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Abstract

Continual learning (CL) aims to enable models to incre-
mentally learn from a sequence of tasks without forgetting
previously acquired knowledge. While most prior work fo-
cuses on closed-world settings, where all test instances are as-
sumed from the set of learned classes, real-world applications
require models to handle both CL and out-of-distribution
(OOD) samples. A key insight from recent studies on deep
neural networks is the phenomenon of Neural Collapse (NC),
which occurs in the terminal phase of training when the loss
approaches zero. Under NC, class features collapse to their
means, and classifier weights align with these means, en-
abling effective prototype-based strategies such as nearest
class mean, for both classification and OOD detection. How-
ever, in CL, catastrophic forgetting (CF) prevents the model
from naturally reaching this desirable regime. In this paper,
we propose a novel method called Analytic Neural Collapse
(AnaNC) that analytically creates the NC properties in the
feature space of a frozen pre-trained model with no training,
overcoming CF. Extensive experiments demonstrate that our
approach outperforms state-of-the-art methods in continual
OOD detection and learning, highlighting the effectiveness
of our method in this challenging scenario.

Code — https://github.com/salehmomeni/AnaNC

Introduction

Continual learning (CL) aims to equip models with the abil-
ity to incrementally learn a series of tasks arriving over time.
Each task typically introduces new classes, which the model
must learn without access to data from previous tasks and
classify without knowing the task identity at test time. This
setting, known as class-incremental learning (CIL) (Van de
Ven and Tolias 2019), assumes all test instances belong to
the set of learned classes. However, many real-world ap-
plications require the continual model not only to classify
among known classes but also to recognize when an in-
put belongs to an unseen class, known as out-of-distribution
(OOD) detection (Fei and Liu 2016; Hendrycks and Gimpel
2017). In this work, we address this problem in the CIL set-
ting, performing continual OOD detection, where the model
must detect OOD samples throughout the learning process.
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A central issue in CL, whether for classification or OOD
detection, is catastrophic forgetting (CF), where learning
new tasks causes the model to overwrite representations of
previously learned tasks (McCloskey and Cohen 1989). A
promising strategy to overcome CF is to use pre-trained
models (PTMs), which provide generalizable representa-
tions across tasks. Using PTMs reduces the risk of CF and
yields strong CL performance (Ke et al. 2021; Zhou et al.
2024a; Momeni, Mazumder, and Liu 2025).

Deep neural networks trained for classification often ex-
hibit a phenomenon known as Neural Collapse (NC) in the
terminal phase of training (TPT). During this phase, the ge-
ometry of the learned features and classifier weights evolves
toward a highly structured form (Papyan, Han, and Donoho
2020), characterized by the following properties:

* NC1 (Collapse of Within-class Variability): the within-
class variation becomes negligible as each feature repre-
sentation collapses toward its respective class mean.

* NC2 (Equiangular Tight Frame of Class Means): the
class means have equal norms and are uniformly sepa-
rated by equal angles, forming a symmetric configura-
tion known as an Equiangular Tight Frame (ETF), which
maximizes the inter-class separation.

* NC3 (Self-duality Between Features and Classifier):
the weights of the network’s linear classifier become
aligned with the class means, meaning that the deci-
sion boundaries become geometrically similar, with each
class mean centered at its corresponding decision region.

¢ NC4 (Classifier Reduction to Nearest Class Mean):
the network’s prediction reduces to the nearest class
mean (NCM) rule, where a test sample is assigned the
label of the class whose mean is the closest, typically
measured using Euclidean distance.

In practice, NC1 and NC2 are sufficient to infer all the
properties: when all features within a class are identical and
the class means form a simplex ETF, then the optimal classi-
fier must align its weights with those class means. This struc-
ture has been shown to improve the performance of OOD de-
tection (Haas, Yolland, and Rabus 2023; Ammar et al. 2023).

NC4 provides an alternative to training a linear classifier,
which is prone to CF, by enabling the use of the NCM strat-
egy for both classification and OOD detection. While NCM



has been adopted in CL, prior work has overlooked the un-
derlying NC insights and applied it without realizing NC
properties (Zhou et al. 2024b). The NC phenomenon typ-
ically arises only in the terminal phase of training, i.e., the
network has been extensively optimized and the training loss
approaches zero (Papyan, Han, and Donoho 2020). How-
ever, achieving NC in CL is difficult because incremental
training causes CF, leading to degradation of earlier class
representations. Prior work has shown that the NC geometry
fails to emerge under such conditions (Yang et al. 2023).

To address this challenge, we introduce Analytic Neu-
ral Collapse (AnaNC), a novel method that constructs the
NC geometry in closed-form within the feature space of a
frozen PTM. AnaNC applies an analytic projection that re-
alizes NC1 and NC2, producing a geometry similar to what
emerges in fully trained networks but without any optimiza-
tion, thereby avoiding CF. This NC geometry then supports
distance-based continual learning and OOD detection using
class means in accordance with NC4.

Related Work

OOD detection has been extensively studied in the litera-
ture, often under related terms such as outlier detection or
anomaly detection (Malinin and Gales 2019; Ghassemi and
Fazl-Ersi 2022). Existing methods can be divided into sev-
eral groups: The first group leverages the classifier’s output
to derive OOD scores. A widely used baseline in this cate-
gory is the Maximum Softmax Probability (Hendrycks and
Gimpel 2017), which uses the highest predicted class proba-
bility as a confidence measure. Subsequent works have pro-
posed alternatives such as MaxLogit, KL divergence match-
ing (Hendrycks et al. 2022), or energy-based scores (Liu
et al. 2020; Wang et al. 2021) to better capture uncertainty
at the classifier’s output.

Various approaches focus on enhancing OOD detection
by manipulating the features, using techniques such as clip-
ping (Sun, Guo, and Li 2021), sparsification (Sun and Li
2022), or input perturbations (Liang, Li, and Srikant 2018)
to better separate in- and out-of-distribution samples.

Another category of methods exploits the geometry of
feature space by projecting samples onto the principal or
null space of ID classes and measuring deviations from these
low-dimensional manifolds (Cook, Zare, and Gader 2020;
Wang et al. 2022b; Ammar et al. 2023).

The final category relies on distance metrics, such as Ma-
halanobis distance (Lee et al. 2018; Ren et al. 2021) or
nearest-neighbor (Sun et al. 2022), to compute a sample’s
distance to known classes or training points. Our method
falls within this category but targets continual OOD detec-
tion (Aljundi et al. 2022), where classes arrive incrementally.

Continual OOD detection has also been studied, though
most OOD methods are not directly applicable here be-
cause they assume access to all data at once. Some studies
have adapted CL techniques for this setting. For example,
Aguilar et al. (2023) combined knowledge distillation with
uncertainty estimation to mitigate CF, while Gummadi et al.
(2022) leveraged high-level features for OOD detection and
low-level features with regularization to accommodate new

classes. An early work by Bendale and Boult (2015) intro-
duced the nearest non-outlier, which utilizes NCM with a
linear transformation, but it does not realize any NC prop-
erties. Kaymak et al. (2025) proposed a continual OOD de-
tection system that leverages Mahalanobis distance. Miao
et al. (2025) conducted a comprehensive benchmark study,
while He and Zhu (2022) investigated OOD detection in the
context of unsupervised CL. Kim et al. (2025) presented a
theoretical analysis of OOD detection in CL.

Continual OOD detection in task-incremental learning
(TIL) is also studied (Kim et al. 2022; Rios et al. 2022; Liu,
Zhao, and Guo 2025), where a separate model is trained for
each task. This contrasts with our focus in this paper on CIL
setting, where a single model must handle all tasks.

Continual Learning mainly focused on addressing the
CF issue (Wang et al. 2024). Many methods utilize regular-
ization to penalize changes to parameters deemed important
for prior tasks, thereby helping to preserve earlier knowl-
edge (Kirkpatrick et al. 2017; Rebuffi et al. 2017). Knowl-
edge distillation is another strategy, where the output of the
previous model is used to guide the learning of the current
model (Li and Hoiem 2017; Buzzega et al. 2020). Another
widely used method is experience replay, where a subset of
samples from previous tasks is stored in a memory buffer
and used during training to help retain performance on ear-
lier tasks (Aljundi et al. 2019; Chaudhry et al. 2019; Wang
et al. 2022a). Parameter isolation offers a different solution
by separating knowledge of different tasks using techniques
such as masking (Serra et al. 2018; Wortsman et al. 2020) or
orthogonal projection (Zeng et al. 2019).

The use of PTMs has become increasingly common in CL
and has resulted in significant accuracy gains (Zhou et al.
2024a). One line of work focuses on learning prompts to
guide predictions while keeping the PTM frozen to preserve
its acquired knowledge (Wang et al. 2022c; Smith et al.
2023; Wang et al. 2023; Roy et al. 2024). Other approaches
explore fine-tuning strategies, either by updating the full
model (Zhang et al. 2023) or by introducing lightweight
adapters (Liang and Li 2024; Sun et al. 2025). Prototype-
based methods are also popular in CL, representing each
class by a mean vector (Zhou et al. 2024b) or a Gaussian dis-
tribution (Hayes and Kanan 2020; Goswami et al. 2023; Mo-
meni, Mazumder, and Liu 2025). Several works cast CL as
a regression problem (Zhuang et al. 2022; McDonnell et al.
2023; Peng et al. 2025). We likewise employ ridge regres-
sion, but unlike these methods that predict one-hot labels,
our approach induces the NC geometry.

Problem Definition

Continual learning aims to incrementally acquire knowledge
from a sequence of tasks, typically involving previously un-
seen classes. Formally, at each task ¢, the model receives a
training dataset D, = {(z”,y{")}7¢,, where 2\ € X, is
an input sample, and y,fz) € ) is the corresponding label.
In class-incremental learning setting of CL, the class sets
YV, are disjoint across tasks, and the goal is to learn a single
model capable of making predictions without knowing the

task identity at test time.



In this work, we target the CIL setting and continual
OOD detection, as models in real-world applications must
inevitably handle samples outside the learned distribution.
We place particular emphasis on continual OOD detection
in our experiments, as it is less explored in the literature.

Preliminaries

Ridge Regression: Let X € RV*? denote a set of input
features extracted from a PTM. The objective is to map the
input features to a target matrix Y € RY*9, Here, we use
d to represent both the input and output dimensions for sim-
plicity, although they may differ in general. Ridge regression
finds the optimal linear mapping by minimizing the squared
error with Lo regularization:

min [[XW —Y|* + AW M

where A > 0 controls the degree of regularization, discour-
aging large weight magnitudes to improve generalization.
The solution to this problem is obtained analytically by set-
ting the gradient with respect to W to zero, leading to the
expression:

W=(X"X+)'XTY )

known as the ridge regression or regularized least squares. In
this expression, X T X is commonly referred to as the Gram
matrix, and we call X 7Y the cross matrix.

In CL, where tasks arrive sequentially and storing past
data is infeasible, it is possible to update the ridge regres-
sion solution incrementally (Liang et al. 2006; Zhuang et al.
2022; McDonnell et al. 2023). Given new task data (X, Y3),
the gram and cross matrices can be updated recursively:

Gi=G1+X'Xy, Hi=H1+X,Y, (3

where G and H; are the gram and cross matrices after task ¢,
respectively. This allows us to compute the updated solution:

W, = (Gy + M)~ H, “4)

This formulation allows for incremental updates without
revisiting old data, which is required by CL.

Extreme Learning Machines: To enhance feature expres-
siveness, the input dimension d can be randomly projected
into a higher-dimensional space of dimension D before
learning the linear regression:

where W, € R4*D is a fixed matrix with random values
and ¢(-) is a nonlinear activation, for which we use a GELU
function. This transformation helps capture nonlinear inter-
actions between input features, that may not be adequately
represented in the original space (Huang et al. 2011). With-
out loss of generality, other non-linear transformations such
as kernel functions may also be employed to achieve a simi-
lar effect (Momeni, Mazumder, and Liu 2025). The mapping
to output targets can be learned as before:

W=(Z"Z+X)"'Z'Y (6)

This setup follows the Extreme Learning Machine (ELM)
framework (Huang et al. 2011; Liang et al. 2006), where a
single-layer feedforward network is constructed using ran-
domly initialized hidden layer weights. The key idea behind
ELMs is to separate representation learning (driven by the
random projection and nonlinear activation) from the opti-
mization, allowing the output layer weights to be derived an-
alytically. Note that this solution can be updated incremen-
tally using the recursive updates introduced in Equations 3
and 4.

Methodology

The core idea behind our approach is to leverage class means
as prototypes for prediction, following the insights from
NC. In particular, NC4 suggests that the class means and
the classifier weights align, enabling a simple yet effective
NCM classification. However, directly applying this strategy
in CL, without realizing the geometric properties associated
with NC will lead to poor performance. This is because NC
only emerges in the terminal phase of training when the net-
work is trained on all classes with near-zero classification
loss, a condition that is not feasible in CL due to the incre-
mental arrival of tasks and the challenge of CF.

To overcome this, we introduce AnaNC, a novel
projection-based method designed to achieve the geometric
properties of NC without requiring training of the PTM. Our
approach is inspired by the principles of ELMs, which pro-
vide an efficient analytic solution.

The overall pipeline of our method is illustrated in Fig-
ure 1 (left). We begin by using a frozen PTM to extract fea-
tures from input samples, which forms the input layer of our
system. To improve expressiveness, these features are then
projected into a higher-dimensional space, referred to as the
random projection (RP) layer, where random weights and
nonlinear activations are applied. The transformed features
are then mapped to the output space denoted as the output
layer, which is designed to satisfy the geometric properties
of NC. The effect of this projection on the feature geome-
try is illustrated in Figure 1 (right), showing how it creates
the structured, symmetric arrangement of NC. In the follow-
ing sections, we detail the construction of this projection and
how the entire system operates incrementally for CL.

Achieving Class-variation Collapse (NC1)

We can leverage the ELM framework to map input features
X € RV*? to a target matrix Y € RV *9 that defines the
desired structure of the output feature space. The ELM solu-
tion can be written in a compact form as:

W=(Z"Z+X)'H (7)

where Z € RV *P represents the random features produced
by the RP layer, and H = Z Y is the cross matrix between
the random features and the target outputs.

To collapse within-class variability and achieve NC1, all
samples belonging to a class ¢ should be mapped to the same
point in the output space, denoted as ji. € R?. This target
point doesn’t need to match the original class mean from the
PTM features, but instead will become the new class mean.
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Figure 1: (Left) Overview of the proposed AnaNC architecture. The random projection layer applies fixed, randomly initialized
weights to enhance feature expressiveness, while the output layer realizes NC properties via an analytic solution. (Right) t-SNE
visualization of input features (five classes of CUB dataset) and their arrangements after AnaNC using DINO as the PTM.

Let M = [i1, fiz, - .., fic ] be the matrix of target means
for all C classes learned so far, the cross matrix can be ex-
panded as:

H=27"Y =Y (Z z> il =Y renci, = RNM

c i€c
®)
where r. € RP is the mean of the random features for class
¢, R € RP*C is the matrix containing all the random fea-
ture means, and N = diag(nq,...,n¢) is a diagonal matrix
containing the class sample counts.

This formulation enables incremental updates by main-
taining the matrix R of the random feature means, class sam-
ple counts N, and providing the target means M, which we
will explain in the following section. The learned projec-
tion W thus maps all the feature representations of a class
to their corresponding target mean fi., collapsing the inter-
class variation in the output space and satisfying NC1.

Achieving Simplex ETF (NC2)

To achieve NC2, we aim to arrange the class means into an
ETF, a symmetric configuration that ensures equal pairwise
inner products between all class means (Papyan, Han, and
Donoho 2020). Formally, the centered and normalized target
means should satisfy:

o 1 ifi—j
This results in a product matrix S € R€*“ defined as:
1
S=I-—-011" ~1 10
ST (10

Geometrically, this corresponds to a regular simplex in-
scribed on the unit hypersphere in R®~!, where the means
are uniformly distributed. Importantly, directly assigning the
original class means to arbitrary ETF vertices can make the

mapping difficult to learn, as it may introduce large trans-
formation in class positions and require a complete reor-
ganization of the feature space. Motivated by this, we aim
to find target means M that satisfies the ETF constraint
MMT = S, while remaining as close as possible (in Frobe-
nius norm) to the original class means M. Formally, we
solve the following constrained optimization problem:
“min ||M — M||% subjectto MM'T =S (11)

MEeRC XD

Note that .S is symmetric and positive semidefinite (PSD),
so it has an eigen-decomposition: S = UsAUJ where Ug €
RE*C is orthonormal and A € RE*€ is diagonal with non-
negative eigenvalues. Let us define:

M = UsAY?Q" (12)
where Q € RP*¢ is a semi-orthogonal matrix with QT Q =
1. This construction ensures that any matrix of this form sat-
isfies the ETF constraint:

MM" =UsA'?QTQAV?Ug = 5 (13)

We now must choose () such that the resulting M is as
close as possible to M, i.e., we minimize:

in ||UsAY2QT — M|]? 14
Jmin [UsA™7Q I (14)

This is a well-established optimization known as the orthog-
onal Procrustes problem (Gower and Dijksterhuis 2004),
and it admits a closed-form solution using the following
lemma:

Lemma 1 (Orthogonal Procrustes Problem). Let A €
RE*C and B € RE*P with C < D. The solution to the
optimization problem:
. T 2 . T _
QerﬁanXc ||AQ — BHF subjectto Q' Q=1
is given by
Q* _ UVT
where BT A = UXV T is the singular value decomposition
(SVD) of BT A.



In our case, denote A = UsA'/? and B = M. Applying
the lemma, we compute the SVD of M TUgA'/2 = UV T
and set Q* = UV . The closest matrix to M satisfying
MMT = S is then given by:

M =AQ*T = UsAV2vUT (15)

This yields target means that follow the ETF structure,
thereby achieving the NC2 condition. When a new task ar-
rives, M is recomputed to incorporate the new target means.
The updated M is used to form the cross matrix in Equa-
tion 8, and obtain the output layer weights I via Equation
7. Passing the PTM features through the ELM with these
weights aligns the feature representations with the NC ge-
ometry. Therefore, classification and OOD detection can
be performed by computing distances to the target means,
following the NCM rule implied by NC4. We use cosine
similarity as the distance metric, which is equivalent to Eu-
clidean distance on normalized features.

Empirical Evaluation

Datasets: We evaluate our method on four publicly avail-
able image classification datasets commonly used in CL:
CIFAR-100 (100 classes) (Krizhevsky, Hinton et al. 2009),
ImageNet-R (200 classes) (Hendrycks et al. 2021), CUB
(200 classes) (Wah et al. 2011), and Stanford Cars (196
classes) (Yang et al. 2015). For each dataset, we randomly
shuffle the classes and partition them into 10 disjoint tasks.
To account for variation in class-to-task assignment, we re-
peat all experiments using three different random seeds.

As mentioned earlier, our main focus is on continual OOD
detection. Nonetheless, we also show strong performance on
CIL. For OOD detection, we consider two settings:

* In-dataset OOD: At each task, test samples from future
(unseen) tasks are treated as OOD. This is a challenging
setting, as OOD samples come from the same dataset. We
consider this our primary setting as it is more likely to
be the case in practice.

¢ Cross-dataset OOD: The OOD data is sourced from an-
other dataset. This is our secondary setting to evaluate
the robustness of the proposed method. We use CIFAR-
100 as the ID dataset and, following (Yang et al. 2022),
include both near OOD datasets (CIFAR-10 (Krizhevsky,
Hinton et al. 2009), Tiny ImageNet (Le and Yang 2015))
and far OOD datasets (Places365 (Zhou et al. 2017),
FashionMNIST (Xiao, Rasul, and Vollgraf 2017)) to as-
sess robustness under varying distribution shifts.

In all experiments, the model operates under the CIL set-
ting without access to task identity or any replay data.

Baselines: We compare against OOD detection approaches
that can be adapted for a continual setting and state-of-
the-art CIL methods. Specifically, we include NCM, Maha-
lanobis Distance (MD) (Lee et al. 2018), NECO (Ammar
et al. 2023), Residuals !, KLDA (Momeni, Mazumder, and

'Residuals is proposed in ViM (Wang et al. 2022b), where it
is integrated with logits for OOD detection. While residuals can be
adapted for CL, combining it with logits is infeasible in this setting.

Liu 2025), FECAM (Goswami et al. 2023), CODA-Prompt
(Smith et al. 2023), SLCA (Zhang et al. 2023), and RanPac
(McDonnell et al. 2023). For CIL baselines that do not pro-
vide a dedicated OOD detection mechanism, we use their
maximum logit as the OOD indicator.

For all methods that utilize the PTM only as a feature
extractor, we adopt First-section Adaptation (FSA) follow-
ing (Zhou et al. 2024b), by adding adapters to the backbone
and fine-tuning on the first task to improve initial represen-
tation quality. This strategy is applied to all baselines except
CODA-Prompt, SLCA, and RanPac, as CODA-Prompt em-
ploys prompt learning, SLCA incrementally fine-tunes the
PTM, and RanPac incorporates its own FSA mechanism.

Implementation Details: For our main experiments, we use
two self-supervised PTMs, DINO (Caron et al. 2021) and
MOCO (Chen, Xie, and He 2021), trained on ImageNet-
1K (Deng et al. 2009). We opted for self-supervised PTMs
to avoid information leakage, as supervised models are ex-
posed to class labels during pre-training, some of which may
reappear during CL, giving the model prior knowledge. For
ablation studies, we use the stronger DINO backbone.

We set the RP dimension to 5000 by default; we also in-
clude an ablation study to assess the impact of different RP
dimensions on performance. The regularization parameter
A in the ELM is empirically set to 102 by searching over
the range [10~2, 10°] with a multiplicative factor of 10. This
value works well for all datasets and PTMs. All experiments
are run on an NVIDIA A100 GPU with 80GB of VRAM.

Evaluation Metrics: Identifying OOD samples requires set-
ting a threshold on the OOD score. However, selecting an
appropriate threshold is not the focus of this work, as it de-
pends on the application. Therefore, we report two standard
threshold-independent metrics: Area Under the ROC Curve
(AUC), which quantifies the overall separability between ID
and OOD samples across all thresholds, and FPR95, which
measures the proportion of ID samples mistakenly classi-
fied as OOD when the model correctly identifies 95% of
OOD samples. For both metrics, we compute values after
each task is learned and report their average over all tasks.

For CIL classification performance, we use two standard
metrics: Last Accuracy (A;qs¢), which is the final classifica-
tion accuracy after all tasks have been learned, and Average
Incremental Accuracy (Aq.q), Which averages the classifi-
cation accuracy measured after each task.

Continual OOD Detection Results

In-dataset OOD Setting. The results of our primary con-
tinual OOD detection setting are given in Table 1, where
samples from future unseen tasks are considered OOD.
AnaNC outperforms all baselines with both PTMs overall.
Using DINO, we observe an average improvement of 2.22%
in AUC and 3.24% in FPROS over the best baseline. With
MOCO, the gains are 1.51% in AUC and 4.38% in FPR9S5.

Effect of RP Dimension: We use a default RP dimension
of D = 5000 in our main experiments. To analyze its im-
pact, we evaluate the effect of varying D on the in-dataset
OOD detection setting as shown in Figure 2. Increasing D



Method CIFAR100 ImageNet-R CUB Cars Average
AUC 1 FPR9S5 | AUC 1 FPROS | AUC T FPROS5 | AUC 1 FPROS | AUC 1 | FPR95 |
NCM 84.63 198 | 60.36 £333 || 74.14 059 | 83.75 £ 083 || 71.18 £ 1.22 | 84.78 £ 146 || 58.68 £ 032 | 92.80 £ 061 72.16 80.42
E. MD 82.50 - 1.80 | 63.91 +398 || 71.69 £ 079 | 83.18 £ 1.15 || 64.28 £ 1.17 | 89.83 + 065 || 60.48 + 038 | 92.69 + 0.20 69.74 82.40
5 | KLDA 85.25 & 156 | 56.40 £377 || 75.08 £ 1.15 | 79.08 £ 034 || 71.33 £+ 143 | 83.55 £ 144 || 60.34 £ 097 | 92.01 062 || 73.00 77.76
% FECAM 84.33 & 128 | 62.79 265 || 73.34 026 | 83.67 : 088 || 73.26 = 1.84 | 81.44 L+ 216 || 67.79 £ 074 | 89.89 £ 0.72 74.68 79.44
2 | Residuals 75.21 £ 158 | 74.47 300 || 65.75 £ 1.00 | 88.66 + 082 || 59.62 £ 079 | 90.92 +0.26 || 58.13 £ 0.3 | 93.33 £ 0.11 | 64.68 86.84
£ NECO 74.87 £ 107 | 75.04 £ 233 || 65.53 £ 077 | 89.21 £ 097 || 59.86 + 121 | 90.98 £ 052 || 58.05 020 | 92.98 £ 0.17 || 64.58 87.05
% CODA-P 66.46 + 048 | 74.56 £ 1.16 || 60.54 £ 127 | 90.66 £ 156 || 61.40 + 356 | 85.04 £358 || 52.91 & 1.19 | 92.91 £ 033 || 60.33 85.79
a SLCA 8510122 | 64.29 £ 173 || 71.73 195 | 88.11 £ 1.13 || 73.57 £ 284 | 76.89 £ 191 || 74.30 £ 0.12 | 79.00 + 061 76.17 77.07
RanPac 86.63 023 | 55.12 + 127 || 77.84 + 032 | 82.58 £ 085 || 80.64 + 049 | 73.94 + 152 || 76.63 + 060 | 79.88 + 1.49 80.44 72.88
AnaNC (ours) | 86.94 + 107 | 55.17 270 || 78.87 £ 040 | 80.80 +0.73 || 83.07 £ 053 | 66.45 + 193 || 81.76 £ 080 | 76.13 + 1.01 82.66 69.64
v NCM 76.22 £ 252 | 68.21 £ 274 || 73.81 £ 013 | 80.44 £ 043 || 72.22 + 241 | 7889 £ 272 || 57.01 & 1.56 | 92.23 £ 028 || 69.81 79.94
— | MD 79.16 + 194 | 60.69 + 101 || 73.33 £ 056 | 76.97 + 081 || 66.23 + 154 | 87.42 + 076 || 58.05 £ 147 | 92.62 £ 0.76 69.19 79.42
E KLDA 78.90 £ 249 | 61.26 =121 || 73.78 £ 0.12 | 76.02 + 090 || 68.94 £ 2.12 | 83.69 £ 1.51 || 58.78 £ 149 | 91.65 £ 068 || 70.10 78.15
2 FECAM 79.55 +242 | 6226 £ 111 || 74.79 £ o062 | 78.41 £ 095 || 73.66 + 231 | 76.46 + 3.10 || 64.02 £ 201 | 88.34 + 083 73.00 76.36
g Residuals 77.80 £228 | 64.16 £ 148 || 70.69 084 | 80.12 066 || 61.91 £ 170 | 89.37 £ 1.15 || 56.75 & 1.76 | 92.77 + 0.8 66.79 81.61
= | NECO 76.41 + 189 | 66.11 £ 071 || 71.46 £ 0.10 | 79.58 084 || 61.96 + 149 | 89.16 + 067 || 56.73 £ 1.55 | 92.84 + 031 66.64 81.92
8 CODA-P 54.57 £ 023 | 86.77 £ 0.10 || 54.54 £ 038 | 92.90 £ 068 || 55.04 176 | 91.53 £ 059 || 48.31 056 | 94.78 £ 005 || 53.12 91.50
S | SLCA 79.63 £ 058 | 75.51 £ 083 || 65.71 £ 020 | 91.17 £ 1.15 || 68.26 + 283 | 8528 £ 1.64 || 64.38 050 | 87.62 £ 1.14 || 69.49 84.90
= RanPac 83.84 + 149 | 64.36 =3.03 || 76.21 +0.02 | 83.91 £ 027 || 79.31 + 084 | 76.88 &= 1.71 || 78.70 + 074 | 79.52 + 136 79.52 76.17
AnaNC (ours) | 84.21 + 160 | 59.47 + 210 || 77.96 +-043 | 81.16 - 052 || 81.87 + 084 | 67.83 = 1.88 || 80.07 +- 169 | 78.71 203 | 81.03 71.79

Table 1: OOD detection performance under the in-dataset setting. Results are averaged over three random class-task splits, with

standard deviation reported.
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Figure 2: OOD detection performance (AUC) with DINO
backbone under the in-dataset setting for varying number of
RP dimensions.

improves OOD detection performance across all datasets by
enhancing the expressiveness of the RP layer and enabling
richer feature representations.

While higher dimensions increase the size of the RP ma-
trix Wgp € R4P | the output layer weights W € RP*4,
and the D x D gram matrix, we note that these parameters
are non-trainable. As such, the additional computational cost
is minimal, effectively resembling the addition of a feedfor-
ward layer at the end of the PTM.

Analysis of Analytic Neural Collapse: To understand how
our method creates the NC properties, we evaluate OOD
detection performance of NCM with four sets of features:
(1) the original PTM feature, (2) the features of RP layer,
(3) output layer features when NCI is applied by mapping
each sample to its class mean, and (4) output layer feature
when both NC1 and NC2 are applied by arranging the class
means on an ETF simplex and mapping samples to these
target means before.

Features CIFAR100 ImageNet-R CUB Cars
AUC | FPR9S AUC | FPR95 AUC | FPR95 AUC | FPR9S
Input 84.63 | 60.36 || 74.14 | 83.75 || 71.18 | 84.78 || 58.68 | 92.80
RP 85.09 | 59.18 || 74.51 | 82.40 | 70.61 | 84.71 || 59.14 | 92.58
NC1 86.30 | 58.88 || 76.34 | 81.84 | 78.56 | 72.39 || 69.52 | 87.61
NC1&2 | 86.94 | 55.17 || 78.87 | 80.80 | 83.07 | 66.45 | 81.76 | 76.13

Table 2: Ablation study of AnaNC using a DINO backbone
under the in-dataset OOD setting. We report NCM perfor-
mance using: the original PTM features at the input layer,
RP features with dimension 5000, output layer features after

creating only NC1, and output layer features after creating
both NC1 and NC2 (proposed method).

The results in Table 2 indicate that applying RP alone
is insufficient for improving NCM performance, as its pri-
mary role is to expand the feature space for ELM. Enforcing
NCI1 significantly enhances OOD detection performance,
and incorporating NC2 leads to additional improvement.
This highlights the effectiveness of our method in achieving
both NC properties and inducing the desired geometry.

Cross-dataset Setting. The continual OOD detection re-
sults for this setting are given in Table 3, where we use
CIFAR-100 as the ID dataset and assess the model’s abil-
ity to detect OOD samples from four other datasets.

AnaNC again achieves the best overall performance, im-
proving DINO results by 0.49% in AUC and 0.88% in
FPR95, and MOCO results by 0.86% in AUC and 1.94%
in FPR95 on average compared to the strongest baselines.
Here, the improvements are smaller since these OOD classes
are more distant and thus less challenging to detect.

Memory and Running Time Efficiency. The proposed
AnaNC introduces minimal memory overhead. Specifically,
it adds a feedforward layer with input dimension d and in-
termediate dimension D to the PTM. Additionally, AnaNC
maintains a D x D gram matrix, class means p. € R4,
and random feature means r. € R, For a typical setting
of d = 768, D = 5000, and C' = 100, the total parame-



Method CIFAR10 T-ImageNet Places365 FashionMNIST Average
AUC 1 FPR9S5 | AUC 1 FPROS | AUC T FPROS5 | AUC 1 FPROS | AUC 1 | FPR95 |
NCM 85.39 £ 3.10 | 52.09 £ 446 || 89.06 £ 0.15 | 46.55 £ 084 || 87.35 £ 1.04 | 50.94 £ 202 || 96.29 £ 1.14 | 20.02 =770 || 89.52 42.40
E. MD 80.83 - 284 | 65.57 593 || 85.89 £ 096 | 57.16 £ 343 || 89.59 213 | 49.26 +- 657 || 9549 + 153 | 28.87 £ 112 87.95 50.21
5 | KLDA 86.12 282 | 49.46 £ 558 || 88.14 £ 095 | 50.34 £ 299 || 87.53 218 | 48.49 + 433 || 96.51 £ 058 | 19.75 304 | 89.57 42.01
% FECAM 83.52 290 | 61.01 =460 || 89.32 & 032 | 47.81 147 || 88.11 =126 | 49.70 412 || 97.15 £ 0.18 | 16.54 + 151 89.52 43.76
2 | Residuals 70.84 £ 345 | 80.33 £ 436 || 79.78 L 0.14 | 70.39 058 || 86.84 £ 204 | 58.37 £ 536 || 90.59 £ 1.82 | 54.65 855 82.01 65.94
£ NECO 70.36 + 344 | 81.50 428 || 78.61 £ 060 | 73.62 +232 || 87.05 + 146 | 59.15 + 411 || 88.50 £ 1.99 | 62.96 760 || 81.13 69.31
% CODA-P 86.01 +209 | 55.96 £ 672 || 88.18 & 027 | 48.40 £+ 136 || 87.57 026 | 51.92 £ 349 || 96.11 £ 0.11 | 20.34 + 094 | 89.47 44.16
a SLCA 86.79 094 | 55.26 £ 157 || 88.48 £ 0.12 | 48.63 £ 156 || 88.07 £ 0.17 | 56.33 £ 073 || 96.00 £ 030 | 25.25 080 || 89.84 46.37
RanPac 87.83 219 | 48.55 +5.19 || 88.98 + 005 | 45.85 + 155 || 87.57 £ 076 | 52.00 £ 054 || 96.33 + 021 | 20.08 +£ 1.19 90.18 41.62
AnaNC (ours) | 88.18 + 208 | 48.31 +- 442 || 89.54 +-0.11 | 44.53 + 1.18 || 88.21 + 059 | 50.82 £ 053 || 96.77 +023 | 19.31 +204 || 90.67 40.74
v NCM 76.15 £ 286 | 62.00 £ 7.62 || 79.58 £ 137 | 63.59 £ 420 || 74.74 £ 262 | 7435 £373 || 91.37 £330 | 41.69 £ 165 || 80.46 60.41
— | MD 7751 +363 | 58.44 £ 456 || 81.26 £ 1.02 | 58.80 = 1.86 || 78.97 + 146 | 65.38 £330 || 91.49 £ 331 | 36.95 £ 107 82.31 54.89
% KLDA 77.46 £ 3.08 | 57.56 + 346 || 81.57 £ 200 | 58.08 +394 || 77.75 £ 169 | 67.70 & 268 || 92.87 £3.92 | 31.98 & 14.1 82.41 53.83
g, | FECAM 78.14 + 438 | 59.20 £ 472 || 84.59 £ 054 | 53.98 + 136 || 80.12 + 150 | 65.35 +2.19 || 95.48 £ 225 | 24.45 + 770 84.58 50.74
g Residuals 73.21 £ 469 | 66.04 392 || 79.35 £ 122 | 62.69 155 || 78.74 £ 207 | 66.44 £ 1.67 || 91.24 £ 451 | 38.06 & 133 || 80.64 58.31
= | NECO 73.75 + 389 | 6548 £356 || 79.65 £ 087 | 62.73 125 || 79.87 + 131 | 64.99 + 182 || 90.32 £ 419 | 42.42 + 108 80.90 58.91
8 CODA-P 59.19 £ 0388 | 85.60 £ 0.55 || 64.71 £ 004 | 82.11 £ 0.09 || 64.69 + 007 | 82.36 £ 1.79 || 75.96 065 | 71.73 £ 086 || 66.14 80.45
S | SLCA 78.34 £ 021 | 75.12 £ 032 || 77.95 £ 011 | 73.65 £ 126 || 74.79 £ 150 | 76.83 £ 238 || 86.76 =095 | 55.48 £338 || 79.46 70.27
= RanPac 85.17 105 | 62.52 + 146 || 86.15 + 003 | 56.47 £ 025 || 84.10 0.1 | 64.65 + 065 || 94.30 £ 043 | 35.62 £ 339 87.43 54.82
AnaNC (ours) | 85.54 + 249 | 52.86 + 190 || 87.12 £ 0.3 | 51.71 + 096 || 85.67 £ 053 | 59.32 4+ 136 || 94.81 £ 084 | 31.31 +5.16 || 88.29 48.80

Table 3: OOD detection performance under the cross-dataset setting using CIFAR-100 as the ID dataset. CIFAR-10 and Tiny-
ImageNet are used as near-OOD datasets, and Places365 and FashionMNIST as far-OOD datasets. Results are averaged over
three random class-task splits, with standard deviation reported.

Method CIFAR100 ImageNet-R CUB Cars Average
Auvg T Alust T Aavg T Alast T Au’vg T Alust T Aavg T Alast T Aavg T Alust T
NCM 86.55 £ 003 | 79.07 £ 087 || 70.96 £ 0.12 | 63.43 £ 057 || 77.34 £ 160 | 69.51 £ 032 || 53.44 £ 182 | 41.43 £ 1.70 72.07 63.36
MD 89.60 £ 0.03 | 83.10 £ 034 || 75.30 024 | 68.20 £ 0.14 || 83.72 £ 042 | 79.84 £ 0.14 || 81.39 £ 0.61 | 78.15 £ 0.20 82.50 77.32
KLDA 90.76 +0.14 | 84.75 + 029 || 72.58 £ 0.13 | 67.09 £ 039 || 84.60 056 | 78.11 £ 055 || 80.66 + 047 | 72.16 - 0.14 82.15 75.52
FECAM 90.28 +0.09 | 84.65 +035 || 65.28 058 | 58.06 +- 048 || 81.62 + 073 | 74.55 067 || 72.63 = 1.00 | 63.49 £ 0.67 77.45 70.19
CODA-P 84.57 £ 124 | 76.85 £ 022 || 72.57 137 | 65.71 012 || 65.83 £ 140 | 54.01 £ 1.14 || 44.44 + 186 | 32.90 + 166 66.85 57.37
SLCA 88.10 £ 0.19 | 82.08 £ 024 || 72.54 £ 1.72 | 65.90 £ 1.33 || 85.60 £ 025 | 79.73 £ 029 || 79.13 £ 1.19 | 72.80 £ 0.87 81.34 75.13
RanPac 91.48 + 021 | 86.38 +0.19 || 75.63 001 | 71.97 + 063 || 80.47 + 090 | 70.83 + 063 || 70.70 + 062 | 63.78 £ 0.22 79.57 73.24
AnaNC (ours) | 91.67 +o0.11 | 86.41 +026 || 77.82 +0.16 | 72.44 + 039 || 86.87 056 | 81.49 +0.13 || 83.43 £ 038 | 76.53 +0.15 84.95 79.22

Table 4: CIL performance with the DINO backbone across different datasets. Results are averaged over three random class-task
splits, with standard deviation reported. Note that Residuals and NECO are not included as they are designed only for OOD

detection and cannot perform CIL.

ter count is approximately 33.25M, which remains modest
compared to the size of the PTM.

AnaNC is highly efficient as well. For example, on
CIFAR-100 with our setup, FSA requires about 6 minutes,
feature extraction for all training samples takes around 3
minutes, while all AnaNC operations during training take
less than 3 seconds, making PTM the dominant computa-
tional bottleneck.

Class-incremental Learning Results

Although our main experiments focused on continual OOD
detection, CIL is also of significant importance. The same
NCM strategy, after creating the NC properties, can be ap-
plied to CIL. The results are reported in Table 4 using the
DINO backbone. Again, AnaNC markedly outperforms the
baselines, achieving an average improvement of 2.45% in
Aqvg and 1.90% in Ajqs. These results demonstrate that
AnaNC can effectively address the dual challenges of CIL
and continual OOD detection.

Conclusion

This paper focused on continual OOD detection and learn-
ing. While prototype-based methods offer a promising ap-

proach, this paper proposed a stronger approach by leverag-
ing the theoretical properties of NC. In CL, catastrophic for-
getting makes it difficult to realize these properties through
training. To overcome this challenge, we introduced a novel
method that analytically imposes NC properties in the fea-
ture space of a frozen PTM, eliminating the need for fur-
ther training and avoiding the catastrophic forgetting it
would cause. Extensive experiments demonstrate that lever-
aging the resulting feature geometry with NCM enables our
method to outperform state-of-the-art baselines in both con-
tinual OOD detection and CIL.

Limitations: While our work focuses on CIL, it can also be
applied to TIL, where the task identity is available. How-
ever, we do not address domain-incremental learning (DIL),
where the classes remain fixed but data distribution shifts
over time. We believe our framework can be extended to DIL
with minor adaptations, which we leave for future work.

Acknowledgments
The work of Saleh Momeni and Bing Liu was supported in
part by two NSF grants (IIS-2229876 and CNS-2225427),
and an NVIDIA’s Academia Grant, which provided cloud
compute via its Saturn Cloud.



References

Aguilar, E.; Raducanu, B.; Radeva, P.; and Van de Wei-
jer, J. 2023. Continual evidential deep learning for out-of-
distribution detection. In CVPR.

Aljundi, R.; Caccia, L.; Belilovsky, E.; Caccia, M.; Lin,
M.; Charlin, L.; and Tuytelaars, T. 2019. Online continual
learning with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742.

Aljundi, R.; Reino, D. O.; Chumerin, N.; and Turner, R. E.
2022. Continual novelty detection. In Conference on Life-
long Learning Agents, 1004—-1025. PMLR.

Ammar, M. B.; Belkhir, N.; Popescu, S.; Manzanera, A.; and
Franchi, G. 2023. NECO: NEural Collapse Based Out-of-
distribution detection. CoRR.

Bendale, A.; and Boult, T. 2015. Towards open world recog-
nition. In CVPR, 1893-1902.

Buzzega, P.; Boschini, M.; Porrello, A.; Abati, D.; and
Calderara, S. 2020. Dark experience for general continual
learning: a strong, simple baseline. NeurlPS.

Caron, M.; Touvron, H.; Misra, L.; Jégou, H.; Mairal, J.; Bo-
janowski, P; and Joulin, A. 2021. Emerging properties in
self-supervised vision transformers. In CVPR.

Chaudhry, A.; Rohrbach, M.; Elhoseiny, M.; Ajan-
than, T.; Dokania, P.; Torr, P.; and Ranzato, M. 2019.
On Tiny Episodic Memories in Continual Learning.
arXiv:1902.10486.

Chen, X.; Xie, S.; and He, K. 2021. An Empirical Study of
Training Self-Supervised Vision Transformers. In ICCV.
Cook, M.; Zare, A.; and Gader, P. 2020. Outlier detec-
tion through null space analysis of neural networks. arXiv
preprint arXiv:2007.01263.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR.

Fei, G.; and Liu, B. 2016. Breaking the closed world as-
sumption in text classification. In NAACL-HLT.

Ghassemi, N.; and Fazl-Ersi, E. 2022. A Comprehensive
Review of Trends, Applications and Challenges In Out-of-
Distribution Detection. arXiv preprint arXiv:2209.12935.

Goswami, D.; Liu, Y.; Twardowski, B.; and Van De Weijer,
J. 2023. Fecam: Exploiting the heterogeneity of class distri-
butions in exemplar-free continual learning. NeurIPS.

Gower, J. C.; and Dijksterhuis, G. B. 2004. Procrustes prob-
lems, volume 30. Oxford university press.

Gummadi, M.; Kent, D.; Mendez, J. A.; and Eaton, E. 2022.
Shels: Exclusive feature sets for novelty detection and con-
tinual learning without class boundaries. In CoLLasS.

Haas, J.; Yolland, W.; and Rabus, B. T. 2023. Linking Neu-
ral Collapse and L2 Normalization with Improved Out-of-
Distribution Detection in Deep Neural Networks. Transac-
tions on Machine Learning Research.

Hayes, T. L.; and Kanan, C. 2020. Lifelong machine learn-
ing with deep streaming linear discriminant analysis. In
CVPR workshops.

He, J.; and Zhu, F. 2022. Out-of-distribution detection in
unsupervised continual learning. In CVPR.

Hendrycks, D.; Basart, S.; Mazeika, M.; Zou, A.; Kwon, J.;
Mostajabi, M.; Steinhardt, J.; and Song, D. 2022. Scaling
Out-of-Distribution Detection for Real-World Settings. In
ICML.

Hendrycks, D.; Basart, S.; Mu, N.; Kadavath, S.; Wang, F.;
Dorundo, E.; Desai, R.; Zhu, T.; Parajuli, S.; Guo, M.; et al.
2021. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In ICCV.

Hendrycks, D.; and Gimpel, K. 2017. A Baseline for De-
tecting Misclassified and Out-of-Distribution Examples in
Neural Networks. In ICLR.

Huang, G.-B.; Zhou, H.; Ding, X.; and Zhang, R. 2011. Ex-
treme learning machine for regression and multiclass classi-
fication. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 42(2): 513-529.

Kaymak, D.; Kim, G.; Kaichi, T.; Konishi, T.; and Liu, B.
2025. Learning After Model Deployment. In ECAI

Ke, Z.; Liu, B.; Ma, N.; Xu, H.; and Shu, L. 2021. Achieving
Forgetting Prevention and Knowledge Transfer in Continual
Learning. NeurIPS.

Kim, G.; Xiao, C.; Konishi, T.; Ke, Z.; and Liu, B. 2022. A
theoretical study on solving continual learning. NeurIPS.
Kim, G.; Xiao, C.; Konishi, T.; Ke, Z.; and Liu, B. 2025.
Open-world continual learning: Unifying novelty detection
and continual learning. Artificial Intelligence, 338: 104237.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Des-
jardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.;
Grabska-Barwinska, A.; et al. 2017. Overcoming catas-
trophic forgetting in neural networks. PNAS, 114(13).
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.

Le, Y.; and Yang, X. 2015. Tiny imagenet visual recognition
challenge. CS 231N, 7(7): 3.

Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A simple uni-
fied framework for detecting out-of-distribution samples and
adversarial attacks. NeurIPS.

Li, Z.; and Hoiem, D. 2017. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12): 2935-2947.

Liang, N.-Y.; Huang, G.-B.; Saratchandran, P.; and Sun-
dararajan, N. 2006. A fast and accurate online sequential
learning algorithm for feedforward networks. IEEE Trans-
actions on neural networks, 17(6).

Liang, S.; Li, Y.; and Srikant, R. 2018. Enhancing The Relia-
bility of Out-of-distribution Image Detection in Neural Net-
works. In ICLR.

Liang, Y.-S.; and Li, W.-J. 2024. Inflora: Interference-free
low-rank adaptation for continual learning. In CVPR.

Liu, W.; Wang, X.; Owens, J.; and Li, Y. 2020. Energy-based
out-of-distribution detection. NeurIPS.

Liu, Y.; Zhao, W.; and Guo, Y. 2025. H2ST: Hierarchical
Two-Sample Tests for Continual Out-of-Distribution Detec-
tion. In CVPR.



Malinin, A.; and Gales, M. 2019. Reverse kl-divergence
training of prior networks: Improved uncertainty and adver-
sarial robustness. NeurIPS.

McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation, vol-
ume 24, 109-165. Elsevier.

McDonnell, M. D.; Gong, D.; Parvaneh, A.; Abbasnejad, E.;
and van den Hengel, A. 2023. Ranpac: Random projections
and pre-trained models for continual learning. NeurIPS.
Miao, W.; Pang, G.; Nguyen, T.-T.; Fang, R.; Zheng, J.; and
Bai, X. 2025. OpenCIL: Benchmarking Out-of-Distribution
Detection in Class Incremental Learning. Pattern Recogni-
tion, 112163.

Momeni, S.; Mazumder, S.; and Liu, B. 2025. Continual
learning using a kernel-based method over foundation mod-
els. In AAAIL

Papyan, V.; Han, X.; and Donoho, D. L. 2020. Prevalence of
neural collapse during the terminal phase of deep learning
training. PNAS, 117(40): 24652-24663.

Peng, L.; Elenter, J.; Agterberg, J.; Ribeiro, A.; and Vidal,
R. 2025. LoRanPAC: Low-rank Random Features and Pre-
trained Models for Bridging Theory and Practice in Contin-
ual Learning. In ICLR.

Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. icarl: Incremental classifier and representation learn-
ing. In CVPR.

Ren, J.; Fort, S.; Liu, J.; Roy, A. G.; Padhy, S.; and Laksh-
minarayanan, B. 2021. A simple fix to mahalanobis distance
for improving near-ood detection. arXiv:2106.09022.

Rios, A.; Ahuja, N.; Ndiour, I.; Genc, U.; Itti, L.; and Tickoo,
0. 2022. incDFM: Incremental Deep Feature Modeling for
Continual Novelty Detection. In ECCV 2022.

Roy, A.; Moulick, R.; Verma, V. K.; Ghosh, S.; and Das, A.
2024. Convolutional prompting meets language models for
continual learning. In CVPR.

Serra, J.; Suris, D.; Miron, M.; and Karatzoglou, A. 2018.

Overcoming catastrophic forgetting with hard attention to
the task. In ICML.

Smith, J. S.; Karlinsky, L.; Gutta, V.; Cascante-Bonilla, P.;
Kim, D.; Arbelle, A.; Panda, R.; Feris, R.; and Kira, Z.
2023. Coda-prompt: Continual decomposed attention-based
prompting for rehearsal-free continual learning. In CVPR.
Sun, H.-L.; Zhou, D.-W.; Zhao, H.; Gan, L.; Zhan, D.-C.;
and Ye, H.-J. 2025. Mos: Model surgery for pre-trained
model-based class-incremental learning. In AAAL

Sun, Y.; Guo, C.; and Li, Y. 2021. React: Out-of-distribution
detection with rectified activations. NeurIPS.

Sun, Y.; and Li, Y. 2022. Dice: Leveraging sparsification for
out-of-distribution detection. In ECCV.

Sun, Y.; Ming, Y.; Zhu, X.; and Li, Y. 2022. Out-of-
distribution detection with deep nearest neighbors. In ICML.

Van de Ven, G. M.; and Tolias, A. S. 2019. Three scenarios
for continual learning. arXiv preprint arXiv:1904.07734.

Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset.

Wang, F-Y.; Zhou, D.-W.; Ye, H.-J.; and Zhan, D.-C.
2022a. Foster: Feature boosting and compression for class-
incremental learning. In ECCV.

Wang, H.; Li, Z.; Feng, L.; and Zhang, W. 2022b. ViM:
Out-Of-Distribution with Virtual-logit Matching. In CVPR.
Wang, L.; Xie, J.; Zhang, X.; Huang, M.; Su, H.; and Zhu, J.
2023. Hierarchical decomposition of prompt-based contin-
ual learning: Rethinking obscured sub-optimality. NeurIPS.

Wang, L.; Zhang, X.; Su, H.; and Zhu, J. 2024. A compre-
hensive survey of continual learning: Theory, method and
application. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 46(8).

Wang, Y.; Li, B.; Che, T.; Zhou, K.; Liu, Z.; and Li, D.
2021. Energy-based open-world uncertainty modeling for
confidence calibration. In ICCV.

Wang, Z.; Zhang, Z.; Lee, C.-Y.; Zhang, H.; Sun, R.; Ren,
X.; Su, G.; Perot, V.; Dy, J.; and Pfister, T. 2022c. Learning
to prompt for continual learning. In CVPR.

Wortsman, M.; Ramanujan, V.; Liu, R.; Kembhavi, A.;
Rastegari, M.; Yosinski, J.; and Farhadi, A. 2020. Super-
masks in superposition. NeurIPS.

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

Yang, J.; Wang, P; Zou, D.; Zhou, Z.; Ding, K.; Peng,
W.; Wang, H.; Chen, G.; Li, B.; Sun, Y.; et al. 2022.
Openood: Benchmarking generalized out-of-distribution de-
tection. NeurlPS.

Yang, L.; Luo, P.; Change Loy, C.; and Tang, X. 2015. A
large-scale car dataset for fine-grained categorization and
verification. In CVPR.

Yang, Y.; Yuan, H.; Li, X.; Lin, Z.; Torr, P.; and Tao, D. 2023.
Neural Collapse Inspired Feature-Classifier Alignment for
Few-Shot Class-Incremental Learning. In /CLR.

Zeng, G.; Chen, Y.; Cui, B.; and Yu, S. 2019. Contin-
ual learning of context-dependent processing in neural net-
works. Nature Machine Intelligence, 1(8): 364-372.
Zhang, G.; Wang, L.; Kang, G.; Chen, L.; and Wei, Y. 2023.
Slca: Slow learner with classifier alignment for continual
learning on a pre-trained model. In ICCV.

Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; and Torralba,
A. 2017. Places: A 10 million image database for scene
recognition. IEEE TPAMI, 40(6): 1452—-1464.

Zhou, D.-W.; Sun, H.-L.; Ning, J.; Ye, H.-J.; and Zhan, D.-C.
2024a. Continual learning with pre-trained models: a survey.
In IJCAL

Zhou, D.-W.; Ye, H.-J.; Zhan, D.-C.; and Liu, Z. 2024b. Re-
visiting Class-Incremental Learning with Pre-Trained Mod-
els: Generalizability and Adaptivity are All You Need. In-
ternational Journal of Computer Vision.

Zhuang, H.; Weng, Z.; Wei, H.; Xie, R.; Toh, K.-A.; and Lin,
Z. 2022. ACIL: Analytic class-incremental learning with
absolute memorization and privacy protection. NeurIPS.



