
Grounding Descriptions in Images informs Zero-Shot Visual Recognition

Shaunak Halbe*1 Junjiao Tian1 K J Joseph2 James Seale Smith1

Katherine Stevo1 Vineeth N Balasubramanian3 Zsolt Kira1

1Georgia Institute of Technology 2Adobe Research 3Indian Institute of Technology, Hyderabad

Abstract

Vision-language models (VLMs) like CLIP have been cher-

ished for their ability to perform zero-shot visual recog-

nition on open-vocabulary concepts. This is achieved by

selecting the object category whose textual representation

bears the highest similarity with the query image. While

successful in some domains, this method struggles with

identifying fine-grained entities as well as generalizing to

unseen concepts that are not captured by the training dis-

tribution. Recent works attempt to mitigate these chal-

lenges by integrating category descriptions at test time, al-

beit yielding modest improvements. We attribute these lim-

ited gains to a misalignment between image regions and

textual descriptions, which stems from CLIP’s global align-

ment objective. In this paper, we propose GRAIN, a new

pretraining strategy aimed at aligning representations at

both fine and coarse levels simultaneously. Our approach

learns to jointly ground textual descriptions in image re-

gions along with aligning overarching captions with global

image representations. To drive this pre-training, we lever-

age frozen Multimodal Large Language Models (MLLMs)

to derive large-scale synthetic annotations. We demonstrate

the enhanced zero-shot performance of our model com-

pared to current state-of-the art methods across 11 diverse

image classification datasets. Additionally, we introduce

Products-2023, a newly curated, manually labeled dataset

featuring novel concepts, and showcase our model’s ability

to recognize these concepts by benchmarking on it. Signif-

icant improvements achieved by our model on other down-

stream tasks like retrieval further highlight the superior

quality of representations learned by our approach. Code

available at https://github.com/shaunak27/

grain-clip.

1. Introduction

Traditionally, image classification has operated under the

closed-set assumption where models are evaluated on a

*Correspondence to shalbe9@gatech.edu

fixed set of classes that were seen during training. However,

in the real and open-world, models need to account for test

conditions where the number of classes is unknown during

training and can include classes that were not seen.Vision-

language models (VLMs) like CLIP [21] offer a solution

in this space, owing to their open-vocabulary nature. These

models undergo extensive pretraining on large datasets con-

taining paired image-text data and learn to encode images

and texts in a shared latent space where semantically sim-

ilar representations are mapped closed together. For zero-

shot classification, CLIP leverages the names of all classes

within the test dataset—referred to as the vocabulary—as

the candidate set, and determines the most probable image-

classname pairing by computing the similarity between

their latent representations. This vocabulary of classes is

unconstrained, enabling the inclusion of any concept, re-

gardless of its presence in the training set. This facilitates

classification from an open-set of concepts.

Despite this, CLIP’s zero-shot capabilities are still lim-

ited by a few critical challenges. Firstly, in practice, CLIP

often struggles to differentiate between fine-grained cate-

gories, a limitation highlighted by its under-performance

on Fine-Grained Visual Classification (FGVC) datasets [15,

28]. Secondly, while known for its open-vocabulary poten-

tial, it can still perform poorly for some domains not well-

represented in the training distribution, especially if the vo-

cabulary used has confounding categories during testing.

Using a vocabulary that exceeds the scope of the test dataset

significantly diminishes the performance of CLIP even for

common datasets like Imagenet [9]. This decline is again

largely attributed to CLIP’s challenges in differentiating be-

tween semantically similar, fine-grained concepts. Addi-

tionally, CLIP’s inability to recognize novel concepts, such

as Apple Vision Pro that were not present during its

training phase, further restricts its capability to function as

a genuinely open-vocabulary model.

Recent works [16, 20] aim to address these challenges

by incorporating extra information in the form of class de-

scriptions generated by Large Language Models (LLMs) at

test time. These approaches leverage the “visual” knowl-

edge embedded in LLMs to augment the textual repre-



sentations used in zero-shot classification. As an ex-

ample, the class French Bulldog would be expanded

to A French Bulldog, which has small and

pointy ears. These methods provide some improve-

ments over standard CLIP models, though they leave room

for further advancements.

We attribute the limited gains from injecting descrip-

tions to the training schema of CLIP, which optimizes for

global representation alignment between image and text

modalities that might not be suitable for fine-grained tasks.

We aim to verify this hypothesis and propose a method

to overcome these challenges. Specifically, we posit that

the misalignment between images and descriptions stems

from CLIP’s training structure, which focuses solely on the

global objective of matching entire images to their overar-

ching captions, neglecting the rich information that image

regions and textual descriptions share with each other.

Our observations align with recent research [5, 30, 35]

indicating that CLIP tends to overlook fine-grained visual

details during pretraining, leading to subpar performance

on tasks requiring localization [23], object attributes [32],

or physical reasoning [19].

In this work, we propose GRAIN: Grounding and con-

trastive alignment of descriptions, a novel objective for con-

trastive vision-language pretraining that learns representa-

tions more conducive to zero-shot visual recognition. This

is achieved through fine-grained correspondence between

image regions and detailed text descriptions. As a first step

towards our approach, given that pretraining datasets (Con-

ceptual Captions [25], LAION [24], etc.) only contain im-

ages with noisy captions but without detailed descriptions,

we employ an instruction-tuned Multimodal Large Lan-

guage Model (MLLM) to generate descriptions and iden-

tify salient attributes from the images in these datasets. Fol-

lowing this, we acquire region-level annotations that cor-

respond to these descriptions using an off-the-shelf Open-

vocabulary Object Detector (OVD). We then propose a

method that learns to jointly ground text descriptions into

specific image regions along with aligning image and cap-

tion representations at a global level. This strategy aims

to learn representations that encode both coarse-grained

(global) and fine-grained (local) information. To achieve

this, we introduce a query transformer architecture for en-

coding images and a text encoder for processing captions

and descriptions. The architecture and objectives of our

model are specifically crafted to learn object/region-aware

image representations that are valuable for zero-shot tasks

as we demonstrate in the subsequent sections. Finally, to

evaluate our model’s ability to recognize novel concepts,

we curate and manually label a new image classification

dataset, Products-2023, and benchmark upon it.

To summarize, our main contributions are as follows:

Figure 1. Overview of our two-stage annotation process: (1)

prompting LLaVA for image descriptions and (2) acquiring cor-

responding region annotations from OWLv2.

• We empirically show that CLIP pre-training lacks fine-

grained aligned representations, leading to poor zero-shot

performance in some domains.

• We propose GRAIN, a novel pre-training architecture

and objective designed to simultaneously learn local and

global correspondences, obtained via weak supervision

from Multimodal LLMs and open-vocabulary detectors.

• To drive this pre-training, we introduce an automated an-

notation engine to source fine-grained supervision signal.

• We demonstrate significant gains across a range of tasks,

including image classification and retrieval, specifically

improve over the state-of-art by up to 9% in absolute

top-1 accuracy for zero-shot classification and up to 25%

across cross-modal retrieval tasks.

• Acknowledging the lack of image classification datasets

containing novel examples, we collect and manually label

a benchmark dataset termed Products-2023.

2. Related Works

Contrastive Language-Image Pretraining. Follow-up

works on CLIP [22] and ALIGN [11] focus on improv-

ing the quality of learned representations by further in-

troducing self-supervision or cross-modal alignment ob-

jectives [10, 18, 33]. Relevant to our focus, FILIP [31]

introduces a cross-modal late interaction mechanism that

explores token-wise maximum similarity between image

and text tokens to improve fine-grained alignment. Re-

cently, SPARC [1] proposes a sparse similarity metric be-

tween image patches and text tokens to learn fine-grained

representations. While our paper shares motivation with

these works, we address the fact that web-based captioning

datasets [24, 25] contain noisy captions that lack descrip-

tive information thereby limiting the gains achievable from

such elaborate objectives. Instead, we source rich text de-

scriptions and region annotations and design a pre-training

objective to learn from them. This allows us to effectively

use complementary information at test-time (in the form of



Figure 2. Architecture overview. Our method, GRAIN, aligns image representations to text captions at a global level while localizing

salient image regions and aligning them to text descriptions at the local level.

LLM-generated descriptions) to recognize fine-grained or

novel entities.

Improving CLIP using Generative Models. Recent

works have explored the use of LLMs towards improving

the downstream performance of CLIP. Menon et al. [16]

and CuPL [20] focus on the task of zero-shot classifica-

tion, and prompt GPT-3 [2] at test-time to generate class

descriptions. These descriptions are integrated into the clas-

sification prompts to achieve gains in terms of accuracy and

interpretability. Different from these, LaCLIP [7] and Ve-

CLIP [12] use LLMs to rephrase captions from pretraining

datasets and observe noticeable gains on downstream tasks

by training on these captions. In this paper, we propose to

leverage synthetic annotations in the form on image regions

and descriptions generated by a MLLM and an open-world

detector to drive a novel pretraining strategy.

3. Approach

We propose GRAIN, a novel pretraining approach that

simultaneously learns local and global correspondences

between image and text representations. Motivated by the

observation that CLIP representations lack sufficient fine-

grained understanding, we introduce a transformer-based

architecture inspired by DETR [3], to infuse the rich context

from sub-image regions into learned visual representations.

Alongside encoding the image into a semantic represen-

tation, our model predicts bounding boxes for salient

image regions containing discriminative information.

These localizations are then aligned with detailed textual

descriptions. To supervise this fine-grained objective, we

first generate annotations at scale by leveraging Multimodal

Large Language Models (MLLMs) and Open-vocabulary

Object Detectors (OVDs). In this section, we first elaborate

our automated annotation process and then proceed to

discussing our architecture and training methodology.

3.1. Weak Supervision from MLLMs and OVDs

We utilize the 3M and 12M versions of the Conceptual

Captions [25] (CC3M, CC12M) dataset and a 50M subset

of LAION [24] (LAION-50M) to train our model. These

datasets contain images sourced from the internet, each

paired with corresponding alt-texts (or captions). In order

to execute our approach, we require region-level supervi-

sion that is not provided by any existing dataset at scale

Specifically, we find that the captions associated with these

images are often noisy, lack detail and may not fully cap-

ture the dense visual context. To learn fine-grained corre-

spondence between the two modalities, we propose focus-

ing on regions within the image and their descriptions in

text as supervision for training our model. For generating

descriptions and locating their corresponding regions, we

leverage an instruction-tuned Multimodal Large Language

Model, LLaVA[13]. We select LLaVA for its superior cap-

tioning capabilities and accessibility due to its openness;

however, our approach is fundamentally compatible with

any multimodal LLM. For our annotation purposes, we se-

lect the LLaVA v1.6 model which integrates a pretrained

Vision Transformer Large (ViT-L) [6] as the visual encoder

with the Vicuna-13B LLM [4]. It is worth noting that we

only use LLaVA to describe regions/components of the im-

age at a high level and not pinpoint specific fine-grained cat-

egories. A common problem with instruction-tuned models

like LLaVA is their tendency to hallucinate, which causes

the model to output sentences that are not well-grounded

in the image. To address this, we propose a two-stage ap-

proach, as illustrated in Figure 1, to elicit accurate descrip-

tions from LLaVA while minimizing hallucination.



Figure 3. Contrastively align predicted regions with descriptions.

Specifically, the two-stage prompting approach is as fol-

lows: in the first stage, we ask LLaVA to identify the

primary visual subject in the image using a simple, fixed

prompt: “What is the primary visual subject in this image?

Answer in 2-3 words at most.” By doing this for every im-

age, we collect the main focus of each image. The gen-

erations from this prompt typically capture the prominent

object, scene, or concept at a high level. Next, we construct

specific prompts for each image by asking LLaVA to de-

scribe the identified subject: “What are some distinguishing

visual features of this {subject}? Answer as a concise list

of features”. We observe that the generations from this two-

stage pipeline are more faithful to the visual context and less

susceptible to hallucinations.We present a qualitative analy-

sis on this in the Appendix. This procedure provides us with

a list of descriptions for each image. Additionally, we ask

LLaVA to generate a short one-line description the image by

prompting it with “Describe this image in one line”. This

description gives a high-level overview of the visual con-

text, and it is utilized as text-level data augmentation during

training. From this point forward, we refer to this descrip-

tion as the MLLM-caption, and the one from the pretraining

dataset as the original caption.

Next, we are tasked with localizing these generated de-

scriptions within the image to obtain the necessary supervi-

sion for training our grounding module. We leverage the

OWLv2 Open-vocabulary Detector [17] to localize these

descriptions within the image. For each description, we fil-

ter out the core attribute being referred to and pass it to the

open-world detector for localization. The detector gener-

ates several candidate proposals, from which we select de-

tections based on a confidence threshold value. We set this

threshold to a relatively high value to ensure high-quality

detections. Subsequently, we eliminate redundant bounding

box predictions using non-maximum suppression, retaining

only the box with the highest confidence score for each re-

gion and discarding others with significant overlap.

This procedure enables us to acquire descriptions,

bounding boxes, and MLLM captions, which are subse-

quently utilized to train our model, as detailed in the up-

coming section. We aim to release this dataset to benefit

future research in this direction.

Figure 4. For zero-shot image classification, the image output em-

bedding is compared with text embeddings of classnames enriched

with descriptions for assignment.

3.2. Model Architecture

We adopt a dual-encoding approach similar to CLIP for pro-

cessing image and text modalities, leveraging contrastive

learning to align these representations. For visual represen-

tations, we utilize an encoder-decoder network architecture.

Notably, all components of our architecture are trained from

scratch without any pretrained initialization. In our vision

encoder, we adopt a standard vision transformer (ViT) that

divides the input image into HW
P 2 patches where (H,W ) is

the input image resolution and P denotes the patch size. The

output tokens corresponding to each input patch are fed into

our transformer decoder as shown in Figure 2. Both text de-

scriptions and captions are processed by a text transformer

which utilizes the same architecture employed in CLIP.

Transformer Decoder. Inspired by DETR [3], we imple-

ment a transformer decoder that takes as input a small num-

ber of learnable position embeddings called queries and at-

tends to the encoder output. We use two types of queries

as input to this model. First we have nq number of queries

that we call region queries, whose corresponding outputs

are used to predict bounding boxes. Additionally, we use a

single image query to learn the overall image context. The

transformer model transforms these input queries through

self-attention between region and image queries and cross-

attention with the encoder output to form output embed-

dings. The embeddings corresponding to the region queries

are utilized for bounding box prediction and serve as seman-

tic representations for local regions, while the embedding

corresponding to the image query captures the overall im-

age representation needed for contrastive learning alongside

captions. This image query output is passed through a pro-

jection layer before contrastive alignment with the text cap-

tions. The bounding box prediction module is exclusively

used during training to learn region-aware image features

and is inactive during evaluation.

Bounding-Box Prediction. The region output embeddings



Table 1. Zero-shot transfer evaluation of different models. We highlight the best performance of each setting in bold. We see that GRAIN

improves performance under both pretraining datasets, outperforming CLIP by up to 9% in absolute top-1 accuracy. CLIP* is a version of

CLIP with the same number of parameters as our method for fair comparison.
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LLaVA + CLIP 89.69 57.72 55.24 15.90 35.37 47.16 75.03 24.69 6.22 29.43 52.80 44.48 35.20

CC3M

CLIP[22] 48.86 18.70 28.44 0.68 9.23 6.94 41.02 8.48 2.51 17.85 8.73 17.40 14.01

Menon&Vondrick[16] 49.35 17.93 29.74 0.60 10.43 7.05 43.89 7.67 2.84 19.12 9.64 18.02 14.12

CuPL[20] 50.16 18.98 29.66 0.71 9.89 8.22 43.95 8.84 2.91 19.73 10.51 18.51 14.14

CLIP* 46.99 18.49 29.76 0.52 8.40 6.62 42.56 8.29 3.36 18.70 10.01 17.62 14.04

CLIP* + Menon&Vondrick[16] 49.37 17.98 29.94 0.62 10.55 7.14 44.02 8.38 3.51 19.23 10.24 18.27 14.16

CLIP* + CuPL[20] 50.24 18.86 30.12 0.74 10.14 8.06 43.78 8.95 3.32 19.56 10.77 18.59 14.14

GRAIN (Ours) 65.86 35.20 38.07 1.34 17.24 14.15 65.20 13.24 5.47 24.96 16.18 27.00 23.34

CC12M

CLIP [22] 71.24 36.66 48.84 4.57 19.28 42.06 70.09 20.51 7.63 31.84 40.94 35.79 34.66

Menon&Vondrick [16] 72.68 37.08 48.59 5.12 18.45 41.38 72.29 21.15 8.27 31.36 41.20 36.14 34.32

CuPL [20] 72.85 37.37 49.06 4.88 18.71 41.58 71.17 22.82 7.94 30.28 40.89 36.15 34.65

CLIP* 70.07 35.63 50.42 4.31 18.35 39.40 74.24 21.04 7.96 32.03 41.36 35.89 33.51

CLIP* + Menon&Vondrick [16] 72.74 37.44 51.20 5.31 18.47 41.74 74.44 21.22 8.32 32.72 41.92 36.87 34.50

CLIP* + CuPL [20] 72.77 37.85 51.08 5.12 18.98 41.14 74.22 22.68 8.05 32.34 41.65 36.90 34.77

GRAIN (Ours) 81.40 46.23 55.26 8.42 25.68 48.76 81.49 26.27 10.28 36.76 45.39 42.36 41.46

LAION-50M

CLIP 79.90 55.52 54.14 8.90 31.01 60.97 76.24 45.05 35.60 36.40 60.26 49.45 44.83

Menon&Vondrick [16] 79.15 55.55 55.28 9.94 34.62 62.36 77.02 44.65 35.29 37.12 60.83 50.16 45.69

GRAIN (Ours) 86.48 64.55 58.86 12.56 40.42 61.48 79.15 46.65 35.79 37.44 61.48 53.17 48.44

are fed into a multi-layer perceptron for bounding box pre-

diction. The input size of this MLP is equal to the em-

bedding dimension d and the output size is set to 4, corre-

sponding to the four bounding box coordinates. These MLP

weights are shared across all queries.

Semantic Representations. Each region output embedding

is additionally passed through a projection layer to map

it into the shared semantic space. The resulting semantic

representations are utilized for contrastive alignment

with text descriptions. This region-description alignment

procedure is illustrated in Figure 3.

3.3. Training Objectives

Our approach simultaneously optimizes for three objec-

tives: localizing salient regions within the image, con-

trastively aligning text descriptions to these salient image

region representations, and globally aligning images with

captions.

Image-Caption Alignment (Lic). We adopt the symmet-

ric cross entropy loss from CLIP to maximize the similarity

between correct image-caption pairings while contrasting

against incorrect pairings within the batch. As with CLIP,

we use the [EOS] token from the last layer of the text trans-

former and the output embedding corresponding to the im-

age query as feature representations for Lic.

Bounding Box Loss (Lbox). Our model predicts nq bound-

ing boxes per image corresponding to the region queries. nq

is set to be greater than or equal to the maximum number

of objects per image in the training set. Given the vari-

able number of objects per image, we employ the Hun-

garian Matching algorithm to establish a bipartite match-

ing between predicted and ground truth boxes. For the

matched boxes, we implement the bounding box loss de-

rived from DETR, which combines the scale-invariant IOU

loss and the L1 loss between the bounding box coordi-

nates. Overall, the bounding box Lbox(bi, b̂σ(i)) is defined

as Liou(bi, b̂σ(i)) + ∥bi − b̂σ(i)∥1.

Region-Description Alignment (Lrd). We use an In-

foNCE loss [26] to learn alignment between output region

embeddings and descriptions. Here, the descriptions corre-

sponding to ground truth bounding boxes serve as supervi-

sion. We leverage the matched indices between predicted

outputs and ground truth boxes obtained via the Hungarian

Matching algorithm in the last step to determine ground-



Table 2. Results (Recall@k) on zero-shot image-to-text and text-to-image retrieval tasks on MS-COCO and Flickr30k.

Data Model

MS-COCO Flickr30k

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CC3M
CLIP 15.79 38.26 50.70 13.58 33.76 46.04 27.00 53.80 66.30 21.78 44.26 55.10

GRAIN 38.26 65.96 77.03 28.81 55.86 69.00 59.90 81.80 88.40 42.82 68.21 76.54

∆ +22.47 +27.70 +26.33 +15.23 +22.10 +22.96 +32.90 +28.00 +22.10 +21.04 +23.95 +21.44

CC12M
CLIP 41.32 69.40 80.04 30.02 57.32 69.65 59.60 84.70 89.90 43.63 68.75 76.77

GRAIN 58.30 83.07 89.67 42.66 70.77 80.83 78.00 94.60 97.80 59.36 80.01 85.59

∆ +16.98 +13.67 +9.63 +12.64 +13.45 +11.18 +18.40 +9.90 +7.90 +15.73 +11.26 +8.82

LAION-50M
CLIP 49.33 75.52 86.46 38.12 62.42 75.56 64.88 89.37 93.18 49.44 73.52 80.48

GRAIN 64.24 87.75 93.48 48.49 75.10 83.30 82.40 95.88 98.24 63.18 82.93 87.14

∆ +14.91 +12.23 +7.02 +10.37 +12.68 +7.74 +17.52 +6.51 +5.06 +13.74 +9.41 +6.66

truth descriptions for each predicted region output embed-

ding. These matched ground truths are considered positive

pairings, while all other pairings within the batch are treated

as negatives for InfoNCE. Optimizing for this loss enables

our model to learn fine-grained associations between rich

textual descriptions and salient image regions that contain

discriminative visual features. Overall, the final objective

function is an equally weighted combination of three com-

ponents.

  \mathcal {L}_{total} = \mathcal {L}_{ic} + \mathcal {L}_{box} + \mathcal {L}_{rd}       (1)

3.4. Inference

At inference time, our model behaves similar to CLIP,

conducting zero-shot classification/retrieval by computing

image-text similarities. The image output embedding from

our decoder serves as the feature representation for the im-

age. Through self and cross-attention mechanisms, this fea-

ture is informed about the fine-grained regions that are char-

acteristic of the given image. The localization modules are

inactive during inference; however, they can be used to pro-

vide valuable insights for interpreting the model’s predic-

tions. For zero-shot image classification (Tables 1, 5), we

enhance class names by appending their descriptions, as il-

lustrated in Figure 4. These descriptions are sourced from

a LLM similar to [16, 20]. Leveraging the rich image-text

correspondences learned during training, our model effec-

tively uses these descriptions to recognize fine-grained and

novel categories.

4. Experiments

The goal of our method is to learn fine-grained vision-

language representations that can aid zero-shot visual

recognition. By recognizing and addressing the alignment

discrepancy between CLIP’s representations of image re-

gions and the rich textual context, our method learns visual

representations that are aware of the salient regions in the

image and their associations with corresponding textual de-

scriptions. Although the focus of our method is on visual

recognition, we observe that our learned representations

are of high quality through experiments on cross-modal re-

trieval benchmarks. We compare against CLIP as our pri-

mary baseline, along with recent works like Menon & Von-

drick [16] and CuPL [20], that also leverage complementary

information from foundation models to improve upon CLIP.

We train all CLIP-based baselines from scratch under the

same training conditions and evaluate all approaches with a

zero-shot evaluation protocol.

4.1. Experimental Setup

Model Architectures. For all models, we employ the

ViT-B/16 [6] architecture for the vision encoders and the

Transformer base model [27] for text encoders as described

in CLIP [22]. We include results for additional ViT sizes in

the Appendix. Our approach, GRAIN, additionally utilizes

a query-decoder with 6 transformer decoder layers. We

set the number of queries nq to 10. The outputs from

the decoder are processed by projection layers to obtain

features in the semantic space, and a 2-layered MLP for

predicting bounding boxes. In addition to these compar-

isons, we evaluate our approach against the substantially

larger LLaVA v1.6 model, which includes a ViT-L/14

paired with Vicuna-13 LLM. For this model, we utilize a

pretrained checkpoint from huggingface [29].

Pretraining Setup. All models are pre-trained on two

distinct image-text datasets that vary in scale: Concep-

tual Captions 3M (CC3M), Conceptual Captions 12M

(CC12M) [25] and a 50M subset of LAION [24]. Train-

ing for all models is conducted using the AdamW opti-

mizer [14] across 35 epochs, using a cosine learning rate

schedule and weight decay regularization. While training

GRAIN, we randomly choose between the original caption

and the MLLM-generated caption as the text supervision.

Baselines. To ensure fair evaluation, all baselines were

trained under conditions similar to GRAIN. The introduc-



Table 3. We report top-1 accuracy (%) for zero-shot attribute-based classification. This is a challenging task as indicated by the results.
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CC3M

CLIP 24.20 7.30 13.65 0.75 6.86 3.43 24.68 1.90 1.79 8.93 5.04 8.97 4.53

GRAIN (Ours) 46.06 18.20 20.02 0.95 14.57 4.87 45.82 2.34 1.72 13.06 7.63 15.93 7.87

∆ +21.86 +10.90 +6.37 +0.20 +7.71 +1.44 +21.14 +0.44 -0.07 +4.13 +2.59 +6.96 +3.34

CC12M

CLIP 43.71 16.05 23.06 1.67 11.33 7.02 40.61 4.08 2.29 14.78 12.74 16.12 9.41

GRAIN (Ours) 67.39 26.29 32.46 4.21 17.61 12.38 59.09 3.66 2.72 20.39 18.29 24.04 14.53

∆ +23.68 +10.24 +9.40 +2.54 +6.28 +5.36 +18.48 -0.42 +0.43 +5.61 +5.55 +7.92 +5.12

tion of the decoder architecture in our model results in a

22% increase in parameter count compared to CLIP. For

a more fair comparison we report numbers for CLIP by

leveraging the same architectures as GRAIN but with lo-

calization modules turned off. This baseline is reported

as CLIP* throughout the paper. Additionally, we report

the performance of the LLaVA v1.6 model to benchmark

our model’s performance against a state-of-the-art MLLM.

Open-ended MLLMs like LLaVA are known to struggle

with fine-grained visual recognition [34]. Hence, we pro-

pose a new inference strategy to evaluate LLaVA on clas-

sification tasks, providing a stronger baseline. Specifically,

we first prompt LLaVA to predict a category for an image.

Due to its open-ended nature, we cannot directly determine

if the generated answer matches the ground truth. To ad-

dress this, we use a pretrained CLIP text encoder to map

LLaVA’s generated answer to the closest category within

the dataset’s vocabulary. This mapped category is then used

as the prediction to compute the top-1 accuracy. We refer

to this baseline as LLaVA + CLIP in Table 1, representing

a stronger and improved baseline over LLaVA alone. De-

spite possesing orders of magnitude more parameters and

being trained on billion-scale datasets, our method manages

to surpass LLaVA’s performance, which shows that our im-

provements emerge from careful modeling decisions, rather

than a simple increase in data volume or model size.

4.2. Zero-shot image classification

We perform zero-shot classification and evaluate all models

on Imagenet and 11 additional datasets encompassing com-

mon and fine-grained sets. We measure the top-1 accuracy

and report results in Table 1. Our approach, GRAIN, consis-

tently outperforms the current state-of-the-art across all set-

tings and datasets. Specifically, GRAIN improves the zero-

shot performance by as much as 9% in absolute accuracy

on Imagenet and achieves similar improvements averaged

across all other datasets. Notably, our method surpasses ex-

isting benchmarks by significant margins across both fine

and coarse-grained datasets, with our most substantial im-

provement reaching up to 22% absolute accuracy on the

Caltech-101 [8] dataset within the CC3M training setting.

4.3. Cross-modal retrieval

We evaluate the pre-trained models on the task of cross-

modal retrieval under the zero-shot setting. Specifically, we

focus on the Image-to-Text (I2T) and Text-to-Image (T2I)

retrieval tasks using the MSCOCO and Flickr30k datasets in

Table 2. Our evaluations are conducted on the standard test

sets for both datasets, and we report performance metrics in

terms of Recall@k for k values of 1, 5, and 10. Compared

to CLIP, our method achieves superior performance with

performance gains of up to 33%.

4.4. Zero-shot attribute-based classification

To measure image-description alignment, we design an ex-

periment to classify images by leveraging only descrip-

tions/attributes. This is a challenging task, as image classi-

fication is being performed devoid of class names. Toward

this end, we first prompted GPT-3 using class names from

the downstream dataset’s vocabulary to obtain descriptions.

Next, instead of the traditional approach of encoding class

names and computing similarities with images, we encoded

the description corresponding to the class name (omitting

the class name itself) to obtain the text representation and

computed similarities with images. The class correspond-

ing to the text representation that scored the maximum sim-

ilarity with the test image is considered the prediction for

that image. We compute top-1 accuracy as usual and re-

ported for all datasets in Table 3. From Table 3, we ob-

serve that our model is able to achieve strong improvements

over CLIP, demonstrating closer image-description align-

ment. On average, we achieve an improvement of 6-7%

over CLIP, showcasing better alignment.



Table 4. Ablation studies on our CC3M trained model reporting top-1 accuracy (%)
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GRAIN 65.86 35.20 38.07 1.34 17.24 14.15 65.20 13.24 5.47 24.96 16.18 27.00 23.34

– Region-description loss 58.21 27.07 35.28 1.01 14.20 9.18 58.86 9.13 3.52 22.31 13.05 22.89 18.73

– Box loss 57.06 26.17 34.38 0.93 14.67 8.87 56.91 8.31 3.20 21.35 13.12 22.27 17.54

– MLLM-caption 47.24 19.92 28.51 0.70 8.78 7.04 43.95 8.20 2.99 20.06 9.01 17.85 14.56

– Menon&Vondrick [16] 46.99 18.49 29.76 0.52 8.40 6.62 42.56 8.29 3.36 18.70 10.01 17.62 14.04

4.5. Recognizing Novel Examples

It is desirable for open-vocabulary models to generalize

to novel, unseen examples at test-time without requiring

re-training. Zero-shot learning methods often utilize aux-

iliary information, such as attributes, for classifying un-

known entities. Hence, our approach aims to recognize

these concepts by leveraging LLM-generated descriptions.

Accuracy (%) Products-2023

CLIP 33.65

LLaVA 42.08

GRAIN 45.24

Table 5

In this experiment, we

aim to test our model’s

ability in recognizing

novel entities that were

absent from the train-

ing distribution. Toward

this end, we collect 1500 images of products launched af-

ter 2023, manually filter these images for quality control

and label them into 27 novel categories to form a new

benchmark dataset. We call this the Products-2023 dataset.

These concepts are absent from our model’s training distri-

bution making them novel. We provide additional details

on this dataset in Appendix. We evaluate our model along

with CLIP and LLaVA on this dataset in Table 5. Again,

LLaVA is evaluated using the same strategy described in

Section 4. We observe superior results achieved by our

approach against CLIP and even against the much larger

LLaVA model confirming the efficacy of our approach in

recognizing novel samples.

4.6. Ablations

To assess the importance of the different components in

GRAIN, we conduct four ablation experiments. We re-

strict to models trained on CC3M due to computational con-

straints. The outcomes of these ablations are reported as

top-1 accuracy in Table 4.

Ablating the region-description alignment loss. This

component is crucial to our framework as removing it

causes an accuracy drop of 5% on all datasets on average.

This considerable decrease underscores the vital role of this

loss in establishing fine-grained correspondences between

salient image regions and their descriptions.

Ablating the localization loss. Further removing the

bounding box prediction losses from our training regime

leads to a modest performance drop. This loss is instru-

mental in identifying and predicting salient regions within

the image, and, in conjunction with the alignment loss is

crucial to developing fine-grained visual understanding.

Ablating the role of MLLM-caption during training.

We employ captions generated by LLaVA as a form of

text-level data augmentation during training, alternating be-

tween these and the original image captions. The MLLM-

generated caption provides a high-level visual summary of

the image, proving to be significant for training, as indicated

by a 3% decrease in performance upon its removal.

Ablating the role of test-time descriptions. In line with

the approach of Menon & Vondrick [16], we utilize descrip-

tions generated by GPT-3 to enrich class names during zero-

shot classification. Excluding these augmented descriptions

results in a minor performance reduction, suggesting that

while beneficial, our model’s performance is not reliant on

these test-time descriptions.

5. Conclusion

In this paper, we propose a new pre-training method for con-

trastive vision-language models. Specifically, we hypothe-

size that many of the current limitations of CLIP stem from

its image-level contrastive pre-training, which neglects fine-

grained alignment. As a result, we propose to leverage

Multi-Modal Large Language Models (LLaVA) and Open-

Vocabulary Object Detectors (OWLv2) to automatically

generate weak supervision to drive a more fine-grained pre-

training process. We demonstrate superior performance

across 11 different classification datasets, including ones

containing fine-grained and novel examples, as well as addi-

tional tasks such as cross-modal retrieval. Our results show

significant improvement over the state-of-art, including by

up to 9% in absolute top-1 accuracy for zero-shot classifi-

cation and 25% on retrieval. Our method can even outper-

form LLaVA, which is over 13B parameters (compared to

our ∼170M) and was trained on billions of data-points.
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[1] Ioana Bica, Anastasija Ilić, Matthias Bauer, Goker Erdogan,
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