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Anticipating human movement is essential for robotic motion planning in structured environ-
ments such as corridors, hospitals, and factory floors. This paper presents a lightweight, real-time
trajectory prediction pipeline for human-aware drone-navigation, using head-orientation motion
as the primary cue for intent inference. The approach combines a branched Long Short-Term
Memory (LSTM) network with a discrete intent classifier that identifies the most likely motion
mode (e.g., left, right, or straight at a hallway junction), subsequently predicting the correspond-
ing continuous trajectory. While prior work has addressed human motion prediction using
heavy multimodal predictors, the proposed model is designed for on-board deployability and
low-latency inference. In addition, few studies have explored structured environments where
movement is constrained to discrete paths. We collect a synchronized dataset of head-motion
trajectories using an inertial measurement unit (IMU) and motion-capture system, and train
the LSTM to predict future trajectories of humans, with a normalized motion frame calibrated
to the environment. To evaluate the model, we integrate the predictions in a structured testbed
with finite path options and static obstacles to demonstrate how prediction accuracy affects
human-drone coexistence. The results demonstrate that our lightweight model enables accurate
trajectory forecasting and classification, enabling early avoidance planning. The work highlights
the viability of simple, interpretable sequence models for real-time human-aware navigation in
constrained spaces.

I. Introduction

Over the decades, mobile robots have become increasingly common in structured indoor environments such as
hospitals, warehouses, and commercial buildings. These spaces are shared with human pedestrians and workers,

creating scenarios where autonomous systems must move safely and efficiently alongside humans [1]. A core requirement
for such shared autonomy is a path planning architecture that can anticipate human movement and adapt behavior
accordingly. As deployments grow in scale and complexity, the need for reliable, real-time human path prediction in
structured environments has become increasingly significant.

Human trajectory prediction has been extensively studied, with recent work dominated by data-driven deep learning
approaches that infer future motion from observed human movement [1]. These models learn motion patterns directly
from data rather than relying on explicitly defined human dynamics, and they form the basis of many modern predictors
such as single-trajectory forecasting [2], maximum-likelihood path estimation [3], and probabilistic motion envelopes
[4, 5]. In socially compliant navigation, related work incorporates human-motion prediction as a core component,
for example, through confidence-aware Bayesian models that prioritize human movement during planning [6] and
utilize the FaSTrack motion planning framework to guarantee tracking performance [7]. Collectively, these approaches
demonstrate strong capability in learning and forecasting human motion across a wide range of scenarios and have
become standard components in modern prediction pipelines.

Despite this progress, most existing prediction models are evaluated on offline human datasets or simulation
environments and not integrated into closed-loop robotic systems that must continuously respond to human movement.
As noted in [8], most prediction methods rely on passive observation data and lack closed-loop validation with a
robot that navigates in a shared space. Similarly, there are few frameworks that allow robots to respond to predicted
human motion in interactive real-world scenarios [9]. Moreover, prior work has focused primarily on unstructured or
open environments where human motion unfolds along smooth, continuous trajectories. In contrast, structured indoor
environments such as hallways, warehouse aisles, and T-junctions require discrete navigational choices (e.g., turning
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left, right, or moving forward), making the prediction task fundamentally different. Errors in anticipating such discrete
decisions can lead to unsafe robot behavior or inefficient planning. These limitations underscore the need for prediction
frameworks tailored to structured environments with clear geometric and semantic constraints.

A novel approach is proposed to improve robotic social navigation by enhancing human trajectory prediction in
structured environments. Unlike traditional methods that model human motion as a single continuous trajectory, this
work recognizes that in many indoor settings, such as hallways, warehouses, or factory floors, human movement
often follows one of several discrete options dictated by the layout. The proposed model leverages this structure by
predicting a finite set of plausible future trajectories, effectively reformulating the task as a multiple-choice classification
problem. For example, at a hallway junction, the model selects the human’s likely path from options such as turning left,
continuing straight, or turning right. This choice-based formulation enables earlier and more accurate anticipation of
human intent, allowing the robot to adapt its path planning strategy proactively while providing a more interpretable
representation of human decision-making in structured spaces.

To autonomously predict both human trajectory and discrete path choice, we use a Long-Short Term Memory
(LSTM)-based neural network that generates real-time predictions from past motion data. This allows the robot to
anticipate human movement in a shared, structured environment and adjust its navigation accordingly. To evaluate the
effectiveness of the proposed model, we conduct experiments in a human–drone shared space and measure performance
using accuracy metrics including position error, heading angle error, and path choice error. Finally, as a proof-of-concept
for prediction-informed planning, we integrate the predicted human motion into a Signal Temporal Logic (STL)-based
framework [10], which enables the drone to compute safe, constraint-satisfying trajectories aligned with the human’s
anticipated movement.

This paper makes three key contributions to the field of human-aware robotic motion planning. First, we identify
the unique challenges posed by structured indoor environments, where human movement is governed by discrete
navigational decisions rather than smooth, continuous trajectories, and we frame human prediction in a way that reflects
these environment-driven constraints. Second, we develop a deterministic prediction model that predicts both the
human’s intended direction and the corresponding future trajectory. Finally, we implement this approach using an
LSTM-based real-time predictor and validate the system in a shared human–drone environment, demonstrating improved
performance in forecasting both trajectory and discrete path choice.

II. Problem Definition
In structured environments such as hallways, building corridors, or warehouse floors, humans make discrete

navigation choices at specific decision points. Unlike in open or unstructured environments such as the outdoors,
structured environments impose constraints on motion, limiting feasible trajectories to a small set of discrete options.
The environmental constraints lead to a multiple-choice prediction setting for the robot, where the goal is to identify
the most probable future paths a human might follow. The problem we address in this work is predicting which of
these discrete path options a human will take in real-time. Predicting which path a human is likely to take is critical for
socially aware robotic navigation and safe human-robot interaction.

A. Formal Problem Statement
As shown in Figure 1, the human in the structured environment scenario can follow one of several possible

trajectories, e.g., turn left, right, or go straight. To formally describe this prediction problem, we first represent the
human’s past motion as follows. Given a sequence of observed human positions and orientations up to time 𝑡:

𝑋0:𝑡 = {x0, x1, . . . , x𝑡 }, (1)

we define the state vector at time 𝑖 as:

x𝑖 =
[
𝑥𝑖 𝑦𝑖 𝑣𝑥,𝑖 𝑣𝑦,𝑖 𝜓𝑖 ¤𝜓𝑖

]𝑇
∈ R6, (2)

where 𝑥𝑖 , 𝑦𝑖 denote position, 𝑣𝑥,𝑖 , 𝑣𝑦,𝑖 represent velocity in the 𝑥 and 𝑦 directions, and 𝜓𝑖 corresponds to the yaw or
heading angle of the human head. ¤𝜓𝑖 is the yaw rate. The goal of the prediction model is to generate deterministic
future trajectories for each of the 𝐾 feasible motion branches in the environment:

𝑋̂1
𝑡+1:𝑡+𝑇 , 𝑋̂

2
𝑡+1:𝑡+𝑇 , . . . , 𝑋̂

𝐾
𝑡+1:𝑡+𝑇 (3)
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Fig. 1 Human motion branches in a structured indoor environment. The three arrows represent the distinct
feasible paths—left, straight, and right—defined by the corridor geometry for human trajectory. The prediction
model produces a deterministic trajectory prediction and a corresponding branch classification indicating which
path the human is expected to follow, which informs the trajectory of the drone, avoiding collision with the
human.

where each candidate trajectory 𝑋̂ 𝑘
𝑡+1:𝑡+𝑇 describes the predicted human motion over the next 𝑇 time steps assuming the

human continues along branch 𝑘 . In the structured corridor environment considered in this work, 𝐾 = 3 corresponding
to left, straight, and right branches, see Figure 1.

The structured environment is encoded implicitly through the motion patterns present in the training data, rather than
through explicit semantic maps or environment labels. The model therefore learns turning points, corridor alignments,
and typical transition behaviors directly from observed trajectories. These predicted trajectories and the associated
intent classification are then passed to the downstream STL-based planner, which generates a safe, constraint-satisfying
drone trajectory that proactively adapts to anticipated human motion. The planning formulation is described in the next
section.

B. Challenges
Human trajectory prediction in structured environments presents several unique challenges that must be addressed

for reliable real-time planning and safe human–robot interaction. These challenges arise from the inherent uncertainty
of human behavior, the limited availability of intent information, and the geometric constraints imposed by indoor
spaces. We summarize the major challenges as follows.

Multimodality of human decisions at intersections. Human behavior in structured environments is inherently
multimodal. A person approaching a junction may plausibly turn left, right, or continue forward given the same observed
motion history. Capturing this uncertainty is challenging, as the model must represent multiple distinct future outcomes
without collapsing them into an averaged, unrealistic prediction.

Lack of labeled intent data. Human intent is typically not explicitly annotated in trajectory datasets. As a result,
the model must infer future decisions from low-level motion features such as position, velocity, and orientation. This
weak form of supervision complicates the learning process and increases the likelihood of misclassification, particularly
in ambiguous or transitional states.

Environmental and spatial constraints: Structured indoor environments impose strong geometric constraints
due to walls, furniture, and fixed obstacles. These constraints restrict the feasible motion space and introduce sharp
discontinuities in the set of allowable trajectories. Even small prediction errors can therefore lead to planning failures or
unsafe robot behavior if not properly accounted for.

Real-time integration with planning. Prediction must operate at sufficiently high frequency to support real-time
robot control. This requires models that are computationally efficient yet accurate, producing stable predictions under
latency constraints while remaining robust to dynamic changes in the environment.
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III. Approaches
Figure 2 illustrates the overall prediction and planning framework proposed in this work. The system operates as a

sequential pipeline consisting of (i) human trajectory prediction, (ii) deterministic path selection, (iii) STL-based path
planning, and (iv) real-time execution. At each cycle, the robot observes recent human motion, predicts a finite set
of future trajectories, plans a safe path under STL constraints, and executes the resulting motion while continuously
monitoring for deviations.

A. Human Trajectory Prediction
To realize the multi-hypothesis prediction problem in (3), we employ an LSTM-based recurrent neural network that

maps a finite history of human states to future trajectory and path-choice predictions. Let 𝐿 denote the observation
window length and let 𝑇 be the prediction horizon defined in (3). At time 𝑡, the model receives the past 𝐿 states

𝑋𝑡−𝐿+1:𝑡 = {x𝑡−𝐿+1, . . . , x𝑡 }, (4)

where each state x𝑖 is given in (2) as x𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑣𝑥,𝑖 , 𝑣𝑦,𝑖 , 𝜓𝑖 , ¤𝜓𝑖]⊤. The LSTM processes this sequence to capture
temporal dependencies and longer-term motion intent.

The network has two output heads. The first head performs trajectory regression and predicts the future state
sequence over the horizon 𝑇 ,

x̂𝑡+1, . . . , x̂𝑡+𝑇 , (5)

where each x̂𝑡+ 𝑗 has the same structure as x𝑖 and includes the predicted position, velocity, heading, and yaw rate. The
second head performs path classification and outputs a categorical distribution over the 𝐾 discrete path options (e.g.,
left, straight, right) that correspond to the candidate trajectories in (3).

In practice, position and velocity features are standardized using dataset statistics, and the heading angle 𝜓𝑖 is
encoded using sin𝜓𝑖 and cos𝜓𝑖 to avoid discontinuities at ±𝜋. The model uses a two-layer LSTM architecture with a
hidden dimension of 128, implemented in PyTorch. Training is performed with a composite loss that combines Mean
Squared Error (MSE) for the trajectory head and cross-entropy loss for the classification head, with a weighting factor
chosen to balance the two objectives.

The model is trained end-to-end using the MSE for trajectory regression together with a cross-entropy loss for
path classification, weighted as described in the Appendix. Optimization is performed using the Adam optimizer with
a learning rate of 10−4, and training is conducted for 100 epochs with gradient clipping to ensure stability. Further
architectural details, the explicit LSTM update equations, and training hyper parameters are provided in the Appendix.

B. Human Motion Dataset
The human trajectory prediction model was trained using real-world motion data collected in a controlled laboratory

environment using a Qualisys motion capture system, which has been shown to provide high-accuracy human motion
measurements[11]. To ensure diversity in motion patterns, participants executed multiple path types including left-turn,
right-turn, and straight trajectories. For each path type, three motion profiles were recorded: straight, curved, and
zig-zag motion. Each motion profile was performed under two conditions, regular walking and stop-and-go behavior.
This leads to a broad distribution of velocity and heading-rate patterns.

Fig. 2 Architecture of the overall prediction and planning framework.
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Each trajectory was recorded for approximately 75 seconds at 50 Hz. Across all trials, the total dataset duration
amounted to 76.25 minutes. In the experiment configuration, participants walked from a designated start point to a
midpoint, then transitioned to one of three terminal branches (left, right, or straight). This structure enables the model to
learn both continuous motion transitions and discrete navigational decisions. The dataset was split 80% for training and
20% for validation.

C. Interactive Drone Path Planning
To ensure safe navigation in the presence of a moving human whose future trajectory is uncertain, we employ an

STL–based path planning framework (stlpy library is used [10]). STL provides a formal language for expressing
time-dependent constraints over continuous signals [12]. An STL formula is constructed from predicates, which are
Boolean conditions on the system state. A typical predicate takes the form ℎ(𝑑𝑡 ) ≤ 0, where 𝑑𝑡 is the decision variable
and ℎ(·) encodes a geometric or safety constraint such as remaining inside a corridor or outside a risk zone. These
predicates are combined using logical operators such as conjunction (∧) and temporal operators including “eventually”
(^) and “always” (□). For example, □[𝑎,𝑏]𝜑 requires that the predicate 𝜑 hold for all 𝑡 ∈ [𝑎, 𝑏], while ^[𝑎,𝑏]𝜑 requires
that 𝜑 be satisfied at least once within that interval. Evaluating an STL formula over a candidate trajectory determines
whether the trajectory satisfies the encoded navigation and safety requirements.

STL Specification for Human–Aware Navigation
Let 𝑑𝑡 = [𝑥𝑑,𝑡 , 𝑦𝑑,𝑡 , 𝜓𝑑,𝑡 ]⊤ denote the discrete-time drone state (2D position and yaw angle) governed by the planar

kinematic model,

𝑥𝑑,𝑡+1 = 𝑥𝑑,𝑡 + Δ𝑡 𝑣𝑑,𝑡 cos𝜓𝑑,𝑡 , (6)
𝑦𝑑,𝑡+1 = 𝑦𝑑,𝑡 + Δ𝑡 𝑣𝑑,𝑡 sin𝜓𝑑,𝑡 , (7)
𝜓𝑑,𝑡+1 = 𝜓𝑑,𝑡 + Δ𝑡 𝜔𝑑,𝑡 , (8)

where 𝑣𝑑,𝑡 and 𝜔𝑑,𝑡 denote linear and angular velocity commands. This discrete dynamics model is used within the
STL planner to generate feasible drone motions.

Given a prediction horizon 𝑇 , we divide the timeline into three phases that reflect the structure of the navigation
task: (i) an approaching phase [0, 𝑡1] during which the drone moves toward an intermediate waypoint, (ii) a waiting
phase [𝑡1, 𝑡2] where the drone must hold a safe corridor while the human’s intent becomes clearer, and (iii) a proceeding
phase [𝑡2, 𝑇] during which the drone must avoid the predicted human-occupied region and reach the goal. 𝑡1 and 𝑡2 are
estimated from the predicted human trajectory and can be updated during the operation. Using these intervals, the STL
task specification is:

Φ(𝑑) = ^[0,𝑡1 ]𝑊 (𝑑) ∧ □[𝑡1 ,𝑡2 ]𝑊 (𝑑) ∧ □[𝑡2 ,𝑇 ]¬𝑅𝑍 (𝑑) ∧ ^[𝑡2 ,𝑇 ]𝑅𝐿goal (𝑑) ∧ Φsafe. (9)

Here, 𝑑 ∈ {left, right, straight} is the discrete path choice. 𝑊 (𝑑) is a predicate requiring the drone to remain within
a designated waypoint corridor. The operator ^[0,𝑡1 ] ensures the drone reaches this corridor during the approaching
phase, and □[𝑡1 ,𝑡2 ] enforces that it remains within the corridor throughout the waiting phase. The predicate 𝑅𝑍 (𝑑)
denotes the predicted human-occupied region derived from the LSTM trajectory prediction; enforcing □[𝑡2 ,𝑇 ]¬𝑅𝑍 (𝑑)
ensures human-avoidance during the proceeding phase. The negation operator ¬ in STL reverses any predicate’s truth
value. The predicate 𝑅𝐿goal (𝑑) specifies the goal region to be reached before the horizon ends. Finally, Φsafe captures
general collision-avoidance requirements and is expressed compactly as Φsafe = ¬Collide(𝑑), where Collide(𝑑) is a
predicate indicating whether the drone enters any static obstacle region.

IV. Experiment
This section describes the experimental setup used to evaluate the proposed human trajectory prediction model and

its integration with STL-based drone navigation in a structured indoor environment.

A. Environment Setup
Experiments were conducted in a 5.5 × 3.0 meter motion-capture laboratory instrumented with a Qualisys camera

system. A start point was marked on either side of the environment, along with three possible endpoints located opposite
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Fig. 3 Experiment environment

the start. A midpoint was placed between them, creating a multiple-choice decision scenario in which the human must
choose one of three paths (left, straight, right) after reaching the midpoint. Cardboard boxes were placed as static
obstacles to evaluate obstacle-aware drone path planning, shown in Figure 3.

B. Experimental Procedure
In each trial, the human begins at a designated start point, walks toward the midpoint, briefly orients their head

toward one of the three endpoints to signal intent, and proceeds to the chosen endpoint. This turning event provides the
LSTM model with early cues for discrete path prediction. Throughout the trial, position and orientation data from the
human head are streamed to the prediction module, which outputs future trajectory estimates used by the STL planner to
update the drone’s motion.

C. Equipment
Human motion was captured using an active Qualisys motion-capture beacon combined with onboard inertial

measurement unit (IMU) data from the drone-mounted sensor package. The Qualisys system tracks 3D position and
orientation using infrared markers, while the Python qualisys_python_sdk [13] provides real-time state estimates
through an extended Kalman filter. Drone motion is executed using a Crazyflie 2.1 micro-UAV, controlled via a custom
Python interface. Static obstacles were implemented using lightweight cardboard boxes. The LSTM neural network and
STL planning framework were implemented in PyTorch.

D. Data Collection and Processing
Motion data were recorded at 50 Hz and included planar position (𝑥, 𝑦), planar velocity (𝑣𝑥 , 𝑣𝑦), and head orientation

(roll, pitch, yaw), using the drone-mounted sensor. Because the motion-capture environment is globally calibrated, no
coordinate transforms were required. A key preprocessing step involved removing backward walking segments, which
occur when the human returned to the start position after each trial; these motions corrupted the training distribution.
Outliers from marker swaps or sensor dropouts were also filtered. Position and velocity features were normalized,
and head orientations were converted from degrees to radians. Each dataset was then segmented into fixed-length
observation windows and corresponding prediction horizons for LSTM training.

E. Performance Metrics
To evaluate prediction quality, we report:
• Trajectory accuracy: position error (m), velocity error (m/s), and heading angle error (deg);
• Discrete path accuracy: classification error (%) and prediction confidence across the three choices.

These metrics quantify the model’s ability to predict both continuous human motion and discrete navigation intent in a
structured environment.
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V. Results
This section presents the performance of the proposed LSTM-based human trajectory prediction model and

its discrete path classification module, evaluated on held-out experimental data collected in the structured indoor
environment described earlier.

A. Qualitative Prediction Examples
Before reporting quantitative results, we illustrate representative predictions produced by the model. Figure 4 shows

examples of trajectory forecasting and discrete branch prediction for left and straight maneuvers. The left column depicts
predicted future positions overlaid with ground truth trajectories, while the right column shows the evolution of branch
predictions across all prediction sequences. Labels 0, 1, and 2 correspond to left, right, and straight paths, respectively.

Fig. 4 Representative predictions of the LSTM model. Left: predicted trajectories human versus ground truth
for left and straight maneuvers, where the human starts on the left side of the environment and walks toward one
of three possible endpoints on the right (shown as the three red circles). Right: discrete human path classification
(0: left, 1: right, 2: straight).

B. Trajectory Prediction Performance
To quantify the trajectory prediction performance, the validation dataset consists of 41 sequences of human motion

collected in a single corridor environment, including 13 left-turn, 15 right-turn, and 13 straight-through trajectories.
Each sequence contains 100 observed frames and 100 future frames, sampled at 50 Hz, with input features (𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦 ,
𝜓, ¤𝜓). For evaluation, 20% of sequences were randomly selected as a validation set using a standard train-test split
function with shuffling, ensuring no overlap between training and validation sequences. Tables 1–3 report aggregate
quantitative metrics across all branches, including RMSE, mean Euclidean error, and error growth over increasing
prediction horizons. See Tables 7, 8, and 9in Appendix for trajectory prediction error over each validation test for left,
right, and straight segments, respectively. Across all trials, the average position error remains below 0.2 m, indicating
stable performance despite the model’s compact architecture and modest dataset.

Figure 5 provides a complementary visual analysis of prediction performance. The plot illustrates per-branch error
distributions, horizon-dependent error growth, and horizon-dependent error distribution. The consistency across the
three branches reflects the structured nature of the environment and the model’s ability to generalize across different
trajectory types. Error decreases at later time steps because branch-choice ambiguity collapses once the human initiates
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a turn or proceeds straight, causing the remaining trajectory to align with a fixed corridor geometry, reducing the
prediction uncertainty. Unlike standard unconstrained pedestrian settings where error typically increases monotonically,
our environment causes ambiguity to resolve early, resulting in decreasing error after ∼ 25 time steps.

C. Path Classification Performance
Discrete intent classification complements continuous trajectory estimation by explicitly identifying the navigational

branch, enabling downstream planners to reason over high-level intent as well as precise motion. Discrete path
classification accuracy was evaluated over the same validation sequences. Table 4 summarizes average accuracy for
each branch. Overall classification accuracy exceeds 98%, with perfect accuracy for left-turn segments. See Table 10 in
Appendix for classification accuracy over each validation trial.

Notably, the classification accuracy for trial "straight_013" (Table 10) is 76.90%, which is an outlier compared to
the near-perfect performance in other trials. This reduction is attributed to significant heading variability in this specific
sequence; the subject momentarily oriented their body toward the left branch near the decision point before correcting
to a straight path. This transient heading deviation created ambiguity in the LSTM inputs, resulting in temporary
misclassification.

D. Prediction Performance Comparison
For context, Social-LSTM [14] reports displacement errors in the range of 0.3–0.5 m on the ETH/UCY pedestrian

datasets, while state-of-the-art multimodal models such as Trajectron++ [15] achieve ADE (Average Displacement
Error) values around 0.2–0.3 m. Although these datasets differ fundamentally from our structured indoor setting and
sensing modality, the comparison provides a useful reference point. Our model achieves sub-0.2 m average position
error with a lightweight architecture and minimal sensing, demonstrating competitive performance despite the scope
differences. Lower absolute errors are expected in our environment due to its constrained corridor geometry and

Table 1 Aggregate Prediction Error Statistics Across All Validation Datasets

Metric Value (m)
RMSE Mean 0.1711
RMSE Median 0.1627
RMSE Std 0.0309
Mean Eucl. Mean 0.1858
Mean Eucl. Median 0.1782
Mean Eucl. Std 0.0268

Table 2 Error Growth Over Prediction Horizon

Timestep RMSE (m) Mean Eucl. (m) 95th Percentile (m)
10 0.2794 0.3374 0.7275
25 0.1758 0.2056 0.4811
50 0.1167 0.1393 0.3110
75 0.1075 0.1300 0.2824
100 0.1104 0.1308 0.2850

Table 3 Per-Branch Prediction Error Summary

Branch Files RMSE (m) Mean Eucl. (m)
Left 13 0.1871 ± 0.0377 0.1948 ± 0.0334
Right 15 0.1641 ± 0.0234 0.1816 ± 0.0211
Straight 13 0.1631 ± 0.0241 0.1817 ± 0.0228
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Table 4 Summary of Classification Accuracy Across Validation Branches

Branch Num. Files Total Sequences Avg. Accuracy (%)
Left 13 4,005 100.00
Right 15 7,414 99.65
Straight 13 5,697 95.40

shorter prediction horizons compared to open-space pedestrian datasets. Because no existing baseline directly addresses
discrete left/right/straight intent classification using head-motion cues in indoor corridors, path classification is evaluated
internally via accuracy and confusion metrics, which adequately characterize performance for this application.

E. Interactive Path Planning Performance
To evaluate how the STL-based path planner responds to evolving human motion, we conducted closed-loop trials in

which the drone continuously receives LSTM trajectory predictions and replans its motion accordingly. In all trials, the
drone’s task is to travel from the right side of the environment to a designated goal region on the left, while maintaining
safe separation from the human. Figure 6 illustrates two representative cases showing how the planner adapts its
trajectory when the human selects different branches in the structured environment.

In Case 1, the human commits to the left branch, which corresponds to the upward direction in the layout. As
the LSTM model updates its future-motion prediction, the predicted human-occupied region expands into the upper
corridor. The STL safety constraints prevent the drone from entering this region, so the planner keeps the drone inside
its designated wait zone until the human clears the intersection. Once the intersection is cleared, the drone proceeds
leftward toward its goal.

Fig. 5 Model performance by branch. Top left: Average RMSE for each branch type across all validation trials.
Top right: Average Euclidean error for each branch type across all validation trials. Bottom left: Error growth
over increasing prediction horizons for each branch, with error bounds. Bottom right: Error distribution across
prediction horizons for all branches.
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Case 1: Human takes the left branch. Case 2: Human continues straight.

Fig. 6 Interactive STL-based path planning in response to predicted human motion. The red dashed region
denotes the predicted human-occupied zone generated from the LSTM model. The drone trajectory (black)
adapts online to avoid the occupied region while respecting STL specification in (9).

In Case 2, the human continues straight through the intersection. Because the predicted human-occupied region
lies directly along the corridor that the drone would nominally traverse, the STL constraints force the drone to yield
by shifting laterally out of the way rather than proceeding into the shared path. The planner therefore selects a side
path that preserves safe separation while still making progress toward the left-side goal. This case demonstrates the
system’s ability to modify the nominal route when human motion overlaps the primary corridor, enabling smooth and
conflict-free interaction without manual heuristics.

Across all interactive trials, the STL-based controller generated collision-free trajectories and consistently maintained
separation from the predicted human motion region. These results highlight the advantage of combining structured
trajectory prediction with formal temporal-logic planning for safe, adaptive navigation in shared indoor environments.

F. Limitations
The current model has several notable limitations. First, it was trained using data from a single human subject,

which restricts its ability to generalize to individuals with different gait patterns or motion characteristics. Expanding
the dataset to include a diverse set of participants would likely improve robustness. Second, the model was trained and
tested in a single, fixed corridor layout, limiting its applicability to new environments. Training across multiple indoor
geometries would help the model learn environment-invariant motion patterns. Third, although motion capture+IMU
sensing provides high-precision data, it does not reflect the sensing constraints of real-world deployment. Incorporating
onboard perception, such as vision-based pose estimation or wearable sensing, would improve practicality. Finally,
the model outputs deterministic trajectories without an associated measure of uncertainty. This lack of probabilistic
reasoning limits its ability to represent prediction confidence and can reduce planning performance in ambiguous
scenarios.

VI. Conclusion and Future Work
This work presented a human trajectory prediction framework for structured indoor environments using an LSTM-

based model that captures both continuous motion patterns and discrete navigational intent. When integrated with an
STL-based path planning algorithm, the approach enables a robot to navigate safely and proactively around humans
by anticipating likely future motions. The combined system provides a computationally efficient method for reducing
unsafe or uncomfortable human–robot interactions in structured shared spaces.

Future work will focus on relaxing the sensing assumptions and improving the robustness of prediction and planning.
Vision-based perception could be incorporated to replace the motion-capture infrastructure and enable deployment in
more realistic environments. In addition, future models may interpret richer human behaviors such as gestures or head
cues to improve early intent recognition. Finally, integrating uncertainty quantification or risk-aware decision making,
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for example through Bayesian or conformal prediction techniques, may provide calibrated confidence estimates that
support safer and more reliable robot behavior.

Appendix

A. Feature Normalization
To stabilize training, position and velocity features are standardized:

𝑥𝑡 =
𝑥𝑡 − 𝜇𝑥
𝜎𝑥

, 𝑣̃𝑥,𝑡 =
𝑣𝑥,𝑡 − 𝜇𝑣𝑥
𝜎𝑣𝑥

where 𝜇 and 𝜎 denote mean and standard deviation computed over the training set. Angular features sin(𝜓𝑡 ) and
cos(𝜓𝑡 ) are used directly without normalization as they are naturally bounded in [−1, 1].

B. LSTM Encoder Architecture
The model employs a multi-layer Long Short-Term Memory (LSTM) network to encode temporal dependencies in

the observed trajectory. For each input sequence, the LSTM computes hidden states:

i𝑡 = 𝜎(W𝑖x𝑡 + U𝑖h𝑡−1 + b𝑖)
f𝑡 = 𝜎(W 𝑓 x𝑡 + U 𝑓 h𝑡−1 + b 𝑓 )
o𝑡 = 𝜎(W𝑜x𝑡 + U𝑜h𝑡−1 + b𝑜)
c̃𝑡 = tanh(W𝑐x𝑡 + U𝑐h𝑡−1 + b𝑐)
c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c̃𝑡
h𝑡 = o𝑡 ⊙ tanh(c𝑡 )

where i𝑡 , f𝑡 , and o𝑡 are the input, forget, and output gates, respectively; c𝑡 is the cell state; h𝑡 ∈ R𝑑ℎ is the hidden state;
𝜎(·) is the sigmoid function; ⊙ denotes element-wise multiplication; and W, U, and b are learnable weight matrices
and bias vectors, respectively. The model uses 𝐿 = 2 stacked LSTM layers with hidden dimension 𝑑ℎ = 128. For
notational clarity, let H = [h1, h2, ..., h𝑇 ] denote the sequence of hidden states from the final LSTM layer. A summary
of architectural parameters is provided in Table 5.

Table 5 Model Architecture Summary

Component Configuration
Input Dimensions 6: (x, y, vx, vy, 𝜓, ¤𝜓)
LSTM Layers 2
Hidden Dimensions 128
Output Dimension 6: (predicted state)
Classification outputs 3: (left, straight, right)
Sequence length (T) 100 timesteps
Prediction horizon (H) 100 timesteps
Total parameters 230,000

C. Dual-Task Output Heads
Path Classification Head. The path choice is predicted using the final hidden state h𝑇 , which encodes information

from the entire input sequence. A fully connected layer maps this to logits for each class:

z𝑐 = W𝑐h𝑇 + b𝑐
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where z𝑐 ∈ R3 contains logits for the three path choices. The predicted class probabilities are obtained via softmax:

𝑝(𝑐 = 𝑘 |X) =
exp(𝑧𝑐,𝑘)∑3
𝑗=1 exp(𝑧𝑐, 𝑗 )

.

The predicted class is:
𝑐 = arg max

𝑘
𝑝(𝑐 = 𝑘 |X).

Trajectory Prediction Head. Future trajectory is predicted using the last 𝐻 hidden states from the LSTM
output sequence. This approach leverages the temporal structure learned by the LSTM. For each future timestep
𝑡′ ∈ [𝑇 + 1, 𝑇 + 𝐻], we compute:

ŷ𝑡 ′ = W𝑦h𝑇+𝑡 ′−𝑇 + b𝑦
where W𝑦 ∈ R6×𝑑ℎ and b𝑦 ∈ R6 are learnable parameters. Note that we reuse the LSTM hidden states from the
observation window for prediction, effectively treating the last 𝐻 time steps as representative of future motion patterns.
The complete predicted trajectory is:

Ŷ = [ŷ𝑇+1, ŷ𝑇+2, ..., ŷ𝑇+𝐻 ] .

D. Loss Function
The model is trained using a composite loss function that balances trajectory prediction accuracy and path

classification:
L = Ltraj + 𝜆Lclass.

This multi-task learning approach allows the model to simultaneously learn spatial-temporal dynamics through
trajectory prediction while capturing high-level behavioral patterns through path classification. The composite structure
enables the shared LSTM encoder to learn representations that are beneficial for both tasks, improving generalization.

Trajectory Loss (Ltraj) quantifies the accuracy of future position predictions and is computed as the mean squared
error (MSE) between predicted and true future states:

Ltraj =
1
𝐻

𝑇+𝐻∑︁
𝑡 ′=𝑇+1

∥ŷ𝑡 ′ − y𝑡 ′ ∥2
2

where 𝐻 is the prediction horizon, ŷ𝑡 ′ represents the predicted state at time 𝑡′, and y𝑡 ′ is the ground truth state. The MSE
loss penalizes deviations in predicted coordinates quadratically, making the model sensitive to large prediction errors.
The 𝐿2 norm captures Euclidean distance in the state space, providing an intuitive measure of positional accuracy.
Averaging over the prediction horizon ensures that the loss magnitude remains consistent regardless of 𝐻.

Classification Loss (Lclass) measures the model’s ability to correctly identify the overall trajectory category and
uses cross-entropy:

Lclass = −
3∑︁
𝑘=1

1[𝑐 = 𝑘] log 𝑝(𝑐 = 𝑘 |X)

where 1[·] is the indicator function that equals 1 when the condition is true and 0 otherwise, 𝑐 is the true class label, and
𝑝(𝑐 = 𝑘 |X) is the predicted probability for class 𝑘 given input sequence X. Cross-entropy loss is particularly effective
for classification tasks as it strongly penalizes confident but incorrect predictions while providing gentle gradients for
correct predictions, facilitating stable training. This loss encourages the model to learn discriminative features that
distinguish between the three path categories.

The weighting parameter 𝜆 = 0.5 balances the two objectives, determined empirically to prevent either task from
dominating during training. This value ensures that both trajectory accuracy and classification performance contribute
equally to the optimization process, allowing the model to develop a balanced understanding of both fine-grained
positional dynamics and coarse-grained behavioral patterns. A summary of architectural parameters is provided in
Table 6.
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Table 6 Loss Function Notation Summary

Symbol Definition Units
X Observed trajectory sequence
Y True Future Trajectory
Ŷ Predicted future trajectory
𝑐 True path choice 0, 1, 2
𝑐 Predicted path choice 0, 1, 2
𝑇 Observation window length timesteps
𝐻 Prediction Horizon timesteps
Ltraj Trajectory MSE loss m²
Lclass Classification cross-entropy nats
𝜆 Loss balancing weight

E. Training Procedure
Label Assignment Strategy: To address the challenge of trial-level labels (e.g., "this trial turns right") not matching

instantaneous motion, we employ smart labeling:

𝑐𝑖 =

{
𝑐trial if Δ𝜓𝑖 > 𝜃turn and 𝑐trial ∈ {left, right}
straight otherwise

where Δ𝜓𝑖 = 𝜓𝑖+𝐻 − 𝜓𝑖 is the heading change of the human head over the prediction window, and 𝜃turn = 0.26 rad
(≈ 15◦) is the turn detection threshold. This ensures labels reflect actual motion in the prediction window.

The training loop is as follows. For each epoch, iterate through training batches, then forward pass to compute Ŷ
and 𝑝(𝑐 |X). Compute composite loss L backward pass with gradient clipping and update parameters using Adam
optimizer. Validate on a held-out set (80/20 train/validation split), then save the model checkpoint if validation loss
improves. Training terminates after 100 epochs or when validation loss plateaus. The model with lowest validation loss
is selected for evaluation.

F. Implementation Details
The model is implemented in PyTorch and trained on CUDA backend. Key implementation choices include numerical

stability with gradient clipping that prevents exploding gradients common in RNN training. Batch normalization is
not used as LSTM internal gating provides sufficient regularization. Dropout between LSTM layers is avoided as it
degraded performance in preliminary experiments. Efficient inference is achieved for real-time deployment through
predictions that are computed at each timestep using a sliding window. At time 𝑡, we predict trajectories for [𝑡 + 1, 𝑡 +𝑇]
using observations [𝑡 − 𝐿 + 1, 𝑡], enabling continuous trajectory updates as new measurements arrive.
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Table 7 Prediction Error Metrics for Left-Turn Segments

File Sequences RMSE (m) Mean Eucl. (m)
left_001 382 0.1583 0.1694
left_002 297 0.2112 0.2340
left_004 193 0.1588 0.1770
left_005 255 0.1728 0.1697
left_006 204 0.1914 0.1998
left_007 253 0.1529 0.1528
left_008 146 0.2961 0.2850
left_009 197 0.2152 0.2118
left_011 166 0.1598 0.1678
left_012 230 0.2037 0.2034
left_013 711 0.1859 0.1960
left_014 642 0.1613 0.1782
left_015 429 0.1647 0.1872

Table 8 Prediction Error Metrics for Right-Turn Segments

File Sequences RMSE (m) Mean Eucl. (m)
right_000 424 0.1854 0.2004
right_001 439 0.1617 0.1719
right_002 483 0.1519 0.1763
right_003 416 0.1538 0.1751
right_004 600 0.1597 0.1776
right_005 569 0.1652 0.1772
right_006 240 0.2137 0.2268
right_009 535 0.1939 0.2117
right_012 484 0.1271 0.1484
right_013 139 0.1929 0.2078
right_014 311 0.1296 0.1528
right_015 165 0.1723 0.1868
right_016 548 0.1560 0.1794
right_018 516 0.1573 0.1669
right_019 469 0.1403 0.1648
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Table 9 Prediction Error Metrics for Straight-Line Segments

File Sequences RMSE (m) Mean Eucl. (m)
straight_001 660 0.1628 0.1803
straight_002 537 0.1584 0.1729
straight_003 399 0.1893 0.2022
straight_004 359 0.1627 0.1830
straight_005 317 0.1606 0.1777
straight_006 276 0.1511 0.1695
straight_007 322 0.1318 0.1491
straight_008 507 0.1170 0.1397
straight_009 398 0.1358 0.1633
straight_011 250 0.2044 0.2228
straight_012 305 0.1817 0.2109
straight_013 381 0.1890 0.1963
straight_014 286 0.1758 0.1938

Table 10 Detailed Branch Classification Accuracy Across All Validation Trials

Left Turn Right Turn Straight
File Seq. Acc.(%) File Seq. Acc.(%) File Seq. Acc.(%)
left_001 382 100.00 right_000 424 100.00 straight_001 660 100.00
left_002 297 100.00 right_001 439 100.00 straight_002 537 99.07
left_004 193 100.00 right_002 483 100.00 straight_003 399 100.00
left_005 255 100.00 right_003 416 100.00 straight_004 359 100.00
left_006 204 100.00 right_004 600 100.00 straight_005 317 100.00
left_007 253 100.00 right_005 569 94.73 straight_006 276 100.00
left_008 146 100.00 right_006 240 100.00 straight_007 322 100.00
left_009 197 100.00 right_009 535 100.00 straight_008 507 100.00
left_011 166 100.00 right_012 484 100.00 straight_009 398 100.00
left_012 230 100.00 right_013 139 100.00 straight_011 250 100.00
left_013 711 100.00 right_014 311 100.00 straight_012 305 100.00
left_014 642 100.00 right_015 165 100.00 straight_013 381 76.90
left_015 429 100.00 right_016 548 100.00 straight_014 286 100.00

right_018 516 100.00
right_019 469 100.00
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