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Abstract

Link prediction is a fundamental problem in graph data. In its most
realistic setting, the problem consists of predicting missing or future
links between random pairs of nodes from the set of disconnected
pairs. Graph Neural Networks (GNNs) have become the predom-
inant framework for link prediction. GNN-based methods treat
link prediction as a binary classification problem and handle the
extreme class imbalance—real graphs are very sparse—by sampling
(uniformly at random) a balanced number of disconnected pairs not
only for training but also for evaluation. However, we show that the
reported performance of GNNs for link prediction in the balanced
setting does not translate to the more realistic imbalanced setting
and that simpler topology-based approaches are often better at han-
dling sparsity. These findings motivate Gelato, a similarity-based
link-prediction method that applies (1) graph learning based on
node attributes to enhance a topological heuristic, (2) a ranking loss
for addressing class imbalance, and (3) a negative sampling scheme
that efficiently selects hard training pairs via graph partitioning.
Experiments show that Gelato outperforms existing GNN-based
alternatives.
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1 Introduction

Machine learning on graphs supports various structured-data appli-
cations including social network analysis [42, 64, 74], recommender
systems [33, 52, 77], natural language processing [66, 72, 86], and
physics modeling [17, 32, 68]. Among the graph-related tasks, one
could argue that link prediction, which consists of predicting miss-
ing or future links [47, 50], is the most fundamental one. This is
because link prediction not only has many concrete applications
[45, 62] but can also be considered an (implicit or explicit) step
of the graph-based machine learning pipeline [2, 49, 80]—as the
observed graph is usually noisy and/or incomplete.

Graph Neural Networks (GNNs) [26, 40, 76] have emerged as
the predominant paradigm for machine learning on graphs. Similar
to their great success in node classification [41, 81, 96] and graph
classification [28, 53, 87, 91], GNNs have been shown to achieve
state-of-the-art link prediction performance [10, 46, 59, 79, 89, 90].
Compared to classical approaches that rely on expert-designed
heuristics to extract topological information (e.g., Common Neigh-
bors [55], Adamic-Adar [1], Preferential Attachment [4]), GNNs can
naturally incorporate attributes and are believed to be able to learn
new effective heuristics directly from data via supervised learning.

However, we argue that the evaluation of GNN-based link predic-
tion methods paints an overly optimistic view of their model perfor-
mance. Most real graphs are sparse and have a modular structure
[3, 54]. In Cora and Citeseer (citation networks), less than 0.2%
of the node pairs are links/positive (see Table 1) and modules arise
around research topics. Yet GNN-based link prediction methods
are evaluated on an artificially balanced test set that includes every
positive pair but only a small sample of the negative ones cho-
sen uniformly at random [27]. Due to modularity, the majority
of negative pairs sampled are expected to be relatively far from
each other (i.e. across different modules) compared to positive pairs.
As a consequence, performance metrics reported for this balanced
setting, which we call biased testing, differ widely from the ones
observed for the more challenging unbiased testing, where the test
set includes every disconnected pair of nodes. In particular, we have
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found that unsupervised topological heuristics are more competi-
tive in the unbiased setting, often outperforming recent GNN-based
link prediction methods. This finding has motivated us to rethink
the design of link prediction methods for sparse graphs.

A key hypothesis of our work is that effective unbiased link
prediction in sparse graphs requires a similarity metric that can
distinguish positive pairs from hard negative ones. More specifically,
link prediction should be seen as a “needle in the haystack” type
of problem, where extreme class imbalance makes even the most
similar pairs still more likely to be negative. Existing GNN-based
approaches fail in this sparse regime due to (1) their use of a binary
classification loss that is highly sensitive to class imbalance; (2)
their biased training that mimics biased testing; (3) their inability to
learn effective topological heuristics directly from data.

The goal of this paper is to address the key limitations of GNNs
for link prediction mentioned above. We present Gelato, a novel
similarity-based framework for link prediction that combines a
topological heuristic and graph learning to leverage both topologi-
cal and attribute information. Gelato applies a ranking-based N-pair
loss and partitioning-based negative sampling to select hard train-
ing node pairs. Extensive experiments demonstrate that our model
significantly outperforms state-of-the-art GNNs in both accuracy
and scalability. Figure 1 provides an overview of our approach.

To summarize, our contributions are: (1) We scrutinize the eval-
uation of supervised link prediction methods and identify their
limitations in handling class imbalance; (2) we propose a simple,
effective, and efficient framework to combine topological and at-
tribute information for link prediction in an innovative fashion;
(3) we introduce an N-pair link prediction loss that we show to
be more effective at addressing class imbalance; and (4) we pro-
pose an efficient partitioning-based negative sampling scheme that
improves link prediction generalization in the sparse setting.

2 Limitations in Supervised Link Prediction

Evaluation

Supervised link prediction is often formulated as binary classifi-
cation, where the positive (or negative) class includes node pairs
connected (or not connected) by a link. A key difference between
link prediction and other classification problems is that the two
classes in link prediction are extremely imbalanced as most graphs
of interest are sparse—e.g. the datasets from Table 1 are significantly
more imbalanced than those in [75]. However, the class imbalance
is not properly addressed in the evaluation of existing approaches.

Existing link prediction methods [8, 11, 14, 39, 59, 83, 90, 92, 99]
are evaluated on a test set containing all positive test pairs and only
an equal number of random negative pairs. Similarly, the Open
Graph Benchmark (OGB) ranks predicted links against a very small
sample of random negative pairs. We term these approaches biased
testing as they highly overestimate the ratio of positive pairs in the
graph. This issue is exacerbated in most real graphs, where commu-
nity structure [56] causes random negative pairs to be particularly
easy to identify [43]—they likely involve members of different com-
munities. Evaluation metrics based on biased testing provide an
overly optimistic assessment of the performance in unbiased testing,
where every negative pair is included in the test set. In fact, in real

applications where positive test edges are not known a priori, it is
impossible to construct those biased test sets to begin with.

Regarding evaluation metrics, Area Under the Receiver Operat-
ing Characteristic Curve (AUC) and Average Precision (AP) are the
two most popular evaluation metrics for supervised link prediction
[8, 11, 14, 39, 59, 83, 90, 92, 99]. We first argue that, as in other
imbalanced classification problems [18, 67], AUC is not an effective
evaluation metric for link prediction as it is biased towards the
majority class (non-edges). On the other hand, AP and other rank-
based metrics such as Hits@𝑘—used in OGB [27]—are effective for
imbalanced classification but only if evaluated on an unbiased test.

Example: Consider an instance of Stochastic Block Model (SBM)
[35] with 10 blocks of size 1k, intra-block density 0.9, and inter-
block density 0.1. The number of inter-block negative pairs is 10 ×
1k × (10 − 1) × 1k × (1 − 0.1)/2 = 40.5M, while the number of
intra-block negative pairs, which have high topological similarities
like the ground-truth positive pairs and are much harder to contrast
against, is 10 × 1k × 1k × (1 − 0.9)/2 = 0.5M. Biased testing would
select less than 0.5M/(0.5M + 40.5M) < 2% of the test negative
pairs among the (hard) intra-block ones. In this scenario, even a
random classifier is expected to obtain 50% precision. However, the
expected precision drops to less than 22% (9M positive pairs vs.
41M negative pairs) under unbiased testing.

We will formalize the argument used in the example above by
performing link prediction on a generic instance of the SBM with
intra-block density 𝑝 , inter-block density 𝑞, where 𝑝 > 𝑞, and 𝑘
blocks of size 𝑛. In particular, we will consider an instance of SBM
corresponding to the expected node pattern given the parameters,
where a node is connected to (𝑛 − 1)𝑝 other nodes within its block
and (𝑛𝑘 − 𝑛)𝑞 nodes outside its block. In this setting, the opti-
mal link prediction algorithm can only distinguish potential links
within or across blocks—as pairs within each set are connected with
probability 𝑝 and 𝑞, respectively.

Lemma 1. The ratio 𝛼 between inter-cluster and intra-cluster neg-
ative node pairs in the SBM is such that:

𝛼 ≥ (𝑘 − 1) 1 − 𝑞
1 − 𝑝

The above lemma follows directly from the definition of the SBM
and shows that the set of negative pairs is dominated by (easy)
inter-cluster pairs as 𝑝 increases compared to 𝑞.

Theorem 2.1. In the unbiased setting, the optimal accuracy link
prediction method based on binary classification for the SBM predicts
no links if 𝑝 < 0.5.

The proof is given in the Appendix B. Intuitively, even if the
classifier has access to the SBM block structure, most within-block
pairs are disconnected and thus the accuracy is maximized if no
links are predicted. On the other hand, if 𝑝 > 𝑞, an effective link
prediction method should be able to leverage the SBM block struc-
ture to predict within block links. This motivates our formulation
of link prediction as a “needle in the haystack” type of problem,
where even the top candidate links (i.e., within-block pairs) are still
more likely to be negative due to the sparsity of the graph.

Lemma 2. In the biased setting, there exist non-trivial link predic-
tion methods with optimal accuracy based on binary classification
for the SBM with 𝑝 < 0.5.
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The proof is given in the Appendix C. The idea is that in the
biased setting, a link prediction method that predicts within-block
pairs as links can outperform the trivial classifier described in The-
orem 2.1. This illustrates how biased testing, which is applied by
recent work on supervised link prediction, can be misleading for
sparse graphs. More specifically, a model trained under the biased
setting might perform poorly if evaluated in the, more realistic, un-
biased setting due to possibly unforeseen distribution shifts across
the settings. This is a key motivation for our work.

The above discussion motivates a more representative evaluation
setting for supervised link prediction. We argue for the use of rank-
based evaluation metrics—AP, Precision@𝑘 [47], and Hits@𝑘 [5]—
with unbiased testing, where positive edges are ranked against hard
negative node pairs. These metrics have been widely applied in re-
lated problems, such as unsupervised link prediction [30, 47, 57, 93],
knowledge graph completion [5, 73, 84], and information retrieval
[69], where class imbalance is also significant. In our experiments,
we will illustrate how these evaluation metrics combined with un-
biased testing provide a drastically different and more informative
performance evaluation compared to existing approaches.

3 Method

The limitations of supervised link prediction methods, including
GNNs, to handle unbiased testing in sparse graphs motivate the
design of a novel link prediction approach. First, preliminary re-
sults (see Table 2) have shown that topological heuristics are not
impacted by class imbalance. That is because these heuristics are
sensitive to small differences in structural similarity between posi-
tive and hard negative pairs while not relying on any learning—and
thus not being affected by biased training. However, local structure
proximity heuristics, such as Common Neighbors, are known to
be less efficient in highly sparse scenarios observed in many real-
world applications [48]—Table 1 shows the sparsity of our datasets.
Further, unlike GNNs, topological heuristics are unable to leverage
attribute information. Our approach addresses these limitations
by integrating supervision into a powerful topological heuristic to
leverage attribute data via graph learning.

Notation and problem. Consider an attributed graph 𝐺 =

(𝑉 , 𝐸, 𝑋 ), where𝑉 is the set of𝑛 nodes, 𝐸 is the set of𝑚 edges (links),
and𝑋 = (𝑥1, ..., 𝑥𝑛)𝑇 ∈ R𝑛×𝑟 collects 𝑟 -dimensional node attributes.
The topological (structural) information of the graph is represented
by its adjacencymatrix𝐴 ∈ R𝑛×𝑛 , with𝐴𝑢𝑣 > 0 if an edge of weight
𝐴𝑢𝑣 connects nodes𝑢 and 𝑣 and𝐴𝑢𝑣 = 0, otherwise. The (weighted)
degree of node 𝑢 is given as 𝑑𝑢 =

∑
𝑣 𝐴𝑢𝑣 and the corresponding de-

gree vector (matrix) is denoted as 𝑑 ∈ R𝑛 (𝐷 ∈ R𝑛×𝑛). The volume
of the graph is vol(𝐺) = ∑

𝑢 𝑑𝑢 . Our goal is to infer missing links
in 𝐺 based on its topological and attribute information, 𝐴 and 𝑋 .

Model overview. Figure 1 provides an overview of our model.
It starts by selecting training node pairs using a novel partitioning-
based negative sampling scheme. Next, a topology-centric graph
learning phase incorporates node attribute information directly into
the graph structure via a Multi-layer Perceptron (MLP). We then
apply a topological heuristic, Autocovariance (AC), to the attribute-
enhanced graph to obtain a pairwise score matrix. Node pairs with
the highest scores are predicted as links. The scores for training
pairs are collected to compute an N-pair loss. Finally, the loss is

used to train the MLP parameters in an end-to-end manner. We
name our model Gelato (Graph enhancement for link prediction
with autocovariance). Gelato represents a different paradigm in
supervised link prediction combining a graph encoding of attributes
with a topological heuristic instead of relying on node embeddings.
While the building blocks of Gelato have been proposed by previous
work, our paper is the first to apply these building blocks to address
challenges in supervised link prediction for sparse graphs.

3.1 Graph learning

The goal of graph learning is to generate an enhanced graph that
incorporates node attribute information into the topology. This can
be considered as the “dual” operation of message-passing in GNNs,
which incorporates topological information into attributes (embed-
dings). We propose graph learning as a more suitable scheme to
combine attributes and topology for link prediction since it does
not rely on the GNN to learn a topological heuristic, which we have
verified empirically to be a challenge.

Specifically, our first step of graph learning is to augment the
original edges with a set of node pairs based on their (untrained)
attribute similarity (i.e., adding an 𝜖-neighborhood graph):

𝐸 = 𝐸 + {(𝑢, 𝑣) | 𝑠 (𝑥𝑢 , 𝑥𝑣) > 𝜖𝜂 } (1)

where 𝑠 (·) can be any similarity function (we use cosine in our
experiments) and 𝜖𝜂 is a threshold that determines the number of
added pairs as a ratio 𝜂 of the original number of edges𝑚.

A simple MLP then maps the pairwise node attributes into a
trained edge weight for every edge in 𝐸:

𝑤𝑢𝑣 = MLP( [𝑥𝑢 ;𝑥𝑣];𝜃 ) (2)

where [𝑥𝑢 ;𝑥𝑣] denotes the concatenation of 𝑥𝑢 and 𝑥𝑣 and 𝜃 con-
tains the trainable parameters. For undirected graphs, we instead
use the following permutation invariant operator [13]:

𝑤𝑢𝑣 = MLP( [𝑥𝑢 + 𝑥𝑣 ; |𝑥𝑢 − 𝑥𝑣 |];𝜃 ) (3)

The final weights of the enhanced graph are a combination of
the topological, untrained, and trained weights:

𝐴𝑢𝑣 = 𝛼𝐴𝑢𝑣 + (1 − 𝛼) (𝛽𝑤𝑢𝑣 + (1 − 𝛽)𝑠 (𝑥𝑢 , 𝑥𝑣)) (4)

where 𝛼 and 𝛽 are hyperparameters. The enhanced adjacency ma-
trix 𝐴 is then fed into a topological heuristic for link prediction
introduced in the next section. The MLP is not trained directly to
predict the links but instead trained end-to-end to enhance the
input graph given to the topological heuristic. Further, the MLP can
be easily replaced by a more powerful model such as a GNN, but
the goal of this paper is to demonstrate the general effectiveness of
our framework and we will show that even a simple MLP leads to
significant improvement over the base heuristic.

3.2 Topological heuristic

Assuming that the learned adjacency matrix 𝐴 incorporates struc-
tural and attribute information, Gelato applies a topological heuris-
tic to 𝐴. Specifically, we generalize Autocovariance, which has
been shown to be effective for non-attributed graphs [30], to the
attributed setting. Autocovariance is a random-walk-based simi-
larity metric. Intuitively, it measures the difference between the
co-visiting probabilities for a pair of nodes in a truncated walk
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Figure 1: Gelato applies graph learning to incorporate attribute information into the topology. The learned graph is given

to a topological heuristic that predicts edges between node pairs with high Autocovariance similarity. The parameters of

the MLP are optimized end-to-end using the N-pair loss over node pairs selected via a partitioning-based negative sampling

scheme. Experiments show that Gelato outperforms state-of-the-art GNN-based link prediction methods.

and in an infinitely long walk. Given the enhanced graph 𝐺 , the
Autocovariance similarity matrix 𝑅 ∈ R𝑛×𝑛 is given as

𝑅 =
𝐷

vol(𝐺)
(𝐷−1𝐴)𝑡 − 𝑑𝑑𝑇

vol2 (𝐺)
(5)

where 𝑡 ∈ N0 is the scaling parameter of the truncated walk. Each
entry 𝑅𝑢𝑣 represents a similarity score for node pair (𝑢, 𝑣), and top
similarity pairs are predicted as links. Note that 𝑅𝑢𝑣 only depends
on the 𝑡-hop enclosing subgraph of (𝑢, 𝑣) and can be easily differ-
entiated with respect to the edge weights in the subgraph. Gelato
could be applied with any differentiable topological heuristics or
even a combination of them. In our experiments (Section 4.3), we
will show that Autocovariance alone enables state-of-the-art link
prediction without requiring any learning.
Autocovariance versus other heuristics. Following [48], we
show that local structural heuristics commonly employed by GNNs,
such as Common Neighbors, exhibit reduced efficacy in sparse
networks with less informative neighborhood structures. This ob-
servation motivates our selection of Autocovariance as our topolog-
ical heuristic, given its ability to capture global structural patterns
through random walks. Further, the parameter 𝑡 in Autocovariance
offers adaptability to varying network sparsity levels[48], ranging
from denser (lower 𝑡 values) to sparser (higher 𝑡 values) networks.
Autocovariance distinguishes negative pairs. Autocovariance
can be seen as a general case of the Modularity metric 𝑄 [19]:

𝑄 =
1
4𝑚

∑︁
𝑖 𝑗

(𝐴𝑖 𝑗 −
𝑑𝑖𝑑 𝑗

2𝑚
)𝑠𝑖𝑠 𝑗 , (6)

in which𝑚 = vol(𝐺)/2, 𝑑𝑖 and 𝑑 𝑗 are the degrees of nodes 𝑖 and
𝑗 , and 𝑠𝑖𝑠 𝑗 is a product that indicates whether both nodes are in
the same partition. More specifically, for 𝑡 = 1, Autocovariance ex-
presses the graph partitioning resulting in the optimal Modularity
value, which captures the relationship between the expected num-
ber of edges between two partitions compared to the probability of
any random edge in the graph. This key property directly applies
to our scenario, enabling Gelato to distinguish between hard (same
partitions) and easy (different partitions) negative pairs and moti-
vating us to adopt Autocovariance as our graph heuristic. Further,
as 𝑡 increases, Autocovariance expresses growing coarser partitions
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Figure 2: Scaling up Gelato using batching and sparse tensors.

We represent sparse tensors (1 and 2) as matrices with blank

entries and dense tensors (3 and 4) as color-filled matrices.

We extract from the enhanced transition matrix (1) a slice 𝑃0
(2) given a batch of node indices 𝑉𝑏𝑎𝑡𝑐ℎ . Instead of a matrix

exponentiation, we compute 𝑃0 (𝐷−1𝐴) repeatedly for 𝑡 times

to obtain 𝑃𝑘 (3), a dense tensor. Finally, we use 𝑃𝑘 to obtain

the autocovariance 𝑅 (4) for nodes in the batch. This is imple-

mented efficiently using dense-sparse tensor multiplication.

until approximating spectral clustering (for 𝑡 → ∞), being flexible
regarding partition sizes according to different domains.
Scaling upGelatowith batching and sparse operations.Naively
implementing Gelato using dense tensors is infeasible, due to the
quadratic VRAM requirement (𝑅 ∈ R |𝑉 |× |𝑉 | ). To address this limi-
tation, we propose storing 𝐴 as a sparse matrix. Then, instead of
directly computing (𝐷−1𝐴)𝑡 from Equation 5 (resulting on a dense
|𝑉 | × |𝑉 | matrix), we compute

𝑃𝑙+1 = 𝑃𝑙 (𝐷−1𝐴), 𝑙 ∈ {1, 2, ..., 𝑡} (7)

𝑅 =
𝐷

vol(𝐺)
𝑃𝑡 −

𝑑𝑑𝑇

vol2 (𝐺)
(8)

where 𝑃0 = (𝐷−1𝐴)𝑖 𝑗 , for all 𝑖 ∈ 𝑉𝑏𝑎𝑡𝑐ℎ , where 𝑉𝑏𝑎𝑡𝑐ℎ consists of
the nodes in the current batch. This operation substitution allows
us to compute a sequence of 𝑡 multiplications between a dense

1047



Attribute-Enhanced Similarity Ranking for Sparse Link Prediction KDD ’25, August 3–7, 2025, Toronto, ON, Canada

𝑃𝑘 ∈ R |𝑏𝑎𝑡𝑐ℎ |× |𝑉 | matrix and a sparse matrix (𝐷−1𝐴) ∈ R |𝑉 |× |𝑉 |

instead of a dense matrix power operation, (𝐷−1𝐴)𝑡 . The overall
VRAM usage is reduced from 𝑂 ( |𝑉 |2) to 𝑂 ( |𝑏𝑎𝑡𝑐ℎ | · |𝑉 |).

3.3 N-pair loss

Supervised link prediction methods rely on the cross entropy loss
(CE) to optimize model parameters. However, CE is known to be
sensitive to class imbalance [7]. Instead, Gelato leverages the N-pair
loss [71] that is inspired by the metric learning and learning-to-
rank literature [9, 51, 65, 78] to train the parameters of our graph
learning model from highly imbalanced unbiased training data.

The N-pair loss (NP) contrasts each positive training edge (𝑢, 𝑣)
against a set of negative pairs 𝑁 (𝑢, 𝑣). It is computed as follows:

𝐿(𝜃 ) = −
∑︁

(𝑢,𝑣) ∈𝐸
log

exp(𝑅𝑢𝑣)
exp(𝑅𝑢𝑣) +

∑
(𝑝,𝑞) ∈𝑁 (𝑢,𝑣) exp(𝑅𝑝𝑞)

(9)

Intuitively, 𝐿(𝜃 ) is minimized when each positive edge (𝑢, 𝑣) has
a much higher similarity than its contrasted negative pairs: 𝑅𝑢𝑣 ≫
𝑅𝑝𝑞,∀(𝑝, 𝑞) ∈ 𝑁 (𝑢, 𝑣). Compared to CE, NP is more sensitive to
negative pairs that have comparable similarities to those of positive
pairs—they are more likely to be false positives. While NP achieves
good performance in our experiments, alternative losses from the
learning-to-rank literature [6, 23, 82] could also be applied.

3.4 Negative sampling

Supervised methods for link prediction sample a small number of
negative pairs uniformly at random but most of these pairs are
expected to be easy (see Section 2). To minimize distribution shifts
between training and test, negative samples 𝑁 (𝑢, 𝑣) should ideally
be generated using unbiased training (see additional example in
Appendix A). This means that 𝑁 (𝑢, 𝑣) is a random subset of all dis-
connected pairs in the training graph, and |𝑁 (𝑢, 𝑣) | is proportional
to the ratio of negative pairs. In this way, we enforce 𝑁 (𝑢, 𝑣) to
include hard negative pairs. However, due to graph sparsity (see
Table 1), this approach does not scale to large graphs as the total
number of negative pairs would be 𝑂 ( |𝑉 |2 − |𝐸 |).

Lemma 3. Let a Stochastic Block Model with intra-block density 𝑝 ,
inter-block density 𝑞, and 𝑝 > 𝑞. Then the expected Autocovariance of
intra-block pairs (𝑅𝑖𝑛𝑡𝑟𝑎) is greater than the expected Autocovariance
of inter-block pairs 𝑅𝑖𝑛𝑡𝑒𝑟 , i.e. E[𝑅𝑖𝑛𝑡𝑟𝑎] > E[𝑅𝑖𝑛𝑡𝑒𝑟 ].

Lemma 4. Let a Stochastic Block Model with intra-block density
𝑝 , inter-block density 𝑞, and 𝑝 > 𝑞. Then, E[𝑅𝑖𝑛𝑡𝑟𝑎] monotonically
increases as the number of partitions increases.

Considering Lemma 3 (see proof in the Appendix D), we ar-
gue that it is unlikely for an inter-block pair to be ranked within
the top Autocovariance pairs, implying that removing these pairs
from training would not affect the results. To efficiently generate a
small number of hard negative pairs, we propose a novel negative
sampling scheme for link prediction based on graph partitioning
[16, 21]. The idea is to select negative samples inside partitions
(or communities) as they are expected to have similarity values
comparable to positive pairs. We adopt METIS [36] as our graph
partitioning method due to its scalability and its flexibility to gener-
ate partitions of a size given as a parameter. METIS’ partitions are
expected to be densely connected inside and sparsely connected

across (partitions). We apply METIS to obtain 𝑘 partitions in which
∀𝑖 ∈ {1, 2, ..., 𝑘} : 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 ),𝑉𝑖 ⊂ 𝑉 , 𝐸𝑖 ⊂ 𝐸,𝑋𝑖 ⊂ 𝑋 , such
that 𝑉 =

⋃𝑘
𝑖=1𝑉𝑖 and |𝑉𝑖 | ≈ |𝑉 |/𝑘 . Then, we apply unbiased train-

ing only within each partition, reducing the number of sampled
negative pairs to |𝐸− | = ∑𝑘

𝑖 |𝑉𝑖 |2 − |𝐸𝑖 |. Following Lemma 4 (see
proof on Appendix E), the choice of the value of 𝑘 should consider
a trade-off between training speed and link prediction performance
(see Appendix 4.3). Further, the algorithm proposed by [56] could be
adopted to find the optimal value of 𝑘 that maximizes the Modular-
ity gain while obtaining the minimal training time. In the remainder
of the paper, we refer to this approach as partitioned training. We
claim that this procedure filters (easy) pairs consisting of nodes
that would be too far away in the network topology from training
while maintaining the more informative (hard) pairs that are closer
and topologically similar, according to METIS. We include in the
Appendix 4.3 (See Figure 5) a performance comparison between
Gelato trained using unbiased training against partitioned training.

4 Experiments

In this section, we provide empirical evidence supporting our claims
about supervised link prediction, demonstrate the accuracy and effi-
ciency of Gelato, and present ablation studies. The implementation
is available on Anonymous GitHub1.

4.1 Experiment settings

Datasets. Our method is evaluated on five attributed graphs com-
monly used for link prediction [11, 14, 27, 59, 83, 92, 99]. Table 1
shows dataset statistics.

Table 1: A summary of dataset statistics.

#Nodes #Edges #Attrs Avg. degree Density

Cora 2,708 5,278 1,433 3.90 0.14%
CiteSeer 3,327 4,552 3,703 2.74 0.08%
PubMed 19,717 44,324 500 4.50 0.02%
ogbl-ddi 4,267 1,334,889 0 500,5 7.33%

ogbl-collab 235,868 1,285,465 128 8.2 0.0046%

Baselines. For GNN-based link prediction, we include four state-
of-the-art methods published in the past two years: Neo-GNN [89],
BUDDY [10], and NCN / NCNC [79], as well as the pioneering
work—SEAL [90]. For topological link prediction heuristics, we
consider Common Neighbors (CN) [55], Adamic Adar (AA) [1],
Personalized PageRank (PPR) [58], and Autocovariance (AC) [30]—
the base heuristic in ourmodel. For comparisonwith older baselines,
please refer to an earlier preprint version of our paper [29].
Hyperparameters. For Gelato, we tune the proportion of added
edges 𝜂 from {0.0, 0.25, 0.5, 0.75, 1.0}, the topological weight 𝛼 from
{0.0, 0.25, 0.5, 0.75}, and the trained weight 𝛽 from {0.25, 0.5, 0.75, 1.0}.
All other settings are fixed across datasets: MLP with one hidden
layer of 128 neurons, AC scaling parameter 𝑡 = 3, Adam optimizer
[38] with a learning rate of 0.001, a dropout rate of 0.5, and unbiased
training without downsampling. To maintain fairness in our results,
we also tuned the baselines and exposed our procedures in detail

1https://anonymous.4open.science/r/Gelato/
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in Appendix F. For all models, including Gelato, the tuning process
is done in all datasets, except for ogbl-collab.
Data splits for unbiased training and unbiased testing. Follow-
ing [11, 14, 39, 59, 90, 92], we adopt 85%/5%/10% ratios for training,
validation, and testing. Specifically, for unbiased training and unbi-
ased testing, we first randomly divide the (positive) edges 𝐸 of the
original graph into 𝐸+

𝑡𝑟𝑎𝑖𝑛
, 𝐸+

𝑣𝑎𝑙𝑖𝑑
, and 𝐸+𝑡𝑒𝑠𝑡 for training, validation,

and testing based on the selected ratios. Then, we set the negative
pairs in these three sets as (1) 𝐸−

𝑡𝑟𝑎𝑖𝑛
= 𝐸− + 𝐸+

𝑣𝑎𝑙𝑖𝑑
+ 𝐸+𝑡𝑒𝑠𝑡 , (2)

𝐸−
𝑣𝑎𝑙𝑖𝑑

= 𝐸− + 𝐸+𝑡𝑒𝑠𝑡 , and (3) 𝐸−𝑡𝑒𝑠𝑡 = 𝐸
− , where 𝐸− is the set of all

negative pairs (excluding self-loops) in the original graph. Notice
that the validation and testing positive edges are included in the
negative training set, and the testing positive edges are included in
the negative validation set. This setting simulates the real-world
scenario where the test edges (and the validation edges) are unob-
served during validation (training). For negative sampling, we repeat
the dividing procedure above for each generated partition 𝐺𝑖 . The
final sets are unions of individual sets for each partition: 𝐸+/−

𝑡𝑟𝑎𝑖𝑛
=⋃𝑘

𝑖=1 𝐸
+/−
𝑡𝑟𝑎𝑖𝑛𝑖

, 𝐸+/−
𝑣𝑎𝑙𝑖𝑑

=
⋃𝑘

𝑖=1 𝐸
+/−
𝑣𝑎𝑙𝑖𝑑𝑖

, and 𝐸+/−𝑡𝑒𝑠𝑡 =
⋃𝑘

𝑖=1 𝐸
+/−
𝑡𝑒𝑠𝑡𝑖

. We
notice that these splits do not leak training data to the test, as both
positive and negative test pairs are disconnected during training.
Evaluation metrics. We adopt ℎ𝑖𝑡𝑠@𝑘 —the ratio of positive
edges individually ranked above 𝑘th place against all negative
pairs—as our evaluation metric since it represents a good notion
of class distinction under heavily imbalanced scenarios in informa-
tion retrieval, compatible with the intuition of link prediction as a
similarity-based ranking task.

4.2 Partitioned sampling and link prediction as

a similarity task

This section provides empirical evidence for some of the claims
made regarding limitations in the evaluation of supervised link
prediction methods (see Section 2). It also demonstrates the effec-
tiveness of Gelato to distinguish true links from hard negative node
pairs in sparse graphs.
Negative sampling for harder pairs. Based on the hardness of
negative pairs, the easiest scenario is the biased testing, followed
by unbiased testing and partitioned testing—i.e. only negative pairs
from inside partitions are sampled. This can be verified by Figure 3,
which compares the predicted scores of NCN against the similari-
ties computed by Gelato on the test set of CiteSeer. Biased testing,
the easiest and most unrealistic scenario, shows a good separation
between positive and negative pairs both in NCN and Gelato. For
unbiased testing, which is more realistic, Gelato is better at dis-
tinguishing positive and negative pairs. Finally, partitioned testing
presents a particular challenge but Gelato still ranks most posi-
tive pairs above negative ones. Other GNN-based link prediction
approaches have shown similar behaviors to NCN.
Similarity-based link prediction. Figure 3 shows densities nor-
malized by the size of positive and negative sets, respectively. How-
ever, in real-world sparse graphs, the number of negative pairs is
much larger than that of positive ones. The results show that for
unbiased and partitioned testing, ranking positive pairs over hard
negative pairs is especially challenging due to their overwhelming
number, i.e. positive pairs are “needles in a haystack”. This provides

evidence that classifiers, such as GNNs for link prediction, are not
suitable for finding decision boundaries in these extremely imbal-
anced settings, which motivates the design of Gelato as a similarity
ranking model trained using an N-pair loss.

4.3 Link prediction performance

Table 2 summarizes the link prediction performance in terms of
the mean and standard deviation of ℎ𝑖𝑡𝑠@1000 for all methods. We
show the same results for varying values of 𝑘 in Figure 4.

First, we want to highlight the drastically different performance
of GNN-based methods compared to those found in the original pa-
pers [10, 79, 89, 90]. Some of them underperform even the simplest
topological heuristics such as Common Neighbors under unbiased
testing. Moreover, Autocovariance, which is the base topological
heuristic applied by Gelato and does not account for node attributes,
outperforms all the GNN-based baselines for the majority of the
datasets. These results support our arguments from Section 2 that
evaluation metrics based on biased testing can produce misleading
results compared to unbiased testing.

The overall best-performing GNN model is NCNC, which gener-
alizes a pairwise topological heuristic (Common Neighbors) using
message-passing. NCNC only outperforms Gelato on OGBL-ddi,
which is consistent with previous results [48] showing that local
structural heuristics are effective for very dense networks (see Ta-
ble 1). Moreover, OGBL-ddi is the only dataset considered that
does not contain natural node features, which explains why our
approach achieves the same performance as AC. Gelato also re-
mains superior for different values of ℎ𝑖𝑡𝑠@𝐾 , especially for Cora,
CiteSeer and OGBL-collab, and being remains competitive for
OGBL-ddi being competitive as shown in Figure 4. This character-
istic is especially relevant in real-world scenarios where robustness
is desired, mainly in more conservative regimes with lower val-
ues of 𝑘 . Overall, Gelato outperforms the best GNN-based method
by 138%, 125%, 156%, and 11% for Cora, Citeseer, Pubmed, and
OGBL-collab, respectively. Further, Gelato outperforms its base
topological heuristic (Autocovariance) by 48%, 39%, 10%, and 139%
for Cora, Citeseer, Pubmed, and OGBL-collab, respectively.
Unbiased Training vs. Partitioned Training. Figure 5 compares
partitioned and unbiased training on CiteSeer using hits@K for
varying 𝐾 . Results show minimal performance differences, even in
extreme partitioning scenarios, while partitioned sampling achieves
a significant speedup—training up to 6x faster and scaling with the
number of partitions. Unbiased training requires 𝑂 (𝑉 2 − 𝐸) for
sparse graphs due to extensive negative sampling, whereas parti-
tioned sampling reduces this to 𝑂 (∑𝑝

𝑖
|𝑉𝑖 |2 − |𝐸𝑖 |), where (𝑉𝑖 , 𝐸𝑖 )

are nodes and edges within partition 𝑖 . Experiments confirm that
performance is largely insensitive to different values of 𝑝 .

4.4 Ablation study

Here, we collect the results with the same hyperparameter setting
as Gelato and present an ablation study in Table 3.Gelato−MLP (AC)
represents Gelato without the MLP (Autocovariance) component,
i.e., only using Autocovariance (MLP) for link prediction.Gelato−NP
(UT ) replaces the proposed N-pair loss (unbiased training) with the
cross entropy loss (biased training) applied by the baselines. Finally,
Gelato−NP+UT replaces both the loss and the training setting.
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Figure 3: We analyze classification-based and similarity-based link prediction approaches through a comparison between the

probability density functions of predicted similarities/scores by Gelato and NCN (state-of-the-art GNN), on the test set in three

different regimes (biased, unbiased, and partitioned). Negative pairs are represented in red, and positive pairs are represented

in blue. By treating link prediction as a similarity-based problem, Gelato presents better separation (smaller overlap) between

the similarity curves in the harder scenarios, distinguishing between positive and negative pairs across all testing regimes.

NCN presents a drastic increase in overlap as negative pairs become harder, struggling to separate positive and negative pairs.
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were split using unbiased sampling, except OGBL-Collab, which was split using partitioned sampling. Gelato outperforms the

baselines across different values of 𝑘 and remains competitive on OGBL-DDI, a dataset in which all methods struggle.
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Table 2: Link prediction performance comparison (mean ± std hits@1000) for all datasets considered. Gelato consistently

outperforms GNN-based methods, topological heuristics, and two-stage approaches combining attributes/topology. For Cora,

CiteSeer, ogbl-ddi and PubMed results we used unbiased training, while for ogbl-collab partitioned sampling is used, for

scalability reasons. The top three models are colored by First, Second and Third.

Cora CiteSeer PubMed ogbl-ddi ogbl-collab

GNN

SEAL 0.0* 7.25* *** 0.75* 25.9*

Neo-GNN 6.96 ± 4.24 5.42 ± 0.13 1.63 ± 0.32 0.76* 0.85*
BUDDY 4.81 ± 0.72 5.86 ± 0.34 OOM 0.74 ± 0.01 27.66 ± 0.24

NCN 4.11 ± 1.22 7.84 ± 1.13 0.06 ± 0.1 0.82 ± 0.02 7.16 ± 1.42
NCNC 6.58 ± 0.58 8.72 ± 2.08 1.04 ± 0.09 0.89 ± 0.09 0.44 ± 0.37

Topological
Heuristics

CN 4.17 ± 0.00 4.4 ± 0.00 0.36 ± 0.00 0.8 ± 0.00 2.4 ± 0.00
AA 6.64 ± 0.00 4.4 ± 0.00 1.13 ± 0.00 0.79 ± 0.00 4.88 ± 0.00
PPR 9.30 ± 0.00 6.59 ± 0.00 0.32 ± 0.00 0.08 ± 0.00 1.24 ± 0.00
AC 11.20 ± 0.00 14.29 ± 0.00 3.81 ± 0.00 0.78 ± 0.00 12.89 ± 0.00

Gelato 16.62 ± 0.31 19.78 ± 0.23 4.18 ± 0.19 0.78 ± 0.00 30.92
*

* Run only once as each run takes >24 hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory.
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Figure 5: Comparison of unbiased vs. partitioned sampling

on CiteSeer for different 𝐾 . Even with extreme partitioning

(𝑘 = 50, ≈ 66 nodes/partition), performance differences are

minor, while partitioned sampling trains significantly faster.

We observe that removing either MLP or Autocovariance leads
to inferior performance, as the corresponding attribute or topology
information would be missing. Further, to address the class imbal-
ance problem of link prediction, both the N-pair loss and unbiased
training are crucial for the effective training of Gelato.

We also present results for Gelato using different ranking-based
loss functions. We choose between Precision@k, pairwise hinge,
pairwise exponential, and pairwise logistic losses as candidates for
replacing the N-pair loss based on [12]. The results are shown in
Table 4, demonstrating that there is no clear winner considering the
ℎ𝑖𝑡𝑠@1000 metric in the two datasets used (Cora and CiteSeer).

We analyze hyperparameter sensitivity and its impact on per-
formance. Figure 6 shows that optimal 𝛼 and 𝛽 values depend on
dataset characteristics, though performance varies smoothly for
Cora and CiteSeer, easing tuning. Figure 7 highlights diminishing
returns from increasing 𝜂, as performance plateaus.

Table 3: Results of the ablation study based on hits@1000

scores. Each component of Gelato plays an important role in

enabling state-of-the-art link prediction performance.

Cora CiteSeer PubMed

Gelato−MLP 16.13 ± 0.00 19.78 ± 0.00 3.81 ± 0.0
Gelato−AC 2.66 ± 2.57 12.6 ± 0.71 0.0 ± 0.0
Gelato−NP+UT 16.32 ± 0.19 19.41 ± 0.34 4.05 ± 0.12
Gelato−NP 16.51 ± 0.19 17.88 ± 0.46 1.74 ± 0.14
Gelato 16.62 ± 0.31 19.89 ± 0.23 4.18 ± 0.19

Table 4: Comparison between N-pair loss (Gelato) against

the Precision@K (PK), pairwise hinge (PH), pairwise expo-

nential (PE), and pairwise logistic (PL) losses considering the

ℎ𝑖𝑡𝑠@1000 metric.

Cora CiteSeer

Gelato-PK 16.32 ± 0.19 19.19 ± 0.99
Gelato-PH 18.09 ± 0.48 16.56 ± 0.13
Gelato-PE 16.82 ± 0.48 15.9 ± 0.34
Gelato-PL 18.03 ± 0.38 17.14 ± 0.66
Gelato 16.62 ± 0.31 19.89 ± 0.24
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5 Related Work

An earlier preprint version of our paper is available at arXiv [29].
Topological heuristics for link prediction. The early link predic-
tion literature focuses on topology-based heuristics. This includes
approaches based on local (e.g., Common Neighbors [55], Adamic
Adar [1], and Resource Allocation [98]) and higher-order (e.g., Katz
[37], PageRank [58], and SimRank [34]) information. More recently,
random-walk based graph embedding methods, which learn vector
representations for nodes [24, 30, 61], have achieved promising
results in graph machine learning tasks. Popular embedding ap-
proaches, such as DeepWalk [61] and node2vec [24], have been
shown to implicitly approximate the Pointwise Mutual Information
similarity [63], which can also be used as a link prediction heuristic.
This has motivated the investigation of other similarity metrics such
as Autocovariance [19, 30, 31]. However, these heuristics are unsu-
pervised and cannot take advantage of data beyond the topology.
Graph Neural Networks for link prediction. GNN-based link
prediction addresses the limitations of topological heuristics by
training a neural network to combine topological and attribute in-
formation and potentially learn new heuristics. These works often
assume that links are correlated with homophily in node attributes
[20, 97], as also is the case for this paper. GAE [39] combines a graph
convolution network [40] and an inner product decoder based on
node embeddings. SEAL [90] models link prediction as a binary
subgraph classification problem (edge/non-edge), and follow-up
work (e.g., SHHF [46], WalkPool [59]) investigates different pooling
strategies. Other recent approaches for GNN-based link prediction
include learning representations in hyperbolic space (e.g., HGCN
[11], LGCN [92]), generalizing topological heuristics (e.g., Neo-
GNN [89], NBFNet [99]), and incorporating additional topological
features (e.g., TLC-GNN [83], BScNets [14]). ELPH and BUDDY [10]
apply hashing to efficiently approximate subgraph-based link pre-
diction models, such as SEAL, using a message-passing neural net-
work (MPNN) with distance-based structural features. NCNC [79]
combines the Common Neighbors heuristic with an MPNN achiev-
ing state-of-the-art results. Motivated by the growing popularity
of GNNs for link prediction, this work investigates key questions
regarding their training, evaluation, and ability to learn effective
topological heuristics directly from data. We propose Gelato, which
is simpler, more accurate, and faster than most state-of-the-art
GNN-based link prediction methods.
Graph learning. Gelato learns a graph that combines topolog-
ical and attribute information. Our goal differs from generative

models [25, 44, 88], which learn to sample from a distribution over
graphs. Graph learning also enables the application of GNNs when
the graph is unavailable, noisy, or incomplete [94]. LDS [22] and
GAug [95] jointly learn a probability distribution over edges and
GNN parameters. IDGL [15] and EGLN [85] alternate between op-
timizing the graph and embeddings for node/graph classification
and collaborative filtering. [70] proposes two-stage link prediction
by augmenting the graph as a preprocessing step. In comparison,
Gelato effectively learns a graph in an end-to-end manner by min-
imizing the loss of a topological heuristic.

6 Conclusion

This work exposes key limitations in evaluating supervised link
prediction methods due to the widespread use of biased testing.
These limitations led to a consensus in the graph machine learning
community that (1) GNNs are superior for link prediction, cast-
ing topological heuristics obsolete; and (2) link prediction is now
an easy task due to deep learning advances. We challenge both
assumptions, demonstrating that link prediction in sparse graphs
remains a hard problem when evaluated properly. GNNs struggle
with link prediction in sparse graphs due to extreme class imbalance,
motivating Gelato, our novel link prediction framework.

Gelato is a similarity-basedmethod that combines graph learning
and autocovariance to leverage attribute and topological informa-
tion. Gelato employs an N-pair loss instead of cross-entropy to
address the class imbalance and introduces a partitioning-based
negative sampling scheme for efficient hard negative pair sampling.
Through extensive experiments, we demonstrate superior accu-
racy and scalability of Gelato when compared to state-of-the-art
GNN-based solutions across various datasets.
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A Analysis of Link Prediction Evaluation

Metrics with Different Test Settings

Example: Consider a graph with 10𝐾 nodes, 100𝐾 edges, and 99.9𝑀
disconnected (or negative) pairs. A (bad) model that ranks 1M false
positives higher than the true edges achieves 0.99 AUC and 0.95 in
AP under biased testing with equal negative samples.

Figures 8a and 8b show the receiver operating characteristic
(ROC) and precision-recall (PR) curves for the model under biased
testing with equal number of negative samples. Due to the down-
sampling, only 100k (out of 99.9M) negative pairs are included in

the test set, among which only 100k/99.9M × 1M ≈ 1k pairs are
ranked higher than the positive edges. In the ROC curve, this means
that once the false positive rate reaches 1k/100k = 0.01, the true
positive rate would reach 1.0, leading to an AUC score of 0.99. Sim-
ilarly, in the PR curve, when the recall reaches 1.0, the precision is
100k/(1k + 100k) ≈ 0.99, leading to an overall AP score of ∼0.95.

By comparison, as shown in Figure 8c, when the recall reaches
1.0, the precision under unbiased testing is only 100k/(1M + 100k) ≈
0.09, leading to an AP score of ∼0.05. This demonstrates that evalu-
ation metrics based on biased testing provide an overly optimistic
measurement of link prediction model performance compared to
the more realistic unbiased testing setting.
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Figure 8: Receiver operating characteristic and precision-

recall curves for the bad link prediction model that ranks 1M

false positives higher than the 100k true edges. The model

achieves 0.99 in AUC and 0.95 AP under biased testing, while

the more informative performance evaluation metric, Aver-

age Precision (AP) under unbiased testing, is only 0.05.

B Proof of Theorem 2.1

There are only three classifiers that we need to consider in this
setting, assuming that the classifier can recover the block structure:

(1) It predicts every disconnected pair as a link;
(2) It predicts every disconnected pair as a non-link;
(3) It predicts within-block pairs as links and across-block pairs

as non-links.
The classifier 1 cannot be optimal for sparse graphs—i.e., density

lower than .5—and thus we will focus on classifiers 2 and 3. We
will compute the expected number of True Positives (TP), False
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Positives (FP), False Negatives (FN), and True Negatives (TN) per
node for each of them:

Classifier 2:

𝑇𝑃 = 0
𝐹𝑁 = 0
𝐹𝑃 = (𝑛 − 1)𝑝 + (𝑛𝑘 − 𝑛)𝑞
𝑇𝑁 = (𝑛 − 1) (1 − 𝑝) + (𝑛𝑘 − 𝑛) (1 − 𝑞)

Classifier 3:

𝑇𝑃 = (𝑛 − 1)𝑝
𝐹𝑁 = (𝑛𝑘 − 𝑛)𝑞
𝐹𝑃 = (𝑛 − 1)𝑝
𝑇𝑁 = (𝑛𝑘 − 𝑛) (1 − 𝑞)

The accuracy of the classifiers is computed as (𝑇𝑃 +𝑇𝑁 )/(𝑇𝑃 +
𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ). It follows that the difference between accuracy of
the classifier 2 and 3 is as follows:
(𝑛 − 1) (1 − 𝑝) + (𝑛𝑘 − 𝑛) (1 − 𝑞)

𝑛𝑘 − 1
− (𝑛 − 1)𝑝 + (𝑛𝑘 − 𝑛) (1 − 𝑞)

𝑛𝑘 − 1
And thus, classifier 2 outperforms classifier 3 for 𝑝 < 0.5.

C Proof of Lemma 2

We will consider the same classifiers 2 and 3 from the proof of
Theorem 2.1. Moreover, we will assume that the number of sampled
negative pairs is the same as the number of positive pairs (i.e.,
balanced sampling).

By definition, the accuracy of classifier 2 is 0.5, as all predictions
for negative pairs will be correct and all those for positive pairs will
be incorrect. Thus, we only have to show that there exists an SBM
instance for which classifier 3 achieves better accuracy than 2.

The accuracy of classifier 3 is computed as 𝑎1 + 𝑎2/2, where:

𝑎1 =
(𝑛 − 1)𝑝

(𝑛 − 1)𝑝 + (𝑛𝑘 − 𝑛)𝑞

𝑎2 =
(𝑛𝑘 − 𝑛) (1 − 𝑞)

(𝑛𝑘 − 𝑛) (1 − 𝑞) + (𝑛 − 1) (1 − 𝑝)
It follows that, as 𝑞 → 0, classifier 3 can achieve an accuracy

higher than 0.5.

D Proof of Lemma 3

Let us initially consider Autocovariance with 𝑡 = 1 computed in the
Stochastic Block Model described in Lemma 3. We will adopt the
entry-wise notation of the original Autocovariance definition pre-
sented in Section 3.2, using lower-case letters to represent individual
entries in matrices and vectors, and for the sake of consistency with
the Modularity definition, we adopt vol(𝐺) = 2𝑚. We first obtain
the shortened form of Autocovariance for 𝑡 = 1:

𝑅𝑖 𝑗 =
1
2𝑚

(𝑎𝑖 𝑗 −
𝑑𝑖𝑑 𝑗

2𝑚
). (10)

We can obtain the expected expression value for the case where
(𝑖, 𝑗) is an intra-cluster pair (E[𝑅𝑖𝑛𝑡𝑟𝑎]):

E[𝑅𝑖𝑛𝑡𝑟𝑎] =
1
2𝑚

((1 −
𝑑𝑖𝑑 𝑗

2𝑚
)𝑝 + (0 −

𝑑𝑖𝑑 𝑗

2𝑚
) (1 − 𝑝)) (11)

=
1
2𝑚

(𝑝 −
𝑑𝑖𝑑 𝑗

2𝑚
) . (12)

Likewise, we follow the same procedure for the case where (𝑖, 𝑗)
is an inter-cluster pair (E[𝑅𝑖𝑛𝑡𝑒𝑟 ]):

E[𝑅𝑖𝑛𝑡𝑒𝑟 ] =
1
2𝑚

((1 −
𝑑𝑖𝑑 𝑗

2𝑚
) (1 − 𝑝) + (0 −

𝑑𝑖𝑑 𝑗

2𝑚
)𝑝) (13)

=
1
2𝑚

(1 − 𝑝 −
𝑑𝑖𝑑 𝑗

2𝑚
) (14)

=
1
2𝑚

(𝑞 −
𝑑𝑖𝑑 𝑗

2𝑚
). (15)

Due to the reversible property of Markov chains, this holds for
larger values of 𝑡 .

Since 𝑝 > 𝑞 =⇒ E[𝑅𝑖𝑛𝑡𝑟𝑎] > E[𝑅𝑖𝑛𝑡𝑒𝑟 ].

E Proof of Lemma 4

From Appendix D, we have E[𝑅𝑖𝑛𝑡𝑟𝑎] =
1
2𝑚

(𝑝 −
𝑑𝑖𝑑 𝑗

2𝑚
) is solely

dependent on the value of 𝑝 , since all the other terms are constants.
We will denominate 𝑉𝑖𝑘 and 𝐸+

𝑖𝑘
the number of nodes and positive

pairs in the 𝑖-th partition of our graph partitioned in 𝑘 partitions.
Considering the estimate 𝑝 = |𝐸+

𝑖𝑘
|/|𝑉𝑖𝑘 |2, for simplicity, the num-

ber of positive pairs we can lose by increasing 𝑘 to 𝑘 + 1 is at most
|𝐸+
𝑖𝑘+1 | ≥ |𝐸+

𝑖𝑘
| − (|𝑉𝑖𝑘 |2 − |𝑉𝑖𝑘+1 |2), if we consider the extreme

scenario in which every pair lost was positive. With this estimate,
we can compare with the actual 𝑝 estimate:

|𝐸+
𝑖𝑘+1 |

|𝑉𝑖𝑘+1 |2
≥

|𝐸+
𝑖𝑘
| − (|𝑉𝑖𝑘 |2 − |𝑉𝑖𝑘+1 |2)

|𝑉𝑖𝑘+1 |2
(16)

|𝑉𝑖𝑘 |2 − |𝑉𝑖𝑘+1 |2 ≥ |𝐸+
𝑖𝑘
| − |𝐸+

𝑖𝑘+1 | (17)

It follows that, since the number of pairs drops faster than the
number of positive edges for a given partition, E[𝑅𝑖𝑛𝑡𝑟𝑎] increases
when 𝑘 increases.

F Detailed experiment settings

Positivemasking. To ensure generalizability under unbiased train-
ing, we employ a trick similar to negative injection [90]. Training
positive edges are divided into batches, and for each batch 𝐸𝑏 , only
the residual edges 𝐸 − 𝐸𝑏 are used as structural input to the model.
This simulates testing, where edge predictions are made without
leveraging their own connectivity. We term this positive masking.
Implementation details. Self-loops are added to isolated nodes
in the enhanced adjacency matrix to ensure valid transition proba-
bilities for computing Autocovariance. Gelato similarity scores are
standardized as in [30] before loss computation. We train the model
using gradient descent with pytorch [60] and skip parameter up-
dates for batches with invalid gradients (e.g., with cross-entropy
loss). Models are selected based on 𝑝𝑟𝑒𝑐@100% on the (unbiased)
validation set. Maximum epochs are set to 100 for Cora/CiteSeer
and 250 for OGBL-DDI/OGBL-Collab. For partitioned testing, we
use METIS [36] for its scalability and balanced partitions.
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