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ABSTRACT Antibodies targeting the O-specific polysaccharide (OSP) of Vibrio cholerae 
O1 are crucial determinants of protection against cholera. These antibodies agglutinate 
bacteria and, even in sub-agglutinating conditions, inhibit V. cholerae motility. To explore 
additional effects of OSP-specific antibodies, we examined the transcriptomic profiles 
of V. cholerae exposed to a human anti-OSP monoclonal antibody in the presence of 
mucin, the main component of intestinal mucus, and the substance in which V. cholerae 
and mucosal antibodies interact in infected humans. Beyond genes whose transcript 
levels were affected by either mucin alone or antibody alone, we identified a set of 
genes whose expression levels were specifically altered in the presence of both anti-OSP 
antibody and mucin. These genes are involved in diverse processes such as metabolism, 
transport, stress response, biofilm formation, motility, and second messenger signaling. 
Additional culture-based assays and a human small intestine enteroid model confirmed 
the broad impact of OSP-specific antibodies on V. cholerae, including the inhibition of 
motility, downregulation of virulence mechanisms, and a shift of bacterial metabolism 
toward decreased synthesis of intermediates and precursors in a sessile state secret­
ing extracellular matrix component of a biofilm. Collectively, our findings reveal that 
antibodies targeting V. cholerae OSP markedly transform the pathogen’s physiology and 
disrupt its virulence program. We propose that these effects explain how antibodies 
targeting V. cholerae OSP mediate protection against cholera at the intestinal surface of 
infected humans.

IMPORTANCE Immunity to cholera is largely mediated by antibodies targeting the 
O-specific polysaccharide (OSP) of Vibrio cholerae, including through agglutination as 
well as inhibition of bacterial motility. Here, we used bacterial transcriptomic, biochem­
ical, and cellular analyses to evaluate additional effects of OSP-specific antibodies on 
V. cholerae in complex media containing mucin and in a human enteroid-derived 
monolayer colonization model. We found that anti-OSP antibody in mucin impacts 
bacterial motility, growth, metabolic activity, extracellular matrix production, and levels 
of cyclic di-GMP. We did not observe a direct effect on bacterial viability, sodium motive 
force gradient, membrane integrity for large molecules, or virulence gene or regulon 
expression in bacterial cultures, although cholera toxin detection was significantly 
decreased in the enteroid model. Our results uncover the broad impact of anti-OSP 
antibodies in the presence of mucin on V. cholerae physiology and suggest several ways 
OSP-specific antibodies mediate protection against cholera in humans.
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C holera is a severe, watery diarrheal illness caused by Vibrio cholerae O1 or O139 
serogroup organisms. Cholera results in millions of cases and tens of thousands 

of deaths each year in over 50 countries, with the largest burden being borne by 
children under 5 years of age (1–3). V. cholerae can persist in aquatic reservoirs and 
are typically acquired by ingesting contaminated water or food (4). V. cholerae is a 
human-restricted pathogen. Following ingestion, V. cholerae pass to the small intestine; 
they are highly motile and reach the lower third of villi and the intestinal crypts, where 
they penetrate the overlying mucus layer (5, 6). Being non-invasive, V. cholerae then 
form micro-aggregate colonies in proximity to intestinal epithelial cells, utilizing several 
colonization factors such as toxin-coregulated pilus (TCP) (7, 8). V. cholerae interacts 
with host factors such as antibodies in the overlying mucin layer coating the epithelial 
surface. At the intestinal epithelial surface, V. cholerae expresses cholera toxin (CT), which 
is internalized by the human epithelial cells. CT is an ADP-ribosylating toxin that affects 
intracellular cyclic AMP, leading to chloride, sodium, and water secretion into the lumen 
by the affected epithelial cell, resulting in the watery diarrhea characteristic of cholera 
(9). The expression of CT and TCP by V. cholerae is under the control of the ToxR master 
regulator that recognizes environmental signals in the human intestine (10). Surprisingly, 
anti-cholera toxin immunity does not provide appreciable protection against cholera 
(11, 12). Protection against cholera is serogroup-specific, and serogroup specificity is 
defined by the O-specific polysaccharide (OSP) of the bacterial lipopolysaccharide (LPS). 
Antibodies against OSP are the main determinants of protection against cholera, but 
the mechanisms of this protection are uncertain (13–15). Although serum vibriocidal 
activity correlates with protection against cholera, it appears to be a surrogate marker 
for yet-to-be-determined activity of OSP-specific antibody active in the lumen of the 
intestine at the mucosal surface (15–17).

V. cholerae is a highly motile organism with a single polar flagellum sheathed with an 
extension of the outer membrane (thus coated with OSP) (18), and motility-deficient 
V. cholerae are significantly attenuated in colonization (19–21). We have previously 
cloned OSP-specific antibodies from plasmablasts of humans recovering from cholera 
in Bangladesh and demonstrated that anti-OSP monoclonal antibodies inhibit V. cholerae 
motility in both agglutinating and subagglutinating conditions (22–24). This effect 
occurs within 5 min of exposure of V. cholerae to OSP-specific antibody, a process 
that requires a bivalent antibody structure and antibody-mediated cross-linking of 
OSP molecules (24). Our previous studies have also demonstrated that OSP-specific 
monoclonal antibody protects against death in mouse models of cholera, inhibiting 
colonization of the bacteria in intestinal tissue in a motility-dependent manner (24), 
suggesting motility inhibition to be a prime driver of protection imparted by OSP-spe­
cific antibodies. However, other anti-OSP antibodies have been shown to have a wide 
array of phenotypic effects in V. cholerae, Salmonella Typhimurium, and Shigella flexneri 
(25–31). These include induction of a bacterial extracellular matrix (25, 26), surface 
blebbing and disruption of outer membrane integrity (29–31), loss of functionality of 
the type 3 secretion system (T3SS) in Salmonella and Shigella (27–29), and a decrease 
in membrane potential and ATP synthesis (28, 29, 32). Baranova et al. (26) previously 
evaluated the impact of an anti-V. cholerae LPS antibody (ZAC-3; directed against the 
conserved oligosaccharide core/lipid A region of V. cholerae O1 LPS) in simple liquid 
media using transcriptomic profiling. ZAC-3 affected the detection of genes involved 
in V. cholerae energy metabolism, transport, and early stages of biofilm formation 
(26). The lipid A and core oligosaccharide in V. cholerae O1 and O139 are identical, 
although protection against cholera is serogroup-specific; immunity against O1 does not 
protect against O139 and vice versa (33–35). Since OSP defines serogroup specificity, 
we were thus interested in more fully defining the impact of OSP-specific antibody (as 
opposed to anti-oligosaccharide core antibody) on V. cholerae beyond the ability of 
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OSP-specific antibody to affect bacterial motility and agglutination. To do this and to 
assist in down-selecting potential effects, we first assessed the impact of a well-charac­
terized OSP-specific antibody (G1) on V. cholerae transcriptomic profiles, then more fully 
investigated identified pathways and networks. G1 is a high-affinity anti-V. cholerae O1 
OSP monoclonal that recognizes both Inaba and Ogawa OSP serotypes of V. cholerae O1
and is expressed as a human IgG1 (22–24).

At the intestinal surface, V. cholerae encounter antibodies in a mucus milieu. Mucus 
comprises 95% water (by weight) held by gel-forming highly glycosylated proteins 
termed mucins (36). V. cholerae interact with mucins via bacterial receptors such as 
GbpA and RbmC (6, 37, 38) that bind terminal sugars on the mucin proteins and 
also express enzymes such as TagA (6, 39) and hemagglutinin/protease (HapA) (6, 40, 
41) that can degrade mucin, facilitating mucus penetration and possibly providing an 
alternate energy source for the bacteria at the intestinal surface (39, 41, 42). We therefore 
performed our analyses in systems using complex media containing mucin to more fully 
replicate the ecological milieu in which antibody-bacterial interactions would occur in 
the intestine of infected humans. We also used a human epithelial monolayer infection 
model to study the impact of OSP-specific antibody on V. cholerae-epithelial interactions 
in a complex human-derived system containing mucus.

MATERIALS AND METHODS

Bacterial strains and culture conditions

We used V. cholerae El Tor O1 strain C6706, a derivative constitutively expressing red 
fluorescence protein tdTomato, a rough derivative deficient in perosamine synthase 
(VC0244::Kanr), and a flagellated but nonmotile (VC0893::Kanr) strain. For visualizing 
motility via high-speed live video microscopy, we used C6706 derivative MA042 
(flaAA106CS107C flaBS106CS107C flaDK106CS107C ΔVC1807::Ptac-mScarlet-I, SpecR, ΔcheY3). Details of 
all strains used are indicated in Table S1 (5, 43–45). V. cholerae were grown in toxin-induc­
ing conditions (TICs) using AKI medium containing sodium bicarbonate (46, 47) without 
agitation at 37°C for 4 hours as detailed in the Supplemental methods.

Antibody treatment

We used human monoclonal immunoglobulin G1 (IgG1) targeting V. cholerae O1-specific 
polysaccharide component of LPS (clone G1—CF21.2.G01) and flagellin (clone B12—
AT11.1.B12) cloned from patients with cholera in Bangladesh and previously described 
(22, 23). We have previously characterized these antibodies for attributes, including 
ability to impact V. cholerae motility, agglutination, affinity, specificity, vibriocidal activity, 
and ability to protect in lethal murine challenge models (22–24). Treatments with 
antibodies were carried out by diluting TIC bacterial cultures to sub-agglutinating 
conditions of an optical density at 600 nm (O.D.600) of ≤0.1 in either Luria Bertani (LB; 
Sigma), LB with 1% (wt/vol) porcine gastric mucin (LBM; Sigma), M9 minimal medium, 
tryptone-phosphate broth (48), or culture medium as per experimental requirements. 
Antibodies were added to a final sub-agglutinating concentration of 0.0125 and/or 
0.125 µM (24).

RNA sequencing library preparation

V. cholerae C6706 cultured under TIC were exposed to anti-OSP (G1) and anti-flagellin 
(B12) in LB or LBM (1%, wt/vol) for 1 hour at room temperature (RT) (26). Bacterial 
cultures were then pelleted, and total RNA was isolated using lysozyme and RNeasy 
(Qiagen) per the manufacturer’s instructions. RNA was isolated from cells collected 
from two independent biological replicates for each condition. The resulting RNA was 
depleted of ribosomal RNA using a rRNA depletion kit (New England Biolabs), and 
RNA-seq libraries were constructed using NEBNext Ultra II Directional kit (New England 
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Biolabs). Sequencing was carried out on the Illumina NextSeq 2000 sequencing system in 
paired-end 50 bp mode.

RNA-seq analysis

Sequencing reads were mapped to V. cholerae O1 biovar El Tor strain N16961 chro­
mosome I and II (49) separately using the Rockhopper package (50). For differential 
expression analysis, we used EdgeR (51) and classified genes as differentially expressed 
based on the cutoffs of ±1.5-fold change in expression value and false discovery rate 
(FDR) below 0.05.

Metabolism, growth, and viability assessment

The metabolic activity of V. cholerae cultured under TIC and diluted to a final O.D.600 
of ≤0.1 in LBM, either exposed or not to G1 or B12 antibodies for 60 min at RT, was 
assessed using the MTT Assay (52) as described in the Supplemental methods. Growth 
curves were analyzed by plotting O.D.600 against time for untreated and antibody-trea­
ted V. cholerae cultures in LBM until untreated cultures reached an O.D. ~ 0.1 (non-agglu­
tinating conditions [24]), as detailed in the Supplemental methods. The viability of V. 
cholerae upon exposure to G1 or B12 in the presence of mucin was measured using 
Live/Dead BacLight Bacterial Viability kit (Molecular Probes) following the manufacturer’s 
instructions and as described in the Supplemental methods.

Assessment of bacterial membrane integrity

LPS shedding into the culture medium of bacteria exposed to G1 or B12 antibodies in 
LBM at an O.D. 600 of ≤0.1 for 60 min at RT was measured using the Limulus Amoebo­
cyte Lysate (LAL) assay (GenScript). The culture medium (supernatant) was also probed 
for the presence of LPS fragments, membrane protein (zonula occludens toxin, Zot),
and intracellular components (RNA polymerase beta subunit) using an enzyme-linked 
immunosorbent assay (ELISA). The methods are described in detail in Supplemental 
methods.

Measurement of membrane electrical potential

Bacterial membrane polarization was measured using the cationic dye JC-1 (Invitro­
gen) as described by Forbes and colleagues (29) and as detailed in the Supplemental 
methods.

Measurement of intracellular sodium

Intracellular sodium concentration was assessed using the fluorescent dye Sodium Green 
Tetraacetate (Invitrogen) via the protocol modified from Morimoto and colleagues (48) 
and as described in the Supplemental methods.

Measurement of ATP

V. cholerae were cultured under TIC, diluted in LBM with or without G1 or B12 antibodies 
to a final O.D.600 of ≤ 0.1, and incubated at RT for 60 min. ATP concentrations were 
assayed using the BacTiter-Glo kit (Promega) per the manufacturer’s instructions and as 
described in the Supplemental methods (29).

Motility assay

Mucin columns were prepared with LB media containing 1% porcine gastric mucin 
and 0.3% agarose added to a 1 mL syringe (53, 54). V. cholerae cultured under TIC 
were premixed with G1 or B12 antibodies, loaded onto mucin columns, and allowed to 
penetrate the media for 3 hours. Fractions of 150 µL were collected from the bottom of 
the columns, and bacterial numbers were enumerated by diluting samples, plating onto 
LB-agar plates, and calculating colony-forming units.
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High-speed video microscopy of individual V. cholerae in the presence of 
antibody

V. cholerae C6706 strain MA042 was cultured in M9 minimal media (Sigma) supplemen­
ted with 2 mM MgSO4 (JT Baker), 100 µM CaCl2 (JT Baker), and 0.5% glucose at 37°C 
with shaking for 3.5 hours until an O.D.600 of 0.8 was reached. Flagella were labeled 
with Alexa Fluor 488 C5-maleimide (ThermoFisher) at a concentration of 25 µg/mL 
(diluted in tryptone broth) for 10 min at RT as described in detail in the Supplemental 
methods. Bacteria were exposed to anti-OSP antibody and imaged using EPI-illumination 
on a Nikon Ti2-E microscope. Simultaneous dual-color video was achieved with a Cairn 
OptoSplit II emission image splitter placed at the end of the light path just before the 
Electron Multiplying CCD, an Andor iXon Life 888 camera.

Crystal violet assay

Extracellular matrix production by V. cholerae was assessed using the dye crystal violet 
(Electron Microscopy Sciences) as described by Baranova and colleagues (25) and as 
detailed in the Supplemental methods.

Cyclic di-GMP measurement

Cyclic bis-(3′-5′)-dimeric guanosine monophosphate (c-di-GMP) level was assayed using 
a kit (Lucerna, Cyclic-di-GMP assay kit) per the manufacturer’s instructions and as 
described in the Supplemental methods. This kit has high assay selectivity with a 
sensitivity of 50 nM of c-di-GMP and a broad dynamic range.

Colonization of human enteroid-derived polarized epithelial monolayers

Differentiated human epithelial monolayers were generated from enteroids derived from 
adult terminal ileum and duodenal stem cells, on Transwells (Corning) as described 
previously (55) and as detailed in the Supplemental methods. V. cholerae were cultured in 
TIC as described above. Following incubation, the O.D.600 was measured, and bacte­
ria were washed and resuspended in plain DMEM (Gibco) at a density of 1 O.D.600. 
Concurrently, 15–20 min before addition of bacteria, G1 or B12 antibodies were added to 
the apical chambers of the respective Transwells to a final concentration of 0.0125 µM. To 
probe the impact of mucus, accumulated mucus was washed off in sub-analyses during 
medium changes and before addition of antibodies and bacteria. V. cholerae in DMEM 
were added to Transwells such that bacteria were diluted 10-fold to a sub-agglutinating 
final O.D.600 of ≤0.1 (24, 55). To visualize bacterial colonization, a tdTomato-expressing 
strain of V. cholerae C6706 (Table S1) was overlaid on the enteroid monolayers in the 
presence and absence of G1 or B12, and plates were incubated at 37°C with 5% CO2 
for 30 min, fixed with 4% paraformaldehyde, and processed for immunofluorescence 
as described in the Supplemental methods. Images were analyzed, and the number of 
bacteria per field was counted. To assess the impact of G1 and B12 on CT secretion, 
colonized monolayers were incubated at 37°C with 5% CO2 for 4 hours, following which 
the apical supernatant was collected to assess for cholera toxin by ELISA.

GM1-ELISA for CT

CT levels in monolayer supernatants were assessed using ELISA as described in the 
Supplemental methods.

Statistical analysis

Experimental data were compiled and annotated using Microsoft Excel and plotted using 
Graph Pad Prism version 10. Data are expressed as mean ± standard deviation of at least 
two to five biological replicates with at least three technical replicates, each as detailed 
in the figure legends for each experiment. Statistical significance is compared to the 
absence of antibodies (No Ab) and determined by Student’s t test, one-way analysis of 
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variance (ANOVA) with Dunnett’s post hoc test for multiple comparisons, or two-way 
ANOVA with Tukey’s post hoc test for multiple comparisons, as applicable. Significance 
is denoted by asterisks: ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05; ns, not 
significant.

RESULTS

V. cholerae El Tor C6706 was cultured under TICs, followed by exposure to anti-V. cholerae 
O1 OSP (G1) monoclonal IgG1 antibody at two concentrations (0.0125 and 0.125 µM) 
in LB or LBM for 1 hour at RT. For comparison, under the same conditions, V. cholerae 
were also exposed to anti-V. cholerae flagellin IgG1 monoclonal antibody (B12), which 
has been previously demonstrated to not impact V. cholerae motility (24). Bacterial RNA 
was subjected to Illumina sequencing. The resulting RNA-seq reads were mapped to 
the annotated genome of V. cholerae El Tor strain N16961 as a reference (49). Differen-
tially expressed genes (DEGs) defined by ± >1.5-fold change in expression and FDR < 
0.05 were identified for all treatment groups in comparison to LB (no antibody) as control 
(List S1): LB vs LBM (also Table S2), LB vs LB-G1 0.0125 µM, LB vs LB-G1 0.125 µM, LB 
vs LBM-G1 0.0125 µM, LB vs LBM-G1 0.125 µM, LB vs LB-B12 0.0125 µM, LB vs LB-B12 
0.125 µM, LB vs LBM-B12 0.0125 µM, and LB vs LBM-B12 0.125 µM. The resulting sets 
of DEGs were compared between LB vs LBM, LB vs LB-G1/B12, and LB vs LBM-G1/B12 
conditions (List S1) to identify genes whose transcript levels were differentially expressed 
in the presence of antibody in mucin (labeled in Fig. 1A as LBM-G1 or LBM-B12). We then 
focused on genes that were differentially expressed upon exposure of V. cholerae O1 to 
G1 in mucin and not upon exposure to B12 in mucin (Fig. 1A; Tables S3 to S5; List S1). We 
analyzed the effect of G1 or B12 antibodies on the expression of select V. cholerae genes 
identified in transcriptional profiling using RT-qPCR (Fig. S1).

Impact of mucin on V. cholerae transcriptome

V. cholerae gene expression was significantly impacted by mucin alone (LB vs LBM DEGs; 
with no antibody [List S1]). Table S2 depicts a partial list of key genes among these DEGs, 
including genes involved in virulence, such as decreased expression of toxR (VC0984), 
tcpH (VC0827), ctxB (VC1456), several genes encoding TCP biosynthesis proteins, several 
genes encoding the RTX toxin, as well as genes encoding accessory colonization factor. 
The largest category affected by the presence of mucin was genes involved in metabo­
lism, such as increased expression of genes involved in metabolism of sialic acid (found 
abundantly in mucin), including genes involved in scavenging (nanH), uptake (siaPQ),
and catabolism (nagA and nagK), as well as phosphotransferase system genes. Mucin is 
a chemoattractant for V. cholerae (56), and we detected an impact of mucin on several 

FIG 1 Transcriptomic profiling of V. cholerae genes in response to G1 in mucin. (A) Venn diagram of the number of V. cholerae gene transcripts whose amount 

was affected in the presence of OSP-specific human monoclonal antibody G1 in mucin vs flagellin-specific antibody B12 in mucin derived from two independent 

experiments. Transcripts identified to be altered by G1/B12 in mucin were derived by first incorporating the impact of both mucin alone (LB vs LBM) and 

antibody alone (LB-G1/B12) via Venn Diagram analysis (List S1). Antibodies were used at concentrations of 0.0125 or 0.125 µM. (B) Functional groupings of the 52 

genes whose expression was altered at both concentrations of LBM-G1 and not in other conditions (N = 2).
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genes encoding methyl-accepting chemotaxis proteins and chemotaxis proteins (cheY, 
cheV, cheB, and cheC) that function as part of the chemosensory system in V. cholerae. 
The expression of most of these genes was increased in the presence of mucin (Table S2). 
Of three chemosensory systems in V. cholerae, one is associated with flagellar motility 
(57). We found that several genes involved in the biogenesis of the flagellar structure 
were also affected by the presence of mucin: detection of transcripts of most of the 
genes encoding the flagellar basal body, hook, and motor was increased along with the 
flagellin FlaC in the presence of mucin, while detection of transcripts of genes for the 
primary flagellin, flaA, along with flaD, was decreased in the presence of mucin (Table S2). 
Transcripts of genes involved in twitching motility (VC0463, VC0462, and VC1612) were 
also increased. The expression of many V. cholerae transcription factors, two-component 
phosphorelay proteins, stress response proteins, and signaling cascade proteins was also 
altered in the presence of mucin (Table S2; List S1). These results highlight a broad 
impact of mucin on V. cholerae physiology.

Impact of anti-OSP IgG G1 on V. cholerae transcriptome in the presence of 
mucin

V. cholerae encounter anti-OSP antibodies in immune or partially immune humans in 
mucus at the intestinal surface. We thus focused our next efforts on the analysis of V. 
cholerae genes whose transcript levels were altered only in the presence of anti-OSP 
antibody and mucin (G1 in mucin), and not in mucin alone (LB vs LBM) or following 
exposure to anti-OSP antibody alone (LB vs LB-G1). The number and category of 
identified genes by condition and comparison group are shown in Fig. 1. Compared 
to over 1,200 V. cholerae genes whose expression was altered when V. cholerae was 
exposed to mucin alone (List S1), we found a smaller number further altered when 
G1 was added to mucin. A total of 154 V. cholerae gene transcripts were differentially 
expressed in response to either of the two concentrations of G1 in the presence of 
mucin but not in the presence of either concentration of B12 in mucin. Of these, a 
subset of 52 genes was common in both concentrations, while 69 were found to be 
affected only by 0.125 µM G1 in mucin and 33 were only impacted by 0.0125 µM G1 
in mucin (Fig. 1A; List S1; Tables S3 to S5). These 154 genes belonged to six main 
functional categories: bacterial stress response, flagellar assembly, bacterial defense, 
transport, metabolism, and transcriptional regulation (including regulating processes 
such as motility, biofilm formation, and secondary messenger signaling), along with 
several genes whose functions are as yet unknown (Fig. 1B; Tables S3 to S5).

Among these 154 genes, we observed decreased expression of VC2138 (fliS), a 
flagellin-specific T3SS chaperone of flagellin monomer (Table 1; Table S3). We also found 
decreased expression of genes involved in generating the sodium motive force (SMF) 
required for flagellar function, including VC1016, an ion-translocating oxidoreductase 
complex subunit B that is a redox-driven ion (Na+) transporter, and VCA0193, encoding a 
Na+/H+ antiporter (Table 1; Table S3).

The largest cohort of DEGs induced specifically in response to G1 in mucin encoded 
functions related to metabolism. While exposure of V. cholerae to mucin alone increased 
the expression of genes involved in metabolic pathways, including for alternate energy 
sources, the addition of G1 to mucin decreased the expression of many metabolic 
pathways (Fig. 1B; Table S3) such as those involved in the biosynthesis of intermediates 
including chorismate (VC1507), cysteine (VC1016), coenzyme A (VC0215), as well as 
genes involved in the transport of molecules, including serine (VC1658), vitamin B12 
(VC2381), zinc (VC255), tungstate (VC1524, VC1525), and iron (VC1546). G1 in mucin 
did increase the expression of VCA0898 encoding phosphogluconate dehydrogenase 
(gnd), an enzyme in the pentose phosphate pathway producing Ribu-5-phosphate, one 
of the substrates that is required for the biosynthesis of riboflavin; intriguingly, riboflavin 
produced by V. cholerae has been associated with induction of anti-OSP/LPS immune 
responses in cholera (58, 59). We also observed decreased expression of genes involved 
in cell wall biosynthesis, including VC2256 (uppS) involved in the synthesis of the lipid 
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carrier undecaprenyl phosphate (C55-P) and VC2152 (dapE) catalyzing the generation 
of intermediates involved in the bacterial biosynthesis of lysine and meso-diaminopi­
melic acid, both being components of the peptidyl moiety of peptidoglycan. These 
results suggest a broad impact of G1 in mucin on V. cholerae metabolism, especially in 
decreasing its metabolic state.

Adding G1 to mucin also altered the expression of many genes involved in V. 
cholerae stress response, including VC1676 (PspC, phage shock protein C). The phage 
shock protein (Psp) system is involved in bacterial responses to agents that impact cell 
membrane function. Expression of the chaperone survival protein A (Sur, VC0445; a 
member of the σE cascade) also decreased in response to G1 in mucin. Exposure of V. 
cholerae to G1 in mucin also altered the expression of several genes involved in the cyclic 
oligonucleotide-based antiphage signaling system, including dncV (VC0179) whose 
gene product preferentially synthesizes the secondary messenger 3′3′-cyclic GMP-AMP 
(3′3′-cGAMP), as well as VC0681, which is one of three identified phosphodiesterases 
(designated as V-cGAP1) that catalyze hydrolysis of 3′3′-cGAMP. In the animal commensal 
strain Escherichia coli ECOR31, DnvC regulates biofilm formation and motility (60).

In addition to VC0681, we identified a number of other genes involved in the 
expression of extracellular matrix and the generation of biofilm in V. cholerae. G1 
in mucin increased the expression of the transcriptional regulator VpsT encoded by 
VCA0952, as well as vpsR (VC0665). We also detected increased expression of VpsH 
encoded by VC0924; the vps cluster is involved in the synthesis of extracellular matrix 
by V. cholerae. We detected decreased expression of Vibrio quorum modulator A (VqmA) 
encoded by VCA1078, a LuxR-type transcriptional regulator that activates VmqR—a 
regulatory RNA that suppresses translation of VpsT mRNA (61). G1 in mucin also 
increased the expression of genes involved in the functioning of the type 2 secretion 
systems (VC2724, epsM), type 6 secretion system (VCA0019, vasW), iron metabolism 
(VC0364, bfd, 1), and methylation of 16s rRNA (VC2774).

In summary, our results suggest a broad impact of G1 in mucin on V. cholerae 
metabolism, stress response, biofilm formation, and motility. To explore these findings 
in more detail, we next undertook more detailed biochemical and functional analyses of 
identified pathways.

Impact of anti-OSP IgG G1 and mucin on V. cholerae metabolism

As detailed above, the largest category of genes whose expression was altered in 
response to G1 in mucin encoded for functions relating to bacterial metabolism and 
transport (Fig. 1B; Table S3). We therefore assessed the metabolic status of V. cholerae 
in response to G1 in mucin by measuring metabolism, growth, viability, levels of ATP 

TABLE 1 Partial list of V. cholerae genes identified by transcriptomic profiling whose transcript amounts were altered in the presence of human OSP-specific 
monoclonal antibody G1 in complex media containing mucin, and not in the presence of human flagellin-specific monoclonal antibody B12 in complex media 
containing mucina

Gene Annotation logFC Product Associated function

VC0179 dnvC 0.589 Dinucleotide cyclase in Vibrio Cyclic nucleotide-based antiphage signaling system
VC0181 cap3 0.606 DnvC deubiquitinase Cyclic nucleotide-based antiphage signaling system
VCA0898 gnd 0.619 6-phosphogluconate dehydrogenase Pentose phosphate pathway/riboflavin synthesis
VC0924 vpsH 0.708 Capsular polysaccharide biosynthesis protein CapK Biofilm formation
VCA0952 vpsT 0.8667 LuxR family transcriptional regulator Biofilm formation
VC1676 pspC 1.149 Phage shock protein C Phage shock response
VCA0681 V-cGAP1 1.943 3′3-cGAMP phosphodiesterase Cyclic di-nucleotide signaling
VC0445 surA −0.592 Survival protein SurA Envelope stress response
VCA1078 vqmA −0.601 LuxR family transcriptional regulator Quorum sensing, biofilm formation
VC1016 rnfB −0.642 Ion-translocating oxidoreductase complex subunit B Redox-driven ion (Na+) transporter
VCA0193 −0.668 Na+/H+ antiporter Sodium transport
VC2138 fliS −0.823 Chaperone protein FliS Motility
aGenes with increased transcripts are shaded gray. Data are derived from two independent experiments.
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generation, as well as membrane potential, the latter two of which have been observed 
to be disrupted by anti-OSP antibody in simple media in earlier studies (28, 29, 32). 
Cellular metabolic activity was assessed by comparing the ability to convert tetrazolium 
dye MTT to formazan. Reduced levels of formazan were observed in the presence of 
G1 in mucin that were not seen when bacteria were exposed to B12 in mucin, suggest­
ing that one of the effects brought about by G1 in mucin is the slowing of cellular 
metabolic activity (Fig. 2A). We confirmed this impact (inhibition) on V. cholerae growth 
by OSP-specific antibody in mucin in sub-agglutinating conditions using direct bacterial 
growth curve analysis (Fig. 2B). We then confirmed that this impact was on growth and 
metabolism and that OSP-specific antibodies did not directly affect V. cholerae viability 
(Fig. 2C).

Previous literature has suggested that anti-OSP antibodies reduce bacterial mem­
brane potential and ATP generation (28, 29, 32); we thus wanted to explore these 
aspects as potential contributors to decreased V. cholerae growth and metabolism. We 
assessed membrane potential using the potentiometric dye JC-1. In the presence of high 
membrane potential, JC-1 aggregates to form structures (J-aggregates) that fluoresce 
red (Ex: 530 nm and Em: 590 nm) while monomers exhibit green (Ex: 485 nm and Em: 
525 nm) fluorescence. We did not detect any membrane depolarization in response to 
treatment with G1 or B12 in mucin, although a decrease in membrane potential was 
observed when the ionophore CCCP was used as a control (Fig. 3A). As expected, since 
ATP synthesis depends on the proton motive force (62), there was no observed reduction 
in the levels of total ATP (Fig. 3B). Thus, in the presence of G1 in mucin, V. cholerae 
undergo a reduction in metabolic activity and replication that is not associated with 
the loss of membrane potential and subsequent ATP generation, or due to increased 
bacterial death.

Impact of anti-OSP IgG G1 in mucin on V. cholerae membrane integrity

Several genes whose expression was altered in the presence of G1 in mucin are 
involved in bacterial defense and envelope stress responses (Table 1; Table S3). Previous 
studies also suggest that membrane blebbing and outer membrane stress may be 

FIG 2 Impact of G1 in mucin on V. cholerae metabolism, growth, and viability. (A) MTT assay of V. cholerae C6706 in the presence or absence of G1 or B12 in 

mucin. Fold compared to No antibody condition of optical density of dissolved formazan expressed as mean ± standard deviation (sd) of three independent 

experiments with at least three technical replicates each. Statistical significance compared to the absence of antibodies (No Ab) was determined by two-way 

analysis of variance with Tukey’s post hoc test for multiple comparisons and is denoted by asterisks: *P < 0.05; ** P < 0.01. (B) Representative growth curve 

analysis of V. cholerae C6706 in the presence or absence of G1 or B12 in mucin expressed as mean ± sd of a representative experiment from three independent 

experiments with at least three technical replicates each. (C) Viability of V. cholerae C6706 assessed using the BacLight Live/Dead kit in the presence or absence 

of G1 or B12 in mucin. Data are expressed as mean ± sd of three biological replicates, each with three technical replicates. Statistical significance compared to the 

absence of antibodies (No Ab) was determined by one-way ANOVA with Dunnett’s post hoc test for multiple comparisons.
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a consequence of exposure to anti-LPS antibodies (29–31). We therefore assessed 
membrane integrity of V. cholerae in the presence of G1 in mucin by testing bacterial 
supernatants for released components of LPS, membrane proteins (zonula occludens 
toxin [63]), and cytoplasmic contents (RNA polymerase β component and ATP). We did 
not detect evidence of increased free LPS (Fig. 4A and B) or leakage of membrane-bound 
and intracellular bacterial proteins (Fig. 4C and D), although we did detect an increase in 
free ATP in culture supernatants (Fig. 4E), suggesting that although minor leakage/bacte­
rial permeability may occur, no large membrane disruption of V. cholerae was evident in 
the presence of OSP-specific antibody in mucin.

Impact of anti-OSP IgG G1 on V. cholerae C6706 motility, including in medium 
containing mucin

We have previously shown that anti-OSP antibody in liquid and semi-solid media inhibits 
V. cholerae motility, including at sub-agglutinating concentrations (22, 24). In our current 
analysis, we found that expression of VC2138 (fliS), a flagellin-specific T3SS chaperone of 
flagellin monomer that facilitates export and polymerization for flagellar assembly, was 
decreased in the presence of anti-OSP antibody and mucin (Table 1; Table S3). To directly 
assess V. cholerae motility in mucin, we used a mucin-agarose column and confirmed 
significant inhibition of V. cholerae motility in the presence of OSP-specific antibody and 
mucin (Fig. 5A). We next used high-speed microscopy of V. cholerae with fluorescently 
labeled flagella to specifically address whether flagellar tethering or bacterial cross-link­
ing was occurring. We found that V. cholerae in the presence of anti-OSP antibody lost 
motility despite preserved, non-tethered flagella (Movies S1 and S2).

Since our results suggest that motility could be arrested by anti-OSP antibody even 
in the presence of an intact non-tethered flagellum, we explored other aspects involved 
in mediating V. cholerae motility. Motility in V. cholerae is dependent on the flagellar 

FIG 3 Impact of G1 in mucin on V. cholerae membrane potential and ATP levels. (A) Membrane potential assessed following exposure to G1 or B12 in mucin 

for 30 min using potentiometric dye JC-1, followed by calculation of ratio of red fluorescence to green to derive the potential. Fold change in potential as 

compared to the absence of any antibody (No Ab) was calculated and expressed as mean ± sd of three biological replicates, each with three technical replicates. 

Statistical significance compared to No Ab was determined by one-way analysis of variance with Dunnett’s post hoc test for multiple comparisons and is denoted 

by asterisks: **P < 0.01. (B) Representative data for total ATP levels (combined intracellular and extracellular) measured using the BacTiterGlo Assay kit in the 

presence or absence of G1 or B12 in mucin. Ionophore CCCP was used as a positive control; see text. Data expressed as mean ± sd fold change compared to the 

absence of any antibody (No Ab) from five biological replicates, each with three technical replicates. Statistical significance was determined by one-way analysis 

of variance with Dunnett’s post hoc test for multiple comparisons.
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motor driven by the SMF (64), and our transcriptomic analysis identified several genes 
involved in the transport of sodium ions across the bacterial membrane in response 
to G1 in mucin, including decreased expression of VC1016 that encodes a RnfB-rela­
ted protein, an ion-translocating oxidoreductase complex subunit B that is part of a 
membrane-bound complex that is a redox-driven ion (Na+) transporter (Table 1; Table 
S3). We also identified decreased expression of VCA0193 encoding a Na+/H+ antiporter 
in response to G1 in mucin (Table 1; Table S3). Despite the identification of such genes, 
we were unable to detect changes in the concentration of intracellular sodium levels in 
direct measurement (Fig. 5B).

Impact of anti-OSP IgG G1 in mucin on V. cholerae extracellular matrix 
production

Given the strong transcriptomic evidence for the impact of G1 in mucin on V. cholerae 
biofilm formation (Table 1; Tables S3 and S4), we examined extracellular matrix (ECM) 
production by V. cholerae exposed to G1 in mucin using a crystal violet assay and V. 
cholerae C6706, as well as mutants of C6706, including a rough strain lacking OSP and 
a motility-deficient strain (retaining a non-functional but intact flagellum) (44, 65). G1 in 
mucin readily induced the expression of ECM in wild-type C6706 (Fig. 6A, black bars), 
which did not occur in the B12 in mucin condition. No ECM was induced in a rough 
V. cholerae mutant (not expressing OSP) in the presence of G1 in mucin (Fig. 6A, teal 
bars), suggesting ECM induction occurs following binding of OSP-specific antibody on V. 
cholerae OSP. In addition, ECM was also not induced in the absence of functional motility 
(involving a motility-deficient mutant with an intact but non-functional flagellum coated 
with OSP; Fig. 6A, fuchsia bars), suggesting that bacterial motility is important for 
OSP-specific antibody to induce ECM release by V. cholerae.

Impact of anti-OSP IgG G1 in mucin on V. cholerae secondary messenger 
signaling

A well-established modulator of motility and ECM production by V. cholerae is the 
secondary messenger molecule cyclic bis-(3′-5′)-dimeric guanosine monophosphate 
(66–69). Since our analysis had identified an impact of G1 in mucin on V. cholerae motility 

FIG 4 Impact of G1 in mucin on bacterial integrity. (A) Representative data for LPS-Lipid A levels in 0.2 µm filtered supernatants of bacteria treated with G1 

or B12 in mucin assessed using a LAL assay per the manufacturer’s instructions. Data shown are representative of three biological replicates with two technical 

replicates each. Statistical significance compared to the absence of antibodies (No Ab) was determined by one-way ANOVA with Dunnett’s post hoc test for 

multiple comparisons. (B–D) Cell supernatants of V. cholerae C6706 treated with G1 or B12 in mucin were subjected to ELISA with antibodies against core of LPS 

(B), Zot protein (a membrane-associated antigen) (C), and RNA polymerase B subunit (an intracellular antigen) (D). The data are representative of the results from 

two independent experiments, each with four replicates. Statistical significance compared to the absence of antibodies (No Ab) was determined by one-way 

analysis of variance with Dunnett’s post hoc test for multiple comparisons and is denoted by asterisks: *P < 0.05. (E) ATP released into the culture medium 

(extracellular ATP) upon exposure of V. cholerae to G1 or B12 in minimal medium was measured using the BacTiterGlo assay kit. Data expressed as mean ± sd 

are composed of three biological replicates, each with three technical replicates. Statistical significance compared to the absence of antibodies (No Ab) was 

determined by one-way analysis of variance with Dunnett’s post hoc test for multiple comparisons and is denoted by asterisks: **P < 0.01.
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and ECM expression, we directly assessed levels of c-di-GMP in V. cholerae in the presence 
and absence of G1 using an aptamer-based kit. Since mucin interfered with the detection 
of c-di-GMP (Fig. S2A), we assessed the impact of OSP-specific antibody on V. cholerae 
in media lacking mucin. We detected an increase in the levels of c-di-GMP in V. cholerae 
in the presence of LB-G1 (Fig. 6B), and this increase was not observed using the rough 
mutant (Fig. S2B), suggesting involvement of c-di-GMP signaling in the response of V. 
cholerae to OSP-specific antibodies.

Impact of anti-OSP IgG G1 on V. cholerae colonization in human enteroids

To gain an understanding of the overall impact of the various effects of anti-OSP 
antibody (Fig. 1 to 6) on bacterial colonization capabilities (70), we established an 
epithelial monolayer colonization model using enteroids derived from human duode­
nal and terminal ileal adult stem cells (55). Enteroid monolayers have been used to 
study host interaction with enteric pathogens (55, 71, 72). Several reports have utilized 
enteroids to study the effects of CT and to evaluate potential inhibitors of CT (73–76). 
The enteroid monolayers maintain apical-to-basal polarity and barrier function and 
differentiate to contain multiple cell types, including goblet cells that produce mucin 
(a principal component of mucus) (77). We controlled the level of mucus present in 
our monolayers through intermittent washing. Once we established the monolayer (Fig. 
S3), we added antibodies G1 or B12 to the apical chamber of the Transwells (represent­
ing the luminal surface), followed by red fluorescence protein tdTomato-expressing 
V. cholerae. We quantified bacteria at the epithelial apical surface in the presence or 
absence of G1 or B12 following staining with 4′,6-diamidino-2-phenylindole (DAPI) for 

FIG 5 Impact of G1 in mucin on V. cholerae motility. (A) Mucin motility assay carried out using columns containing 1% (wt/vol) mucin and 0.3% agarose in LB. 

Data shown are expressed as mean ± sd of a representative of three biological replicates. Statistical significance compared to the absence of antibodies (No 

Ab) was determined by one-way analysis of variance with Dunnett’s post hoc test for multiple comparisons and is denoted by asterisks: **P < 0.01. (B) Intra-V. 

cholerae sodium levels were measured using fluorescent dye sodium green as a measure of sodium gradient across the bacterial membrane. Monensin is 

a sodium-specific ionophore that affects the level of sodium chemical potential. Data shown are representative of four biological replicates, each with two 

technical replicates. Statistical significance compared to the absence of antibodies (No Ab) was determined by one-way analysis of variance with Dunnett’s post 

hoc test for multiple comparisons and is denoted by asterisks: ****P < 0.0001.
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nuclei and lectin wheat germ agglutinin (WGA), which binds N-acetylglucosamine and 
sialic acid residues, both abundantly present in mucin glycoproteins along with several 
other surface glycoproteins (Fig. 7A). We quantified V. cholerae’s ability to colonize the 
epithelial surface and observed a significant reduction in the presence of OSP-specific 
antibody compared to anti-flagellin antibody controls (Fig. 7B and C). This was accom­
panied by a significant reduction in cholera toxin levels (Fig. 8A). Results were the 
same in sub-analyses of ileal- and duodenal-derived monolayers, and with and without 
accumulated mucus (Fig. 8A; Fig. S4A). No decrease in cholera toxin was noted when 
monolayers were exposed to a rough mutant (VC0244::Kanr) that does not bind G1 
antibody (Fig. 8B; Fig. S4B).

DISCUSSION

V. cholerae physiology is significantly altered when bacteria are exposed to anti-OSP-spe­
cific antibody in the presence of mucin. These changes result in a shift from a highly 
virulent and motile bacterial phenotype to a non-motile phenotype characterized by 
significantly decreased metabolic activity and growth, an increase in extracellular matrix 
associated with biofilm formation, and a decrease in the ability to colonize the human 
intestinal epithelial surface and express cholera toxin.

Exposure of V. cholerae to mucin itself alters V. cholerae physiology, including 
transcriptional downregulation of virulence-related regulons, and underscores the 
importance of studying the effects of anti-OSP antibody in a mucus/mucin milieu in 
which bacteria and antibodies would interact at the intestinal surface of an infected 
human. The impact of mucin on virulence gene expression has been noted previously 
(78–83) and may suggest that mucin acts as a signal to V. cholerae that it has reached its 
target ecological niche and should begin transcriptional alterations required to support 
subsequent survival and passage in diarrheal stools.

FIG 6 (A) Impact of G1 in mucin on induction of extracellular matrix by V. cholerae. Representative crystal violet staining assessment of V. cholerae C6706 

wild type (black), motility mutant V. cholerae (deficient in stator subunit B; fuchsia), and rough mutant V. cholerae (deficient in perosamine synthase; teal) in 

the presence and absence of G1 or B12 in mucin at 37°C for 90 min. The data are representative of the results from three independent experiments, each 

with three replicates. Statistical significance compared to the absence of antibodies (No Ab) was determined by two-way ANOVA with Tukey’s post hoc test 

for multiple comparisons and is denoted by asterisks: ****P < 0.0001. (B) Impact of G1 on levels of cyclic di-GMP. Cyclic di-GMP levels were assessed via 

aptamer-based kit upon exposure of V. cholerae C6706 to G1 or B12 in LB. Data shown are expressed as mean ± standard deviation of three biological replicates. 

Statistical significance compared to the absence of antibodies (No Ab) was determined by one-way analysis of variance with Dunnett’s post hoc test for multiple 

comparisons and is denoted by asterisks: ***P < 0.001.
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On top of these mucin-related changes, OSP-specific antibodies further altered V. 
cholerae metabolism and growth. Our data suggest that these changes were not due to 
agglutination, impact on bacterial viability, or impact on redox capabilities (membrane 
potential and ATP generation). We did note an increase in the expression of bacterial 
stress response genes, perhaps reflecting the impact of OSP-specific antibodies on the 
bacterial outer membrane. We, however, did not detect evidence for major structural 
damage or loss of bacterial membrane integrity in our analyses, although we did detect 
increased extracellular ATP from V. cholerae exposed to OSP-specific antibody in mucin, 
perhaps suggesting damage sufficient to allow leakage of small molecules. Previous 
analysis of a monoclonal antibody targeting the core oligosaccharide-lipid A region 
of V. cholerae LPS did suggest more substantial V. cholerae membrane damage than 
we observed (25). The different results may reflect the “deeper” lipid A membrane-asso­
ciated target of the monoclonal antibody used in the previous work, compared with 
our OSP-specific antibody targeting the most distal component of the OSP-core-oligo­
saccharide-lipid A complex.

In our current analysis, we confirmed a significant impact of anti-OSP antibody on V. 
cholerae motility, including in the presence of mucin. Exposure of V. cholerae to mucin 
itself results in significant changes in transcript levels of V. cholerae genes involved 
in flagellar structure and motor components, and previous reports suggest a mechani­
cal loss of flagellar filament and motility when V. cholerae penetrate the mucin layer, 
including at the intestinal surface (54, 84, 85). Previous analyses also suggest that after 
a period of a few hours within the intestinal crypts, V. cholerae resume their motility and 
undergo a “mucosal escape response,” a process that involves LuxR, LuxO, and quorum 
sensing (86). The “mucosal escape response” involves RpoS (a stationary phase σ factor) 
and HapR-dependent processes that downregulate virulence genes and upregulate 
motility genes, facilitating bacterial detachment (86, 87). These released bacteria are 
then flushed into the luminal space and exit the host within the accompanying secretory 
diarrheal fluid. In our current analysis, we did not detect alterations in gene expression 
levels for LuxO, RpoS, or HapR in the presence of OSP-specific antibody and mucin, which 

FIG 7 V. cholerae colonization and localization in a human terminal ileum-derived epithelial monolayers expressing mucus. (A) Representative orthogonal 

projection of three-dimensional rendering of Z-stacked confocal images captured (Nikon, 60×) following staining with DAPI (blue) for nuclei and lectin WGA

(green) for surface and secreted glycoproteins containing N-acetyl glucosamine (GlcNAc), including in mucin, of epithelial monolayers preincubated with G1 or 

B12 (10 min) and overlayed with V. cholerae C6706 expressing tdTomato (magenta) for 30 min. Image represents a composite of the entire depth of the Z-stacked 

volumetric projection; this and the undulating nature of the monolayer result in a field of blue (as opposed to individual nuclei that can be discerned in the 

non-single-composite representation in Fig. S3), occasional bacteria “out of field” (note these rare bacteria retain their red color demonstrating they are not 

intracellular), and a composite teal-cyan layer reflecting both GlcNAc and nuclei between the blue (nuclei) and green (GlcNAc) fields. The main purpose of the 

composite is to demonstrate the impact of OSP-specific antibody on the distribution of V. cholerae within the mucus and surface glycoprotein layer (yellow). 

(B) V. cholerae colonizing the apical surface of epithelial monolayers captured via fluorescent microscopy of tdTomato-expressing bacteria in the presence of 

0.0125 µM of anti-Flg B12 or anti-OSP G1. Representative apical view images of two biological replicates are shown (N = 2). Scale bar, 50 µM. (C) Quantitation of V. 

cholerae bacteria colonizing epithelial monolayers in the presence of 0.0125 µM of anti-Flg B12 (black bars) or anti-OSP G1 (gray bars) (N = 2). Statistical analysis 

was carried out using Student’s t-test. See Fig. S3 for more details on the enteroid model.
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would not be unexpected since activity of these gene products can be regulated at 
post-transcriptional levels (88–90). We did detect decreased detection of the transcript 
of vqmA (VC1078, Table 1), a LuxR family transcriptional regulator involved in quorum 
sensing and biofilm formation (91). Our results thus suggest that OSP-specific antibodies 
may affect the re-acquisition of a motile phenotype after exposure to mucin, disrupting 
this sequence of pathophysiologic events.

We were unable to identify a definite mechanism for the inhibition of V. cholerae 
motility by OSP-specific antibodies. Because both the cell body and flagellar sheath are 
OSP decorated, we considered the possibility that the flagella may become tethered or 
cross-linked to the cell body upon exposure to anti-OSP, preventing the flagella from 
rotating. However, direct observation of V. cholerae in liquid media revealed no such 
events. Instead, flagellar rotation would be intermittently or permanently arrested in 
the presence of anti-OSP. These arrests were not observed in the absence of anti-OSP 
antibody. We were unable to identify a change in the sodium motive force in V. cholerae 
exposed to OSP-specific antibody in mucin. We did, however, detect an increase in the 
level of cyclic-di-GMP upon exposure of V. cholerae to anti-OSP and mucin. In E. coli, 
c-di-GMP binds YcgR, a PilZ domain protein that interacts with proton channels in the 
membrane to curb flagellar motor output (67, 92, 93). The YcgR-like protein of V. cholerae 
(VCA0042/PlzD) has been shown to bind c-di-GMP and could be a possible mechanism of 
a quick loss of motility in V. cholerae (94), although it was not observed to be modulated 
in our screen. Interestingly, high c-di-GMP also drives V. cholerae to transform from a 
curved shape that is better adapted to motility in hydrogel or high-density agar (akin 
to mucin) to a straight cell morphology better suited to a sessile lifestyle (95, 96). The 
curvature associated with motility was found to provide a competitive advantage in 
both infant mouse intestine and rabbit ileal models on V. cholerae pathogenesis (95, 96). 
The curved structure of V. cholerae is attributed to the protein encoded by gene crvA 
(VC1075), and we found decreased detection of this gene transcript in the presence 
of OSP-specific antibody and mucin (Table S5). This could potentially be an additional 

FIG 8 Cholera toxin in human ileum-derived epithelial monolayer upon V. cholerae colonization in the presence of G1 or B12. (A) GM1 ELISA for CT presence 

(via assessment of the binding subunit CtxB) in the supernatants of terminal ileum-derived monolayers infected with V. cholerae C6706 with (black bars) and 

without mucus (gray bars) and in the presence of 0.0125 µM each of G1 or B12 (N = 2). Statistical significance compared to the absence of antibodies (No Ab) 

was determined by two-way analysis of variance with Tukey’s post hoc test for multiple comparisons and is denoted by asterisks: ****P < 0.0001. (B) Assay of 

CT in culture supernatants of terminal ileum-derived monolayers with mucus accumulation infected with V. cholerae C6706 (black) or a rough mutant (lacking 

OSP, fuchsia) in the presence of 0.0125 µM G1 or B12 (N = 2). Statistical significance compared to the absence of antibodies (No Ab) was determined by two-way 

ANOVA with Tukey’s post hoc test for multiple comparisons and is denoted by asterisks: *P < 0.05.
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mechanism by which OSP-specific antibodies may impact V. cholerae motility and ability 
to penetrate mucin.

In V. cholerae, high levels of c-di-GMP also induce the formation of biofilms (97, 98). 
Biofilms provide protection from several environmental stresses, such as bacteriophages 
and host immune mediators. The conversion from planktonic to biofilm mode of V. 
cholerae involves changes in global transcriptomic profiles attributed to two transcrip­
tional regulators: VpsR and VpsT, both of which can bind c-di-GMP (69, 99–102). We 
found increased expression of both gene transcripts in V. cholerae exposed to OSP-spe­
cific antibody in mucin. Upon binding c-di-GMP, VpsT activates transcription of target 
genes, including those encoding the extracellular matrix component Vibrio polysacchar­
ide (vps gene clusters) (66, 98). We also found an increase in vpsH (VC0924) transcript 
levels in V. cholerae in mucin exposed to OSP-specific antibodies. Interestingly, we did 
not detect production/secretion of ECM in a non-motile (but smooth; containing OSP) 
mutant strain of V. cholerae exposed to OSP-specific antibodies in mucin. Similar results 
were also observed by Baranova and colleagues using the ZAC-3 anti-LPS antibody 
(25). The requirement of motility in the early stages of biofilm formation has also been 
previously reported by others (20, 103, 104), suggesting that induction of biofilm by V. 
cholerae must first involve cessation of active bacterial motility (105).

We did not detect a change in virulence gene expression when OSP-specific 
antibodies were added to mucin, apart from the significant reduction observed in 
V. cholerae exposed to mucin alone. We were, however, able to demonstrate a signifi-
cant decrease in cholera toxin at the mucosal surface when V. cholerae were exposed 
to OSP-specific antibodies in the human epithelial monolayer colonization model, 
compared to control antibody conditions. This was accompanied by a decrease in the 
number of bacteria colonizing the monolayer, suggesting that a consequence of the 
various effects of anti-OSP on V. cholerae either directly (such as by inhibiting motility) or 
indirectly (shifting the metabolic state and lifestyle to sessile growth in an extracellular 
matrix) results in fewer bacteria coming into proximity to epithelial cells. The decrease in 
bacterial numbers, lower metabolic rate, altered physiology, and reduction in V. cholerae 
attaining proximity to the epithelial layer (70) could explain the decrease in cholera toxin 
that we detected in the human-derived enteroid model system.

Our study has a number of limitations. Due to availability, our in vitro work used 
porcine stomach mucin. Although this reagent is standardly used in bacterial studies 
as a representative mucin (106–108), we attempted to mitigate possible species-specific 
effects by also incorporating a human enteroid model system expressing human mucin. 
Our enteroid model system also does not fully recapitulate the tertiary structure or 
complexity of the human small intestine; however, our system does represent the first 
analysis of the impact of an antigen-specific antibody in a complex system containing 
human mucus, V. cholerae, and human intestinal epithelial cells. We also used a lectin 
to assess the mucus layer in our monolayer model; future efforts will employ reagents 
capable of discerning individual mucins. We chose an anti-V. cholerae flagellin antibody 
as a control since it is well characterized (24), was isolated from an infected human 
with cholera, and in light of the impact of anti-OSP antibody on V. cholerae motility. 
Since the flagellum of V. cholerae is sheathed and coated with OSP, future efforts could 
evaluate an alternative outer-membrane binding antibody. We cannot totally exclude 
the impact of OSP-specific antibody on bacterial agglutination in our analyses, although 
we used a previously characterized monoclonal OSP-specific antibody and experimental 
conditions to mitigate this possible effect. We also did not assess cAMP levels in our 
epithelial cell enteroid model to assess the impact of the decreased cholera toxin levels, 
although this will be a focus of future efforts. Our analysis also used a single OSP-spe­
cific IgG monoclonal antibody since it facilitated control of experimental parameters. 
However, at the mucosal surface where V. cholerae interacts with mucosal antibody, IgM 
(multimeric) and IgA (dimeric) antibody isotypes would be the primary isotypes present. 
Analysis using these antibody isotypes and across a range of affinity and other antibody 
attributes is a focus of ongoing work by our group, although our data to date suggest 
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that IgM and IgA isotypes more substantially impact V. cholerae compared to an isogenic 
IgG derivative, probably reflecting the multimeric nature and perhaps altered hinge
regions of these antibodies in comparison to IgG (22–24).

In summary, our findings suggest that OSP-specific antibodies have a profound effect 
on V. cholerae in complex systems containing mucin. These changes involve several key 
regulatory cascades, inhibition of motility, downregulation of virulence mechanisms, and 
physiologic shifting of bacteria to a low metabolism, amotile state within an extracellu­
lar matrix component of a biofilm. We propose that this anti-OSP antibody-mediated 
disruption of V. cholerae physiology and its associated effects on virulence explain 
how antibodies targeting V. cholerae OSP mechanistically protect against cholera in the 
intestinal lumen of humans in the absence of direct innate or other human immune cell 
bacterial engagement.
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