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This paper proposes a multidimensional skill-conditioned shared control framework for
training human users in complex dynamic control tasks. In human training, novices often learn
through repeated practice and expert guidance. However, this expert-novice paradigm may
not scale well in real-world settings due to the scarcity of expert instructors. The proposed
framework serves as an expert, automatically evaluating user skill levels and providing an
appropriate amount of assistance by fusing the autonomous control input with the user’s
input. Complex tasks naturally involve multiple distinct control behaviors that may develop at
different learning rates. To accommodate this, we propose a skill identification method that
decomposes a given task into multiple distinct sub-skills and develop a discriminator-based
strategy for evaluating user proficiency at the sub-skill level. The proposed skill-conditioned
shared control scheme dynamically adjusts the contribution of the autonomous input for each
sub-skill based on the estimated proficiency of a human user. It increases the control authority
of the autonomous input when proficiency is low to prevent user frustration, and reduces it
as proficiency improves to prevent over-reliance on autonomy. We demonstrate the proposed
framework on a set of multi-rotor Unmanned Aerial Vehicle (UAV) trajectory tracking tasks
using simulated expert and novice agents. The proposed framework is compared against no
shared control and a baseline single-dimensional shared control. Results show that the proposed
framework can adaptively provide targeted assistance based on individual sub-skill levels and
reduce the trajectory tracking error compared to these baselines.

I. Introduction

NMANNED Aerial Vehicles (UAVs) are increasingly used in both civilian and military applications. Despite advances
Uin autonomy, human pilots are still required to take over control during brief but critical situations, such as emergency
responses. Even for autonomous small UAV operations, the FAA (Federal Aviation Administration) guidance requires
that a remote pilot in command retain the ability to immediately redirect or terminate the flight, ensuring human control
during rare but safety-critical events [1-3]. This continued need for human involvement emphasizes the importance of
training frameworks that can safely and efficiently improve pilot performance.

How can we efficiently train human pilots of UAVs? In human skill acquisition, humans often learn by practicing the
skill repetitively. The expert-novice paradigm is commonly used to accelerate this process, where an expert demonstrates
tasks and provides corrective assistance to a novice [4]. Since the ultimate goal is for the novice to learn the skill
and perform the task independently, the expert should gradually reduce the assistance level as the novice improves to
prevent over-reliance on the expert’s support. This is done by decreasing the portion of control contributed by the expert.
This model of learning is shown to be effective; however, it is difficult to scale due to the limited availability of expert
instructors [5]. To address this, autonomous agents have been designed to act as synthetic experts to train novice human
users [6, 7].

Accurate assessment of user skill proficiency is a fundamental aspect of human training. Traditional approaches
often rely on simple metrics such as trajectory tracking error to quantify the deviation between novice and expert
performance. However, these simple metrics fail to account for the inherent variability and stylistic adaptability of human
behavior. To address this limitation, recent frameworks have adopted probabilistic methods that compare the statistical
distribution of expert and novice trajectories [8]. This distributional approach is more robust to behavioral variance
and better reflects underlying skill consistency. Alternatively, learning-based methods such as Inverse Reinforcement
Learning (IRL) and Inverse Optimal Control (IOC) model human motor control as an optimization problem. The user
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skill level is then estimated by inferring the user’s adherence to the expert’s mission objective [9—11]. However, these
methods typically yield a single-dimensional skill proficiency estimate, evaluating performance as a monolithic whole.
In practice, complex tasks such as UAV navigation involve multiple distinct sub-skills that may develop at different
learning rates. This limitation highlights the need for a training framework capable of multidimensional skill assessment
and adaptive assistance.

Beyond assessing skill levels, an effective training framework must translate these assessments into adaptive guidance.
To realize this, shared control provides a natural interface between human and autonomous agents, aligning with the
expert—novice paradigm where the autonomous agent acts as the expert. Shared control is an architecture where the
system is controlled by inputs from human and autonomous agents. It has been commonly used in domains such as
robotic rehabilitation [9], driving assistance [12, 13], and multi-UAV teleoperation applications [14]. Prior work has
proposed adaptive frameworks that adjust the level of assistance from the autonomous agent based on estimated user
skill proficiency [8]. However, these approaches remain limited by their reliance on global, single-dimensional skill
assessment. By providing single-dimensional assistance based on global performance evaluation, the current methods
overlook the potential benefits of offering sub-skill-specific support. In this work, we design a training framework that
can evaluate users’ sub-skill proficiency and provide targeted assistance accordingly.

Providing targeted assistance requires a meaningful definition of what constitutes a “sub-skill”. The meaning of
sub-skill varies across research areas. In robotics, sub-skills are commonly referred to as primitive control behaviors
learned independently by each end-effector, which can later be coordinated with other sub-skills to perform complex
tasks [15]. In human skill acquisition, a complex skill is often decomposed into a set of sub-skills that can be trained
and evaluated separately [16]. In this work, we define a sub-skill as a distinct control behavior required to perform a
complex task. This definition provides a middle ground between actuator-level primitives in robotics and higher-level
skill structures in human learning, while aligning with our framework by capturing recurring control behaviors. The
number of sub-skills in a task may vary depending on the complexity of the system dynamics and whether the control
inputs correspond to interpretable behaviors.

We propose a novel training framework that evaluates the user’s proficiency in each sub-skill and provides sub-skill-
specific assistance. Our work offers three main contributions. First, we systematically decompose the high-dimensional
task of UAV navigation into multiple sub-skills. Second, we propose a framework that evaluates the proficiency of
each sub-skill in real-time and provides sub-skill-specific assistance. Finally, we demonstrate the effectiveness of our
proposed framework in a simulated UAV navigation task with various synthetic user profiles.

The remainder of the paper is organized as follows. Section II presents the proposed multidimensional shared control
framework and the methods used for each component. Section III demonstrates and evaluates the proposed framework
on a set of trajectory-tracking tasks, and Section IV reports the corresponding results and discussions. Finally, Section V
provides the conclusions.

I1. Methodology

A. Proposed Framework Overview

Figure 1 illustrates the proposed skill-conditioned shared control framework which consists of an offline training
phase and an online execution phase. In the offline phase, we first decompose the expert demonstration into segments
labeled by sub-skills via the skill identification process. These labeled samples are then used to train the skill classifier
that maps state-control pairs to sub-skill labels. Using labeled expert and novice demonstrations, we train the skill
evaluation module that compares novice behavior against expert behavior for each identified sub-skill. In the online
phase, incoming novice state—control data are processed by the trained skill classifier to identify the active sub-skill.
The skill evaluation module then estimates the user’s proficiency level for that sub-skill. The resulting proficiency score
determines the control mode of the skill-conditioned shared controller. Each mode corresponds to a distinct level of
assistance: high, medium, or low. This discrete mode design is motivated by prior findings [17] showing that continuous
variation of assistance level can induce mode confusion and degrade user experience. Based on the assigned mode, the
framework blends the human and autonomous control inputs. The resulting shared input is then applied to the system.

B. Skill Identification
To enable sub-skill-specific assistance for human users, it is essential to first decompose the UAV navigation task
into distinct sub-skills. Existing approaches for skill identification generally fall into three categories: supervised
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Fig. 1 The proposed framework for skill-conditioned shared control.

classification [18, 19], unsupervised learning [20, 21], and clustering-based segmentation [22, 23]. Supervised
classification requires clean, pre-segmented skill trajectories, which in turn demands additional setup and expert-labeled
data collection. On the other hand, unsupervised learning approaches typically require large amounts of data, which
may be impractical in human-in-the-loop training settings. In this work, we employ the Hidden Semi-Markov Model
(HSMM) [24] to segment expert demonstrations into interpretable sub-skills. Unlike conventional clustering algorithms
such as Gaussian Mixture Models (GMMs), the HSMM explicitly models the temporal structure and duration of each
sub-skill, enabling it to capture repeated and time-varying control patterns more accurately

Let the expert demonstration be represented as Dg = {(x )} _, Where x € R” denotes the system state,
uf © € R the control input at time step k, and TE is the length of the expert demonstratlon The superscript E indicates
that the data are generated by an expert. For notational simplicity, we drop the superscript E and write (Xg,u;) when
the context is clear. The sequence is modeled as a realization of the HSMM with a predefined number of discrete
latent sub-skill state 7 € Z = {1,..., M} and a corresponding duration variable d; € N*. M denotes the number of
sub-skills. We group consecutive time steps with the same sub-skill into segments and use s to index these segments.
The sub-skill of segment s is denoted as z; € Z, with duration dy € N* and start time index 7. Segment s covers the
indices k = 7,,...,7Ts + ds — 1, and z; = z; for all k in this range. Each sub-skill z5 persists for dg time steps before
transitioning to a subsequent sub-skill zs,; according to a transition probability matrix 7~ € RM*M

The generative process of the HSMM follows the finite Bayesian construction and can be written as:

21 ~ 7o
ds | Is ™~ p(ds | Zs)
Ts+ds—1 (1)
(XTSZTS+dS—l7uTSZT_,-+dS—1) | Is ™~ 1—[ P (Xk, ug | Zs)
k=7,

s+l | s ~ Tz,

where p(- | -) denotes a probability mass function (pmf) or a probability density function (pdf). The first equation in
Eq. (1) samples the initial sub-skill z; from the initial distribution 7. The second equation samples the dwell time d
for sub-skill z; from the duration distribution p(ds | zs). The third equation generates the observations (X, uy) in
segment s using the emission density p (X, ux | zs) (see Eq. (2)). The last equation samples the next sub-skill 7|
from the transition distribution 7, which is the z,-th row of the transition matrix 7.
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The emission model for each sub-skill is defined as a Gaussian distribution:

P(X,ll|Zs)=N([X,U]T |ﬂzs’2zs) 2)

where p,. € R"™"™ is the mean vector and X, € R#MX(n+m) ig the covariance matrix associated with sub-skill z.
The duration distribution p(dy | z5) is modeled as a Poisson distribution to capture variable dwell times [25]. The
model parameters are denoted as ® = {mg, 7, {u;, Z;, p(d,-)}f.‘;l | }> and are estimated using blocked Gibbs sampling [24].

Given the learned parameters, the most probable sub-skill sequence is obtained using the Viterbi algorithm [26]:
2y = arg max p(zi7 | 17, Ur.r. ©) S

This produces a labeled expert dataset D}, = {(xE,uf, z£)}” | where each time step k is assigned a sub-skill label

corresponding to an interpretable control behavior. Note that the HSMM is trained on expert demonstrations to learn
the temporal and control structure of sub-skills. These learned parameters are then used to infer the sub-skill sequence

. . . . _ N N N TN
for novice demonstrations, producing the labeled novice dataset Dy, = {(x;',u’, 7. )} ;-

C. Skill Classification

The purpose of the skill classification module is to enable real-time identification of sub-skills from incoming novice
data. While the HSMM described in Section II.B provides sub-skill labels for expert demonstrations offline, the HSMM
inference is computationally expensive and unsuitable for online deployment. Therefore, we train a discriminative
model that can efficiently map state—control pairs to sub-skill labels.

Given the labeled expert and novice datasets Dy, and Dy, respectively, we construct finite sequences of length
L using a sliding window as: wi = {(Xg-;, uk_l)}lez)l. We define a classifier parameterized by ¥ that models the
categorical distribution over sub-skill labels given the recent window as:

Cy : Wi — pw(z | wi) 4

where py(z | Wg) is a probability distribution over all sub-skill labels z € Z, and z; € Z is the HSMM-derived
sub-skill label at time step k used as the training target for window wy. The classifier Cy is implemented using a Long
Short-Term Memory (LSTM) network [27], which captures temporal dependencies over the input window. The classifier
parameters ¥ are optimized by minimizing the categorical cross-entropy loss over the HSMM-labeled dataset. During
online inference, we maintain a sliding window of the most recent L state—control pairs. For each window wy, the
classifier outputs the probability vector py(z | wi) over all sub-skill labels, and selects the most probable label as the
current sub-skill estimate:

Zx = argmax py(z | wi) )

z€Z

providing real-time sub-skill estimates for the subsequent skill evaluation and shared control modules.

D. Skill Evaluation

Building on the expert—novice learning paradigm, novice skill evaluation can be formulated as a comparison between
novice behavior and expert demonstrations. Given the labeled expert and novice datasets D, and Dy, we define the
skill evaluation function ¥ that maps the current novice state—control pair and its sub-skill label to a normalized score:

Fo(xpup,ze) — Sk (6)

where the superscript N denotes novice behavior, and zx € Z is the sub-skill at time step k. The score s, € [0, 1]
measures how closely the novice behavior aligns with the expert performance under sub-skill z;, with higher values
indicating better alignment. Inspired by adversarial imitation learning [28], we formulate the skill evaluation function
¥ as a discriminator Dg. In robotics, the discriminator’s role is to distinguish between real samples and generated
samples. Similarly, the objective of the skill evaluation module is to distinguish human expert and novice behaviors
within the context of a specific sub-skill z.

This can be formulated as minimizing the following adversarial objective, based on binary cross-entropy:

L1(®) = ~E(xuz)~0;, [10g Do (x,u | 2)| = E(xuz)~y [10g (1 - Do(x,u | 2))] ©)



Downloaded by Purdue University on January 26, 2026 | http://arc.aiaa.org | DOI: 10.2514/6.2026-2867

Here (x,u,2) ~ Z);5 and (x,u,z) ~ Z)I’V denote sampling state—control—skill tuple from the expert and novice datasets,
respectively. The first term is the expected negative log-likelihood of the discriminator output on expert samples, and it
penalizes assigning low scores to expert data. The second term is the expected negative log-likelihood of one minus the
discriminator output on novice samples, and it penalizes assigning high scores to novice data. To make the discriminator
skill-aware and to prevent the network from ignoring the condition, we include the Condition-Aware Loss (Lca) [29].
This is achieved by penalizing the discriminator for misclassifying mismatched pairs, where an expert sample is paired
with an incorrect skill label z;s:

Lca(®) = -Exu)~0,, e~z | 10g (1 = Do (X, 0 | Zmis)) | ®

Here (x,u) ~ D}, means the state—control pair is sampled from the expert dataset, and zpjs ~ < means the label is
drawn from Z but does not match the true sub-skill. This term is the expected negative log-likelihood of one minus the
discriminator output on such mismatched pairs. It penalizes the discriminator for assigning high scores to mismatched
tuples and forces the model to learn the conditioning variable z. To prevent the discriminator from overfitting on
the limited expert data and encourage it to learn more general features of each skill, we introduce a weight decay
regularization term Lw p, which penalizes the squared £,-norm of the discriminator’s weights:

Lwp(®) = ||®|3 ©)

Finally, to stabilize adversarial training, we incorporate a gradient penalty term L p, which discourages overly sharp
decision boundaries by penalizing gradients with respect to the expert inputs:

L6p(®) = Exuzr-0y, | (IVw Do(xu | 2)l2 = 1)?] (10)

where V x u) Do (X, u | 2) is the gradient of the discriminator output with respect to its input. The final objective for the
discriminator is a weighted combination of these losses, with w balancing the contribution of each term:

Lp(®) = w; Li(P) + wea Lca(P) + wywa Lwp (P) + wgpLp(P) (11)

Once trained by minimizing this objective, the discriminator’s output s = D (Xg, Ux | zx) serves as the normalized
skill evaluation score.

E. Shared Control for Assistance

We consider a 6 degree-of-freedom multirotor UAV modeled as a general nonlinear discrete-time system, with its
full dynamics detailed in Appendix. At time step k, the full state is x; = [p;, p;, Z, wZ]T with position, velocity,
Euler angle, and angular velocity. The control input is ux = [¢4 k> 0 k> (j/d’ & Tx] T, corresponding to commanded roll,
pitch, yaw rate, and thrust. We model the system control input at time step k as a convex combination of inputs from the
human user and the autonomous agent (i.e., UAV controller):

we =g uf + (1—ag) -uf (12)

where “Z and uf are the control inputs from the human and the autonomous agent, respectively. The scalar ax € [0, 1]
denotes the control authority, with @ = 1 corresponding to full manual control and @ = 0 to full autonomy.

In order to obtain the autonomous control input for the shared controller, we need an assistance policy that produces
expert-like inputs. We represent this policy as a state-feedback controller. Given the expert trajectory distribution
pf ~ N( ,uf, ZE), the controller minimizes the deviation between the current state and the expert trajectory while
penalizing control effort. The trajectory tracking cost is formulated as:

ck = (pr — 1E)TEE)  (pi - uf) + UL RU (13)

where Ui = P is the translational acceleration. Note that the control input command u; can be mapped to the
translational acceleration Uy through the nonlinear dynamic mapping function ¢ (-) defined in Eq. (24) from Appendix.
The first term measures the Mahalanobis distance to the expert mean, accounting for variability in expert demonstrations.
The second term penalizes the control effort with weighting matrix R = pI, p > 0. To ensure physically feasible and
safe control commands, we also impose translational acceleration constraints AUy < b%, where A* represents the
inequality acceleration constraints and b* the corresponding bounds.
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The optimization problem is solved using a finite-horizon Model Predictive Control (MPC) framework [30]. We use
the translational state &, = [p,, P, ]", and the system dynamics is modeled as:

) I IAt 0 . . . . L
where the system matrices A = / ,B = e with I denotes the identity matrix and Az the sampling time.
T
Let the concatenated state vector over the prediction horizon N, be defined as { [1:N,] = IT, e 2T yees & ;/,, , the

future states over the prediction horizon are obtained by propagating the system dynamics:

{lin, ) = S%¢ + 51U (15)
where the matrices S* and S* are constructed from the discrete-time system matrices A and B as [31]:
1 0 0 o 0 U;
B 0 o 0 U,
s =| A* |, s«=| AB B - 0], U =|Us (16)
ANp—1 ANp=2B  AN»3p ... B Uy,

The cost function over N, can be written as:
C = (ﬂgp —-§%¢, - S“0)T(EE)! (,jﬁp -§%¢, - 5"U)+UTRU (17)

where -
i = [(ﬂgf)T, W (R )T, SF =diag(zf,.. 2 ), R =diag(R, ..., R) (18)

Substituting the predicted states into the tracking cost yields a quadratic objective over the control sequence, which can
be expressed as a standard Quadratic Programming (QP) problem [8, 32]:
min JU0THU+¢'0
0
s.t.  {k+1 = Alr + BUg (19)

AU < b

where -
H=2W'W+R), W=LS", L=diag(Ly,---,L;),

. x SEN - (20)
g=-2v"W, v=L(iy -S¢), (&) =L{Lk

The resulting optimal acceleration U} is mapped to the UAV’s physical control input through the inverse of the dynamic
mapping function as:
uf = U~ (US| ) @1)

where ¢, represents the UAV’s attitude and relevant dynamic parameters. This mapping ensures that the assistive
command remains directly executable by the UAV.

A key element of any shared control scheme is determining the control authority ay at each time step k. To ensure
intuitive human interaction, our framework uses a fixed set of control authority values ay € A = {0.1,0.5, 1.0}. This
design choice is supported by prior studies [17], which have shown that continuously varying control authority can cause
mode confusion in the human operator. We categorize user sub-skill proficiency into three categories: low, medium, and
high, based on the output of the skill evaluation function ¥ . Specifically, we define low skill as s € [0, 0.3], medium
skill as sx € (0.3,0.7], and high skill as s € (0.7, 1.0]. These thresholds were set to capture meaningful distinctions in
user proficiency and were chosen based on the distribution of trajectory tracking performance and corresponding skill
scores. The control authority for each sub-skill is determined by mapping the sub-skill proficiency to a value in the set
A: low skill - a = 0.1, medium skill — a; = 0.5, and high skill - @, = 1.0. For example, a pilot scoring 0.9
would be classified as highly skilled. In this case, the proposed framework assigns control authority @ = 1.0, granting
full control authority to the user.
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II1. Numerical Simulation

A. Design

The objective of the numerical simulation is to demonstrate that the proposed framework can provide sub-skill-specific
assistance by adjusting support based on the user’s estimated proficiency. The proposed framework is demonstrated
using a simulated multi-rotor UAV training tasked with tracking three predefined 3D trajectories, as illustrated in
Fig. 2. Each trajectory is designed to include segments that correspond to different sub-skills, with the green dot
and the red cross representing the start and end points, respectively. To evaluate performance across varying levels
of difficulty, the trajectories follow a complexity progression. Trajectory A (Fig. 2a) represents a simple Obstacle
Avoidance task requiring only basic stability. Trajectory B (Fig. 2b) is a Helical Flight task that serves as an intermediate
task introducing multi-axis coordination. Trajectory C (Fig. 2c) represents a complex Aerial Imaging task that challenges
the user to execute precise stops and maintain stability for image capture. This trajectory integrates all five sub-skills to
ensure a comprehensive evaluation of skill acquisition. For the demonstration, we define five representative sub-skills

Assigned Trajectory A Assigned Trajectory B Assigned Trajectory C

— Hover — Hover — Hover
Strafe — Tum — Tum
Strafe Strafe
Ascend/Descend —— Ascend/Descend
—— Slow Stop

Z Position (m)

(a) A simple course requiring two sub- (b) An intermediate-level course combin- (c) A complex course integrating all five
skills: Hover and Strafe. ing four sub-skills: Hover, Turn, Strafe, sub-skills to execute smooth deceleration
and Ascend/Descend. and stable hovering for imaging tasks.

Fig. 2 Assigned Trajectories with increasing complexity for the numerical simulations.

based on the domain knowledge [33, 34]. Table 1 summarizes these sub-skills and their descriptions. The selected
sub-skills cover the most common UAV maneuver types observed in the assigned trajectories, though they do not
encompass all possible maneuvers. Two numerical simulation scenarios are designed to validate the adaptability of the
proposed framework:
* Progressive skill improvement: Simulates gradual pilot learning over time to validate that the proposed method
can adaptively adjust the assistance level as the novice’s performance improves over time.
* Uneven skill proficiency: Simulates nonuniform proficiency across sub-skills to demonstrate that the proposed
framework can provide sub-skill-specific assistance.

Table 1 Representative UAV sub-skills and their descriptions.

Sub-skill Description

Hover Maintain position and heading with minimal drift.

Turn Rotate around the vertical axis to a new heading while maintaining a fixed position.

Strafe Move along one of the body-frame axes (forward, backward, left, or right) while
maintaining a constant heading and altitude.

Ascend/Descend Adjust altitude while maintaining horizontal position and heading.

Slow Stop Gradually decelerate to a stable hover from forward motion.
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B. Implementation Details

All numerical simulations are conducted in a Python-based simulation environment implementing the multi-rotor
UAV dynamics described in Appendix. The simulator operates at a 50 Hz frequency with a prediction horizon of 40
steps for the MPC controller. The skill identification module employs the HSMM, and is implemented using the pyhsmm
library [24]. The maximum of twenty latent components is used, and model parameters are learned offline through
blocked Gibbs sampling until the log-likelihood of the expert demonstration data under the HSMM converges. The
hyperparameters of the Poisson duration model were selected through a constrained model-selection process. A set of
candidate configurations was evaluated on expert demonstration data based on classification accuracy.

The skill classification module is implemented as a unidirectional LSTM network with two stacked layers of 128
hidden units each and a time window length of L = 150. Input sequences consist of 16-dimensional concatenated
state—control vectors normalized using dataset statistics. The network is trained offline for 60 epochs using the Adam
optimizer with a learning rate of 10~* and the batch size of 256. During online operation, the trained classifier model
runs in real-time using a sliding buffer of the most recent 150 samples to predict the active sub-skill.

The skill evaluation module adopts a conditional discriminator implemented as a three-layer feedforward neural
network with 256, 128, and 64 hidden units. The discriminator takes 16-dimensional state—action inputs and is conditioned
on one of five sub-skill labels. The model is trained for 200 epochs with the batch size of 256 using the Adam optimizer
(learning rate 10~*) and the combined objective in Eq. (11), with the loss weights (w;, Wca, wgp) = (10.0,1.0,5.0).
During runtime, the trained model provides real-time sub-skill-specific evaluation scores for the shared control module.

C. Data

Expert and novice datasets are synthetically generated by perturbing the control inputs of the assigned trajectories
with additive Gaussian noise [35, 36] and time delay [37, 38]. This design maintains consistent trajectory structures
while introducing variability representative of human control performance. To simulate realistic pilot diversity, six
expert and six novice pilot profiles are created. Each pilot is assigned distinct noise levels and time-delay parameters for
different sub-skills, capturing individual differences in control precision and reaction time. Every pilot performs ten runs
for each of the three trajectory tasks (Trajectories A—C), producing a total of 60 demonstrations per group. The resulting
expert and novice datasets are used to train the skill identification, skill classification, and skill evaluation modules under
identical conditions. For testing, two evaluation datasets are generated: (i) Progressive Skill Improvement, comprising
ten novice profiles with ten runs each, simulating the users with gradually improving control performance; and (ii)
Uneven Skill Proficiency, consisting of three novice profiles with six runs each, simulating the users with nonuniform
skill levels across sub-skills. These datasets are used exclusively for evaluation to ensure that the framework’s adaptive
behavior is tested on unseen proficiency conditions.

D. Evaluation

The proposed Multidimensional Shared Control framework (MD-SC) is evaluated against two baseline conditions:
(i) No Shared Control (NSC), where the UAV is fully operated by the novice agent without any autonomous assistance,
and (ii) Single-Dimensional Shared Control (SD-SC), which follows the same shared control structure but removes
sub-skill conditioning. In the latter case, the discriminator is trained without the sub-skill label as input, producing a
global proficiency estimate for each trajectory window. These baselines provide reference points for assessing whether
sub-skill-specific assistance leads to measurable improvements in task performance and training efficiency.

Evaluation is conducted using three key metrics commonly applied in human—machine interaction (HMI) research.
The sub-skill-wise score captures how well the user performs on individual sub-skills, as estimated by the discriminator
[28]. Trajectory tracking accuracy measures how closely the UAV follows the full reference trajectory throughout the
task [39]. Finally, we measure the average assistance level provided by the autonomous agent for each tracking task.

IV. Results
In the first numerical simulation scenario, we test the proposed framework’s ability to adapt the assistance level
as the user’s proficiency improves over time. Figure 3 presents the mean trajectory and the mean assistance levels
across different user proficiency levels, where level 1 represents the lowest skill proficiency and level 10 corresponds to
expert-like performance. The error bars denote one standard deviation across simulated pilot runs from the stochastic
Gaussian noise added to the control inputs. Note that the trajectory tracking error is computed using the raw user state
without autonomous correction to reflect the underlying user proficiency rather than the assisted system performance. In
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Fig. 3 Progression of trajectory tracking error and assistance level relative to pilot proficiency.

the figures, the blue solid lines indicate the root mean square trajectory tracking error (RMSE). The error decreases as
proficiency increases, showing the simulated learning progression. The orange dashed lines represent the assistance
level provided by the system.

In Fig. 3a, the assistance level remains nearly constant across proficiency levels for Trajectory A. This is because
Hover and Strafe are relatively simple sub-skills, making the expert and novice demonstrations highly similar. As a result,
the discriminator cannot reliably distinguish between them and outputs a neutral score of 0.5. The shorter duration of
Trajectory A further limits the model’s ability to capture fine-grained differences. In contrast, Trajectories B and C
exhibit the expected trend. The assistance level decreases as the user’s proficiency improves, gradually transferring
control authority back to the human pilot. This result confirms that the proposed framework adaptively adjusts the
assistance level according to the user’s skill, within the limits of discriminator sensitivity and data variability.

In the second numerical simulation scenario, we evaluate the proposed framework against the two baselines: No
Shared Control (NSC) and Single-Dimensional Shared Control (SD-SC). Three pilot profiles are simulated with uneven
proficiency across sub-skills to examine whether the proposed method can deliver skill-specific assistance that leads
to better trajectory tracking performance. Table 2 summarizes the quantitative results. Each entry reports the mean
+ standard deviation across six randomized runs over three pilot profiles. The Trajectory Error column shows the
trajectory tracking RMSE computed from the assisted system state to evaluate final task performance, with values
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Table 2 Quantitative comparison of performance across all sub-skills.

Skill Framework Trajectory Error Assistance Level
NSC 1.72+£2.13 0.00 = 0.00
Hover SD-SC 1.53 £2.37 (11.2%) 0.40 £ 0.38
MD-SC 0.98 + 1.46 (43.0%) 0.40 +0.43
NSC 1.84 +1.37 0.00 + 0.00
Turn SD-SC 1.01 £ 0.61 (44.9%) 0.56 +0.31
MD-SC 0.71 £ 0.63 (61.2%) 0.76 £ 0.28
NSC 1.70 + 1.67 0.00 + 0.00
Strafe SD-SC 0.51 + 0.64 (69.8%) 0.39+0.23
MD-SC 0.43 + 0.55 (74.8%) 0.56 +0.28
NSC 3.11+3.38 0.00 = 0.00
Ascend/Descend  SD-SC 3.12+3.92 0.48 +£0.27
MD-SC 1.92 +2.33 (38.2%) 0.67 £0.29
NSC 2.59 +2.64 0.00 £ 0.00
Slow Stop SD-SC 1.47 £ 1.69 (43.5%) 0.31 £0.27
MD-SC 1.12 + 1.33 (56.7%) 0.49 +0.36

— - Baseline(SD-SC)
—— Proposed(MD-SC)
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Fig.4 Demonstration of an online run (Trajectory C, Pilot 2, Run 2).
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in parentheses indicating percentage improvement relative to NSC. The Assistance level column reports the average
assistance provided by the autonomous agent, computed at each time step as 1 — ay, where @ denotes the user’s control
authority.

The proposed Multidimensional Shared Control (MD-SC) method consistently achieves lower trajectory error and
higher improvement rates compared to both baselines. The proposed method performs better because the skill evaluation
module is conditioned on the active sub-skill, enabling a more fine-grained comparison between expert and novice
behaviors. This allows the discriminator to detect subtle differences in control quality across behaviors, resulting in
more precise assistance. As reflected in the assistance column, the proposed framework allocates higher assistance,
leading to more context-aware support during training.

To further illustrate the proposed framework in the uneven proficiency scenario, Figure 4 presents a representative
online run from the same simulation setting. Figure 4a shows the discriminator score over time, while Figure 4b presents
the corresponding assistance level. The background is color-coded, with each color representing one ground-truth
sub-skill segment. In this demonstration, the discriminator score for the proposed method fluctuates more than the
baseline, indicating that it responds more sensitively to variations in user behavior. This finer granularity arises from
conditioning the discriminator on sub-skills, which allows it to differentiate expert and novice control patterns in greater
detail. The pilot in this run performs well in Hover, Strafe, and Turn, but struggles with Ascend/Descend and Slow Stop.
The score trajectory of the proposed method reflects this pattern, showing higher scores in proficient sub-skills and
lower scores in weaker ones, with a slight delay. The delay results from the time window wy introduced in Sections II.C
and IL.D, which allows the classifier and discriminator to aggregate recent temporal information before updating their
prediction. This temporal smoothing improves robustness but introduces a short response latency. In Fig. 4b, we observe
that the assistance level follows the score-to-control mapping, providing more assistance when the discriminator score is
low. This demonstration shows that the proposed framework can evaluate pilot performance at a finer granularity and
adjust the assistance level in real-time according to the active sub-skill proficiency.

V. Conclusion

In this paper, we proposed a multidimensional skill-conditioned shared control framework for training human UAV
pilots. The framework first decomposes a complex navigation task into sub-skills using a Hidden Semi-Markov Model
(HSMM)-based skill identification module. Using the resulting labels, a skill classifier provides real-time sub-skill
recognition, and a skill-evaluation module produces sub-skill-specific proficiency scores by comparing novice behavior
against expert demonstrations. A skill-conditioned shared controller then maps these scores to discrete assistance modes,
providing more support when proficiency is low. We demonstrated the performance of the proposed framework via a
numerical simulation of multi-rotor UAV trajectory tracking with synthetic expert and novice profiles. In a progressive
skill improvement scenario, the proposed framework decreases assistance as simulated proficiency increases, returning
control authority to the pilot while tracking underlying performance. In an uneven proficiency scenario, the proposed
framework consistently allocates assistance to weaker sub-skills and reduces trajectory tracking error.

Appendix

Dynamic System Modeling
We consider a multi-rotor UAV with 6 degree-of-freedom (DOF). The system is modeled as a general nonlinear
system in discrete time:

Pirt Pr+1 Pry1 @iet| = f(Prs Pi» D O, Uk) (22)

where p; € R? is the position, px € R? is the velocity, ¢, € R? is the Euler angle, and w; € R? is the angular velocity
of the system at time step k. The control input at time step & is defined as ux = [¢a k. Oa.k, zﬁd,k, Ti]", where ¢«
and 6, are the commanded roll and pitch angles, ¢4 x is the desired yaw rate, and T is the total thrust. We can
reformulate Eq. (22) as:

Pk+1 I IAt| |pk 0 .
= + U Pk, Pk, Pr, Wi, 1 23
brut o 1 |lp A (Pk> Pi> Pr> Wi, Uk) (23)
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where [ is the identity matrix, At is the time step, and U is the mapping from control input command to translational
acceleration. The mapping U can be expressed as [40]:

1 COS ¢y sin G
Pr = U(Pr, Pr» dp» Wi, uy) = —m—R(dfk) —singy |Tp+g (24)
“ COS ¢y cos Oy

where R(x) € R¥3 is the rotation matrix about the yaw axis, and m,, and g represent the mass of the multi-rotor UAV
and the gravity vector, respectively.
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