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Abstract 
1. Identifying genomic adaptation is key to understanding species' evolutionary responses to climate 

change. However, current methods to identify adaptive variation have two major limitations. First, 

when estimating genetic variation, most methods do not account for observational uncertainty in 

genetic data because of finite sampling and missing genotypes. Second, current methods use 

phenomenological models to partition genetic variation into adaptive and non-adaptive 

components. These phenomenological models are not mechanistic models of evolution and, 

therefore, do not faithfully capture the demographic history of the species. 

 

2. We address these limitations by developing a hierarchical Bayesian model that explicitly accounts 

for both the observational uncertainty and underlying evolutionary processes. The first layer of the 

hierarchy is the data model that captures observational uncertainty by probabilistically linking 

RAD-sequence data to genetic variation. The second layer is a process model that provides a 

mechanistic explanation of how evolutionary forces, such as local adaptation, mutation, migration, 

and drift, maintain genetic variation. The third layer is the parameter model, which incorporates 

our knowledge about biological processes. For example, because most loci in the genome are 

expected to be neutral, the environmental sensitivity coefficients are assigned a regularized prior 

centered at zero. Together, the three models provide a rigorous probabilistic framework to identify 

local adaptation in wild organisms. 

 

3. Analysis of simulated RAD-seq data shows that our statistical model can reliably infer adaptive 

genetic variation. To show the real-world applicability of our method, we re-analyzed RAD-seq 

data from Willow Flycatchers (Empidonax traillii) in the USA. We found 30 genes close to loci 

that showed a statistically significant association with temperature seasonality. Gene ontology 

suggests that several of these genes play a crucial role in egg mineralization, feather development, 

and the ability to withstand extreme temperatures.  

 

4. Moreover, biogeographers can easily modify the data and process models to accommodate a wide 

range of genetic datasets (e.g., pool and low coverage genome sequencing) and demographic 

histories (e.g., range shifts), allowing them to construct statistical models specific to their study 

system. 
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Introduction 
Many species face a looming threat of extinction as global temperature rises (Thomas et al. 2004; 

Urban 2015). This risk is particularly concerning for species with limited dispersal capacity that are slow 

to track their climatic niches (Carroll et al. 2015). Alternatively, some species may adapt to the local 

climate, potentially alleviating the risk of extinction. Natural selection favors individuals with heritable 

phenotypes best suited to survive and reproduce in local climates, creating a geographical mosaic in 

frequencies of adaptive alleles congruent with climatic gradients (Hedrick, Ginevan & Ewing 1976; 

Hedrick 1986; Hedrick 2006). Therefore, to understand the evolutionary responses of a species to changing 

climate and incorporate this knowledge to inform evolutionary management policies (Smith et al. 2014), 

we need robust methodologies to identify genes (and their function) that confer local adaptation in natural 

populations. 

With recent advances in high-throughput sequencing and global environmental sensing 

technologies (Chuvieco 2020; Satam et al. 2023), new computational approaches have allowed researchers 

to identify adaptive genetic variation in wild populations. These approaches, collectively called 

environmental association analysis (Rellstab et al. 2015; Hoban et al. 2016), have gained widespread 

popularity that can be partly attributed to declining sequencing costs, improvements in genomic tools, 

detailed global climatic maps, and availability of computational resources. These advances have allowed 

researchers to study climatic adaptation in non-model organisms at a fine genomic resolution and large 

spatial extent for a reasonable cost (Frichot et al. 2013; De Villemereuil & Gaggiotti 2015; Fitzpatrick & 

Keller 2015; Wagner, Chávez‐Pesqueira & Forester 2017).  

Broadly, environmental association analysis involves three steps. First, sequencing data from 

spatially referenced individuals are used to estimate spatial variation in allele frequencies. Next, a statistical 

model is used to partition this genetic variation into adaptive and non-adaptive components. The adaptive 

variation corresponds to the response of an allele to changes in prevailing climatic conditions. The non-

adaptive variation describes the allelic variation (or null variation) that stems from evolutionary forces other 

than local adaptation, which includes background selection, gene flow among populations, mutation, and 

drift. Finally, a statistical criterion is used to select loci that exhibit strong adaptive genetic variation relative 

to non-adaptive variation. 

Despite the success of environmental association studies, current methods face several conceptual 

and statistical challenges that limit the reliability of the inferences. Most environmental association methods 

do not account for uncertainty in estimates of allele frequencies (see Coop et al. (2010) and Foll and 

Gaggiotti (2008) for exceptions), which can introduce biases in downstream analyses. Due to practical 

constraints, biogeographers collect and sequence only a finite number of individuals in a population. The 

genotype of these individuals, inferred from RAD (restriction site-associated DNA) sequencing (Baird et 
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al. 2008), for instance, contains imprecise information regarding the underlying allele frequencies that 

result from sampling a small subset of individuals within a population. Additionally, because of low 

coverage and alignment errors, the true genotypes of some individuals may be missing (Huang & Knowles 

2016), which further reduces sample size and increases uncertainty. Failure to account for these sources of 

uncertainties results in overly precise estimates of genetic variation that can increase the number of false 

positives (inferring non-adaptive loci as important). Alternatively, researchers discarding data due to noisy 

estimates of genetic variation may lose valuable (although imprecise) information, thereby increasing rates 

of false negatives (inability to identify an adaptive locus). 

Another major difficulty is that environmental association methods characterize genetic variation 

using phenomenological models, such as generalized linear models (Rellstab et al. 2015). Although 

reasonable, phenomenological models are not mechanistic models of evolution and, therefore, they are not 

usually concerned with how the relationship between data and parameters (e.g., environment and allele 

frequency) arises because of underlying evolutionary processes (Hilborn & Mangel 2013; Hobbs & Hooten 

2015). For example, some phenomenological models assume an S-shape response curve to relate 

environmental variables and allele frequency (Joost et al. 2007; Stucki et al. 2017). This response curve 

has several attractive characteristics: it is bounded between zero and one, and has an incline in the middle 

that emulates the response of an allele to local climatic adaptation. However, the S-shape response curve is 

not unique in these characteristics. A biogeographer can construct alternate equally plausible response 

curves (e.g., linear or probit functions). Similarly, phenomenological models make many other 

assumptions, including constructing an appropriate null distribution, that are often difficult to rationalize. 

This makes it hard to evaluate when a phenomenological model will fail and, when it inevitably does, how 

the model can be improved. 

In contrast, mechanistic models of evolution are based on the first principles of birth-death 

processes, and, therefore, a biogeographer can evaluate model assumptions based on the constraints 

imposed by the population demography and natural history of the species (Rice 2004). Replacing 

phenomenological models with mechanistic models of evolution in statistical inferences offers a unique 

advantage—they constrain the flow of information from data to model parameters using theoretical rather 

than heuristic arguments. This may allow biogeographers to create bespoke statistical models tailored to 

match the demographic history of the species (Wikle 2003; Hooten & Hefley 2019), providing robust and 

reliable inferences.  

In this paper, we address the aforementioned limitation of environmental association analysis using 

hierarchical Bayesian models. Hierarchical models allow us to learn parameters using data, process, and 

parameter models (Berliner 1996). In the context of environmental association analysis, the data model 

describes how the unobserved allele frequencies could have led to genetic data. The process model 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624744doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624744
http://creativecommons.org/licenses/by-nc-nd/4.0/


describes the biological processes determining spatial variation in allele frequencies. The parameter model 

describes the knowledge the biogeographer has about the parameters before the data are collected based on 

past research.  

The structure of the hierarchical model offers several advantages in identifying genomic adaptation 

to climate. First, the data model allows a biogeographer to quantify observational uncertainty in estimates 

of genetic variation due to the small sample size and missing genotypes. Second, these imprecise estimates 

of genetic variation can then be linked to a process model of evolution. This evolution model is based on 

the demographic history of the species and provides a mechanistic explanation of how to partition genetic 

variation into adaptive (response curve) and non-adaptive (null) components. Lastly, the parameter model 

can be used to incorporate knowledge from past research. For example, the theory of molecular evolution 

suggests that the overwhelming majority of variation in genomes is non-adaptive and stems from the 

interplay between mutation, drift, and migration, while only a small fraction of the variation stems from 

local adaptation (Kimura 1983). To incorporate this prior knowledge, a biogeographer can assign a low 

prior probability that the response curve has a finite slope. This prior effectively shrinks (regularizes) the 

adaptive genetic variation to zero for most loci, providing a systematic way to evaluate the relative 

contribution of adaptive and non-adaptive evolutionary forces in determining genetic variation.  

Because of these features of the data, process, and parameter models, hierarchical models provide 

a rigorous probabilistic framework to identify genomic adaptation in wild organisms informed by 

theoretical principles of evolutionary biology using noisy genetic data. To show the utility of this approach, 

we develop a demographic Bayesian model and test its robustness by analyzing synthetic data with known 

parameter values. Next, we use the model to analyze RAD-seq data from Willow Flycatchers (Empidonax 

traillii) and identify candidate genes that may play a functional role in climatic adaptation. Although we 

apply our model to Willow Flycatchers, the statistical insights are general and broadly applicable to other 

species. 

Willow Flycatchers 

The Willow Flycatcher is a migratory songbird that breeds mainly in the United States and Southern 

Canada. The species is categorized into four distinct subspecies—the Pacific Northwestern form (E. t. 

brewsteri), Western Central form (E. t. adastus), Eastern form (E. t. traillii), and Southwestern form (E. t. 

extimus). Among them, the Southwestern form has experienced a precipitous decline in abundance, likely 

due to the loss of riparian habitat along streams and waterways (Sedgwick 2000), which provide respite 

during extreme temperatures. In addition, in 1995, the Southwestern form was federally declared 

endangered (Unitt 1987) due to its genetic, ecological, and song distinctiveness  (Theimer et al. 2016; 

Ruegg et al. 2018; Mahoney et al. 2020).   
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Previous landscape genomic work identified highly significant correlations between allele 

frequencies in genes linked to thermal tolerance and the intensity of summer heat waves in the southwest 

(Ruegg et al. 2018). Therefore, re-analyzing the Willow Flycatcher genome-wide genetic dataset, initially 

examined using traditional phenomenological models, offers an ideal opportunity to apply a new 

environmental association analysis that mechanistically accounts for genetic variation. The resulting 

analysis provides a strong basis for comparison with previous approaches, and more broadly, the results 

have important implications for implementing management practices designed to improve the genetic 

health of the endangered subspecies.   

 

Data 
A total of 175 Willow flycatchers were sampled at 23 one-degree squares across the continental 

United States (Fig. 1). The sampling effort varied from 2-21 individuals per location. DNA was extracted 

from blood and tissue samples using the QiagenTM DNeasy Blood and Tissue extraction kit and quantified 

using the Qubit® dsDNA HS Assay kit (Thermo Fisher Scientific). Sequencing was conducted across three 

lanes of 100 bp paired-end reads on an Illumina HiSeq 2500 at the UC Davis Genome Center. We filtered 

SNPs using the tradeoff between discarding SNPs with low coverage and discarding individuals with 

missing genotypes using the R package genoscapeRtools (Anderson 2019), resulting in approximately 

105,000 SNPs, of which 3 percent of the loci had a missing genotype (Ruegg et al. 2018). At each sampling 

location, climate data were obtained from WorldClim, which averaged the climate between 1960 and 1990 

(Hijmans et al. 2005). Due to the high correlation between some of the top-ranked climatic variables 

identified in Ruegg et al. (2018), we limited our analysis to the four least correlated climate variables 

(standardized) to reduce collinearity: BIO 4 (temperature seasonality), BIO 5 (maximum temperature of the 

warmest month), BIO 11 (mean temperature of the coldest quarter), and BIO 17 (Precipitation in the driest 

quarter). For more details about the sampling design, sequencing, and bioinformatic analysis, refer to Ruegg 

et al. (2018). 

 

Model Formulation 

To identify putative loci under selection due to local adaptation, we specify a Bayesian model with 

three hierarchical levels corresponding to the data, process, and parameter models. These three levels are 

organized such that the output of the parameter model is the input for the process model, whose output is 

the input for the observer model (Pagel & Schurr 2012). To facilitate a broad understating of how the 

statistical model works, in Figure 2, we illustrate the three levels of the hierarchical model and show how 

these levels are connected.  In the following section, we provide details about the assumptions associated 

with our model. 
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Data model 

 We assume that Willow Flycatchers were sampled at ! sites across the United States, and each bird 

was genotyped at "	genetic (RAD) markers (see sampling and sequencing above). We characterized the 

genotype of the $th sampled bird at site % using &!"#, which corresponds to the number of copies of the 

reference allele at locus '. Assuming individuals have biallelic loci, &!"# is a discrete variable that takes 

values zero, one, or two. Using these individual genotype data, we define a population-level genotype 

variable  

 
("# =	* &!"#

$!"

!%&
, 

(1) 

that corresponds to the number of reference alleles for ,"# birds that were genotyped at locus '. In the data, 

,"# is always less than or equal to the number of birds sampled at a site because, for some individuals, the 

genotype at a locus may be missing due to sequencing errors or low coverage. Assuming the birds were 

randomly sampled, we model the variation in reference allele frequency (-"#) using a binomial distribution, 

 ("# 	~	Binomial(2,"# , -"#). (2) 

Alternatively, we can also use 

 &!"# 	~	Binomial(2, -"#), (3) 

as a data model to describe the statistical relationship between allele frequency and an individual’s 

genotype. However, because of computational efficiency, we use equation (2). Note that the observer model 

accounts for the uncertainty in genetic variation that stems from finite sampling and missing genotypes. 

Process model 

We consider a metapopulation model proposed by Wright (1931) to model evolutionary dynamics. 

We rely on this model because it provides a parsimonious explanation of how evolutionary processes 

maintain genetic variation. We assume that the demes in the metapopulation correspond to the sites where 

the birds were sampled. Each deme has a population size of ,', and the migration rate between any pair of 

demes is equal. We assume that the variation in allele frequencies across demes is maintained by directional 

and non-directional evolutionary forces. Directional forces—such as local adaptation to climate, mutation, 

and migration—result in changes in the mean value of allele frequency. Non-directional forces—such as 

genetic drift—do not change the mean value of allele frequency but create sampling variance due to finite 

population size. Because of this variance, the frequency of an allele cannot be determined exactly. Instead, 

allele frequency is characterized probabilistically using a probability distribution, :(-"# , ;) (Rice 2004; 

Blanquart, Gandon & Nuismer 2012). Using the Fokker-Planck equation, one can show that the probability 

distribution of the frequency of the reference allele changes as follows: 

 <:(-"# , ;)
<;

= −

<

<-"#
[:(-"# , ;)?(-"#)] +

1

2

<
(

<
(
-"#

[:(-"# , ;)C(-"#)], 
(4) 
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where  

 ?(-"#) = D"#-"#E"#FGGHGGI

)*+*,-./0
+ J("E"# − J&"-"#FGGGGHGGGGI

12-3-./0
+K(-"L − -"#)FGGGHGGGI

1.453-./0
 (5) 

is the rate of directional change in the allele frequency and  

 
C(-"#) = 	

-"#E"#
2,'

 (6) 

is the variance in the allele frequency due to non-directional (i.e., drift) effects. In equations (4)-(6), 

E"#(= 1 − -"#) is the frequency of the alternate allele, D"# is the environmentally regulated selection 

coefficient, J(" and J&" are the locus-specific forward and backward mutation rates, K is the migration rate, 

and -"L  is the average allele frequency of the immigrants. We consider multiplicative selection dynamics: 

The relative fitness of individuals with genotype (&!"#) zero, one, and two is 1 + 2D"#, 1 + D"#, and 1, 

respectively.  

 At the time of sampling, the allele frequency distribution is assumed to be at or close to equilibrium. 

To obtain this equilibrium distribution, also known as the stationary distribution (:6), we set 

<:(-"# , ;)/<; = 0. The stationary distribution of the allele frequency can be expressed in terms of 

evolutionary parameters as follows (Blanquart, Gandon & Nuismer 2012): 

 
:6(-"#|D̃"# , Q" , R") =

S
6̃!"8!"

	

		&T&(Q"R" , R" , D̃"#)	
Beta(-"#|	Q" , R"), 

(7) 

where D̃"# = 4,'D"#, 	&T& is the hypergeometric confluent function, and Q" =	 (J(" +K-"L )/(J&" + J(" +

K) and R" = 4,'(J&" + J(" +K) are the mean and precision parameters of the beta distribution. To 

incorporate climate adaptation, we assume a linear relationship between the selection coefficient around E 

standardized environmental variables: 

 
D̃"# = X" +*Y"9S9#

:

9%&
, 

 

(8) 

where X" is the background selection coefficient, S9# is the Zth environmental variable (standardized) in 

deme %, and Y"9 is the selection coefficient's sensitivity to variation in the environment.  

 The stationary distribution in equation (7) has several notable features. The response curve of an 

adaptive allele (relationship between climate and mean allele frequency), 

 
[[-"#] = 	Q"

	&T&(1 + Q"R" , 1 + R" , D̃"#)
		&T&(Q"R" , R" , D̃"#)	

, 
(9) 

is bounded between zero and one, and its shape is determined by evolutionary parameters with biological 

interpretation. When selection is absent, the beta distribution captures the non-adaptive genetic variation,  

 :6(-"#|0, Q" , R") = Beta(-"#|	Q" , R"). (10) 
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Therefore, to account for the joint contribution of adaptive and non-adaptive evolutionary forces in 

determining genetic variation, we use the stationary distribution to statistically model evolutionary 

dynamics, 

 
-"#~

S
6̃!"8!"

	

		&T&(Q"R" , R" , D̃"#)	
Beta(Q" , R"). 

(11) 

 For fast and memory-efficient implementation of the statistical model, we combine the data (Eq. 

2) and process (Eq. 11) models by marginalizing over -"#, 

 
("#~\ Binomial(("#|2,"# , -"#):6(-"#|D̃"# , Q" , R")	]-"#

&

;
, 

(12) 

which results in an integrated likelihood that relates genotype counts to evolutionary dynamics as follows: 

 
("#~

		&T&(Q"R" + ("# , 2,"# + R" , D̃"#)
		&T&(Q"R" , R" , D̃"#)	

BetaBinomial(2,"# , Q" , R"). 
(13) 

Note that the integrated likelihood in equation (13) accounts for the uncertainty that stems from noisy 

genetic data and the stochastic nature of evolutionary dynamics. 

 Parameter model 

 Finally, we assign priors to parameters in equation (13) based on our prior scientific knowledge. 

We assign the mean (Q") and precision (R") parameters of the beta distribution Uniform(0,1) and 

Normal
<
(0, 5) priors, respectively, which reflect the natural bounds on these parameters. Due to 

degeneracy in the geometry of the likelihood (Eq. 13, see Fig. S2), the mean of the beta distribution (Q") 

and selection coefficient (D̃"#) are weakly identifiable. We alleviate this by making two biologically 

reasonable assumptions. First, we fix X" = 0 and re-interpret Q" as the mean of baseline allele frequency 

distribution (or null distribution) resulting from non-adaptive evolutionary forces, including background 

selection. Second, because we expect that most of the genetic variation arises due to neutral processes 

(Kimura 1983), we use a regularized horseshoe shrinkage parameter model (Piironen & Vehtari 2017) for 

sensitivity coefficients, Y"9. 

The horseshoe prior shrinks most of the Y"9 to zero, allowing a fraction of coefficients to take non-

zero values. The horseshoe model achieves this using global (c) and local (de"9) shrinkage parameters. The 

cumulative effect of these shrinkage parameters is captured by  

 Y"9~	Normalf0	, c(de"9
(
g, (14) 

where  

 
d
e"9
(
=

h
(
d"9
(

h
(
+ c

(
d"9
( . 

(15) 

To control global shrinkage, we specify a half-Cauchy prior,  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.21.624744doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.21.624744
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
c~Cauchy

<
n0,

o
(

!p
(q, 

(16) 

where o is our prior knowledge of the fraction of the RAD sites contributing to local adaptation. Because 

o is assumed to be small (we use o = 20"
=&), c effectively shrinks all sensitivity coefficients to zero. But, 

the local shrinkage parameter, de"9, allows some coefficients to escape shrinkage because of a heavy-tail 

prior, d"9~Cauchy<(0,1). However, these large-valued coefficients, too, are weakly shrunk and bounded 

between ±3h, where h(	~	InvGamma(2,4). This feature of the local shrinkage prevents numerical 

pathologies when large effect loci are weakly identifiable. 

 

Model Testing 
To assess the robustness of the statistical method, we fit the model to synthetic data generated by 

simulations that share some characteristics of real data. Our simulation study provides evidence that we can 

obtain reliable inferences for (a) genomic data with sequencing and sampling characteristic that aligns with 

what we found when analyzing Willow Flycatcher genomic data and (b) when the assumed generative 

process in the statistical model only partially resembles the true generative process of the real data. 

We generated the synthetic genotype data in three stages (see Supplementary code for details). In 

the first stage, we simulated selection dynamics. We considered diploid individuals with a genome size of 

one thousand loci. Each locus in the genome was assigned a random non-zero background selection 

coefficient. We randomly selected fifteen loci that contribute to local adaptation. Each of the fifteen loci 

was randomly paired with one of the four environmental variables, and the corresponding selection 

coefficient (D"#) was calculated using equation (8). We used real environmental values (standardized) to 

calculate D"# to preserve the correlation structure between environmental variables.  

In the second stage, we simulated metapopulation dynamics with demes equal to the number of 

sampling sites in the real data. We sampled random variables from the stationary distribution of allele 

frequencies by simulating the following stochastic differential equation (Korolev et al. 2010): 

 
]-"# =	 wD"#-"#E"#FGGHGGI

)*+*,-./0
+ J("E"# − J&"-"#FGGGGHGGGGI

12-3-./0
+*S

=>?#"(-"@ − -"#)FGGGGGHGGGGGI

1.453-./0

A

@%&
x ];	 + y-"#E"#/2,' 		FGGGHGGGI

]z

B5.C-
, 

 

(17) 

where D"# is the selection coefficient obtained from stage one, z is the standard Brownian motion, ]@# is 

the distance between demes { and %, and |=& is the dispersal length scale. The above equation is an Itô 

representation of the Fokker-Planck equation presented earlier (Eq. 4), with a small modification: migration 

rate depends on the distance between demes (Fig. 3A). 

 In the third stage, we simulated genotypes. In each deme, we simulated genotypes for the same 

number of individuals as in the real data. For each individual, we generated a genotype at a locus by 
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sampling from the distribution Binomial(2, -"#) (Eq. 3), where -"# is the reference allele frequency 

obtained from the second stage. We randomly selected three percent of the loci and treated them as missing 

genotypes.  

To test if the statistical model can identify loci that contribute to local adaptation in synthetic data, 

we fit the model using Stan programming language (Carpenter et al. 2017) to obtain posterior samples of 

sensitivity coefficients, Y"9, using Hamiltonian Monte Carlo (Neal 2011). For each pair of loci and 

environmental variables, we computed the probability that the posterior distribution of the sensitivity 

coefficient included zero. If this probability is less than a threshold value of 0.05 (-DE), we inferred that the 

locus may have contributed to local adaptation for the corresponding environmental variable. 

 The Manhattan plot in Fig. 3A shows the negative log probability that the posterior distribution of 

sensitivity coefficients included zero (Wang et al. 2022). Our model correctly identified nine of the fifteen 

loci that were assigned large finite sensitivity coefficients in the synthetic data (points above the black line 

with a ring and solid center). These points have -DE < 0.05, which on a negative log scale corresponds to 

points above ( = 2.99 line. However, the model incorrectly identified the corresponding environmental 

variable for two of the nine loci (points above the black line with a green ring and purple center). This 

feature can be explained by a negative correlation (-0.72) between environmental variables, BIO 4 (green) 

and BIO 11 (purple). As a result, the statistical model used one of the environmental variables as a substitute 

for another (Rellstab et al. 2015). We also found six false negatives (colored points below the black line), 

but no false positives. These results suggest that our method provides reasonable inferences, even when the 

assumptions we make to construct the statistical model differ from the generative assumptions of the 

synthetic data. 

 Next, we re-analyzed the synthetic data using latent factor mixed model (LFMM; Frichot et al. 

2013) which was used to analyze Willow Flycatcher data in Ruegg et al. (2018). We conducted simulations 

using two versions of the synthetic dataset. In the first version, we used individual genotypes, and, in the 

second version, we used raw allele frequencies (i.e., -"# 	= 0.5	("#/,"#) as input. In the first version, the 

LFMM approach identified three of the fifteen loci adaptive loci and had one false positive (Fig. S4A). In 

the second version, the LFMM approach identified only one correct locus and had no false positives (Fig. 

S4B).   

 

Data Analysis 
Analyzing genomic data from Willow Flycatchers revealed 47 significant loci, all except one were 

associated with BIO 4 (Fig. 2 and Fig. S3).  A closer inspection of these loci suggests that many of them 

cluster together on the genome (indicated by vertical gray lines in Fig. 2). These clustering patterns are 

unlikely to happen by random chance. Alternatively, the observed clustering patterns can be explained by 
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gene hitchhiking (Smith & Haigh 1974). The allele frequencies at a locus under selection and its 

neighboring neutral loci rise or fall in unison due to physical linkage on the chromosome. Consequently, 

when a gene is under selection, polymorphic sites close to the gene experience pseudo-selection (Barton 

1998).  

 Using the annotated genome of Willow Flycatchers, 36 of the candidate loci were found within or 

nearby (within 25kb) 30 named genes that may play a functional role in climatic adaptation (Table S1). 

Twenty-three of these genes are characterized, and 20 have functional roles in chicken (Gallus gallus) that 

span 8 gene ontology categories. The majority of genes cluster in 4 categories: 5 genes are involved in 

catalytic activity, 5 genes have binding functionality, 3 have transcription regulatory activity, and 3 have 

transporter activity. A closer investigation into several genes shows that EDIL3 plays a role in the egg 

mineralization process in Aves (Le Roy et al. 2021), PCDH1 is involved in feather development (Lin, Wang 

& Redies 2013) and GRIK2 acts as a thermoreceptor conferring sensitivity to cold temperatures in mice 

(Cai et al. 2024).  

 

Discussion 
Adaptation to climate is pervasive and will continue to play a major role in maintaining biodiversity 

in the Anthropocene (Thompson 2013). However, current methods aimed at identifying genomic adaptation 

are limited because they are often unequipped to handle noisy genetic data and do not formally 

accommodate the demographic history of the species. Our mechanistic Bayesian model addresses these 

limitations. The important aspects of our approach comprise the following features. 

First, we proposed a data model that probabilistically links RAD-seq data to genetic variation (Eq. 

2). This probabilistic link allows us to quantify uncertainty in genetic variation that arises due to finite 

sampling and missing genotypes. Consequently, the data model properly accounts for uncertainty in the 

estimation of genetic variation and faithfully propagates available information in raw genetic data to the 

process model for downstream analysis (Hobbs & Hooten 2015). 

Second, we used a metapopulation process model to partition estimated genetic variation into 

adaptive and non-adaptive components (Blanquart, Gandon & Nuismer 2012). The metapopulation model 

can be implemented using a beta distribution to characterize non-adaptive variation (Eq. 10) and 

hypergeometric confluent functions to model adaptive variation (Eq. 9). Because our process model is 

constructed based on theoretical principles from evolutionary biology, we can evaluate it based on the 

underlying assumptions.  

Finally, previous work shows that most of the genetic variation in wild populations is maintained 

by non-adaptive evolutionary forces (Kimura 1983). We incorporated this prior knowledge in our statistical 

model using a regularized horseshoe parameter model that shrinks most of the selection coefficients to zero 
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by assigning a global shrinkage prior to sensitivity coefficients (Piironen & Vehtari 2017) (Eq. 14). The 

level of shrinkage is controlled by the number of sites where the birds were sampled, the number of 

environmental variables, and our prior understanding of what fraction of the genome contributes to local 

adaptation (Eq. 16). Thus, the parameter model provides a systematic way to evaluate the relative 

magnitude of adaptive and non-adaptive evolutionary forces in shaping genetic variation. 

To test our statistical model, we conducted simulations to assess the model performance on 

synthetic RAD-seq data generated by simulating bird genomes of length 1000 loci (Eq. 17) that emulate 

the characteristics of genetic data from Willow Flycatchers. Our statistical model accurately identified nine 

out of fifteen adaptive loci with no false positives (Fig. 3A). Out of the nine correctly identified loci, two 

loci were paired incorrectly with their corresponding environmental variable due to a strong correlation 

between BIO 4 and BIO 11. This highlights that biogeographers may need to exercise caution when 

interpreting statistical results or use uncorrelated predictors. The statistically inferred environmental 

variable might be correlated with the true environmental variable responsible for local adaptation (Rellstab 

et al. 2015). Nevertheless, the synthetic simulations suggest that our statistical model is applicable to use 

with genetic datasets from wild populations. 

Indeed, we identified 30 genes that were within the 25kb region flanking 47 significant loci in 

RAD-seq data from Willow Flycatchers, most of which were associated with temperature seasonality (Fig. 

3B and S3). Some of these genes include EDIL3,  PCDH1, and GRIK2, which play a role in the egg 

mineralization process (Le Roy et al. 2021), feather development (Lin, Wang & Redies 2013), and acts as 

a thermoreceptor conferring sensitivity to cold temperatures (Cai et al. 2024), respectively. This suggests 

that temperature fluctuations could be a key driver of local adaptation in the species, providing evidence 

that standing genetic variation in Willow Flycatchers could alleviate or buffer extinction risk due to 

increasing temperature variability predicted by climate projections (Olonscheck et al. 2021).  

Although these genes differ from those identified in Ruegg et al. (2018),  these differences are not 

surprising because our hierarchical statistical model is fundamentally different from traditional 

environmental association analysis in terms of quantifying uncertainty while estimating genetic variation 

and using an evolutionary process model to explain sources of genetic variation. Our synthetic data 

simulations confirm that these differences may play an important role in inferences; re-analyzing synthetic 

data using LFMM resulted in much higher rates of false positives and false negatives (Fig. S4). 

In addition to the conceptual advantages offered by our mechanistic statistical model, synthetic 

simulations highlight several practical scenarios where our hierarchical model might be better suited to 

analyze genomic data. Some of these scenarios include low sample size (less than four individuals), wide 

dispersion in the number of individuals sampled at various locations, and a large fraction of missing 

genotypes. In these scenarios, rather than requiring a biogeographer to discard or collect new data, our 
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statistical model quantifies genetic variation probabilistically and propagates the corresponding uncertainty 

for downstream analysis. However, there are some computational tradeoffs: our statistical analysis took 30 

hours to analyze 105k SNPs on Mac Studio (M1) and, as a result, our approach may require substantial 

computational resources to parallelly analyze genomic datasets with millions of SNPs. 

Despite these computational requirements, the hierarchical structure of the model provides new 

opportunities to improve statistical inferences. For example, the hierarchical model is flexible and can 

integrate a wide range of process and data models, allowing biogeographers to better understand the 

evolutionary responses of a species to changing climate while dramatically reducing the cost of analysis. 

The cost of sequencing varies along three axes—the number of sequenced sites in the genome, the depth of 

sequencing effort, and the number of sampled individuals. Typically, in RAD sequencing, a small 

proportion of sites in the genome are sequenced deeply to identify true genotypes, which are subsequently 

used to estimate allele frequencies (Baird et al. 2008). Although RAD sequencing is a cost-effective 

protocol to obtain a reduced representation of the genome, it fails to characterize a large proportion of 

genetic variation in the genome that could be potentially adaptive (Lowry et al. 2017). New sequencing 

protocols, such as low-depth whole genome sequencing (Alex Buerkle & Gompert 2013) and pool 

sequencing (Gautier et al. 2013), are emerging as attractive alternatives because they provide a wider 

genomic coverage without increasing cost or sacrificing statistical power. The key idea behind these 

approaches is to redistribute the same resources to sequence a larger sample of individuals and a greater 

proportion of the genome (Lou et al. 2021). This reduction in sequencing effort (per individual per locus) 

increases uncertainty in the estimates of individual genotypes. But, instead of discarding SNPs due to low 

coverage, one can model the true genotype as a parameter and propagate the corresponding uncertainty to 

inform population-level allele frequencies. In effect, these approaches sacrifice certainty in individual 

genotypes to gain genomic coverage while keeping the cost and genetic information constant. To leverage 

information from these sequencing protocols, the data model in the Bayesian hierarchy can be modified to 

account for genotype uncertainty in estimating allele frequencies.  

Another potential avenue to improve inferences is to construct alternate process models 

incorporating a wider range of demographic histories. For example, most species, including Willow 

Flycatchers, are geographically structured, and, as such, the migration rates depend on distance between 

demes. Closer demes exchange more migrants than demes that are far apart. This may create genetic 

patterns, such as isolation by distance and genetic swamping, that cannot be adequately captured by an 

unstructured metapopulation model. One possible resolution to this problem is to use stationary distribution 

corresponding to the structured evolutionary dynamics (Constable & McKane 2015). However, in non-

equilibrium settings, such as range shifts due to changing climate or the introduction of invasive species, 

stationary distributions may not be an appropriate process model because of transient evolutionary 
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dynamics and eco-evolutionary feedback. In such cases, one may consider a probabilistic process model 

that jointly describes spatiotemporal changes in abundance and genetic variation (Schurr et al. 2012; 

Polechová & Barton 2015). To inform these joint process models, researchers will require temporal and 

spatial sampling of abundances and genomes, which can be obtained from population surveys (Pardieck et 

al. 2020) and museum collections (Payne & Sorenson 2002), respectively. These improvements in data and 

process models may allow biogeographers to forecast the response of a species to changing climate using 

mechanistic models of ecology and evolution. 
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Figure 1: Breeding range of Willow Flycatchers (dark grey region) and 23 sampling locations. The size of 

the points is proportional to the number of sampled individuals in our study, which varied between 2 and 

21 individuals. 
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Figure 2: A conceptual diagram describing the hierarchical structure of the Bayesian model. The 

data model (top) links the individuals’ genotype (!!"#) to allele frequency (""#) at a locus # in patch 

$ (Eq. 3). The process model (middle) describes the stationary distribution of allele frequency 

resulting from evolutionary forces, such as mutation, migration, drift, and local adaptation. (Eq. 8 

and 11). Finally, the parameter model (bottom) allows us to regularize sensitivity coefficients (Y"9) 

using prior knowledge from molecular evolutionary theory (Eqs. [14], [15], and [16]).   
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Figure 3: Manhattan plot showing negative log probability (− log(-DE)) that the posterior distribution of 

sensitivity coefficients (Y"!) includes zero for synthetic (A) and real data (B). In both plots, points above 

the black horizontal line have -DE less than 0.05. (A) For synthetic data, we denote points above the black 

line using an outer ring and a center. The color of the center (ring) corresponds to the true (statistically 

inferred) environmental variable responsible for local adaptation. (B) For real data, we denote points above 

the black line with a solid center, with its color corresponding to the statistically inferred environmental 

variable responsible for local adaptation (also see Fig. S3). The vertical gray lines represent physically 

linked loci with statistically significant sensitivity coefficients.   
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