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Abstract
1. Identifying genomic adaptation is key to understanding species' evolutionary responses to climate
change. However, current methods to identify adaptive variation have two major limitations. First,
when estimating genetic variation, most methods do not account for observational uncertainty in
genetic data because of finite sampling and missing genotypes. Second, current methods use
phenomenological models to partition genetic variation into adaptive and non-adaptive
components. These phenomenological models are not mechanistic models of evolution and,

therefore, do not faithfully capture the demographic history of the species.

2. We address these limitations by developing a hierarchical Bayesian model that explicitly accounts
for both the observational uncertainty and underlying evolutionary processes. The first layer of the
hierarchy is the data model that captures observational uncertainty by probabilistically linking
RAD-sequence data to genetic variation. The second layer is a process model that provides a
mechanistic explanation of how evolutionary forces, such as local adaptation, mutation, migration,
and drift, maintain genetic variation. The third layer is the parameter model, which incorporates
our knowledge about biological processes. For example, because most loci in the genome are
expected to be neutral, the environmental sensitivity coefficients are assigned a regularized prior
centered at zero. Together, the three models provide a rigorous probabilistic framework to identify

local adaptation in wild organisms.

3. Analysis of simulated RAD-seq data shows that our statistical model can reliably infer adaptive
genetic variation. To show the real-world applicability of our method, we re-analyzed RAD-seq
data from Willow Flycatchers (Empidonax traillii) in the USA. We found 30 genes close to loci
that showed a statistically significant association with temperature seasonality. Gene ontology
suggests that several of these genes play a crucial role in egg mineralization, feather development,

and the ability to withstand extreme temperatures.

4. Moreover, biogeographers can easily modify the data and process models to accommodate a wide
range of genetic datasets (e.g., pool and low coverage genome sequencing) and demographic
histories (e.g., range shifts), allowing them to construct statistical models specific to their study

system.
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Introduction

Many species face a looming threat of extinction as global temperature rises (Thomas et al. 2004;
Urban 2015). This risk is particularly concerning for species with limited dispersal capacity that are slow
to track their climatic niches (Carroll et al. 2015). Alternatively, some species may adapt to the local
climate, potentially alleviating the risk of extinction. Natural selection favors individuals with heritable
phenotypes best suited to survive and reproduce in local climates, creating a geographical mosaic in
frequencies of adaptive alleles congruent with climatic gradients (Hedrick, Ginevan & Ewing 1976;
Hedrick 1986; Hedrick 2006). Therefore, to understand the evolutionary responses of a species to changing
climate and incorporate this knowledge to inform evolutionary management policies (Smith et al. 2014),
we need robust methodologies to identify genes (and their function) that confer local adaptation in natural
populations.

With recent advances in high-throughput sequencing and global environmental sensing
technologies (Chuvieco 2020; Satam et al. 2023), new computational approaches have allowed researchers
to identify adaptive genetic variation in wild populations. These approaches, collectively called
environmental association analysis (Rellstab er al. 2015; Hoban et al. 2016), have gained widespread
popularity that can be partly attributed to declining sequencing costs, improvements in genomic tools,
detailed global climatic maps, and availability of computational resources. These advances have allowed
researchers to study climatic adaptation in non-model organisms at a fine genomic resolution and large
spatial extent for a reasonable cost (Frichot et al. 2013; De Villemereuil & Gaggiotti 2015; Fitzpatrick &
Keller 2015; Wagner, Chavez-Pesqueira & Forester 2017).

Broadly, environmental association analysis involves three steps. First, sequencing data from
spatially referenced individuals are used to estimate spatial variation in allele frequencies. Next, a statistical
model is used to partition this genetic variation into adaptive and non-adaptive components. The adaptive
variation corresponds to the response of an allele to changes in prevailing climatic conditions. The non-
adaptive variation describes the allelic variation (or null variation) that stems from evolutionary forces other
than local adaptation, which includes background selection, gene flow among populations, mutation, and
drift. Finally, a statistical criterion is used to select loci that exhibit strong adaptive genetic variation relative
to non-adaptive variation.

Despite the success of environmental association studies, current methods face several conceptual
and statistical challenges that limit the reliability of the inferences. Most environmental association methods
do not account for uncertainty in estimates of allele frequencies (see Coop et al. (2010) and Foll and
Gaggiotti (2008) for exceptions), which can introduce biases in downstream analyses. Due to practical
constraints, biogeographers collect and sequence only a finite number of individuals in a population. The

genotype of these individuals, inferred from RAD (restriction site-associated DNA) sequencing (Baird et
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al. 2008), for instance, contains imprecise information regarding the underlying allele frequencies that
result from sampling a small subset of individuals within a population. Additionally, because of low
coverage and alignment errors, the true genotypes of some individuals may be missing (Huang & Knowles
2016), which further reduces sample size and increases uncertainty. Failure to account for these sources of
uncertainties results in overly precise estimates of genetic variation that can increase the number of false
positives (inferring non-adaptive loci as important). Alternatively, researchers discarding data due to noisy
estimates of genetic variation may lose valuable (although imprecise) information, thereby increasing rates
of false negatives (inability to identify an adaptive locus).

Another major difficulty is that environmental association methods characterize genetic variation
using phenomenological models, such as generalized linear models (Rellstab et al. 2015). Although
reasonable, phenomenological models are not mechanistic models of evolution and, therefore, they are not
usually concerned with how the relationship between data and parameters (e.g., environment and allele
frequency) arises because of underlying evolutionary processes (Hilborn & Mangel 2013; Hobbs & Hooten
2015). For example, some phenomenological models assume an S-shape response curve to relate
environmental variables and allele frequency (Joost et al. 2007; Stucki et al. 2017). This response curve
has several attractive characteristics: it is bounded between zero and one, and has an incline in the middle
that emulates the response of an allele to local climatic adaptation. However, the S-shape response curve is
not unique in these characteristics. A biogeographer can construct alternate equally plausible response
curves (e.g., linear or probit functions). Similarly, phenomenological models make many other
assumptions, including constructing an appropriate null distribution, that are often difficult to rationalize.
This makes it hard to evaluate when a phenomenological model will fail and, when it inevitably does, how
the model can be improved.

In contrast, mechanistic models of evolution are based on the first principles of birth-death
processes, and, therefore, a biogeographer can evaluate model assumptions based on the constraints
imposed by the population demography and natural history of the species (Rice 2004). Replacing
phenomenological models with mechanistic models of evolution in statistical inferences offers a unique
advantage—they constrain the flow of information from data to model parameters using theoretical rather
than heuristic arguments. This may allow biogeographers to create bespoke statistical models tailored to
match the demographic history of the species (Wikle 2003; Hooten & Hefley 2019), providing robust and
reliable inferences.

In this paper, we address the aforementioned limitation of environmental association analysis using
hierarchical Bayesian models. Hierarchical models allow us to learn parameters using data, process, and
parameter models (Berliner 1996). In the context of environmental association analysis, the data model

describes how the unobserved allele frequencies could have led to genetic data. The process model
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describes the biological processes determining spatial variation in allele frequencies. The parameter model
describes the knowledge the biogeographer has about the parameters before the data are collected based on
past research.

The structure of the hierarchical model offers several advantages in identifying genomic adaptation
to climate. First, the data model allows a biogeographer to quantify observational uncertainty in estimates
of genetic variation due to the small sample size and missing genotypes. Second, these imprecise estimates
of genetic variation can then be linked to a process model of evolution. This evolution model is based on
the demographic history of the species and provides a mechanistic explanation of how to partition genetic
variation into adaptive (response curve) and non-adaptive (null) components. Lastly, the parameter model
can be used to incorporate knowledge from past research. For example, the theory of molecular evolution
suggests that the overwhelming majority of variation in genomes is non-adaptive and stems from the
interplay between mutation, drift, and migration, while only a small fraction of the variation stems from
local adaptation (Kimura 1983). To incorporate this prior knowledge, a biogeographer can assign a low
prior probability that the response curve has a finite slope. This prior effectively shrinks (regularizes) the
adaptive genetic variation to zero for most loci, providing a systematic way to evaluate the relative
contribution of adaptive and non-adaptive evolutionary forces in determining genetic variation.

Because of these features of the data, process, and parameter models, hierarchical models provide
a rigorous probabilistic framework to identify genomic adaptation in wild organisms informed by
theoretical principles of evolutionary biology using noisy genetic data. To show the utility of this approach,
we develop a demographic Bayesian model and test its robustness by analyzing synthetic data with known
parameter values. Next, we use the model to analyze RAD-seq data from Willow Flycatchers (Empidonax
traillii) and identify candidate genes that may play a functional role in climatic adaptation. Although we
apply our model to Willow Flycatchers, the statistical insights are general and broadly applicable to other
species.

Willow Flycatchers

The Willow Flycatcher is a migratory songbird that breeds mainly in the United States and Southern
Canada. The species is categorized into four distinct subspecies—the Pacific Northwestern form (£. ¢.
brewsteri), Western Central form (E. t. adastus), Eastern form (E. ¢. traillii), and Southwestern form (. ¢.
extimus). Among them, the Southwestern form has experienced a precipitous decline in abundance, likely
due to the loss of riparian habitat along streams and waterways (Sedgwick 2000), which provide respite
during extreme temperatures. In addition, in 1995, the Southwestern form was federally declared
endangered (Unitt 1987) due to its genetic, ecological, and song distinctiveness (Theimer et al. 2016;

Ruegg et al. 2018; Mahoney et al. 2020).
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Previous landscape genomic work identified highly significant correlations between allele
frequencies in genes linked to thermal tolerance and the intensity of summer heat waves in the southwest
(Ruegg et al. 2018). Therefore, re-analyzing the Willow Flycatcher genome-wide genetic dataset, initially
examined using traditional phenomenological models, offers an ideal opportunity to apply a new
environmental association analysis that mechanistically accounts for genetic variation. The resulting
analysis provides a strong basis for comparison with previous approaches, and more broadly, the results
have important implications for implementing management practices designed to improve the genetic

health of the endangered subspecies.

Data

A total of 175 Willow flycatchers were sampled at 23 one-degree squares across the continental
United States (Fig. 1). The sampling effort varied from 2-21 individuals per location. DNA was extracted
from blood and tissue samples using the QiagenTM DNeasy Blood and Tissue extraction kit and quantified
using the Qubit® dsDNA HS Assay kit (Thermo Fisher Scientific). Sequencing was conducted across three
lanes of 100 bp paired-end reads on an Illumina HiSeq 2500 at the UC Davis Genome Center. We filtered
SNPs using the tradeoff between discarding SNPs with low coverage and discarding individuals with
missing genotypes using the R package genoscapeRtools (Anderson 2019), resulting in approximately
105,000 SNPs, of which 3 percent of the loci had a missing genotype (Ruegg et al. 2018). At each sampling
location, climate data were obtained from WorldClim, which averaged the climate between 1960 and 1990
(Hijmans et al. 2005). Due to the high correlation between some of the top-ranked climatic variables
identified in Ruegg ef al. (2018), we limited our analysis to the four least correlated climate variables
(standardized) to reduce collinearity: BIO 4 (temperature seasonality), BIO 5 (maximum temperature of the
warmest month), BIO 11 (mean temperature of the coldest quarter), and BIO 17 (Precipitation in the driest
quarter). For more details about the sampling design, sequencing, and bioinformatic analysis, refer to Ruegg

et al. (2018).

Model Formulation
To identify putative loci under selection due to local adaptation, we specify a Bayesian model with
three hierarchical levels corresponding to the data, process, and parameter models. These three levels are
organized such that the output of the parameter model is the input for the process model, whose output is
the input for the observer model (Pagel & Schurr 2012). To facilitate a broad understating of how the
statistical model works, in Figure 2, we illustrate the three levels of the hierarchical model and show how
these levels are connected. In the following section, we provide details about the assumptions associated

with our model.
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Data model

We assume that Willow Flycatchers were sampled at K sites across the United States, and each bird
was genotyped at L genetic (RAD) markers (see sampling and sequencing above). We characterized the
genotype of the ith sampled bird at site k using g, which corresponds to the number of copies of the
reference allele at locus [. Assuming individuals have biallelic loci, g;;; is a discrete variable that takes
values zero, one, or two. Using these individual genotype data, we define a population-level genotype
variable

N (D

Yik = Yilk»
i=1

that corresponds to the number of reference alleles for Ny, birds that were genotyped at locus L. In the data,
Ny is always less than or equal to the number of birds sampled at a site because, for some individuals, the
genotype at a locus may be missing due to sequencing errors or low coverage. Assuming the birds were
randomly sampled, we model the variation in reference allele frequency (p; ) using a binomial distribution,
Yik ~ Binomial(2Ny, pix)- (2)
Alternatively, we can also use
Jik ~ Binomial(2, py), 3)
as a data model to describe the statistical relationship between allele frequency and an individual’s
genotype. However, because of computational efficiency, we use equation (2). Note that the observer model
accounts for the uncertainty in genetic variation that stems from finite sampling and missing genotypes.
Process model
We consider a metapopulation model proposed by Wright (1931) to model evolutionary dynamics.
We rely on this model because it provides a parsimonious explanation of how evolutionary processes
maintain genetic variation. We assume that the demes in the metapopulation correspond to the sites where
the birds were sampled. Each deme has a population size of N, and the migration rate between any pair of
demes is equal. We assume that the variation in allele frequencies across demes is maintained by directional
and non-directional evolutionary forces. Directional forces—such as local adaptation to climate, mutation,
and migration—result in changes in the mean value of allele frequency. Non-directional forces—such as
genetic drift—do not change the mean value of allele frequency but create sampling variance due to finite
population size. Because of this variance, the frequency of an allele cannot be determined exactly. Instead,
allele frequency is characterized probabilistically using a probability distribution, ¥(py,t) (Rice 2004;
Blanquart, Gandon & Nuismer 2012). Using the Fokker-Planck equation, one can show that the probability

distribution of the frequency of the reference allele changes as follows:

Y (Puks 9 1 92 4
lp(ﬁ;’;" O o [ (v, OM ()] + 5 o [¥ i, OV ()], @
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where

M) = SikPucQux + Uz1 Gk — UrPie + m(P; — D) Q)

Selection Mutation Migration

is the rate of directional change in the allele frequency and

bikq
V(pw) = lszlk ©)
e

is the variance in the allele frequency due to non-directional (i.e., drift) effects. In equations (4)-(6),
quik(= 1 —py) is the frequency of the alternate allele, s;;, is the environmentally regulated selection
coefficient, u,; and uq; are the locus-specific forward and backward mutation rates, m is the migration rate,
and p; is the average allele frequency of the immigrants. We consider multiplicative selection dynamics:
The relative fitness of individuals with genotype (gi;x) zero, one, and two is 1 + 25, 1 + sy, and 1,
respectively.

At the time of sampling, the allele frequency distribution is assumed to be at or close to equilibrium.
To obtain this equilibrium distribution, also known as the stationary distribution (), we set
0Y(pi,t)/0t = 0. The stationary distribution of the allele frequency can be expressed in terms of
evolutionary parameters as follows (Blanquart, Gandon & Nuismer 2012):

eSukPik (7

——Beta k),
1 Fy Qupreg, xg, S) (Pue| by 1)

where 3§, = 4N,sy, 1F; is the hypergeometric confluent function, and y; = (uy; + mp;)/(uq; + uy +

Vs Dk |31k, 1, k1) =

m) and k; = 4N, (uq; + uy; + m) are the mean and precision parameters of the beta distribution. To
incorporate climate adaptation, we assume a linear relationship between the selection coefficient around £

standardized environmental variables:

E
Sik = + Eﬁljejk; g
: ®)
j=1
where «; is the background selection coefficient, ej; is the jth environmental variable (standardized) in

deme k, and f3;; is the selection coefficient's sensitivity to variation in the environment.

The stationary distribution in equation (7) has several notable features. The response curve of an
adaptive allele (relationship between climate and mean allele frequency),
1Fr (1 + e, 1+ K, Sy ) )

1Fr Qi ke, Si)

Elpi] = w

is bounded between zero and one, and its shape is determined by evolutionary parameters with biological

interpretation. When selection is absent, the beta distribution captures the non-adaptive genetic variation,

Ys(Pixc [0, uy, k1) = Beta(py| py, kp). (10)
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Therefore, to account for the joint contribution of adaptive and non-adaptive evolutionary forces in
determining genetic variation, we use the stationary distribution to statistically model evolutionary
dynamics,

eSupik (11)
1F1 Quer, iy, Sue) Betau, k)

Pk~

For fast and memory-efficient implementation of the statistical model, we combine the data (Eq.
2) and process (Eq. 11) models by marginalizing over py,

1 (12)
YZkNJ Binomial (yyx | 2Ny, Duc ) ¥s @ik |51 b k1) AP
0

which results in an integrated likelihood that relates genotype counts to evolutionary dynamics as follows:

F K; + Vi, 2Ny + K5, § 13
Vi~ 1Fr (e + yye ”f b i) BetaBinomial (2N, 1y, k). (13)
1Fy Quyrey, g, $ik)

Note that the integrated likelihood in equation (13) accounts for the uncertainty that stems from noisy

genetic data and the stochastic nature of evolutionary dynamics.
Parameter model

Finally, we assign priors to parameters in equation (13) based on our prior scientific knowledge.
We assign the mean (y;) and precision (k;) parameters of the beta distribution Uniform(0,1) and
Normal*(0,5) priors, respectively, which reflect the natural bounds on these parameters. Due to
degeneracy in the geometry of the likelihood (Eq. 13, see Fig. S2), the mean of the beta distribution (y;)
and selection coefficient (S;;) are weakly identifiable. We alleviate this by making two biologically
reasonable assumptions. First, we fix @; = 0 and re-interpret y; as the mean of baseline allele frequency
distribution (or null distribution) resulting from non-adaptive evolutionary forces, including background
selection. Second, because we expect that most of the genetic variation arises due to neutral processes
(Kimura 1983), we use a regularized horseshoe shrinkage parameter model (Piironen & Vehtari 2017) for
sensitivity coefficients, f5;;.

The horseshoe prior shrinks most of the f8;; to zero, allowing a fraction of coefficients to take non-
zero values. The horseshoe model achieves this using global (7) and local (1, ;) shrinkage parameters. The
cumulative effect of these shrinkage parameters is captured by

Bij~ Normal(0,722)), (14)
where
_— cz)llzj (15)
U™z 4 T225;

To control global shrinkage, we specify a half-Cauchy prior,
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2 16
7~Cauchy* (0, %), (16)

where f is our prior knowledge of the fraction of the RAD sites contributing to local adaptation. Because
f is assumed to be small (we use f = 20L™1), T effectively shrinks all sensitivity coefficients to zero. But,
the local shrinkage parameter, A, j» allows some coefficients to escape shrinkage because of a heavy-tail
prior, A;j~Cauchy*(0,1). However, these large-valued coefficients, too, are weakly shrunk and bounded

between +3c, where ¢? ~ InvGamma(2,4). This feature of the local shrinkage prevents numerical

pathologies when large effect loci are weakly identifiable.

Model Testing

To assess the robustness of the statistical method, we fit the model to synthetic data generated by
simulations that share some characteristics of real data. Our simulation study provides evidence that we can
obtain reliable inferences for (a) genomic data with sequencing and sampling characteristic that aligns with
what we found when analyzing Willow Flycatcher genomic data and (b) when the assumed generative
process in the statistical model only partially resembles the true generative process of the real data.

We generated the synthetic genotype data in three stages (see Supplementary code for details). In
the first stage, we simulated selection dynamics. We considered diploid individuals with a genome size of
one thousand loci. Each locus in the genome was assigned a random non-zero background selection
coefficient. We randomly selected fifteen loci that contribute to local adaptation. Each of the fifteen loci
was randomly paired with one of the four environmental variables, and the corresponding selection
coefficient (s;;) was calculated using equation (8). We used real environmental values (standardized) to
calculate s;;, to preserve the correlation structure between environmental variables.

In the second stage, we simulated metapopulation dynamics with demes equal to the number of
sampling sites in the real data. We sampled random variables from the stationary distribution of allele

frequencies by simulating the following stochastic differential equation (Korolev et al. 2010):

K
dpu = |SiPucix + U219k — UniPue + Z e Pk (p, — pp) | dt + \/Dikquk /2N, dB, (17)
Selection Mutation n=1 Migration _DrT/

where s;;, is the selection coefficient obtained from stage one, B is the standard Brownian motion, d,,j, is
the distance between demes n and k, and p~? is the dispersal length scale. The above equation is an Itd
representation of the Fokker-Planck equation presented earlier (Eq. 4), with a small modification: migration
rate depends on the distance between demes (Fig. 3A).

In the third stage, we simulated genotypes. In each deme, we simulated genotypes for the same

number of individuals as in the real data. For each individual, we generated a genotype at a locus by
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sampling from the distribution Binomial(Z,p;,) (Eq. 3), where p;; is the reference allele frequency
obtained from the second stage. We randomly selected three percent of the loci and treated them as missing
genotypes.

To test if the statistical model can identify loci that contribute to local adaptation in synthetic data,
we fit the model using Stan programming language (Carpenter ef al. 2017) to obtain posterior samples of
sensitivity coefficients, f;;, using Hamiltonian Monte Carlo (Neal 2011). For each pair of loci and
environmental variables, we computed the probability that the posterior distribution of the sensitivity
coefficient included zero. If this probability is less than a threshold value of 0.05 (p;y), we inferred that the
locus may have contributed to local adaptation for the corresponding environmental variable.

The Manbhattan plot in Fig. 3A shows the negative log probability that the posterior distribution of
sensitivity coefficients included zero (Wang et al. 2022). Our model correctly identified nine of the fifteen
loci that were assigned large finite sensitivity coefficients in the synthetic data (points above the black line
with a ring and solid center). These points have p;;, < 0.05, which on a negative log scale corresponds to
points above y = 2.99 line. However, the model incorrectly identified the corresponding environmental
variable for two of the nine loci (points above the black line with a green ring and purple center). This
feature can be explained by a negative correlation (-0.72) between environmental variables, BIO 4 (green)
and BIO 11 (purple). As a result, the statistical model used one of the environmental variables as a substitute
for another (Rellstab et al. 2015). We also found six false negatives (colored points below the black line),
but no false positives. These results suggest that our method provides reasonable inferences, even when the
assumptions we make to construct the statistical model differ from the generative assumptions of the
synthetic data.

Next, we re-analyzed the synthetic data using latent factor mixed model (LFMM; Frichot et al.
2013) which was used to analyze Willow Flycatcher data in Ruegg et al. (2018). We conducted simulations
using two versions of the synthetic dataset. In the first version, we used individual genotypes, and, in the
second version, we used raw allele frequencies (i.e., p;r = 0.5 y; /Ny ) as input. In the first version, the
LFMM approach identified three of the fifteen loci adaptive loci and had one false positive (Fig. S4A). In
the second version, the LFMM approach identified only one correct locus and had no false positives (Fig.

S4B).

Data Analysis
Analyzing genomic data from Willow Flycatchers revealed 47 significant loci, all except one were
associated with BIO 4 (Fig. 2 and Fig. S3). A closer inspection of these loci suggests that many of them
cluster together on the genome (indicated by vertical gray lines in Fig. 2). These clustering patterns are

unlikely to happen by random chance. Alternatively, the observed clustering patterns can be explained by
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gene hitchhiking (Smith & Haigh 1974). The allele frequencies at a locus under selection and its
neighboring neutral loci rise or fall in unison due to physical linkage on the chromosome. Consequently,
when a gene is under selection, polymorphic sites close to the gene experience pseudo-selection (Barton
1998).

Using the annotated genome of Willow Flycatchers, 36 of the candidate loci were found within or
nearby (within 25kb) 30 named genes that may play a functional role in climatic adaptation (Table S1).
Twenty-three of these genes are characterized, and 20 have functional roles in chicken (Gallus gallus) that
span 8 gene ontology categories. The majority of genes cluster in 4 categories: 5 genes are involved in
catalytic activity, 5 genes have binding functionality, 3 have transcription regulatory activity, and 3 have
transporter activity. A closer investigation into several genes shows that EDIL3 plays a role in the egg
mineralization process in Aves (Le Roy ef al. 2021), PCDH1 is involved in feather development (Lin, Wang
& Redies 2013) and GRIK2 acts as a thermoreceptor conferring sensitivity to cold temperatures in mice

(Cai et al. 2024).

Discussion

Adaptation to climate is pervasive and will continue to play a major role in maintaining biodiversity
in the Anthropocene (Thompson 2013). However, current methods aimed at identifying genomic adaptation
are limited because they are often unequipped to handle noisy genetic data and do not formally
accommodate the demographic history of the species. Our mechanistic Bayesian model addresses these
limitations. The important aspects of our approach comprise the following features.

First, we proposed a data model that probabilistically links RAD-seq data to genetic variation (Eq.
2). This probabilistic link allows us to quantify uncertainty in genetic variation that arises due to finite
sampling and missing genotypes. Consequently, the data model properly accounts for uncertainty in the
estimation of genetic variation and faithfully propagates available information in raw genetic data to the
process model for downstream analysis (Hobbs & Hooten 2015).

Second, we used a metapopulation process model to partition estimated genetic variation into
adaptive and non-adaptive components (Blanquart, Gandon & Nuismer 2012). The metapopulation model
can be implemented using a beta distribution to characterize non-adaptive variation (Eq. 10) and
hypergeometric confluent functions to model adaptive variation (Eq. 9). Because our process model is
constructed based on theoretical principles from evolutionary biology, we can evaluate it based on the
underlying assumptions.

Finally, previous work shows that most of the genetic variation in wild populations is maintained
by non-adaptive evolutionary forces (Kimura 1983). We incorporated this prior knowledge in our statistical

model using a regularized horseshoe parameter model that shrinks most of the selection coefficients to zero
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by assigning a global shrinkage prior to sensitivity coefficients (Piironen & Vehtari 2017) (Eq. 14). The
level of shrinkage is controlled by the number of sites where the birds were sampled, the number of
environmental variables, and our prior understanding of what fraction of the genome contributes to local
adaptation (Eq. 16). Thus, the parameter model provides a systematic way to evaluate the relative
magnitude of adaptive and non-adaptive evolutionary forces in shaping genetic variation.

To test our statistical model, we conducted simulations to assess the model performance on
synthetic RAD-seq data generated by simulating bird genomes of length 1000 loci (Eq. 17) that emulate
the characteristics of genetic data from Willow Flycatchers. Our statistical model accurately identified nine
out of fifteen adaptive loci with no false positives (Fig. 3A). Out of the nine correctly identified loci, two
loci were paired incorrectly with their corresponding environmental variable due to a strong correlation
between BIO 4 and BIO 11. This highlights that biogeographers may need to exercise caution when
interpreting statistical results or use uncorrelated predictors. The statistically inferred environmental
variable might be correlated with the true environmental variable responsible for local adaptation (Rellstab
et al. 2015). Nevertheless, the synthetic simulations suggest that our statistical model is applicable to use
with genetic datasets from wild populations.

Indeed, we identified 30 genes that were within the 25kb region flanking 47 significant loci in
RAD-seq data from Willow Flycatchers, most of which were associated with temperature seasonality (Fig.
3B and S3). Some of these genes include EDIL3, PCDHI, and GRIK2, which play a role in the egg
mineralization process (Le Roy ef al. 2021), feather development (Lin, Wang & Redies 2013), and acts as
a thermoreceptor conferring sensitivity to cold temperatures (Cai et al. 2024), respectively. This suggests
that temperature fluctuations could be a key driver of local adaptation in the species, providing evidence
that standing genetic variation in Willow Flycatchers could alleviate or buffer extinction risk due to
increasing temperature variability predicted by climate projections (Olonscheck et al. 2021).

Although these genes differ from those identified in Ruegg et al. (2018), these differences are not
surprising because our hierarchical statistical model is fundamentally different from traditional
environmental association analysis in terms of quantifying uncertainty while estimating genetic variation
and using an evolutionary process model to explain sources of genetic variation. Our synthetic data
simulations confirm that these differences may play an important role in inferences; re-analyzing synthetic
data using LFMM resulted in much higher rates of false positives and false negatives (Fig. S4).

In addition to the conceptual advantages offered by our mechanistic statistical model, synthetic
simulations highlight several practical scenarios where our hierarchical model might be better suited to
analyze genomic data. Some of these scenarios include low sample size (less than four individuals), wide
dispersion in the number of individuals sampled at various locations, and a large fraction of missing

genotypes. In these scenarios, rather than requiring a biogeographer to discard or collect new data, our
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statistical model quantifies genetic variation probabilistically and propagates the corresponding uncertainty
for downstream analysis. However, there are some computational tradeoffs: our statistical analysis took 30
hours to analyze 105k SNPs on Mac Studio (M1) and, as a result, our approach may require substantial
computational resources to parallelly analyze genomic datasets with millions of SNPs.

Despite these computational requirements, the hierarchical structure of the model provides new
opportunities to improve statistical inferences. For example, the hierarchical model is flexible and can
integrate a wide range of process and data models, allowing biogeographers to better understand the
evolutionary responses of a species to changing climate while dramatically reducing the cost of analysis.
The cost of sequencing varies along three axes—the number of sequenced sites in the genome, the depth of
sequencing effort, and the number of sampled individuals. Typically, in RAD sequencing, a small
proportion of sites in the genome are sequenced deeply to identify true genotypes, which are subsequently
used to estimate allele frequencies (Baird et al. 2008). Although RAD sequencing is a cost-effective
protocol to obtain a reduced representation of the genome, it fails to characterize a large proportion of
genetic variation in the genome that could be potentially adaptive (Lowry et al. 2017). New sequencing
protocols, such as low-depth whole genome sequencing (Alex Buerkle & Gompert 2013) and pool
sequencing (Gautier et al. 2013), are emerging as attractive alternatives because they provide a wider
genomic coverage without increasing cost or sacrificing statistical power. The key idea behind these
approaches is to redistribute the same resources to sequence a larger sample of individuals and a greater
proportion of the genome (Lou et al. 2021). This reduction in sequencing effort (per individual per locus)
increases uncertainty in the estimates of individual genotypes. But, instead of discarding SNPs due to low
coverage, one can model the true genotype as a parameter and propagate the corresponding uncertainty to
inform population-level allele frequencies. In effect, these approaches sacrifice certainty in individual
genotypes to gain genomic coverage while keeping the cost and genetic information constant. To leverage
information from these sequencing protocols, the data model in the Bayesian hierarchy can be modified to
account for genotype uncertainty in estimating allele frequencies.

Another potential avenue to improve inferences is to construct alternate process models
incorporating a wider range of demographic histories. For example, most species, including Willow
Flycatchers, are geographically structured, and, as such, the migration rates depend on distance between
demes. Closer demes exchange more migrants than demes that are far apart. This may create genetic
patterns, such as isolation by distance and genetic swamping, that cannot be adequately captured by an
unstructured metapopulation model. One possible resolution to this problem is to use stationary distribution
corresponding to the structured evolutionary dynamics (Constable & McKane 2015). However, in non-
equilibrium settings, such as range shifts due to changing climate or the introduction of invasive species,

stationary distributions may not be an appropriate process model because of transient evolutionary
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dynamics and eco-evolutionary feedback. In such cases, one may consider a probabilistic process model
that jointly describes spatiotemporal changes in abundance and genetic variation (Schurr et al. 2012;
Polechova & Barton 2015). To inform these joint process models, researchers will require temporal and
spatial sampling of abundances and genomes, which can be obtained from population surveys (Pardieck et
al. 2020) and museum collections (Payne & Sorenson 2002), respectively. These improvements in data and
process models may allow biogeographers to forecast the response of a species to changing climate using

mechanistic models of ecology and evolution.
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Figure 2: A conceptual diagram describing the hierarchical structure of the Bayesian model. The
data model (top) links the individuals’ genotype (g;; ) to allele frequency (p;) at a locus [ in patch
k (Eq. 3). The process model (middle) describes the stationary distribution of allele frequency
resulting from evolutionary forces, such as mutation, migration, drift, and local adaptation. (Eq. 8
and 11). Finally, the parameter model (bottom) allows us to regularize sensitivity coefficients ()

using prior knowledge from molecular evolutionary theory (Egs. [14], [15], and [16]).
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Figure 3: Manhattan plot showing negative log probability (—log(p:)) that the posterior distribution of
sensitivity coefficients (f;;) includes zero for synthetic (A) and real data (B). In both plots, points above
the black horizontal line have p;y less than 0.05. (A) For synthetic data, we denote points above the black
line using an outer ring and a center. The color of the center (ring) corresponds to the true (statistically
inferred) environmental variable responsible for local adaptation. (B) For real data, we denote points above
the black line with a solid center, with its color corresponding to the statistically inferred environmental
variable responsible for local adaptation (also see Fig. S3). The vertical gray lines represent physically

linked loci with statistically significant sensitivity coefficients.
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