.3, the polynomial in the lower
and upper bound mismatch by a power . Thus T'SS
is, up to an arbitrarily slowly 1ncreasmg polynomlal
term, near—minimax—optimal for large s; but for s near
2 the power gap is near 1; resolving this gap remains
an open problem.

While Sort and Snap outperforms the EPE for any
s > 0 Zipfian law that doesn’t grow too quickly in
dimension (Theorem 4.2) and for any s > 2 law even
if the dimension grows quickly (Theorem 4.3), we do
not discover a benefit to using Sort and Snap for long,
flat Zipfian laws. That is, for 0 < s < 2 and 8 > B(é)
In this case, the best upper bound we know of comes

from the EPE, and our best lower bound is noi,

5 PROOF SKETCHES

Full proofs are contained in the appendices; here we
will illustrate central ideas of Theorems 4.1, 4.2 and

. Behavior at curve boundaries not displayed.

4.3. The restriction to s > 1 in this section ensures
Hj, s is convergent, which slightly simplifies the proofs,
but in the appendix we show how to handle any s > 0
by quantifying the growth rate of Hy ;.

5.1 On The Tight Performance Of The EPE

As discussed in Cohen et al. (2020) for k > 2,p* €

Prr and Yig, Yop, ..., Yo i p* and pk the corre-
sponding EPE, Berend and Kontorovich (2013) shows
that there exists a number A, 5 (f) such that

1 11
iAn,k(f) N < E[py

A, i (f) is precisely the sum of the probabilities in the
k dimensional probability law generated by f that are

less than % plus ﬁ times the sum of the square roots

of all the other probabilities in the k dimensional law
generated by f. In the Zipfian case, f = f; and the
order of A depends on 8 and s; here we illustrate one
case.

Lemma 5.1. If § > % and k > 2, p* € Ptk with
permutation function m, and k = |n”| then

=Ml < 200k (f)

E|pE —p*|li =< n* " when 1< s <2
1
Proof. 4— < n~! if and only if j > (#) . Thus
since (3 > g.
k L( H:,s s

[SI

1 - 1
Ak (fs) = m Z J +2\/Tk,s Z

s n 1 =1
J:L(K)SJ+1 J

Using Riemann integration to upper and lower bound
the first sum and that H} ; converges when s > 1, we
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have that Z; (/e 41070 = ns~! when s > 1.

By another Rlemann integration argument, when 1 <

1
(g2 H s s 1
s < 2, we have that -——— ’” j72 = ns L
Z 1
Thus when 1 < s < 27 we conclude A i(fs) < ns—1;
the lemma conclusion follows. O

In this example, the order of the two sums is the same.
This happens to be the case when 1 < s < 2 and
B> %, but there are other arrangements of the values
of 3, s where this is not so.

5.2 A Minimax Lower Bound For Small §

Lemma 5.2. If0 < 8 < ﬁ and s > 1, then for any

T>0
inf sup Elin, —pli 2
Hn pEPy, i
n—B(B(s)-1)

o ) nl—BB(s)

exp | —Crs(l+7)————

P B logﬂ(sfl) (n)

where the inf is taken over all functions of the n sam-

ples Y1,Y5,...,Y, lﬂp

IOgH(SZI) (n)

Proof. We use the Le Cam method (Tibshirani and
Wasserman, 2017). Set Py, to be the k dimensional
Zipfian law with probabilities in decreasing order. Set
Py, to Py, on the first kK — 2 indices, with the last 2
probabilities flipped. By Theorem 4 of Tibshirani and
Wasserman (2017), the minimax lower bound is

2 1Pon — Pinll1 exp (=K L(Pon, Pin)) -

Thus we need to lower bound K L(Py,,, P1,,) and upper
bound ||Py, — Pin||1- First we compute the two dis-
tances. This is simple because only the last 2 entries
have been flipped.

2

Py, — Piolly = 1) —

| Po 1n )1 Hk,s|(k ) k=7

— k= 1) = 20

And

KL(POn7P1n) =

(k—1)"* (k—1)"* ks k=s
I 1 =

i, og( = )+ i Og((k—l)*s)

s k
log(—— —1) = fs(k))-
OB 1) = 1.0
Since fs(k — 1) — fs(k) occurs in both distances we
need control of it from above and below. Using a two
term Taylor series expansion of fs(k — 1) about fs(k),

and that f, is convex so its second derivative is non-
negative, we have for some ¢ € [k — 1, k],

sfori(k—1) < fo(k —1) = fs(k) (9)
= st+1(k - 1) (5 s l)fa+2(¢)

To handle the fsio term, we use that fs;2 monotoni-

cally decreases. Therefore fs12(4) < fst2(k—1). Now

note fey2(k —1) = o(fs(k — 1)). Therefore, for any

7 > 0, there is an N so that for n > N

sfst1(k=1) < fs(k—1) = fs(k) < s(1+7)fs1(k—1)
(10)

We also need control over Hj, ; from above and below
since it occurs in both distances. Since s > 1, Hy ; —
R(s) (the Riemann-Zeta function). Thus for any 7 > 0
and N sufficiently large,

(1 —-7)R(s) < Hi,s < R(s)

The last term amongst the two distances that we have
not yet controlled is log( 7). It occurs only in the nu-
merator K L(Py,, P1,,) so we just need an upper bound
for it. By another Taylor series expansion, for any
7 > 0, there is some N such that for n > N

(1+7).

w\n—\

k

log( ———

oglz—7) =
Finally, to upper bound the K L(Py,,, P1,,), we use the
expression for KL and plug in the upper bounds for
fs(k—1)— f,(k) and log(+£;) and the lower bound for
Hj, 5. In the KL upper bound, there is a factor above
a + )

1 and arbitrarily close to 1, appearing for 7 > 0.
Call this 1+ 7 for 7 > 0 arbltrarlly small. Likewise,
we use the lower bound for f,(k—1)— fs(k) and upper
bound for Hy, ¢ and the expression for || Py, — Pi,]/1 to
lower bound this quantity. O

5.3 Sort And Snap Upper Bound For Small 3

Here we describe an approach to achieve the optimal
exponential decay (up to factor 16) when 8 < %
and s > 1 without achieving the optimal polynomial
outside the exponential. The tighter approach in the
appendix improves the lower order polynomial term in

front of the exponential (and also handles 0 < s < 1).
Lemma 5.3. If 3 < 5 S) and s > 1 and k = |n?] and

pk e Py, 1 with permutation function 7y, there exists
a U, g3 > 0 such that for each 0 <17 < Us g3

c:
Bl - 2411 exp (~(1 = 1) =00 )
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Proof. We start by defining for i € [k] a radius ry,;
so that if the distance between the probability asso-
ciated with the i" largest category and its respective
empirical proportion is less than r,; for each cate-
gory i € [k], then Sort and Snap yields zero error.
Denote this as event A,. Decomposing the expec-
tation and using an upper bound on l-norm implies
E|pf — p* |, < 2P(49).

It is sufficient to set ry, ; smaller than % of the distance
between i*" largest probability and the nearest adja-
cent probability. We will show the following suffices:

Pt = X [P () (L — ¥ (L (0)
where x,, = (1 — 7)3n" =a ),/C* for 0 < 7 < L.

Given this, using a standard Bernstein concentration
of measure statement, then the union bound over
J € [k], we can achieve our goal by bounding the prob-
ability of AS as at most

k ‘ .
2) exp <—nm1n (ﬁ Xn Pk(J)SP'“(J)))) <

Jj=1

kexp(—nx;) <

Cx
ko (1ot

where the first < is since \/p*(j)(1 — p*(5)) is larger
than this function evaluated at the smallest probability
and since by definition of B(s) and since Hy s — R(s),
one can show

=0 <Xn\/p 7Tk

What is left to argue is that for each 7 in a neigh-
borhood of 0, eventually in n, 7, ; is smaller than %
the distance of the i*" largest probability to its near-
est adjacent probability for ¢ € [k]. Since the in-
dex set is growing, we divide it into segments S}

{lkS-1],..., [k} where {(;}32, is an increasing se-
quence with (o = 0 and limit 1 and T, |KS5-1 | is smaller

than 1 the distance between the [k | largest prob-
ability and its nearest adjacent probability for j > 1.

)12, (1))

Assuming the existence of such a sequence, each in-
dex i € [k — 1] is in some Sj,. In particular, since
Ty, decreases in i (which follows since the function
g(z) = z(1 — ) is symmetric about 1 on the inter-
val [0,1] and monotonically increasing on [0, 1]), 7
is smaller than the r value at the left end of the seg-
ment. By the definition of the ¢ sequence, the r value
at the left end of the segment is smaller than % of the
distance to closest adjacent probability at the right end
of the segment. And since Zipfianity ensures distance

to closest adjacent probability decreases as ¢ increases,
this value at the right end of the segment is smaller
than this value at .

Thus all that is left is to show the sequence

¢ e Cj—1-8 n s+2  s+2 JX_E s ¢
T2 (s 1) 20s+1) 20s+1) = \2(s + 1)

satisfies the desired properties. First, using the ge-
ometric series formula note that lim; .. (; = 1.
Second, since (; < 1 always, distance to clos-

est adjacent probability at the end of segment j is
NN ETA(URIESY)

k,s

. Using Taylor’s theorem to bound

st+1(U< 1)

this from below by we have for any 0 < 7 <

1 an N sufficiently large such that for each j>1and
n>N

fo(lB9)) = fo(lkS T +1) _ sfapa([KS))
Hk,s B Hk:,s

> (0BG 5
=" R(s)

B(s+2) 8BS S
2

=t TR
— (1= )y/a(p(m; (165 )

=2r

BB(S)

VA

|
g

n, k-1

where in the second last line we used that B(s) =
s+ 2 and in the last line we used the definition of x,,
and that C? ; = 75 when s > 1. This handles the
ordering property for all i € [k —1]. For ¢ = k, one can
directly show 7y, ;, is smaller than % of the distance to
the closest adjacent probability. O

5.4 Performance Of TSS In High Dimensions

Here we explain why the stated TSS bounds of Theo-
rem 4.3 are only for s > 2, not for s > 1.

T, of Theorem 4.3, specified in equation (92) of the
appendix, satisfies T, < nBE ¢ where € > 0 is ar-
bitrarily small. Decomposing expected 1-norm into
the head (error on probabilities at least as large as
the probability at the truncation index) and tail, and
then using the segmentation procedure on the head,
we have that when s > 2

EH@ZT(J) —p’“Hl =
k
n“exp(=Con) +E Y (B (m (7)) — pF (i (5)].

J=Tn,e41

Th,e, also a function of s, is chosen arbitrarily close to
the largest growing index such that use of Sort and
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Snap on this head of the distribution still yields expo-
nential decay. This leaves the EPE error in the tail.
What distinguishes the heavy tailed 1 < s < 2 case
from the light tailed s > 2 case is that

k
E Y b (5) — P (i ()]

j:Tw,,5+1 (11)
=<E|pk —pli 1<s<?2
o(Ellpy, —pl1) s>2

6 SIMULATIONS

We perform three simulations to demonstrate and
compare performance of the EPE, TSS, and SS un-
der various s and . Each simulation is a Monte Carlo
study: for a given n, 8 and s, M trials are run, draw-
ing from the member of p* € Py, k possessing the iden-
tity permutation. From each of the M trials, we ob-
tain the value of the estimator for a given estimator
A, € {EPE,,TSS,,SS,}; denote these estimates as
Atn,y ..., Arn. For each estimate, the || - ||; distance
between the estimator and truth (the member of Py, x
possessing the identity permutation) is computed. The
Monte Carlo point estimate for E|[p* — A,,||; is defined
as Bann = ﬁ Ejle p* — Ajn|li. Via the Central
Limit Theorem, Delta Method, and Slutsky’s theorem

Ban -
SV M (log(Ban,) — log(E[lp" — Anll1)

E>/\/(0,1) as M — oo

where &, is the sample standard deviation of the
M Monte Carlo trials. The above equation allows
us to produce approximately valid 95% confidence in-
tervals for log(E|p* — A,||1) for M sufficiently large.
We set M = 300 and use sample sizes In(n) €
{5,6,...,13,14}. Simulation plots have z-axis as In(n)
and y-axis providing an approximate 95% confidence
interval for log(E|p* — A, ||1). Code, data and instruc-
tions to reproduce are here: https://github.com/
jacobs269/zipfianPaper

Simulation 1: s =1.05, 8 = Sigz This simulation
illustrates one of the main features of Theorems 4.1
and 4.2, which is that if the problem has a growth
rate that does not increase too quickly with n, then
Sort and Snap will achieve exponential decay while
the EPE achieves only polynomial decay. The choice
of s = 1.05 for this simulation is also motivated by
Zipt’s original work on the subject suggesting word
frequency distributions in text often were Zipfian with
s near 1 (Zipf, 1949).

If x,, = log(n) and y,, = log(E||p* — A,]|1), then The-
orem 4.1 implies that with A,, = EPE,, there are
constants Cy, Cy such that

log(Cy) — ra, <y, <log(Csy) —ra, (12)

for n sufficiently large and r the power in the rate
given in Theorem 4.1. On the other hand, Theorem
4.2 implies that when A,, = SS,, there are constants
r1,79,Cq, Co, C3,Cy such that for n sufficiently large

log(C1) — rixn — Csexp (2, (1 — B(s +2))) (13)
< yn < log(Ca) — oy, — Cyexp(zn(l — B(s + 2))).

By Equation (12) we expect roughly linear behavior
for EPE in the log — log plots while by Equation (13)
we expect a steeper slope as log(n) increases for SS.
This is illustrated in the left plot in Figure 2.

Simulation 2: s > 2 and § = 1: This simula-
tion compares the EPFE, SS, and T'SS when s = 3
and when s = 5. Using similar arguments to those
explained for Simulation 1, Theorems 4.1 and 4.3 re-
spectively suggest that asymptotically in n and on
the log — log scale, the EPFE curve should be approxi-
mately linear with slope —% and the T'SS curve should

be approximately linear with slope —%5.

In particular, the EPFE should not incur a rate im-
provement when s increases in this simulation, but
TSS should. This is what we observe in Simulation
2 in the middle of Figure 2. EPE and T'SS curves
look roughly linear but the Ordinary Least Squares
estimates of the slope for the EPE under s = 3,5
are nearly identical —.470, —.474 while for T'SS they
are —.569 and —.676. The exact slope estimates are
meaningful only in comparison between estimators.

Moreover, the S.S curves achieve lower error than the
TSS curves but the difference between 7SS and SS
appears to vanish as n grows. The slope estimates
support the hypothesis that eventually in n, T'S'S will
perform at least as well or possibly better than S'S.

Simulation 3: s=15and $=1/s: A remaining
open question is whether or not the £ PFE retains min-
imax optimality when 1 < s < 2 and 8 > ;—2 Our
hypothesis is yes, and this is supported by Simulation
3 on the right of Figure 2. We see that the EPFE has
the fastest decaying slope of the three methods and all

three slopes are quite similar.

7 DISCUSSION AND OPEN
PROBLEMS

This work provides new estimators (SS and TSS) for
s-Zipfian distributions under L, and shows that these
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Simulation 1: s=1.05 and B=1/(s+3))
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Figure 2: Simulations with In(n) € {5,6,...,13,14} showing log(E|p* — A,||1) with 95% confidence intervals
where A,, € {EPE,,TSS,,SS,}. For Simulations 2 and 3 the Ordinary Least Squares estimate of the slope of

each line is displayed in the top right corner.

are sometimes near minimax optimal. We also provide
tight analyses for the standard EPE estimator. These
answer important questions about estimation for high-
dimensional structured distributions, which are very
relevant in the context of large language models and
other featurized representation learning problems.

This work brings forward several interesting open
questions, including what other distributional cases
can Sort-and-Snap type estimators provide better er-
ror rates, and can we estimate distributional meta-
parameters (such as s) as part of the problem. More-
over, while the main landscape of estimating this s-
Zipfian is now resolved (see Figure 1), we leave open
questions to completely resolve this, including: Does
the EPFE remain the minimax optimal procedure when
O<s<2andﬁ>%?

This is plausible because the error of the EPE in es-
timating largest probabilities (the nB largest prob-
abilities) is dominated by that of estimating smaller
probabilities, and mis-ordering the counts of adjacent
probabilities beyond the nBE point happens with con-
stant probability for those smaller probabilities. Prov-
ing this in the affirmative would be interesting because
it would demonstrate that in high-dimensional prob-
lems under L loss there can arise scenarios where it
does not help to use the probability values themselves,
even if known.

Another consideration is that SS and TSS are exam-
ples of permutation invariant estimators in that if the
categories are relabeled according to some permuta-
tion function 7*, then the probability estimate for cat-
egory j under SS (or TSS) before the relabeling of cat-
egories will equal the probability estimate for category
(7*)~1(j) after the relabeling. Greenshtein and Ritov
(2009) define the permutation invariant oracle as the
permutation invariant estimator minimizing the risk
when the true permutation 7 of the probabilities is

the identity permutation. Because SS and TSS are
permutation invariant, our upper bounds also upper
bound the risk of the permutation invariant oracle in
the s—Zipfian setting. The permutation invariant ora-
cle offers an alternative to SS and TSS that may avoid
switching from snapping to empirical proportions in
TSS at a Zipfian specific dimension. This could be
useful for generalizing beyond the Zipfian setting and
we leave this for future work.

Finally, note that due to Berend and Kontorovich
(2013), estimators that use empirical proportions or
slight modifications (such as the EPE, the Good-
Turing method in Orlitsky and Suresh (2015), or Ab-
solute Discounting in Falahatgar et al. (2017)) must
achieve the slower polynomial rather than exponential
decay rates. The exponential decay rates of SS are
due to s (and consequently the probability values) be-
ing known. In a data analysis however, it is possible
s may not be known. This in combination with our
regime dependent upper bounds on the minimax esti-
mator in the s known case provides strong motivation
for a more careful study of Competitive Distribution
Estimation under L; loss in the Zipfian setting. In
particular: Will an adaptive variant of Sort and Snap
that estimates s first, and then performs the sorting
and snapping still yield an improvement over the EPE
and other non multiset oracle procedures such as those
presented in Orlitsky and Suresh (2015), Valiant and
Valiant (2016),Falahatgar et al. (2017), Hao and Orl-
itsky (2019b), and Hao and Orlitsky (2019a) for esti-
mating distributions that are s > 0 Zipfian?
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A TIGHT PERFORMANCE OF EPE

Berend and Kontorovich (2013) provide a general tight upper and lower bound for the performance of the EPE
that we will apply in our setting. As discussed in Cohen et al. (2020), letting

fG) 1 f()
. £G4) L 21 () 2v/n . £(3) Do f(t)
]E[k]:zf:;f(t)<; = ]E[k’}:zic:;f(w >1/n =
Then if for k > 2, p* € Py, ;, and
iid
Yig, Yok, o, Yor ~ p*
and p* is the corresponding EPE, then for k > 2
Mk~ 5= < BBk~ p* < 28,4(f) (15)
2 n,k 9 \/ﬁ = D D1 = n,k

This leads to the following theorem regarding the performance of the EPE for s—Zipfian laws

Theorem 4.1 (EPE for Exact s-Zipfian Laws). Suppose s > 0. Further let 0 < 8 < oo, p* € Py, 1 and k = [n”|
for n sufficiently large so that |n®| > 2. Also,

iid L
Ylk:aYVQk?"'aYnk ~p

and Pt is the corresponding EPE. Then

n-2(1-8) 0<s<1,8<1
1 0<s<1,8>1
-ia-m
= =1,0<1
J1og(m) s=L1p
oslog(n) ¢ _ 1 g

Blph =y |

Pr =P 1 =31 s=1,>1

iP5 1<s<2,8< L
ne—1 l<s<2,8>1
Log(r) 5=2
n2 5> 2

Proof. For j € N, % < n~! implies that j > (ﬁ)l/s. Therefore, with fs(z) = 2~°, we have that

1 1
A ) = i—s 4 c—s/2
k() = | > N > j
jEN:min(k,(H:J)l/s)qgk jeN:lgjgnlin(k,(H:S)1/5) (16)
L( n )l/sJ
1 k s 1 Hy s - _s/2 1/s
ij:((ﬁs)m N YT 2i—1 i (7) /s <k
1 k c—5/2 n_\1/s
o /Hron > j=1] / (H,H) /s >k
Observe also that for a, an increasing sequences in n and s’ > 0
ﬁ ((an + 1)175/ i ]_) s <1 an+1 / an / an / ﬁ (ailfs' _ ]_) s <1
log(a, + 1) §=1= / % dx < Zj_s < 1+/ x=% dz =1+ log(ay) =1
/ 1 i 1 ’
A= (an+ 1)) ¥ >1 =t Ac(l—al™) ' >1
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In particular,

a al=" 0<d <1
ijsl = < log(a,) s =1 (18)
i=1 1 s >1

Note equation 18 implies that
nfl=9) 0<s<1
Hp s =< qlog(n) s=1 (19)
1 s>1

Also, for b, a non-decreasing sequence such that 1 < b,, < k, we have that

= ((k: + 1) b};S’) s <1

k+1 k
log(k + 1) — log(by,) §=1= / = dx < Z j < / x5 dx =
1 (bi’S' —(k+ 1)178,> g>1 3=bn e

s'—1
/ ) (20)
1%5, (klis - (bn - 1)175 ) s’ <1

log(k) — log(b, — 1) =1
el (GRS S B

Now we will handle each of the 9 cases.
Case : 0<s<1,8<1

B < 1 implies that w > (. Using this and equation 19, we have that

n 1/s 1-B(1—s)
(Hk,s> =n— +  =wk)

1/s
In particular for sufficiently large n, (#) > k. Thus applying equation 16 and then using equations 18

(with a, = k and s' = 3) and 19, we have that

Mg (fs) = 2= 252 pB0=4) = =308 (21)

Using this and equation 15 the case conclusion follows.
Case2: 0<s<1,6>1

We first handle 8 = 1. In this case, by equation 19, (#)l = n. By applying equation 19 and 18 (with s’ = §

and a,, the obvious choice), we have that

L(H,H) ]
Z J = nTinm TRl < 1 (22)

1
2\/’1’LH}C’S =1

By a nearly identical argument,

75/2 < 1 (23)

; ﬁké Z
By equations 22 and 23 and equation 16, when 5 =1
An,k(fs) Z 1

Using this and equation 15 and that 1-norm is bounded above by a positive constant on the Simplex, the case
conclusion follows for 5 = 1. When 8 > 1, W < B. So using equation 19, we have that

1/s s
(HTZS) =n g o(k) (24)
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Using this and equation 16 and then equation 20 with b,, = f(ﬁ)l/s] and s’ = s, we have that

k
1 f—s —B(1-s —s n s7\1—s —B(1—s —s
MoalF) 2 S a0 (e D = () D) 2t 2 as)

H;
k,s j:"(H;S)l/S] k,s

Using this and equation 15 and that 1-norm is bounded above by a positive constant on the Simplex, the case
conclusion follows for 8 > 1

Case 3: s=1,8<1

By equation 19, we have that

(HZ)/ < =l (26)

Using this and equation 16 and then equation 18 (with ' = 1/2 and a,, = k), we have that

—i@1-p
—5/2 %7 B-3) = w (27)

\/ Z] Tog(n) Tog(n)

Using this and equation 15 the case conclusion follows
Cased: s=1,0=1
First using equation 18 with a,, = L(ﬁﬁ)l/sj and s’ = 1 and also equation 19, we have that

1

1 2 1

/nHy. = ( - ) X i— (28)
nHys log(n) \log(n) log(n)

nk fl

L))

Next, using equation 20 with b,, = [(— )1/31 and s’ =1 and also equation 19, we have that

k
log(log(n)) 1 E+1 1 ,7 1 k log(log(n))
S log(—— S IS log(—— S
og(n) ~ Togm) T ) S Hes 2 T T ST T =) S oo
=[(a— ,
(29)
Also, (ﬁ)l/s = o(k). Using this and equations 28 and 29 and 16, we have that
log(log(n))
A, = —— 30
xk(f1) log(n) (30)
Using this and equation 15 the case conclusion follows
Case b: s=1,0>1
Applying equation 20 with b, = [( ﬁ)l/ #] and s’ = s (and again using equation 19), we have that
k
1 - 1 n log(n”~!log(n))
> log(k +1) —1 — ) ) x = eV o 31
B O 0 R g (el 1) — a7 ) = (31)

jzf(ﬁ)”ﬂ
1/s
Also (T) = o(k). Using this and equation 31, and 16, we have that
k,s

An,k(fl) Z 1

Using this and that 1-norm on the Simplex is bounded above by a constant, and equation 15, the case conclusion
follows.
Case 6: 1<s<27ﬂ<%

By equation 19 and since 8 < %
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S

Also, applying equation 19 with a,, = k and s’ = 5, we have that

3 = 2 tA0-3)

[NIEY

s
=N )TL

N\A

k
=20
Hk s j=1
Using this and equations 32 and 16, we have that
Api(fs) = =2 tP0=5)

Using this and equation 15 the case conclusion follows.
Case T: 1<5<2,BZ%

First we will consider 8 = % By equation 16 we have that

1
s

()

J

k
1 1
: E —s E —8/2 E i—s/2 | <
i Hk:s J +2,/nHk,s j=1 2\/Hk5n ~
=l
) S
. [(z2=)+ ]
max

1 - -_(/2 : —/2
Hy, o Z J S+2\/nHk,s ]Z 7 ltfksnz1 ’

i=M(25)*] -

Also applications of equation 19,20,and 18 yield

n 1
& L( s

1 . 1 e
Hks‘ Z / 9+2\/nH;c,s ;

1 1 1 1
752 = pt0=8) L= t0-8) o i

Also, when g = <
k
VPO
By equations 34,35,and 36, we have that when § = =

Api(fs) =<ns""

Using this and equation 15 the case conclusion follows for g = % Ifg > %, then

()" =00

Using this and equation 16 and equation 35, we have that

k
1 ! :
A r(fs) < I i75/2 = pst
K1) Hk’s_[(ZﬁJ s 2
J= H;:J5

Using this and equation 15 the case conclusion follows for 5 > %
Case 8: s=2,6>0
In this case, using equation 18

(34)

(35)

(37)
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and using equations 20 and 18,

1
. (- )

)8

1 . 1 . 101 log(n)  log(n)
s s/2 _ (1-2) -
+ —— =n? + = 40
D R v Z ! NCERONN “0)
J=T(2=) 4 i=

By equations 39 and 40 and 16 and 15 the case conclusion follows.

Case 9: s>2,8>0

Using almost the exactly same argument as Case 8 (with the only difference being all sums are convergent), we
have that

Apk(fs) =<n~? (41)
Using this and equation 15, we have that

e k _1
Ellpn —p"l1 Sn™2
Knowing the asymptotic order of A, x(fs) is not sufficient to generate a matching lower bound in this case
because the upper bound rate is n~2. To match the upper bound, note that of course the mean 1-norm error

exceeds the mean absolute error of estimating the most probable category. That is,

E[py, —p"ll = Elpy (" (1) = p* (' (1)] (42)

Finally, note that the most probable category has probability ﬁ, which converges to a constant as n — oco. In
particular, applying line 2 of Theorem 1 of Berend and Kontorovich (2013), in conjunction with equation 42, we
have that

1 1

1 1 1
Ellp* —p*|l; > —n"2,/ —(1 — >n"2 43
1752 2 o [ ) 2 (43)
Thus the upper bound is matched and the case conclusion follows. O

In the process of proving theorem 4.1 we have derived the general asymptotic order of Hj ;. Because the
asymptotic order of Hj ; plays an important role in several other proofs in this document, we state here the
asymptotic order of Hj  as a separate lemma.

Lemma A.1. If k = |n?|, then for each 0 < w < 1 and n sufficiently large

%nﬁ(l_s) 0<s<1 lisnﬁ(l_S) 0<s<1
Blogn)  s=1  <Hu <{(1+w)Blogn) s=1 (44)
(I1-w)R(s) s>1 R(s) s>1

Proof. Follows immediately from the top two lines of equation 17 in the proof of theorem 4.1 and that Hy ; — R(s)
when s > 1 O

B PERFORMANCE OF SORT AND SNAP + MINIMAX LOWER BOUNDS

B.1 Guide

Appendix section B goes through the details of how upper (and lower bounds) are proved for Sort and Snap
and truncations of Sort and Snap. Because the proof strategy is lengthy, in this section we provide both a guide
to reading appendix section B, in addition to providing an outline of the proof.

With Yig, Yok, ..., Yo d p”*, and for j € [k], X, as defined in equation 2 — notating with X, instead of X,
because k is a function of n — and

X
Zjn = — —
ny/pr(5) (1 = p*(5))
and Z,, := (Z1n, Zon, - - -, Zrn) and carefully chosen y,, tending to zero, we will determine whether

P(|Zn —EZylloc > Xxn) (45)
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tends to zero, and if so, how fast. If we can argue that there exists an x, such that the error of Sort and Snap
is small when ||Z,, — EZ,||1 < x» and yet it is still the case that the probability in equation 45 is small, then we
can decompose the expected | - ||; distance between Sort and Snap and the true probability vector on this event,
and achieve reasonable bounds. This involves a search for well-balanced values of x,. (The proofs are slightly
more complex than just decomposing on a single event (to attain a better polynomial term on the outside of
the exponential in the g < % case); those aspects of the proof will be explained after explaining the single

event decomposition ideas).

Towards this end, a concentration of measure statement is developed in appendix section B.3. This is lemma
B.1, restated again here for convenience.

Lemma B.1. Let k> 2. IfY1,Y5,...,Y, & Categorical(p = (p1,p2,...,pr)) (i.e P(Y1 = j) = p; for j € [k])
and

X = (Z I(Y; = j))k_,

(so that X ~ Multinomial(n,p = (p1,p2,...,0k))), and Z; = n\/% forj ekl and Z :=(Z1,Za, ..., Zk).
Then for u,C >0

C?u? 1

P(||Z -EZ||w > Cu+ - )| < 2kexp(—
2 minjep v/p;(1 = p))

Section B.4 takes specific integers I(k) € [k] and determines the largest possible x;,, — now depending on I(k) —
such that the event

nu?C?

)

1Z, —EZ,|lco < Xn (46)

implies that the top I(k) counts are in perfect order. By the language, the top I(k) counts are in perfect order,
we mean that the count associated with the category with the j** largest probability is the jt* largest count
for j € {1,2,...,1(k)}. Note that when this is true and Sort and Snap is used for at least the top I(k) largest
counts, the error of Sort and Snap on the top I(k) largest probabilities is zero. And for this reason, section B.4
is aptly named Good Event Identification.

We are in search of sufficiently large values of x, so that P(||Z —EZ| > x,) is small; yet the value of x,
needs to be sufficiently small so that the event of equation 46 implies that the top I(k) counts are in perfect
order. It will be seen that if we desire more counts to be in perfect order (i.e I(k) is large), we will require
Xn to be smaller. And that if I(k) reaches a sufficiently large rate of growth, nﬁ, it is no longer possible to
simultaneously choose x, large enough so that P (||Z —EZ|| > x,) decays to zero and Yy, is small enough so
that the top I(k) counts are in perfect order.

B.1.1 Segmentation identifies good events

We want to determine the largest value of x,, in equation 46 such that the top I(k,y) = k7] — 1 counts are in
perfect order, where 0 < v < 1. (The reason for doing this not only when 4 = 1 but also when v < 1 has to do
with achieving a better polynomial term on the outside of the exponential decay and this will be elaborated on
later.) For p € Py,  (with permutation function 7mx) and k > 2 and 7 € [k], define

D, ; = min 1) —p(J

i = min_[p(i) ~p()

Dp ) gives the distance to the closest adjacent probability for the j** largest probability in p. Also, for x,
to be chosen later, let

Spin = Xn/PO(1 — (1))

S Xelorm

P ()n
equation 46. Also, let

is the width of the ball around the j** largest probability that contains under the event in

Bp,i,n = (Lp,i,na Up,i,n) = (P(Z) - Sp,i,mp(i) + Sp,i,n)
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X 1,
— YN Now suppose Yy, is set sufficiently

Under the event in equation 46, Bp is the part of R containing

T (G
small so that

1 .
Sp)ﬂgl(j),n < gDp,ﬂ_k—l(j) for each j € [|k7]] (47)
Because convexity of fs(z) = ~° ensures that D, ) is decreasing in j (see lemma B.4), the above assumption

implies that By, -1, lies strictly above B, _ for j € [[k7| —1]. Also, since p € Py, x, S

e G+1),mn P,y
p(m;,*(j)) are monotonically decreasing in j (see lemma B.12). In particular, for any probability that is not
one of the top | k7] largest, the top of its ball does not rise above the top of the ball for the | k" | largest probability.

L)m and

This allows us to conclude that if x,, is set sufficiently small so that equation 47 is satisfied, then under the
event in equation 46, the top I(k,~y) = | k7| — 1 counts must be in perfect order. The remainder of this section is
thus devoted to answering the following question: what is the largest value of x,, in which equation 47 is satisfied?

To this end, set
Xn = Cin~7te (48)

for a C; and e to be determined later. First note that with this choice x,, any power e < 0 will yield probability
not decaying to zero in the application of lemma B.1; so we are now looking for a e > 0 that ensures equation
47 is satisfied. To this end we construct an infinite collection of sets Ri., Rae, R3e, ... such that

1. For each j > 0, there is a a(j)
2. a(0) =1 and for j; < ja, b(j1) < a(Ja)
<

3. For each j > 0, Sp’ﬂ_k—l(a(‘j))’n

And the functions a and b depend on the choice of e (and C4) through condition (3). The segment R, contains
all the indices corresponding to at least the a(j) largest probability and at most the b(j) largest probability. And
because p(m;, ' (j))(1 —p(m;; ' (§)) is decreasing in j (see lemma B.12) and Dp)ﬂlzl(j)) is decreasing in j (see lemma
B.4), by condition (3) above, for i € {a(j),a(j) +1,...,b(j)},

(3
1 < 1D

S. <SS 0

ot () < Sprtanm < 3Ppiten) < 5 (49)

Thus for any J > 1 and each of the largest 1 < ¢ < b(J) probabilities, equation 47 is satisfied. What remains is
to argue that there is a way to choose the sets Roe, Rie, Rae, - - -, so that (1),(2),(3) are satisfied and that for
every i € |k7], there is a j such that 7, *(i) € Rje.

The strategy is as follows: If we set a(j) = [k%7] for some 0 < ¢; < 1, we intend to select b(j) = |kS+17] for

some (j+1 > ¢;. In particular, ;41 is selected so that n*%“\/p(wk_l(a(j))(l —p(m;; ' (a(j))) < Dy =1 (wi+17))
g

In the proofs, constants are tracked on the left and right side of the =< so that we can make an appropriate

selection for C. This selection process yields a sequence of ¢ values {(; 520 (with (o = 0) such that for j > 0,

a(j) = [K97],b(5) = (k7]
and for j > 1
a(j) =b(j —1)

Selection of a small e will allow ;1 to be much larger than (;. And this will allow U72,Rj. to cover a higher
number of largest probabilities. But the cost of a small e is a small x,, which means the complement of the event
of interest, ||Z,, —EZ,||1 > xn, will have a high probability. A balance is struck by setting

. 1—=8(v(s+2)+max(0,1 — s))
2
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when § < % where B(s) = 2 4+ max(1,s). With this choice for e (formally specified in equation 66 of the
appendix) and choosing Cy = 7”2”1 (where C; p is formally specified in equation 6), and {¢;}32, (formally
specified in equation 73 of the appendix) ! as
1 1+ 5871 1 1-s .
=0, = — - = 0, - fi >1
=06 = gy (T ) - e (05 )

we show in lemma B.3 that lim; .., (; = 1. Specifically, this choice of e allows us to cover the |k7| largest
probabilities without overshooting. Lemma B.6 provides the full details of the argument, which yields for every
0 < w < 1 some N such that for every v in a constant sized neighborhood around 1, there is a single N such
that for n > N, the event ||Z,, — EZ,|l; < (1 —w)Cn~2*¢ implies that the top I(k,~) elements are in perfect
order. In the precise theorem statement I(k,~) is defined £1 of the I(k,~y) discussed in this section, but this
makes no conceptual difference to the arguments explained in this section. Helper lemmas B.4 and B.5 establish
non-asymptotic lower bounds on the D distance which are crucial to lemma B.6. That lemma B.6 is uniformly
true for sufﬁciently large N across 7 values in a neighborhood of 1 will play a role in the full strategy of the
proof for § < which will be detailed in the next subsection.

B()

When g > %, we can only establish the existence of a good event for the highest =< nB probabilities for

€ > 0 arbitrarily small. (This is because the nB highest probability satisfies that the order of the standard
deviation of the empirical proportion for this rank is the same as the order of the D distance at this rank). This
is done by setting

€
~ SBB(s) (50)
as in equation 66.

Two final notes are in order. The first is that to formally argue that the complements of these good events actually

have small probability using lemma B.1, we have to convert x,, into the form Cu,, + ui%z # This
minje (k] \/ PjL1—Pj

1 = o(uy). This argument is carried

mlnge[k] p (1-pj)
out in the 8 < B%s) case in lemma B.2. For s > 2 and 577 < 8 < ¢, this argument is carried out in equation

— Xn

is possible by setting Cu,, and then arguing that u2

157. For B > %, it is no longer possible to argue that the becond argument will be asymptotically dominated
by w,. This is resolved when s > 2 by constructing a new Multinomial distribution that groups together all
categories with probabilites no larger than the Lnlj largest probability. (See section B.7 for details). The second
is that in lemma B.6, when s = 1, there is an additional log factor in yx,, (see equation 67 for the definition of
€+,2). This is because when s = 1 the normalizer grows at a log(n) rate.

B.1.2 Sort and Snap upper bounds when 5 < B(S)

The upper bound proof for Sort and Snap in the g < % case is theorem B.7. For a 7, growing towards 1, we
use two good events. Ajy is the event that the top I(k,v;) — 1 counts are in perfect order. Agy is the event
that the top I(k,7 = 1) = k counts are in perfect order. The expectation is decomposed on these events as in
equation 112.

When Ay occurs, Sort and Snap yields no error, so there is no contribution to the expectation. There are only
two events left over. They are Azc,C N Ay and Agk N Alck. For the latter event, the only reasonable upper bound
on the 1-norm between Sort and Snap and the truth is constant sized, but P(AS, ) is controllable using the ideas
of subsection B.1.1. For the former event, because the top I(k,~;) — 1 counts are in perfect order, the worst
case error of Sort and Snap is not worse than k — I(k,~x) 4+ 1 times the error of the count associated with the
I(k,~y) largest probability being the smallest count. And we again use the ideas of section B.1.1, this time to
control P(A$)).

Note ¢; can be sunphfied to 55 +1)CJ 1+ 2 € +1 ; the more verbose way of writing (; is used to simultaneously also

express (5 in the 8 > case; specifically the only dlfference between the definition of ¢; in the two cases is the different

B( )
choice of e. See the below for the choice of e in the 5 > ﬁ case).



Estimation of Large Zipfian Distributions with Sort and Snap

For 5 < ﬁ7 the Le Cam minimax lower bounds (see theorem B.8) involve flipping the last two probabilities,

which yields a 1-norm error of n=#(B()=1 In order to match the polynomial on the outside of the exponential
in this lower bound (up to the union bound factor k) 2 we need to find 7; so that

P(AS,) < ( Worse Case Error Of Sort and Snap under event A1y, N AS,) x P(A$)) (51)

and
( Worse Case Error Of Sort and Snap under event Ay, N AS,) =< n~#(BE)-D (52)

There is again a balancing act, this time based on the selection of ~y. v must be selected sufficiently small so

we can satisfy criteria 51. But for a very small value of 7y, the 1-norm error on the back end is too large and

criteria 52 becomes impossible to satisfy. With the choice of v, given in equations 108 and 109 we strike a perfect
1

balance for f < B and are able to precisely match the polynomial term (up to the union bound factor) in

our Le Cam lower bounds. When ﬁ <pB< %, the choices for vy satisfying criteria 51 all yield 1-norm
error on the back end exceeding n=#(B(*)=1) and in the final statement of the upper bound this yields the extra
non zero polynomial factor n2(#(B(s)+1)=(1=7)) for arbitrarily small 7. This extra factor does not appear in the
Le Cam lower bounds.

B.1.3 Sort and Snap upper bounds when g > B%s), 5> 2

Here we describe the main ideas of theorems B.9 (which covers ﬁ < B < 1) and theorem B.10 (which covers
£ > %) The deviation between the proof strategies in these two cases is minor, so first we describe arguments

that are common to both of these proofs.

Specifically, we use a truncation of Sort and Snap; namely Sort and Snap is used for the top
= |nsH2 "¢

largest categories in the sample for e arbitrarily small and then the EPE is used as the estimator for the
remaining categories. The event As j indicates that the top Lnﬁ_ej counts are in perfect order. When As j, is
true, the only error left is the error of estimating the EPE in the tail. Also, using the Segmentation approach
it is argued that ]P’(Agk) decays at an exponential rate. What is left is to compute the EPE error for the tail
probabilities. After bounding expected absolute deviation, Riemann integration is used to upper bound the
error of the EPE in the tail. This leads to the upper bounds of equation 163.

Note that when the EPE error in the smallest tail such that exponential error rates are achievable in estimating
the head is of the same order as the EPE error for estimating the entire probability vector (which occurs when
s < 2), there is no benefit to using truncated Sort and Snap over using the EPE. This is why when § > %
and s < 2, we do not present Sort and Snap upper bounds as a part of the main results; one may as well use
the EPE on the entire probability vector in this case.

The argument in theorem B.9 used to upper bound P(Agk) does not work when g > % The issue is that x.,

is not the dominantly small term in Bernstein’s inequality because the min; y/p;(1 — p;) is too small. For this
reason, there is a separate proof for the § > % case. It is provided in theorem B.10. In this case, we use a new
Multinomial. It groups together as one category all of the categories that are not one of the largest Lnlj -1
categories. Even when s > 2, this new category is large enough so that x,, is now the dominating factor. The
proof now proceeds similarly to theorem B.9.

B.2 A note on use of the letter N

In the proofs of appendix B, the following notation ambiguity regarding the use of the letter N is used: In a
single proof, one may see the following sequence of statements:

2The extra factor k, due to the union bound, is likely also removable using the methods of Talagrand so that there is
a completely tight match in the polynomial on the outside of the exponential, but we do not investigate that in this work
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1. There exists an N such that for n > N, statement A holds
2. There exists an N such that for n > N, statement B holds

3. Now suppose n > N
The question thus arises, which value of N is being referred to in (3)? The one indicating statement A or the
one indicating statement B? If the N indicating statement A is denoted N; and the N indicating statement B
is denoted statement No, then both A and B are true for n > N3 = max(N7, N3). Rather than introducing an

unwieldy large collection of N; variables in these proofs, we reuse the letter IV repeatedly. The reader should
keep this in mind.

B.3 Infinity norm concentration of variance adjusted Multinomial

Lemma B.1. Let k> 2. IfY1,Y5,...,Y, ] Categorical(p = (p1,p2,...,pk)) (i.e P(Y1 = j) = p; for j € [k])
and

(so that X ~ Multinomial(n,p = (p1,p2,...,pk))), and Z; = % forj€lk] and Z .= (Z1,Za,..., Z).
ny/PiL—=Pj
Then for u,C >0

2,2 22
P(IZ-EZ)wzcus &8 ) < 2kexp(- "
2 minjep v/pi(1—p)) 4

Proof. For i € [n] and j € [k], let

1
Wi i= — e (I(Y: = ) ~ 1)
T (1)) ’
Then for j € [k] and ¢,t > 0, by Markov’s inequality

P(Z; —EZ; > ¢) <Eexp(t(Z; — EZ;)) exp(—te) = ]Eexp(tzn: W,;;) exp(—te) (53)

=1

Now using the taylor series form of exp(z) and that » 77, % = e — 2, note that for |z| <1

STy
|exp(ac)—1—x|SZTSxQZﬁ:xQ(e—Q)Sﬂ (54)
j=2 j=2
Now note that |le| S n\/ﬁ Therefore,
t
[tW35] <
pi(1—p;)

In particular, as long as ¢t < ny/p;(1 —p;), we apply equation 54 to get that with probability 1
|6Xp(tWij) —-1- tW1j| S tZij (55)

Taking the expectation on both sides and then applying Jensen’s inequality for the absolute value on the left
hand side and then using that EW;; = 0, we have that when ¢t < ny/p;(1 — p;)

|E exp(tWij) — 1‘ g t2V(WiJ‘) (56)

Using this and that 1 + z < exp(z) for every z, we have for every i € {1,2,...,n} and j € {1,2,...,k} and

t <ny/pi(1l—pj)

Eexp(tWij) <1+ °V(Wy;) < exp(t*VWy) (57)
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Using this and equation 53 and that V(W;;) = - for each i € [n] and j € [k] we have that for j € [k] and
t <ny/pi(1—pj)

P(Z ~EZ; > ) < [ | BexpltWiy) expl(~t) = exp(~te) exp(=) = exp(~(te - L)) = exp(-g(t) (59

=1

n

where g(t) = te — % g(t) is maximized at t7 = 5. Also, let t5 = ny/p;j(1 —p;). So when t} = & <t =

n+/p;(1 — p;) we have that

Tl62

P(Z; —EZj 2 €) < exp(—g(t1)) = exp(——-) (59)

And if ¢7 > t5, we have that

t5)? en/p;i(1 — p; t5
g(t3) = t5e — 2L e g Sor (U= py) > te M =ty -ty =2 (60)
n

In particular, when ¢ > t5

et ne

P(Z; ~ BZ; > ) < exp(~22) = exp(——p—) (61)
pj(1-p;)
By equations 59 and 61, we have that for j € [k]
. 62 €
P(Z; —EZ; > €) < exp(—nmin R — ) (62)

\/pi(1=p;)

By the same inequality holds for —(Z; —EZ;). Thus now applying the union bound, we have that for e > 0

k 2 1= 1 2
P(|Z —EZ|| > €) < 2Zexp(—nmin 6—, Vil =) ) < 2kexp —nmin(e—7 ; )] =

4 2 4" —e
minje k] /5 (1=p;)

2ke nmin(62 6)

xp [ — £ L

p dgvdl

(63)

j=1

where d; ;= ——2— and dy = 2. Now for a > 0, let ¢ = a%d; + ady. Applying equation 63, we have
CT e Ve 0 1 +ads. Applying eq

that
a4d% + a2d§ a%dy + ads
d3 ’ dy

P(|Z —EZ| > a®dy + adp) < 2k exp(—nmin ( )) < 2k exp(—na?) (64)

Finally, set a = % for u > 0 and the lemma statement follows from equation 64. O

B.4 Good event identification

This section lays the foundation for the proofs of the upper bounds for SS and TSS.

Let s > 0 and 8 > 0. We define the inverse of the intermediate dimension, depending on s as
B(s) := 2+ max(l,s) = s+ 2+ max(0,1 — s) (65)

The equivalent forms of B(s) provided will be useful later. For each 0 < v < 1, we define two quantities e, 1, €2
that will index the radius of the infinity ball around the normalized multinomial. Also let € > 0.

B {;5B<s> B> phy.s>2
6%1 = 1

1—B(y(s+2)+max(0,1—s)) (66)
0i . B <

B(s)
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and

1
3 321,5>0

6%2::{0 s#£1,8>0 )

€41, €~,2 of course depend on 3, s, but they are suppressed in the notation without causing ambiguities.
Lemma B.2. Let s >0 and 0 < 8 < B%S) and k = [nP| (for each n large enough so that [n®] > 2). Also let

C > 0,w >0 and for £ > 2, let p* € Pr.e. Then there exists a single N and a 0 < I's < 1 such that for every
1>~v>Ts andn>N

2

C
Cn=2ten log(n)~%2 + (n_%“*1 log(n)~2)? — (1+w)Cn~ 3ter log(n)~%?

2 min; jer VPR (1 —p

Proof. First note that

B +2)+ x(0,1—
n_%_,_eml _ — By(e42)+max(0,1-2))

(68)

and since p* is s—Zipfian and the order of Hy, s (lemma A.1), and the definition of e, » (see equation 67), we have
that

1 1
R e e . _ <
mine( VP )1~ P2 0)

log(n) %2 mn—ﬁ(w(s+2)+max(o,1—s))ks/z <

ne 0<s<1 (69)
log(n) 2672~ A(1(s+2)Fmax(0,1-)) log(n)n% s=1 =
n s>1

logfen,,z (n)n7ﬂ(7(s+2)+max(0,1fs)fW)
Now note that if for T'y,T" € (0,1) such that I'y > T' > 1 + 2(5+2) (max(1,s) — max(0,1—s)) = + + oy e
have that

i (s +2) + max(0,1 — s) <
’YG(FSJ] 2

(s +2) + max(0,1 — s) -

S (70)
I'(s +2) + max(0,1 —s) — w <
max(1, s)

i 2) + 0,1—s)—
wel?rl?,lﬂ(H) max( s) 5

Using equation 70, we have that for any Cy > 0 there is a N (depending on C4) such that for every v € (T's, 1)
and n > N

n—B(Y(s+2)+max(0,1—s)— 22x{0))

n—ﬁ(l—‘(s+2)+max(0,l—s)—%l’s))

IN

( (s+2)+m;x(0,173) )

Cln_ﬁ
Cln

IN

('y(§+2)+n121x(0 1—s) )

Using equations 69 and 71 and setting C; = 2“’ yields an N such that for n > N and each v € (T, 1]
2, C°

2mm k]\/ Y(1—p

where the equality in the above line is due to equation 68.

ﬁ( 7(S+2)+mzaX(0,1—S) )

(=2 tev1 log(n)~"2) < log™*"2(n)Cwn™ = Cwlog™®2(n)n~ 2+

(72)

O
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Now recursively define for § >0and 0 <y <1and s >0

) 1 1+s - 1 1-s
Co,y :=0 and for j > 1,(j~ = 2Py < 539 Ly 67,1> - ;max <0, 2(5"'1)> (73)

Note (;, only depends on vy when 8 > 5 ) This is because 7 cancels when plugging in e, ; (defined in equation
66) in the 8 < zry case. Specifically, When B< g S)

o= 1 1+ sBvG-17  1-B(y(s+2) +max(0,1—35))) 1 0 1—s \
T By(s+1) 2 2 e GabTEE Y
1
B+ 1) (BysGi-14 +Br(s+2)) = (74)
s s+ 2
DY TG

Lemma B.3. Let s >0 and 0 <y <1landf>0and0 <e< ﬁ%@). Also suppose either 0 < 8 < B%S) or
s> 2. Then (. is strictly increasing in j for fized v and ;- is non-decreasing in y for fized j and

{1 B<ﬁ

1 €
mer ~ 5 P2 Ee

lim =

s> 2

Proof. We will first use induction to prove that for j > 1 for any (3, s) specified by the lemma statement,

G = (2290~ Lo, 22 )) SO 2y (75)
o (2 Z max(0. —— 2 -
PTUABY(s+1) 2s+1)7) =r2(s+ 1)
For the base case, note that since (4 = 0, we have that
1-1
€y,1 1 1-s 1 s .
——— — —max(0, ///——= - ’
Gy = (57(5 +1) ( 2(s + 1))> t:O<2 (s+ 1))
Suppose equation 75 is true for some j > 1. Then
1 . t
3 €y, 1 —s -1(1 s
1 1+s8y ((Bv(sjrll) — 5 max(0, 2(s+1>)) 2i=o (5 <s+1>) ) 1 1—s
<j+1,'y == B’Y(S i 1) 9 — €41 max (07 M) —

1 1 s 1 1—s \%=/1 s \'\ 1 1—s
CEE) (2 ~ent gy (5 e 0 500) 3 () ) gy T

ie1 1 1 1—s
527(5 gy + D) (2 — ey,1 — max(0, 2)5) Z

1—e1 1—e1 1 1-s /1 s Lo 1-35
eyt (627(8 R T 1>)> 2 2Grn) 50
3 " €y1 1 1—s 1 s
(ﬂ’y(s+1) 0.5 +1))) Z;(Q(Hn
(76)

Thus by induction equation 75 holds for every j > 1. Using this and that by definition e, ; is non-increasing in
7, we conclude that for each j > 1, v(; 4 is non- decreasing in v. To conclude that (;, is strictly increasing in j

vl Lmax(0 ) > 0. When 8 <

Bv(s+1) 5 , by definition of e, 1 (see equation

it is sufficient to show that

’ 2(s+1) B(s
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66), we have that

1
5—ey1 1 1=
_— = — 0’ 2(0s+ 1)
N RS} R TRV
1 3~ e Lo )
. — max 07 e =
v(s+1) ( p ( ’ | (77)
1 (5(7(5 +2) Fmax(0,1-5) s, 1_8)> -
v(s+1) 26 :
542
— >0
2(s+1) g
And when 8 > % and s > 2, again by definition of e, 1, and now using that ¢ < ﬁ%@
1
3 — Cy,1 1 1—s 1~ cAB(s)
P ) . 78
By(s+1) 7~ max( 2(s + 1)) 26v(s +1) -

By equations 77 and 78 we have conclude that whenever § < % or s > 2, (;, in increasing in j. Finally,
taking the limit as 7 — oo in equation 75 and using the formula for a geometric series and equations 77 and 78
we conclude that

o2 1 1
fim ijzﬂ{?(ﬁﬁg() 01<5<B(s) :{1 1 01<5<B(s) (79)
j=roo =5 e 39 =P5>2 \mem 5 Be =Hs>2

O

Now for k > 2 and p € S, and i € [k], define the distance to the closest adjacent probability from the probability
of the i*" category as

D, ; = min 1) —p(J 80
pi = min_ [p(i) ~p() (50)

Lemma B.4. For s >0, k> 2 and p* € Py, 1 with permutation function my,

s(k—1)—fs(k o, s(2)—fs(2
1. Dpk7w;1(k) = % and if i € [k — 1] then Dpkﬂ.(;l(i) = %’W
2. For 11,179 € [k], Zf’il < ig then Dpkm;l(il) > Dpk,wgl(z@)
Proof. Recall for i € [k], p*(m, ' (i) = % = ZST(Z) Also since fs is monotonically decreasing, the minima
j=171s s
in equation 80 is realized by an adjacent index. That is, for ¢ € [k]
fs(l)_fs<2) =1
.Dpk)ﬂ_k—l(i) = T min(fs(i — 1) — f5(2), fs(i) — fs(i+ 1)) i€{2,3,....,k—1} (81)
7 fs(k_l)_fs(k) i=k

For each ¢ € {2,3,...,k — 1}, by lemma B.11 with 2y =i — 1 and 23 = 1,
min(fs(i - 1) - fs(z)vfs(z) - fs(7’+ 1)) = fs(z) - fs(7’+ 1)

Using this and equation 81, we conclude (1). Specifically

D _ 1 fS(i)ffs(i*Fl) iG[k*l]
Pk () T Hy, fs(k_ 1) . fs(k) i—k

Now let 41,142 € [k — 1] and ¢; < i2. By equation 82 and using lemma B.11 with 21 = 4 and z2 = i2 (noting that
i1 — iy > 1), we have that

(82)

f8<i1) - fs(il + 1) > fs(i2) - fS(i2 + 1) _

Dpk,ﬂ,zl(il) = Hk,s - Hk,s Pk,ﬂlzl(iz) (83)



Estimation of Large Zipfian Distributions with Sort and Snap

Also if 41 € [k — 2], then again using lemma B.11, this time with 2; = 4; and x5 = k — 1, we have that

) = ) fE= D= fE)

B T Hy = Hy., pk it (k) (84)

And finally, note that Dpk’ﬂ_k—l(kil) = Dpk.mk_l(k). Using this and equations 83 and 84 we conclude (2).

O

Lemma B.5. Let s >0 and 8> 0 and 0 < e < B%@ and k := |n?] (for each n large enough so that |n®| > 2)
and for ¢ > 2, p* € Py, .0 (with permutation function denoted m¢). Also, suppose either 0 < 8 < B%s) or s > 2.

Then for any 0 < w < 1 there is a N such that for every 1 > v > % and every j > 1 andn > N

B(1—s)

(I-s)p~ "z 0<s<l1
log™*(n) s=1 (85)
1 s>1

el B W
e (6755 )y 2 S(1—w)n (5= &)

Proof. By lemma B.3, v(; , is strictly increasing with limit at most 1 for fixed y. Therefore we have that
|k | <k
for every j > 0 and 0 < v < 1. Thus applying lemma B.4 part (1), we have that for j > 1
1

Dt isony = 7 (o (B097]) = a7 ] 1) =
i (stanp-oen - D e (56)
i (sepeorn - LD o yieen)

where ¢; € [[k?7], k7%~ | + 1] and a second order Taylor series expansion of f, about [k7%7] has been
applied to get the second equality in the above equation while the inequality in the above equation is due to the
monotonicity of fsys.

Now using that (o, = 0 and that by lemma B.3, both (j  is strictly increasing in j for fixed v and that v(; - is
non-decreasing in v for fixed j, we have that

sup max([K67 ) < sup (K96 ) < (K50 71 = o) (87
1>y>1 721 127>3

Thus for w; > 0 there exists an N such that for all n > N

2
sup max(|k79 )7t < !

88
1>7>3 ji>1 ~s+1 ( )

By equations 86 and 88 and the definition of (; ,, we have that there is a single N such that for every 1 > v > %
and j >1landn> N

1 o (s+ 1) o s(1—wr) o
YCiv (s+1) _ YCiv (s+1) YCiy 1 2N LGy (s+1)
Dy uossoyy = o (31097 T (6o e (61 ) > S oo e
s(L=w1) gyt
Hk,s
S(l — wl)niﬁv(yrl)(ﬁv(iﬂ) (1+5Bv24j—1,w 76%1)7% max(0, 2(8;1))) _

Hk,s

S(1—wr) —(HEEEa e ) 4B max(0,15%)
Hk,s
(89)



Peter Matthew Jacobs, Anirban Bhattacharya, Debdeep Pati, Lekha Patel, Jeff M. Phillips

By equation 89 and lemma A.1 for an upper bound on Hj, s, we conclude that for any ws > 0 there is a N such
thatforevery127>%andelananN

_B@-s)
eie (I—s)n"" = 0<s<1
(e, -~
Dyp it (ir6a )y 2 8(1 —wa)n (55 ) x %}Og Y(n) s=1 (90)
I30) s>1

At this point the reader is reminded of the constant, C7 4, introduced in the main body of the paper, that plays
a role in the remainder of the proofs.

1—-s5s O0<s<1
C:”B:sz % s=1 (91)
% s>1

Lemma B.6. (The Good Event) Suppose s > 0,3 > 0 and for £ > 2, p* € Ps_ o (with permutation function
denoted 7¢) and k := |n”| (for each n large enough so that |n”| > 2). Also assume either 0 < 8 < i or

B(s)
§>2 and0<e<ﬂB#(S). And let
Yik, Yakr o Yor ~ p*
where for j € [k], p*(j) = P(Yix = j). Also, for j € [k], let X;n =1 I(Yip = 7) and let
X
Zjn = — :
ny/p*(7)(1 = p*(j))
and Zn, = (Zin, Zony - - -y Zkn). And define for 0 <y <1
|k ], K ¢N0< B < 55
K] —1 E"eN,0< B < 5
Ik, 7€) = Lkzj}m—e EAGTD € Ifl >B(S)1 2 (92)
I_ ‘1 _J . _¢ ’ﬁ—B(s)’8>
BT 1 TN A2 phs > 2

Then for any 0 < w < 1 there is a N such that for every % <v<landn>N
(I-w)/Cis
1Z, —EZ,| < frfﬁe%l log™*2(n)| C

Xﬂ_;1(1)7n > )(Tr):l(g)7 > > Xﬂgl(l(k and Vj € {I(k’,’y,€), e 7k}7X7r;1(I(k,y,e)—1),n > Xnk—l(

n ,v,€)—1),n J)m
(93)
And when 0 < 8 < ﬁ, for this same N andn > N
(1-w)/Cis
1Z, —EZ,||oo < —————n" 21 log" 2 (n)| C
2 (94)

Xw,;l(l),n > Xﬂ;1(2)7n > > kajl(k—l),n > Xw,:l(k),n

Proof. By lemma B.3 there exists a J € {1,2,3,...} (depending on k) such that

Lk’YCJWJ = I(kv Vs e)
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Also by definition, ¢y, = 0 and by lemma B.3, (; - is increasing in j. Therefore,
1= [EY07 | < [k < K762 | <o <[RS9I | < LRV | = Ik, 7y, €) (95)
In particular, for each i € [I(k,~, ¢€)], there exists a j; € [J] such that
[t ] < < [ (96)

Using this and the definition of p* and lemma B.12, we have that

\/p’“(ﬂil(i))(l —ph(m (1) < \/p’“(ﬂgl(LkWCﬂ'i*”J))(l —ph(m (K710 ) (97)

Also recall that by lemma B.3, for each % <v<landj>1

1 1
VG 2 5@,% > 5@,% >0
o I
In particular, for 0 < wy < 1 and each n sufficiently large so that k > (w%) Lz and n > (w%) Lz we have that
for%<'yglandj21
Uﬂcmj > k79 — 1> (1 —w)E7% > (1 - wl)(nBVCM -1)>01- wl)2nBva (98)

By definition of p¥ and ey1 and the ¢ terms and the lower bound on Hy, (lemma A.1) and equation 98, for
0 < wy < 1, there exists an N such that for each i € [I(k,v,¢)] and § <y <1landn> N

“li. —e _ )} _ )}
n e log ™0 () [ph (K610 ) (1 - ph (K792 )))) <
log ™57 (n)H f et (6 )=/ <
_ (1—001)7‘9 _1 _BysGii—1,y
log=*"%(n)——==—n"2""n 2 <
\/Hk,s
_ -5 _ 1+357<ii*1v7_e (99)
logfe»y,z(n)(l UJ1> n < 2 "’*1) S
\/Hk:,s
o () (1—s)in= 5" 0<s<1
(1 —w) Ctaln ? ") % Bz log " H(n) s=1
R(s)"= s>1

where in the last line we have used the definition of e, s (see equation 67). Using equation 99 and lemma B.5
(and the definition of C; 5 given in equation 6), for 0 < wy < 1, we have the existence of a single N such that
for each £ <~y <1landi€ [I(k,v,¢)] andn >N

(1—w)™+9/2,/C3
2

e Tog 01 () [p (K510 ) (1 — ph(y (LK 1))) <

B(=s)

— * SBrC; g 1— L _ 1
(1 wl)\/@ _(%_e“) (,; 8)2_711 = 0<s<
- 5 " X { B2 log” " (n) s=1 =

2 1
R(S)7§ s>1 (100)
438vC), 1. (1-— s)n‘m%s) 0<s<1
(1 — wl) *(flie%l) 1 —1
o x 54 B tog™ " (n) s=1 <
R(s)™1 s>1
1

3 Dpr w7400 )
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Thus by lemma B.4 (2), and equations 96, 97 and 100, we have that for any 0 < w; < 1 there is a single N such
that for each 3 <y <1andi¢€ [I(k,v,¢)] andn >N

(1-w)*t3, jCy,
1 ﬂn—1/2+em1 log™®"2(n) \/pk(wk_l(i))(l _pk(ﬂﬁl(i)) < %D (101)

B k(i)

Now let v € (%, 1] and » > N and suppose

(1- wl)s+%\/0;,ﬂ 1
120 — EZ|oo < 2 n= 2 log™ 2 (n) (102)

and let ¢ € [I(k,~,€e) — 1]. Note that since v < 1, by equation 92, I(k,v,e) < k and thus i,i + 1 < k. So by
equations 101 and 102 and lemma B.4 (1) and lemma B.11, we have that for n > N

Xﬂle(i)’n > fs(i) lD = fs(i)  fs(@) = fs(i+1) _ fs(i+1) 4 fs(i) = fs(i+ 1) >
n Hk,s 2 pk,ﬂ'k @ Hk,s 2Hk,s Hk,s 2Hk:,s -
fs(i + 1) + fs(Z + 1) _ fs(z + 2) _
Hk,s . 2Hk,s (103)
fi+1) 1
Hy. T 27pmlen ”
lezl(i+1),n
n

Also, using that f, is monotonically decreasing and lemma B.12 and using equations 101 (with ¢ = I(k,~,¢€))
and 102 and lemma B.4 (2) and using the first two inequalities of equation 103 with ¢ = I(k,~,¢) — 1, we have
that for ¢ € {I(k,v,€),I(k,v,¢)+1,....;k} andn >N

Xﬂgl(f),n

n

f  (G-w)TE o,

He. 2 b g6 () [ (m (0) (1 - P (1 (0) <

¢ (I—w)*t2,/CF .
Llh7,9) 4 e tog = () Jpr (1 7, D) (1 —pHG T7,) £ g

Hy s 2
folI(k, v, €)1

H, . 3PPk (1) S
Ly -1) 1 3
Hps 2 Pk (I(ky,e) 1)
X

m,  (I(ky,6)—1),m
n

Since equation 103 holds for every i € [I(k,~,€) — 1] and equation 104 holds for every ¢ € {I(k,~,¢€), I(k,v,€) +
1,...,k}, we conclude that when equation 102 holds and n > N

Xﬂ'k_l(l),’ﬂ > X‘n’,zl(2),n > > Xﬂ_;l(I(k ) and V0 € {I(k,v,¢€),I(k,v,e)+1,.. "k}’Xﬂ'k_l(f),n < Xﬂ'kfl(l(k,'y,e)fl),n

1,6 —1n
Equation 93 follows recalling that these arguments hold for each v € (%, 1] whenever n > N and that for every
0 < wy < 1 there is such an N.

Finally, to conclude equation 94 when 0 < § < %, note that by equation 101 (with ¢ = I'(k,1,¢) = k — 1) and
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equation 102 and lemma B.12 and lemma B.4 (1), we additionally have that when n > N

Xn,gl(k—l),n S
n

fs(k—1) 1
Hk,s - 5 p’“,ﬂ'k_l(kfl) =
fs(k — 1) - fs(k — 1) — fs(k) _
Hk:,s 2Hk,s B
fs(k) + fs(k B 1) _ fs(k) _
Hk,s 2Hk:,s B

fs(k) (105)

1
H, 2Prmteon =

1—w1 S+% C*
o) B O s gt oA DT~ 1) >

1-— w1 S+%, /C:
fs(k) ( ) s n—1/2+€w,1 logfewﬂ (n)\/pk(ﬂlzl(k‘))(l — 71'];1(]6)) >

X‘n',:l(k),n

n

By equations 103 (which applies for each i € [k —2] when y =1 and 0 < 8 < B(S)) and equation 104 (which
wheny=T1and 0 <8< 3 ) ensures X (k1) and X (k) AT€ the two smallest counts) and equation 105, we
have that under assumptlon 102 and for n > N and provided 0 < 8 < B(S)

Xt > Xat@m > > Xty > et m (106)
Thus equation 94 of the lemma statement holds. O

B.5 Upper and lower bounds when § < %

Theorem B.7. (Upper Bound For Sort and Snap when 0 < < B( ) Suppose s > 0, 0 < < B%S), and

for £ > 2, p* € Py, (with permutation function denoted m¢) and for each n large enough so that |n”] > 2,
k:=|n”|. Also,
iid
Ylk,Yék,... Yk Npk

Further, let 0 < 7 < 1— BB(s). Then

—B(B(s)—2 —I(s=1) (1-m)cs, 1-BB(s)
Bl < " (B()-2) Jog (n) exp(———5=~ 10’;“;:1)(")()1 N 0< 8 < 5o
n ~ _ s)— s —(1—71 —I(s= -7 s, n__ s
n~PBE=22EEF =07 10g ™= () exp(— 75 e =0y) BT S B < B
(107)
where recall C7 5 1s defined in equation 6
Proof. Let
0 0<p<
p= { L, U< f<mm (108)
B(s)+1- B B(5)+1 = 5
and for k > 2 .
—1_ 109
Tk k17 log (k) (109)

Now define two events for each k. Namely

Ay 1, := {No two counts are equal and Vj € [I(k, vk, 1) — 1],7(j) = 7 '(4)} (110)
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and
Ag j := {No two counts are equal and Vj € [k], #(j) = 7, ' (j)} (111)

where recall the I function is defined in equation 92 and # () is the index of the j** largest count. # is unique
under events A; ; and Ag ;. Note that

Elpy —p*(l = EllBy — p*h1(Azk) + Ellpy, — p* L I(AS, N AT) + Ellpy, — p*[11(AG, N Aw) =

A A (112)
Ellpl — p*[11(AS, N AT) + E||p) — p¥|[11(AS, N Awx)

where the second equality is because event Ay, implies both that for every j € [k], the category with the j*?
largest probability has the j** largest count and there are no ties 3. Thus Sort and Snap yields zero error.

Now note that by definition of Ay ; and As
A C

Xﬂ;1(1)7n > Xw;1(2),n > > X‘frgl(l(kﬁk,l)—l),n and V] S {I(kﬁ,’}/k, 1), cee 7k}’X7r;1(I(k,'yk,1)—1) > Xﬂ';l(j),n
(113)

and
Aok € [X iy > Xyt > > Xoaeny > X (114)

And because 7 < 1 — BB(s), we have that p < 1. Therefore v, — 1 as n — co. In particular, there exists an N
sufficiently large, such that if n > N, then ~; > % Thus applying lemma B.6 and using equations 113 and 114
we have that for any 0 < w < 1 the existence of some N such that for n > N, both

1—w), /Cis
Alc’k CHI1Z-EZ,|| > fn_fﬂwvl log™ "2 (n) (115)
and
o (I-w)/Cis |
A5, € |12 - B2l > —— " n e tog e ) (116)

Now let 0 < w1 < 1. By equations 115, 116, and again using that 7, — 1 as n — oo and applying lemma B.2
—w),/C*
with € = LUV )2 =

and w; we have the existence of some N such that for n > N, both

14w
C*
(1-w) 5,8 “lie e
Agk c ||Z_EZTLHOO > 1+ 5 (n 7 tevy, log ”’“’Q(n)) +
2 117
Cka%ﬂ (117)
1 2 1+wy 2 1
(”7“”'1 log™ 7k (n)) ; _
2 min;erg /PF(7) (1 —p*(j)
and
C*
(1-w) B 1. e
AQC:k - ”Z_EZnHoo > 1+w1 5 n 3tein log 1’2(7?,)—|—

5 118
(1—w) V/ C:,ﬁ ( )
( 7l+el 1 —e 2 1+W1 2 1
n=Atetl0g ™2 (n) ) : ‘ .
2 minger /2 (5) (1 — p*(5)

3In defining Sort and Snap, we did not specify how to break ties. This is irrelevant in the analysis because the events
Air and As i specify no ties
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(1—-w) \/

1+w

Now applying lemma B.1 with w = n~2 €% log~*%2(n) and C =
an N such that for n > N

1+2(—%+5y,€,1) log ™~ 2€k.2 1-—
Cy< n og () (A=w) o) o =
P(AYT ) < 2k exp( 16 3 + w1 )") s

1 B( yk(s+2)+max(0 1— S)) 2?,\/ 2 w
2]€ eX[) log
( 6 ke (n)( ] 1

£ and using equation 117, we have

(119)
)?)

where we have used the definition of e,, 1 (see equation 66). And similarly applying lemma B.1 with v =

1 _w) A/C*
n~2Te1]logT 2 (n) and C' = <(11+:1) 25”3> and using equation 118, we have that for n > N

¢ Pl ) (1= w) Y,
P(A3,) < 2k exp( 16 Csp (( 14+w ) >) B (120)

C (1 — ¢ 7)
ﬁ 1 B(s+2+max(0,1—s)) —2eq1 2 2
2 exp(— lo

We must also produce an upper bound on the ||[p¥ —p¥||; under the event A j N Agk. To do this, first note that
since since 1 — z < exp(—=x) V, we have that for ¢ € R and k > 1

1

1 S S
1— —— <exp(— )=k #"9los(® (121)

1
kl-q kl-q
In particular (after multiplying both sides of equation 121 by k, we have that for ¢ € R and k > 1

S ) 1 q
k—k st < ek k (122)

Using equation 122 (with ¢ = p where p is defined in equation 108) and the definition of v (see equation 109)
and the definition of the I function (see equation 92), we have that (for k > 2)

k- Ik 1) <k — ((K*] 1) <k — (k% —1)+1=k—k*+2=k—k' T 7m® 1 2<kP +2 (123)

Now using the definition of p¥ (see equation 4) and the definition of A; j, (equation 110) and then using that f,
is monotonically decreasing, we have that

1Bl — p*||, = > D5 (7(5)) = P" (7)) | N (124)

JELI(kvi, 1), I (ky vk, 1) 41,0k}

pr, (7 () — P (7 ()| <

max I(k, vk, 1)) — fs(k
|:je{I(k7’W€71)aI(k77’W€71)+1a'“7k} ( ( ’)/k )) f( )|:|

Also, since p < 1 (which follows since 7 < 1 — 8B(s)), there exists a K sufficiently large such that k — kP —2 > 0
for £ > K. Using this and equations 123 and 124, and again using the monotonicity of fs, we have that for
k>K

(K +3)|fs(k =k = 2) — fs(F)|
Hk,s

(k= k" =2) = fo(k)| <

R 1
A € (185 =211 < (= TlEow, ) + 1
,8

(125)
Now for k > K, using a two term taylor series expansion of the f; function about k& — kP —2,we have the existence
of some ¢ € [k — kP — 2, k] such that for any C' > 0 and N sufficiently large and n > N

s(s+1)

Jo=kP=2)= [y (k) = 8 fopa (k—kP=2) (7 +2)+

Fsr2(@) (kP +2)? < s(14C) fora (k—kP=2) (kP +2) (126)
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where we used above that fs1o(k—kP —2) = o(fsy1(k—kP —2). Now using that (kP +3) fs11(k—kP —2)(kP +2) <
k= (stD+2p and equations 125 and 126 and lemma A.1 we have the existence of some constant Cs 1 >0anda
K> such that for k > Ko

Al,k - |:||i)ﬁ _pkHl < Cs7ﬁ71k_—(s+1)+2p—maz(0,l—s) logfﬂ(szl)(n)} (127)

So by equations 112, 119, 120, and 127, and since the 1-norm is bounded by 2 for distributions on the simplex,
we have that for an N and n > N

E|p), —p"[h
2IP’(A1 L)+ Cspan —B(s+1),,8(2p—max(0,1-s5)) log’ﬂ(szl)(n)P(Agk)

AN

20 exp(—%ﬁnl—ﬂ(w<s+2>+max<071—s>> log 262 (n))( (1-w) 12)4 (128)

]. —+ w1
2nﬂc§ﬁﬁ,1n7ﬁ(s+l)nﬂ(prmax(O,lfs)) log—]I(szl)(n) exp(— Ciséﬁ nlfﬁ(er?erax(O,lfs)) log—2e1,2 (n)( (11_: w) )2)
w1

Now by using the definition of v; (equation 109) and that exp(z) — 1 > +x for € R, and the definition of p
given in equation 108 and that e, = 3I(s = 1) for every 0 < v < 1 — (see equation 67) and the definition of

Cip(1-w)y\2
To (7))

B(s) (see equation 65), and letting Cs g,w.w, = , we have that

exp(—CSﬁ,wMnl_B(W(5+2)+’“ax(0’1‘5)) 10g*2€wc 2(n))
n—ﬁ(s+1)n5(2p—max(o,1—5))log—ﬂ(szl)(n) CXP(_Cs,ﬁ,w,wlnl B(s+2+max(0,1—s)) 1og_(2e” (n))

B(s+2)
nﬂ(5+1)n*ﬁ(%*maX(OJ*S))1Og]1(b’:1)(n) exp <_10g_ﬂ(s_1)(n)cs,6,w,w1 1—-B(s+2+max(0,1— S))(nkl Plog(k) —

(s42)

B+ =B max(0.1-9) 10015=1) (1) excp <1og—ﬂ(5‘1>(n)cs, sy LB (5

1)
1)

nBe+1) =B(2p—max(0,1=5)) 15 l(s=1) (1) exp (_logf]l(s:l)(n)(;& ooy PEE) (6

IN

IN

nﬂ(s—&-l)n—B(Qp—max(O,l—s)) logﬂ(8:1) (n) exp (_ 1Og*]1(5:1) (’II)CS Buwon nl= B(B( 9)) )
nB(erl)nfﬂ(2p7max(0,1fs)) logH(SZI)(n) exp (—(S + 2) IOg_H(SZI)(n)OS,57w,Wln B(B(s))—B(1— p))
exp —(s+2)log’ﬂ(tl)(n)Cs,g,w,wlnl_’B(B(S)H)) B < B(S
exp (—(s +2)log "= (1) Cy ") BT <5 <3ty

—0asn— oo
(129)

nB(erl)n75(2p7max(0,175)) log]l(szl) (TL)

where the limit follows in the last step follows because for every z,z € R and c,y > 0,
n*log®(n) exp(—c%) — 0 asn — oo.

By equations 129 and 128 and that B(s) = s + 2 + max(0,1 — s) (see equation 65), we have that

i - *ﬁ((ll_W))Q 1—B(s+2+max(0,1—s))
E|lph — p|ls S n Pl max01-9-20) 1001620 (1) o - *“11610g =T )

x ((1=w)\2 1-BB(s)
n—B(B(s)—2-2p) log—l(szl)(n) exp 70575( 1+w]I )°n :
1610g" "=V (n)

(130)

Since the argument holds for each 0 < w < 1 and 0 < w; < 1, and since the range of (Q) for 0 < w,wy <1
is precisely (0,1) we conclude that for any 0 < 7 < 1

(131)

R _ Lo I(s= Cz 5(1 —7)n! =B
E|lpy — p*lly S n PPE2720) 1og =D (n) exp < ’fmogu(s:l)(n)
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Plugging in p (defined in equation 108) to the above equation yields the theorem statement.
O

Theorem B.8. (Minimax Lower Bound For Zipfian Distribution Estimation when 8 > 0) Suppose s > 0,0 < 3,
and for each n large enough so that |n?| > 2, k:= |n?|. Also let 7 > 0. Then

* — (s)
~B(B(s)-1) Jgg~1(s=1) _ (14107 g0’ PP 1
) . n og (n) exp g =y rom 0<B< 553
inf sup Ella, —pli 2 . . toe 7 () P (132)
Hn pePy, ik n7(5+2 +3 max(O,lfs)(lfm)) log—]l(szl)(l——s+2)(n) 5 Z B% )

where recall Py, 1. (defined in equation 1) is the collection of all k—dimensional s— Zipfian probability distributions
and Cf 5 is defined in equation 6. And the inf is taken over all functions of the n samples Y1,Ya,...,Y, %ip

Proof. We will use the method of Le Cam (see Tibshirani and Wasserman (2017) for a good review) and first
we will handle the case 8 < <. Thus define poy,p1x € Py, k such that for j € [k — 2]

B(s)"
Pox(J) = P1x(j) = ]]—I; (133)
and _—
por(k — 1) =pii(k) = NT:) (134)
and By
pok(k) =pie(k —1) = f;{i ) (135)
Thus ) P .
Ipox — Pkl = el _I'Ik) —J«(k)) (136)
while
K L(pok,p1x) =
fs(kfl) fs(kil) fs(k) fe(k) .
Hk,s log( fs(k) ) - Hk:,s log(fs(k - 1)) B
fs(k_l) fs(k_l)_fs(k) _ (137)
log( fs(k) ) ( Hk,s ) B
s 1
g Tom (= ) (= 1) = ()

Now by the Taylor Series expansion of the log function and the formula for a geoemtric series, we have that

. S /1V1 1 1t &/ 11,1 1. 1 1 1 1
—log(l—k)zz<k) j<k+22<k‘> :k+2(1—_(1+k)):k‘+2k(k—1):k<1+2(k—1)>

T
j=1 j=2 E
(138)
Now using a Two term Taylor series expansion of fs about k — 1, there exists some ¢ € [k — 1, k] such that
s(s+1
Folk—1) = fulk) = sfoa (b — 1)+ SC T 5 ) (139)

In particular, using that fs functions are monotonically decreasing, we have that

Shealk 1) < k1) = £s(8) < sfosalh— 1)+ 2D

fora(k—1) (140)

Using the above equation and that fsy2(k—1) = o fs4+1(k— 1)) we have that for w > 0 some N sufficiently large
such that for and n > N

sfori(k—1) < fulk = 1) = fo(k) < s(L+ ) forr (k= 1) (141)
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So by equations 136 and 141 (and using lemma A.1 and that k = [n”] and the definition of B(s) — see equation
65), we have that for some N and constants Cs g2,Cs 3,3 > 0 and for n > N

Y

IPox. — P11
Copolog =D (k= mxO1= f (k- 1) >

Cy 5.3 1og 1= () ~Blet14max(0.1-5)) _ (142)
Cs,5,3 log*H(Szl) (n)n—ﬁ(B(s)—l)

and by equations 137 and 138 and 141 and lemma A.1 we have that for any 0 < w < 1 there is an IV such that
forn >N

KL(pok,p1x) <
1

ka7S(1 + w) <1 + 2(k—1)> fsr1(k=1) <

2
1 2,-B(s+2) 5
(I+w)n o =

(143)
1—-s O0<s<1

2
o2 ((1 +w) ) =B+ Hmax(0,1-5)) 156 =16=1) () 1 s—1
1—w

% s>1

1+w2 _ s —I(s= *
((1_03 )n BB(5) 1pg I 1)(”)CS,B

So now applying theorem 4 of Tibshirani and Wasserman (2017) and using equations 142 and 143, we have that
forﬁ<%andanyw1>1

Tll_’BB(S)w C*
inf sup Ein —plli 2 IOg_H(s:U(n)”imB(s)il) exp 7?13,5 (144)
fin pePy, 4 log'*= )(n)

Setting w; = 1 4+ 7 concludes the 8 < % case

Ts

For the case 8 > %, we redefine po and p1y so that for j € [k] — {[ 3% (n))j, | = | -1},

log®s (n)
Pox(J) = P1x(j) = I
Hk:,s
and .
n¥s n®s fs(LlogZWJ -1
I 1 — =
pOk)(I_logzs (n)J ) plk(tlogzs (n)J) Hk,s
and e
ns ns fs(L%)J
T )y = )= e i)
pOk(Llogzé(n)J) plk(Llogzé(n)J ) Hk,s
where )
Ts = (1 - fmax(0,1—s)) (145)
and .
= 2]1(5 =1) (146)

Now carrying out similar arguments to the 8 < ﬁ case we have that there exists a Cs 34 > 0 and N such that
forn >N
||P0k _plkHl > Cs,ﬂ,él log—]I(SZI)(n)nfﬁ(max(o,175))n715(8+1) logZS(s-‘rl)(n) (147)
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and also there is a C, g5 > 0 and N such that for n > N

KL(pok,p1x) <
Cs,,B,S log—]I(szl)(n)n—ﬁ(max(o,l—s)) —xs(s+1) logzs(s—‘rl)( ) ( —x IOgZS( )) _ (148)
C, g5 z5(s+2)—B max(0,1—s) log s(s+2)—I(s= 1)( ) _

Copsn!

where in the last line we have used the definitions of =, and zs (equations 145 and 146). By equations 147 and
148 and theorem 4 of Tibshirani and Wasserman (2017) B%S)

inf sup E|i, —pl1 2 log* s(s+1)—I(s= 1)(n)n—l(ﬂmax(O,l—s)—i—ms(s-f-l)) _
e (149)
p (8 max(0,1-9) (1 55)) 1o 1= (1~ £1) ()

where in the last equality we have again used the definitions of z; and z; O

Theorem 4.2 (SS Upper and Lower Bounds). Suppose s > 0, 0 < 8 < == and for each n large enough so
that |n”| > 2, k := |n®] and 0 < 7 < 1 — BB(s). Then the Full Sort and Snap Estimator p* achieves that

SupPEPfs,k Ellﬁfl _p”l
< n—B(B(s)=2) C:B(l —7) pl=BB)
————exp | ——
~ 1ogC () T 6 g™ I (n)

Sk
when 0 < B < ﬁ and suppep,  Ellp;, —plli

< n75(3(5)72) s ,3(1 — T) nlfﬁB(s)
S e, e eXP | - ¢ ey
log (n) log (n)

when < ﬁ and hy ¢ 5 = n2BBEFV=0=7) " Also inf, suPpep, ., Ellfiin —plh

L #BE-Y . 1—BB(s)
T o, L XP | — : +7 T I(s—=1), ~
logﬂ(s_l)(n) B log]l(s_l)(n)

where Py, i, is the collection of all k—dimensional s—Zipifan probability distributions. And the inf is taken over

all functions of the n samples Y1,Ys,...,Y, %ip

Proof. Follows immediately from theorems B.8 and B.7. O

B.6 Upper bounds when % <p< % and s > 2

Theorem B.9. (Upper Bound For Truncated Sort and Snap when -5 < 8 < ¢ L and s > 2) Suppose s > 2,1 par; S
B8 < ; and for £ > 2, p* € Py, o (with permutation function denoted 7713) and k = [n?] for each n large enough
so that [nP] > 2. Also let 0 < € < ﬁlgff) Then letting Ty, . :== I(k,1,¢) — 1 and the I function is defined in
equation 92, there exists a Us g > 0 such that for any 7 € (0,Us )

Elph oz, —p*h Sn” 50 (150)
Proof. Define the event
Asj, := { No two counts are equal and Vj € [T}, ], 7(j) = 7, ' ()} (151)

Note that because event Ag j excludes ties, Asj implies that any category that does not achieve one of the [T}, ]
largest counts must also not be a category with one of the [T}, (] largest probabilities and vice versa. Using thls
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and the definition of A3 (and the definition of Truncated Sort and Snap — see definition 5), we have that
Az C
Vi € [Tud B, (i () = 2" (m )] 0 (152)
(7 ({Tne+ 1L, Tne+2, ..., k}) =7 " ({Tne + L, Tpe +2,...,k})]
Also, note that since i)ﬁ T, . is a concatenation of subsets of two probability distributions (the s-Zipfian law and
the EPE), Zlepfﬂn,jj)’g 2. Using this and that p* € S and the definition of 1-norm, we have that
185 7, . —PFll <3 (153)
By the definition of Truncated Sort and Snap (see equation 5) and equation 152, and equation 153, and that for

a sufficiently large N; 3 and n > N, g, T, . < k, we have that for n > N, g
N
Elpy, 7, . —p"l| =
~k ~k
Elp, 1, . —P"|1(As.k) + Ellp,, 1, . —p"I(AF)) <

k
E D,
J=Tn,c

" (7 (5)) —p" (7 (1)) + 3P(AS ) = (154)
+1

k
E > B G) — Py L)) + BP(AS)
G=Tn 1

Now note that by definition of Asj; and T;, ¢, we have that

Az © [Xﬂ,gl(l),n >X gy > > X g —1)m @A VG E{IR 1 €), - R X 11,01y > Xﬂ,gl(j),n}

(155)
By equation 155 and lemma B.6 (with w = %) and since s > 2 50 e,2 = 0, there exists an IV such that for n > N

Cr

ASy C 120 —BZp oo > n=3tens (156)

Now note that by definition of e, ; (equation 66) and since 0 < € < 1258 e have that

BB(s)

sp 1 ¢BB(s) 1
1-°2 _ 8B S -

g —BB(s) > 2 7~ Ot

Using this and that the definition of e 1 (see equation 66), we have that

2
C*
\/ S,ﬁniéJre%l 1 <

4 mineqr) /p*(7)(1 —p*(j) ~

(157)
n—(1—F—eBB(s)) _
0 (n_@_e“))
Thus using equation 156 and 157, we have that for some N and n > N
A§, C
12, ~ E2, | > @n-%“w
9 (158)

*
1 CS,B _lae
n 2 v,1

1
2| 8 min;e p’“(j)(l—p’“(j))]
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e
So applying lemma B.1 with C'= ¥ and u = n~3+*"1, we have that there is a constant C 5.6 > 0 such that
P(Agk) < kexp (—Csﬁﬁnze“) = kexp (—Cs,gﬁneﬁB(s)) (159)

Next, noting that for z € R, |z| = V22 and using reverse Jensen’s inequality for the /- function and then
using the expression for the variance of an empirical proportion, we have that for an N, g sufficiently large and
n Z Nsﬂ

k
E Y B () - o (m ()] <
J=Tnc+1
1 k
— Y V@WﬂfU»O*pWﬂfU»)é (160)
Vi

75/2
\ nHk S j= Tzn:s"l‘l

Now because the summands j~°/2 monotonically decrease, we use Riemann integration to bound the sum.
Specifically,
k k 1 .
Y oire / 2™ e = (Tigf - klfé) (161)
j:Tn,e"l‘l Tn’€ 2

Now recall that by definition T;, = I(k,1,¢e) — 1 and thus by the definition of I(k, 1,€) (equation 92), we have
that
Ty < nez P (162)

By equations 160 and 161 and 162 and since Hy, s is convergent (since s > 1), we have that

k
E Y B () -t )] S no b0 (163)
§=Tn,e+1
By the above equation and equations 154 and 159 and using that —% + % = —SJ%Q, we conclude that
Ellpy 7, —p"l S oI (164)
Set 7 = Be(5 — 1) and the theorem statement follows. O

B.7 Upper bounds when % <p and s > 2

Theorem B. 10 (Upper Bound For Truncated Sort and Snap when 8 > i and s > 2) Suppose s > 2, > 1
and for £ > 2, p* € Py, (wzth permutation function denoted ;) and k = |nP| for each n large enough so that
|nf] > 2. Also let0<e< (s+2) Then letting Ty, = I(k,1,€) — 1 (where I(k,1,€) is defined in equation 92)

there exists a Us g o such that for any T € (0,Us g,2)
pr —pFll, < n-FEnT
Elpn7, . — 2"l S 720 (165)

Proof. The proof strategy is almost exactly the same as in the H% <pB< % case (see theorem B.9) with one

major exception. This deviation of the proof strategy from that of theorem B.9 begins at equation 156. Instead
of this equation, define a new, [n'/*~¢2| dimensional vector Z* where

eﬂ%s) (52— 5) +Bes (166)

<€ <
2 s—1
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and for j € {1,2,...,|n/5"| — 1},

X G)n
Z;, = E 2 (167)
n/p* (i () (1 (i ()
and
k
pai= Y, Pm () (168)
j=|nt/s=e2]
and
k
Xpni= Y X (169)

j=Int/s7e2]
and the final entry of the vector is defined as

X n
7% E,

Lnl/s—QJn = n pE,n(l —pE,n)

Note that the upper bound on e; is positive because s > 2 and that the lower bound on e; is indeed below the
upper bound on €5 because of the assumed upper bound on €.

(170)

Now we need a slight modification of lemma B.6 to be able to argue that

C * * \/@ —dlie 4
Azr € |11Z5 —EZy oo 2 ———n72 7 (171)

where Asj is as defined in theorem B.9. The modification is required because unlike for the Z, used in
lemma B.6, the last probability of Z} is not an s—Zipfian probability. So we must still check carefully that
pEn < P(m ' (I(k,1,€)); this ensures (using arguments identical to lemma B.6) that Xp , < Xﬂ'k_l(I(k:,l,e)fl),n
under event As j.

First note that by definition of I(k, 1,€) (see equation 92)

pE (I, 1,€)) < n (52 -0%) (172)
And using Riemann integration,
k
PEn S / x %dx < ni=9—el=s) _ ,—(F+el-9) _, (n_(ﬁ_ﬁes» (173)
Ln1/5752J_1

s—=1_ s s . .
% implies that S;1 +ea(l—s) > w2 — Oes.

where the last equality in the above line is because €5 <
Using equations 172 and 173 we conclude that

PEn =0 (pk(ﬂk_l(l(k7 ]-7 E)))

. Using the above equation and arguments that are identical to those of lemma B.6, equation 171 follows (when
s> 2).

The next adjustment to the argument of theorem B.9 we need is regarding the dominating factor in the use of
Bernstein’s inequality. Analogous to equation 157 in theorem B.9 (and using lemma B.12), we have that

(n7%+67a1 2 1 <
min ((minjewsez RV G —pk(wklw) VpEa(l —pE,n>)
nTHABER T g (1T4)

n—1/2peBB(s)— 2°

o (n71/2+e%1)
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where the last equality in the above equation follows because of the lower bound on € (given in equation 166)
and the definition of e, ; (see equation 66).

Using equations 171 and 174, we have that for sufficiently large N and n > N

A§, C

Ccy 3
8

" 2 (175)
08,5 1 1

I B ((sminy ey 2 P DN = 9 0D ) VB T ) )

n 2
. . e . . NP
Finally, applying lemma B.1 for the Multinomial distribution indicated by Z7, and with C' = ¥—-=* and

1
nTETev

[nz:; CEZ%| >

2 8

w=mn"2ten1
we conclude that for some Cs 37 > 0
P(AS}),) < kexp(—Ci,gm5)) (176)

The remainder of the proof proceeds identically to theorem B.9 O

B.8 Miscellaneous facts about the Zipfian function

Recall the notation fq(x) := z~%.
Lemma B.11. If f: (0,00) — (0,00) is convez, then for any x1,22 € {1,2,3,...} such that z1 < x5

f@1) = flzr+1) = fla2) = fz2+1) (177)
In particular this holds for f

Proof. We will prove the lemma by induction for 25 € {z1+1,2142,...}. For the base case, suppose x5 = z1+1.

Then since f is convex,
I + x|+ 2
2 2

f(w1) + f(21 +2)
2

I

) <
This implies that
2f(z1 +1) < f(@1) + fa1 +2)
Which implies that
fla2) = flae+1) = fler+ 1) = f(z1 +2) < fla1) — flar +1)
completing the base case. Now suppose that for some xo € {1 + 1,21 + 2,...} that

f(x2) = floa +1) < fz1) — f(21 + 1) (178)

Since f is convex,

o +2  f@) + o2 +2)

I 2 2 )= 2
Applying the same algebraic simplifications as in the base case to the above equation yields
@2+ 1) = f(z2+2) < flz2) — flz2+1)
Combining this with the inductive assumption yields
flza+1) = f((z2 +1) +1) < f(z1) — fz1 + 1)

In particular equation 177 holds for zo 4+ 1. By induction equation 177 follows for every xs € {x1+1,21+2,...}.
Finally note that 1 € {1,2,...} was arbitrary equation 177 follows for any x1,z2 € {1,2,...} such that 21 < xs.

Also, note that for = > 0, f. (z) = s(s + 1) fse42(z) > 0. Thus f, is convex and so property 177 holds for f,. [
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Lemma B.12. For k > 2, ifp € Sy and 7! indexes the sorted order of p, that is,
p(r (1)) = p(r1(2)) = - = p(r ' (k)
then for any 1 < iy <ip <k
p(r 1 (i1))(1 = p(n ™ (i1))) = p(n " (i2))(1 = p(r " (i2)))

In particular

fS(il) fS(il) fS(iQ) fS(iQ)
1-— > 1-— 1
Hk,s ( Hk,s )_ Hk,s ( Hk,s ) ( 79)
Proof. Since p(7~1(1)) is the largest probability and p € Sy we have that
Vi €{2,3,.... k}.p(r ' (5) < 1/2 (180)

If max(p(7~(i1)),p(7r~*(i2))) < 3, then since g(x) = (1 — ) is monotonically increasing on [0,1/2] and iy > is

9p(r™ 1 (i1))) = g(p(n " (i2)))

If max(p(7~*(i1)),p(7~'(i2))) > 3, then since iy < iz, i1 = 1 and in particular, p(w (1)) > 1/2. Therefore

(181)

N |

p(n 1 (iz)) < 1—p(n~'(i1)) <
So again since g is monotonically increasing on [0,1/2], using the above equation we have that

g(p(n~(i2))) < g(1 = p(n~"(ir))) = g(p(r " (i1)))

where the equality in the above line is because g(x) = g(1 — ) for z € [0, 1].

Finally, note that equation 179 follows because fs is monotonically decreasing and Hj, ; normalizes f5 into a
probability measure. O
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