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Abstract

We obtain asymptotic minimax optimal posterior contraction rates for estimation of proba-
bility distributions on [0, 1]¢ under the Wasserstein-p metrics using Bayesian Histograms. To
the best of our knowledge, our analysis is the first to provide minimax posterior contraction
rates for every p > 1 and problem dimension d > 1. Our proof technique takes advantage
of the conjugacy of the Bayesian Histogram.

1 Introduction

The Wasserstein metric is a popular tool for comparing two distributions p and v defined on a common
metric space (E?, || - — - ||2) where E C R. For 1 < p < oo, the Wasserstein distance W, is defined as

Wytprspe)i= (_ut =l dr(x,w)l/p, 1)

TEM(p1,p2
where M (1, o) is the set of couplings of p; and po; specifically the joint probability measures on F x E
with marginals p1 and ps respectively. Some benefits of using the Wasserstein metric include its sensitivity
to distance in the underlying space, ability to compare distributions regardless of continuity level, and its 1-

dimension equivalent representation as the LP distance between quantile functions, which facilitates quantile
function inference (Zhang et al.| [2020)).

In this paper we study the problem of non-parametrically estimating a distribution Py on E? (where E =
[0,1]) under the Wasserstein metric from n independent and identically distributed (i.i.d) random variables
Yi,...,Y, drawn from F,. Our focus is on the unconstrained problem; that is, we place no additional
assumptions on Py. From the viewpoint of analyzing only frequentist estimators, this is a well studied
problem. The frequentist convergence rates of the empirical measure under the expected Wasserstein distance
are studied in (Fournier & Guillin, 2015} [Singh & Pdéczos, 2018; Bobkov & Ledoux, 2019; Weed & Bach),
2019) to varying degrees of generality. A consequence of the work of (Singh & Péczos| 2018) is that on the
metric space ([0,1]¢,]| - — - ||2), for d € N, for the class of Borel probability measures, the empirical measure
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is minimax optimal (at least up to logarithmic terms) for every p > 1. Further, the minimax rate is lower
bounded by n=/?? for d < 2p, and n=/% for d > 2p.

Far less has been done in providing frequentist guarantees for Bayesian statistical procedures when the
inferential goal is to estimate a non-parametric distribution underneath a Wasserstein distance. In a non-
parametric Bayesian model aimed at inferring a probability distribution on E<, for each sample size n, a prior
Mo, is placed on the space of Borel probability measures on E¢. We denote this space P4(E). The sample
size n posterior distribution, which we denote IT,(:|Y7,Y2,...,Y,), is a regular conditional distribution over
P4(E) induced from the likelihood and the prior IIy,. Given a distance function d between probability
measures on E (e.g Kullback-Leibler, Hellinger, Wasserstein—1, Total Variation, etc.) we say the sequence

of posterior distributions contracts almost surely at the rate €, under Py if I, (P € Py(E) : d(Po, P) > €,)
converges almost surely to 0 as n — oo when Y1,Y5,...,Y, i Py (Ghosal & Van der Vaart, [2017)).

There are other useful but weaker notions of posterior contraction, such as the in probability variant which
seeks only to show that for every M, — oo, IL,,(P € P4(E) : d(Py, P) > M,e¢,) — 0 in probability under
Py. We focus on the stronger almost sure version in this work because an almost sure PCR of ¢, holding
uniformly over every P, in a finite class Py(F) implies the existence of an estimator Pn derived from the
posterior achieving Ep, d(Py, 15,,) < €, uniformly over Py € P4(FE). Specifically, an asymptotically minimax,
almost sure PCR holding uniformly over the finite class P4(E) cannot decay at a faster rate than the minimax
rate |'| It is for this reason that if for every Py € Py(E) the almost sure Posterior Contraction Rate (PCR)
€n is achieved, and ¢, is the frequentist minimax rate over Py(FE), we say the Bayesian method is agnostic
to the prior choice in the presence of an infinite amount of data under class Py(E). In particular, the
practitioner can specify prior knowledge that may be beneficial for inference at small sample sizes when that
prior knowledge is correct, but if this prior knowledge is inaccurate, the method will still be competitive
(from the minimax perspective) with the best possible estimator when the sample size is sufficiently large.
In our work Py(E) is not finite, and we introduce in Definition |1| a slightly stronger property of contraction
rate across a distribution class which cannot outperform the minimax rate regardless of the size of Py(E);

the main result of this work proves this stronger property.

Ghosal et al.| (2000) provides a general three condition verification strategy for proving these PCRs. This
strategy or minor variants have been the catalyst for a myriad of minimax PCR results for the problem of
estimating a distribution via i.i.d samples. For example, [Scricciolo| (2007)) uses a histogram model with a
prior on the bin weights and number of bins to prove minimax PCRs for the distribution class possessing «
Holder smooth densities on [0,1]¢, where a € (0,1], d > 1 and d is the Hellinger distance. [Kruijer & Van der
Vaart (2008)) also achieves minimax PCRs for the estimation of a—Holder density class when d € {1,2} and
d is the Hellinger distance using a weighted mixture of Beta density functions with a prior on the mixture
weights and number of mixed densities. A notable achievement of these works is that the value « is not
used in the construction of the posterior, yet minimax optimality is still achieved for the o Holder density
class. That is, the methods adapt to the smoothness parameter. Shen et al. (2013) provides minimax
PCRs for the estimation of smooth distributions on R? using a weighted mixture of Gaussian distributions
with a prior on the covariance matrix of the mixed Gaussians when d is the Hellinger distance or Total
Variation distance; smoothness adaptive guarantees are provided. However, note that rather than studying
the unconstrained distribution estimation setting, these works focus on estimation of distributions known to
possess a smoothness property, and in any case do not study estimation underneath Wasserstein distance.

Unfortunately the |(Ghosal et al. (2000) approach is more difficult to use when d is a Wasserstein metric.
Challenges include W,,p > 2 not being dominated by Total Variation or Hellinger distances, causing the
need for explicit test construction. Also, the Kullback-Leibler neighborhood condition, which ensures such
neighborhoods of Py have sufficient prior mass, may make it more difficult to achieve the minimax rate
under W), p > 1 because depending on the model under consideration, approximation of distributions under
the Kullback-Leibler divergence may not be achievable at the square of minimax rate under W), E In light
of these challenges, there have been far fewer theoretical advances in proving minimax optimal PCRs for
distribution estimation under W,,,p > 1 than under Total Variation and Hellinger distances.

lsee appendix Lemma, E for proof

2Chae et al. (2021) (p.3644) already encounters Kullback-Liebler condition limitations when only estimating distributions
on R
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Chae et al.| (2021)) successfully derive a 2 condition verification strategy for proving PCRs under Wasserstein
distance when F = R. This work appears to be the first providing a set of general conditions for proving
Wasserstein PCRs for the unconstrained, non-parametric distribution estimation problem, and their method
is applicable for distributions with unbounded domain. Their results are restricted to the study of 1 di-
mensional distributions. Also, the |Ghosal et al.| (2000) and [Chae et al.| (2021)) frameworks depend on the
posterior distribution being available through Bayes formula. |Camerlenghi et al. (2022) observes that this
can be limiting and develops a method to derive PCRs when the posterior is not available via Bayes formula.
They apply their technique to derive Wasserstein PCRs for each d € N, v > 1 for the model placing a Dirich-
let process prior on the data generating distribution. The PCR derived for Py € P4([0,1]) is 2 n" I
which via the discussion earlier in this section is slower decaying than the minimax rate by a polynomial
factor for every d € N;p > 1. In the Deconvolution problem, where for i € {1,2,...,n}, Y; = X, +¢; and
Xi,..., X, (S P, is independent of €1, ..., €, ud o and pg is known and the goal is to infer Py, Wasserstein
distance PCRs have been derived in |[Rousseau & Scricciolo (2023)) JGao & van der Vaart| (2016)), and Scricciolo
(2018). Py is called the mixing distribution. The distribution of Y7, however, is the convolution Py * 1.

1.1 Contributions

Our main contribution is Theorem (1] In it we obtain PCRs for every dimension d > 1 and for every distance
Wp,p > 1 and the PCRs achieved are minimax optimal at least up to logarithmic terms. To the best of our
knowledge, our result is the first to provide a minimax optimal PCR across each (d € N,p > 1) setting for
estimating an unconstrained Py € Py([0,1]). These rates are achieved using a Bayesian Histogram model
that partitions [0,1]? into b¢ equal area squares where b, := 2Mogz2(kn)1 for a sequence k, growing as a
function of the sample size n at the appropriate rate, uses the Multinomial likelihood to weight the constant
density within each square, and places a sample size dependent Dirichlet prior distribution on the weight
vector with prior concentration vector a;, (of dimension b%). This model induces a sequence of posterior
distributions I1,, x,, a, over P4([0,1]). In Theorem |1} we show that

o ke, (P € Pa([0, 1)) : Wy(FPo, P) = €n(d, v)) = 0

in a very strong sense under Py (implying almost sure and in probability convergence) provided that

gl 1
L If d < 2p then kp, =120, 375 oanomsen)) Qg b, SNZ, € X0 2P

~

=

1 _r _
2. If d > 2p, then k,, = nd, Zjezdnogz(knﬂ ;b < nt d,€p XN

where log terms in €, which are specified in the theorem are ignored here. In the problem of providing
optimal PCRs for estimating distributions on [0, 1]? under Wasserstein-p distance, our results close the gap
between the minimax rates for this problem and the Wasserstein PCRs provided by |(Camerlenghi et al. (2022)).

The remainder of this paper is organized as follows. In Section [2| we formally introduce the Bayesian His-
togram model. In Section [3|we introduce the strong notion of posterior contraction under which our theorems
are proved and show connections between this notion of posterior contraction with minimax lower bound
rates and traditional PCR statements. In Section ] we state the main theorem and the three fundamental
lemmas upon which the main theorem depends. We then prove the main theorem. In Section |5| we provide
instruction on how to use the prior distribution to express prior beliefs when using this model in practice.
In Section [6] we provide the proofs of the lemmas and in Section [7] we provide concluding remarks.

2 Bayesian Histogram

2.1 General Notations

Since we always consider probability distributions on [0,1)?, we drop the E notation of the introduction and
denote
Py := {Borel Probability Measures on [0,1)%}
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Excluding the right end points are a notational convenience but extension of the arguments that follow to
include the right endpoint is trivial.

For sequences of numbers a,,, b,, defined for sufficiently large n € N, a,, < b,, means there exists a C > 0 and

Ny € N such that for n > No,a, < Cb,. For b,d € N, we denote [b] := {1,2,...,b} and [b]¢ := H;'l=1[b]-
For B C R% B(B) denotes the Borel measurable subsets of B. For j € N, S7=1 refers to the (j — 1)
dimensional probability simplex. That is $7~' := {(z1,...,2;) € RI : S 2, = 1,2, > 0 for t € [f]}.
Also note that Ry := {# € R : 2 > 0} and for z € N and a € RZ, the Dirichlet probability measure
Dirichlet : B(S*~1) — [0, 1] is given by

1 z
Dirichlet(Glar) = 7/ z& e, (2)
B(a) Gg ’
| J R XCTII . . .
where Bla = (a1,0s,...,a;)) = m is the z dimensional Beta function and I'(z) denotes the
j=1 "7

Gamma function evaluated at  and G € B(S*71). For b € N and a multi-index i = (iy,42,...,iq) € [b]%,
define

AN R ia—1 ia
Az,b.{ 5 ,b>><[ 5 ,b>><...,><{ 5 ’b)' (3)

Clearly, {Ajp}iepe form a partition of [0,1)%. For a vector of weights m = {m;}jepe € S™ !, the d
dimensional Histogram probability measure Histogram : B([0,1)?) — [0, 1] is a weighted mixture of uniform
distributions on the partition sets A;p, defined by

Histogram(G|m, b) ::/ Z Viml(y € A;p)dy, (4)
G iep)e

where G € B([0,1)4).

2.2 Bayesian Histogram Model Definition

We suppose Y7,Ys,...,Y, i Py where Py € Py. For b € N, let ap := {ajp}jep)e € Rf’,fi. For an increasing
sequence ky, let by, := 25 where K, := [logy(kn)], Tn := {mnj }icpne € SP97 1. For n € N, the Bayesian
Histogram model likelihood and prior are given by

Yi,....Y,|m, e Histogram(-|m,,b,),  mn|ap, ~ Dirichlet(-|a, ). (5)

Also, let 2 (-|Y1,...,Y,) refer to the posterior probability measure over S*»¢~1 derived from Equation [5} As
Qip, > 0 for every i € [b,]? and for every n € N, Equation [5| induces a sequence of posterior distributions
over Py. Specifically let vy : S’ 1 — Py be the map that takes a given m = {m; }je[b]d and produces its
corresponding Histogram probability measure. That is

() = Histogram(-|m, b). (6)

For a measurable set B C Py, the posterior measure II,, j is

n30by,

Mok, (BIY1, - Vo) = 2, (4 (B)[YA, -, Vo). (7)

Because the conjugate prior of the Multinomial distribution is the Dirichlet distribution (see for example
Gelman et al. (2013)), Section 3.4) and the induced likelihood over the vector of bin counts is the Multinomial
distribution, it is straightforward to show that

2y (|1, ...,Y;) = Dirichlet(-|ag, ),
where for i € [b,]¢

iy, = ip, + Y 1Y € Aip,). (8)

j=1
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Now allowing @, € {x € R: 2z > 0}’ we define the sequence of estimators for Py, denoted P, by

E3
Xib,,

E3
2 jelbald % b,

Py knan, = Ub, ( ) = Y, {(Ees (mil Y1, Yo) )iepa)e ) 9)
ic[b,]?

where the second equality above holds if a; p, > 0 for i € [b,]?.

We note that posterior distributions derived from improper prior distributions are not considered in this
work, and therefore to consider the posterior measure sequence II,, we require that o;y, > 0 for ¢ € [bn]9.
However, we allow P, to be defined regardless of whether or not the prior distribution over the simplex is
proper. In particular, it is still defined in the event that some or all of the o, parameters are zero. When
the prior distribution is proper, P, has an additional interpretation: it is the Posterior Mean Histogram.
In the lemmas and theorems that follow that involve analysis of the posterior distribution sequence II,,, we

make clear that we require a;p, > 0 for i € [b,]? and n € N.

]5”7;%%” (and II,, x,, a,, ) are indexed by the choice of k,, (which determines the total number of bins) and
o, , which gives the prior concentrations on those bins. In the subsequent subsection we establish constraints
on ky, and ay, that ensure Pn,kn,abn and Hn,kn,abn are minimax statistical procedures.

3 Notions of Minimax Posterior Contraction

First we introduce a strong notion of posterior contraction across an entire distribution class which cannot
decay faster than the minimax rate in general (regardless of the size of the space). It is for this reason we
call this stronger notion of posterior contraction a minimaz-conscious PCR.

Definition 1. (minimaz-conscious PCR) Let d be a distance over Py and I1,, some sequence of posterior
distributions over Py. The sequence €, is called a minimax-conscious PCR for the sequence of posterior
distributions II,, on the space (Pd,ci) if there exists sequence z, such that z, — 0 and sequence 6, such
that 6, < emZﬁil 0n < 00 and for some N sufficiently large, and n > N, for every Py € Py, whenever
Ylv"'vyn Z'EIPO)

Py (IL,(P € Py :d(P,Py) > €n) < 2) > 1— 6.

Now we make the connection between minimax-conscious PCRs and minimax lower bounds.

Lemma 1. If €, is a minimaz-conscious PCR for a sequence of posterior distributions 11, on the space
(Pa4,d) and distance d is bounded above on Py and m,, satisfies

inf sup Ep,d(Py, P) 2 mpy,

P PyePqy

where the inf is taken over all function of n iid samples, then €, = m,. In particular, a minimax-conscious
PCR can never decay faster than the minimazx rate.

Note that a minimax-conscious PCR is a statement about the behavior of a posterior distribution sequence
across an entire distribution class. Next we make the connection between a minimax-conscious PCR and
the traditional, almost sure PCR definition discussed in the introduction. Specifically, a minimax-conscious
PCR implies an almost sure PCR at the same rate for every distribution in the class.

Lemma 2. If €, is a minimaz-conscious PCR for the sequence of posterior distributions IL,, on the space

(P4, d), then for every Py € Py, whenever Y1, ..., Y, id Py,

IL,(P € Py : d(P, Py) > €,) — 0 Py almost surely as n — oo.

The proofs of Lemmas and are contained in Appendix Note that Lemma |l{only requires that z, < %
eventually and does not use that Z;’il 0n < 00. The criteria that 2z, — 0 and (;';1 0, < oo are only used

in Lemma Bl
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4 Posterior Contraction Results

Our results utilize the following two assumptions for d € N and p > 1.
Assumption 1. Forn € N
ki = {”ﬁp .=
n d > 2p,

and
Assumption 2.
ni/2  4< 2p.
> e S 1% 459
3€[bn]? S P
Our main PCR result is the following theorem.
Theorem 1. Suppose v > 1 and k,, satisfies Assumption[I and
n" % log?(n)  d < 2p,
en(d,p) == Co(d,p) { n~ % log v (n) d=2p, (10)
n=ilog? (n) d > 2p,
Now assuming that for each n € N and j € [b,]¢, ajp, > 0, and that ay, satisfies Assumption E, we have

that for 1 < p < oo and d € N and Cy(d,p) sufficiently large, €,(d,p) is a minimax-conscious PCR for the
sequence of posterior distribution Hn,krn,ahn on the space (Pq, Wp) where b, = 2flog, (kn)T

According to [Singh & Po6czos (2018)),

d < 2p,
d > 2p,

- g

(11)

inf sup Ep,W, (P, Py) 2 {n

P PyePy n
where the inf is taken over all estimators P from n observations. Thus the PCRs of Theorem [1] are up to
logarithmic terms attaining the minimax rates. The assumption on the prior concentrations, Assumption
is flexible enough to support a vague prior. Specifically, the mean of a Dirichlet distribution with common
concentration on all categories is a discrete uniform distribution, so the practitioner wishing to encode
vagueness by asserting that under the prior on average all bin probabilities are equal will want to set all
prior bin concentrations to a common value. When d < 2p, by Assumption |1} the number of bins is =< n%,
thus Assumption |2|is satisfied when each concentration is set to Cn~% %) for some C > 0. Likewise when
d > 2p, by Assumption there are < n bins and Assumptionis satisfied when all concentrations are Cn™ 4.
Also note that while Assumption [2| places an upper bound on the total volume of the prior concentrations
to ensure the prior does not overwhelm the empirical Histogram at large sample sizes, it in general does
not place any shape restrictions on the prior; in particular other prior shapes besides the uniform can be
constructed.

The proof of Theorem [I|is composed from the following three auxiliary lemmas. The first auxiliary lemma
upper bounds the rate of convergence of the posterior mean histogram, pn,kn,abn» towards P in mean W7
distance. The second lemma establishes an exponentially decaying upper bound on the probability the W)
distance between the posterior mean histogram and P, deviates from its mean by more than ¢ > 0. The
third lemma establishes a PCR around f’n,kmabn, rather than Pp. It is the third lemma that leverages the
conjugacy of this model.

Lemma 3. Let Y7,...,Y, (S Py € Py. Suppose k,, satisfies Assumption E, ay, satisfies Assumption@ and
that forn € N and j € [b,]¢, ajp, > 0. Then

1
n-2 d < 2p.
sup Ep,W2(Po, Pukoyan,) S 4 0% log(n) d=2p.
PyePy ) _r
n-d d > 2p.
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Lemma 4. LetYy,...,Y, u Py € Py. Suppose k, satisfies Assumptwnl: and ojp, > 0 for eachn € N and

j € [ba]d. Thenfor1§p<ooandd€Nande>0

sup P (W}ﬁ’ (PO; Pn,kn,abw) — EPOWZI,)(PO, Pn,kn,abw) > 6) < exp(—2d_pn52)
PyEPy ) )

Lemma 5. LetYq,...,Y, g Py € Py. Suppose k,, satisfies Assumption |1 |: Let v > 1, and let {1,(d,p)}52,
be a sequence satz'sfymg
1
niﬂ log%( ) d < 2p,
147

Tu(d,p) = Ci(d,p) S n~ = log v (n) d=2p, (12)
n=ilog? (n) d > 2p,

Then, provided that oy, > 0 for eachn € N and j € [by 14, we have that for 1 < p < oo and d € N, there
exists C1(d,p), N1(d,p) suﬁciczently large such that for each Py € Py,
Iy ko an, (P € Pa: Wo(P, Py o, ) > Ta(d,p)) < 2log' ™7 (n)

almost surely under Py whenever n > Ny(d,v).

The main technical challenges appear in proving the auxiliary lemmas. Given Lemmas and [5, Theorem
follows easily and we show this now. For ease in notation, through the remainder of the paper we drop the
ky and oy, subscripts from the notation for the posterior, thus 11, k, a,, is referred to as II, (and Pn7kn7abn
is referred to as ]—:’n). This does not cause ambiguity in what follows because the values of k, and a3, are

given in Assumptions [[] and
Proof of Theorem[1. By the triangle inequality and union bound, for each Py € Py,

I, (P € Py : Wy(Po, P) > en(d,p)) < 11, (Pevvd W, (Py, P _e”dp)

+Hn(Pe7?d (PP) d >

=1 [WP(PO,Pn) >

<P €Py: W,(P,P,) > 6”(‘2“’)> . (13)

To handle the first term on the right hand side of Equation |13} first note that by definition of €,(d,p) (see
Equatlon and Lemma 3| foreach d € N, 1 < p < o0, we have that supp cp, Ep, W (FPo, Pn) = 0 () (d, p)).

In particular, there is an N such that for n > N, and every Py € Py, whenever Yi,...,Y, u Py,

_ € (d, _ _ el (d, _
Py (Wf(Po,Pn) > n(2p p)) =P, (Wg(POyPn) —Ep, Wl (P, Pn) > (2p P) —EPOW;’(Po,Pn))

_ _ €P (d,
<P <W§(Pg, P,) —Ep, W) (Po, P,) > 71253+1p)>
< exp( 2=+l g=Ppe2r(d, p)) (14)

where in the last inequality above we have applied Lemma |4| with € = %. Now again using the definition

of €2 (d, p) and also that v > 1, we have that

—_

exp( 27 P+ g=Ppe2p(d, p)) < exp (—2*(2p+1)d*1’0§p(d,p) log(n)) < (15)

ﬁa
where the last inequality is provided Cy(d,p) > 215 d1/2 and thus 2_(2p+1)d_p002p(d,p) > 2. By Equations
[14] and [15] we have that

= n(d, _
sup 7 (W (70 Py = 202 < (16)
PyePy 2
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ford e Nyp > 1 and Cy(d,p) > 2% d/2. To handle the second term in the right hand side of Equation

note that setting Cy(d, p) > 2C1(d, p) we have that 7,(d,p) < e"(%p) for every p > 1,d € N where 7,(d, p) is

as defined in Lemma [5| Using this and Lemma we have that for every p > 1,d € N, an N(d, p) such that
for each Py € Py, when Yi,...,Y, % Py,

I, <P € Py: W,(P,P,) > G”g’p)) <, (P € Py: Wy(P,P,) > 7,,(d,p)) < 2log'7(n) (17)

with probability 1 under Py when n > N(d,p). By Equations and we conclude the existence
of a sequence &, < n~2 and a single N(d,p) such that for n > N(d,p) and each P, € P4, whenever
}/h"'v}/n Zfz\{’jPOa

Py (I, (P € Py : W (Po, P) > €,(d,p)) < 2log" 7 (n)) > 14, (18)

ax(2C (d,p),21+%d1/2). Finally note that 2log' =7 (n) — 0 since

for d € N;p > 1 as long as Cy(d,p) > max(2C,
= o(en(d, p)) since 6, < n~2. The theorem statement thus follows. []

v > land also 3372, 8, < 00 and 4y,

In practice, the Posterior Mean Histogram, introduced in Equation [9] and shown to achieve the same rates
for estimation as the posterior itself in Lemma [3| (after application of Jensen’s inequality), can be used as
the functional point estimator for the unknown distribution.

5 Using Prior Information

As discussed in the introduction, minimax optimal posterior contraction results are an indicator that a
Bayesian method is (in the worst case risk sense) robust to the selection of an inaccurate prior when the
sample size is large.

The general benefit of the prior is in scenarios where the practitioner has a belief about Py before data
collection, is able to encode this information through the prior, and the belief ends up being correct, in
which case the small sample size performance can be better than under a purely frequentist estimation
approach.

The type of belief that is representable through the prior in this model is a hypothesis about the probability
distribution of a partition of [0, 1]¢. Specifically, suppose the practitioner believes, but is not certain, that P,
satisfies that on a size M partition of [0,1]%, denoted {R;}}Z,, the probability in region R; is p; for j € [m].
Further suppose there exists a kg € {1,2,... } sufficiently large such that there exists a size M partition of
{i}icoro)a, denoted {I; x, }Jle and for each j € [M]

Ri= |J Az,

1€15,1g

where recall A; 5k, is defined in Equation |3} In words, each region R; is expressible as unions of members
of the level ky dyadic partition. Note that because R; is expressible as a union of members of the partition
{Aj 2x0 }ic[aro)e and the partitions {A; or ficorja for k > ko are nested in the {A; oro }ic[aro)e partition, R; is
also expressible as a union of members of {A; ok }icorje for k > k. In particular for k > ko, there is a size
M partition of {i};cparoje, denoted {I;;}}2, and for each j € [M], R; = Uicr, , Ai,2e- We recommend the
following procedure for incorporating prior knowledge in these circumstances:

1. When k,, of Assumptionsatisﬁes [logy(kn)] < ko, reset k,, := kg. Otherwise use k,, as in Assump-
tion This small sample size analysis decision has no impact on the large sample (asymptotic)
results of Theorem [I]

2. For a user specified C' > 0 chosen prior to data collection and for each j € [M] and ¢ € I, , set

Cp;
Gy = .
4bn = Tk, ]
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Following this procedure, the total prior concentration on R; amounts to Cp;. Note, by choosing C prior
to data collection, C' cannot depend on the potentially growing sample size. So for every n, we have that
Zie[bn]d a4, = C and in particular Assumption [2|is satisfied. Further, by Equations [4| and |§|, the Posterior

Mean Histogram, P,,, satisfies that for each j € [M]

Pty = S Ay — Y zy_lmeAi,anm:zg_lnmeRj)( n >+pj< C )

) ) n+C n n+C n+C
’LEIJ";C" lelj,kn

This is a convex combination of the empirical proportion and the prior proportion in region R; for which the
weights depend only on the relationship between C' and n. C' should be chosen larger under high confidence
prior beliefs and smaller under low confidence prior beliefs. A simple question to elicit C'is for the practitioner
to ask themselves: for a given small weight 0 < go < 1, how many samples ng would need to be available
for them to assign this small weight to their prior beliefs and 1 — gy weight to the empirical proportions?
Setting no% = qp and solving yields a choice for C.

6 Proofs of Auxiliary Lemmas
In this section we prove Lemmas and [5| First we need to state a couple of technical tools.

6.1 Technical Tools

The first tool is the multiresolution upper bound on the Wasserstein distance. See Weed & Bach (2019))
Section 3 or|Singh & Péczos (2018) Appendix A for a good review. Here we use an application of this general
result for the metric space ([0,1)4, ]| - [|2)-

Lemma 6. (Wasserstein Multiresolution Upper Bound) Let Sy = [0,1)¢ and for k € N,

i1 —1 41 19— 1 19 iqg—1 ig L .
Si = {|:2k72k> X {%72k> X oo X {Qk’gk> for (i1, 42, ...,1i4) € [2k]d},

If i, v are probability measures on [0,1)%, then for p > 1 and K any positive integer,

W) < 77° <(§>Kp +§ G)(H)p > In(s) - uz(S)I> .

SESk
Proof. This is a straightforward application of Proposition 1 of Weed & Bach| (2019)). O

The next technical tool is an upper bound on the L concentration of a Multinomial distribution around its
mean.

Lemma 7 (Multinomial concentration). If (Xi,...,Xx) ~ Multinomial(n,p1,...,px) and Z = 2?21 | X; —
np;|, then

k—1

E(Z/n) < -

Proof. Applying Jensen’s inequality and then Cauchy-Schwarz

k k
E(i’SZWﬁLstz Doy (1-p)= %

Jj=1 Jj=1 Jj=1 g=1

The last tool is the concentration of the Dirichlet distribution around its mean in the L; norm.
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Lemma 8. (Dirichlet Concentration) Let k € N and (w1, 72, ..., ) ~ Dirichlet(a1, ag, ..., ax). Then for
0>0
k _\_1
(@) vk
P ; Imj — B(my)| > ——5—— | <4,

_ k
where & := 3 ) .

Proof. Basic properties of the Dirichlet distribution give that for j € {1,2,...,k}, m; ~ Beta(a;,& — ;).
Also, if X ~ Beta(a, 8) then Var(X) = afB/((a + B)*(a + 8+ 1)). Using these properties, in addition to
Jensen’s inequality and Cauchy—Schwarz inequality, we have that

k k
E Z\WJ—IEWJ Zq/ ar(m;)
Jj=1 Jj=1
k
_ Z Jeala=ay) %
k
o % Z v aj(a— aJ
7j=1
k k
3
< ()2 ZO‘J‘ Z@_O‘J
Jj=1 j=1
= (a)~2\/a(ak — a)
< (@)~ Vk. (19)
By Markov the result follows. O

6.2 Proof of Lemmal[3

We now prove Lemma

Proof of Lemmal[3. By the definition of the partitions {Sy}ren in Lemma @ the partitions &1, 8s, ..., Sk,
are nested in the sense that for k € [K,, — 1] and S € Sy, there exists a collections of sets in Si41 such that
S is exactly the union of these sets. In particular the sets S € Sy are expressible as unions of sets from Sk, .
Also using that b, = 25» we have for k € {1,2,...,K,} and S € S a set of indices Is ., C [bn]? such that

s= U 4. (20)

J€lskn

where recall Aj;, is defined in Equation|3] Moreover {Ujerg , ., Aj . }ses, partitions [0,1)¢ and {Isxn}ses,
partitions [b,]?. Using this and Lemma [6] (the Wasserstein multiresolution upper bound), we have that

Kn

B 1 Ky,p 1 (k=1)p _
Ep,WP(Po, Po) < <2) +Z(2> Ep, Y|Pl | Ajn.) — Po(9)]- (21)
k=1

SESy JE€ISs kn

Since the Aj;, sets are disjoint, for S € Sy, P, (Ujels - Aj,bn) = iclenn P, (Ajp,). By definition of
P, (see Equation @) we thus have

U s - Rus)|=| 3 Gt i M E ) g

n . Q.
JE€Is kn J€Is kn T Z"E[b"]d ibn

10
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_ " Py(S
N+ D et Qi o(5)

Zjels,k.n aj1bn + Z?:l ]I(Y—t € UjGIS.k,n Ajvb ) ’

n . o
S n t=1 I[(i/t S S) o PO(S) + ZJEIS,k,n J:bn
Nt D et Qi n N D icpa)d Kby
» Iy, es » Iy, e S
S n -1 Zt:l ( t € ) 4 ‘Zt_l ( t € ) _ PO(S)‘ (22)
n+ Zie[bn]d Qs p,, n n

ZjEIS,k,n aj»bn

Nt i) Qi

Using this and that Sy partitions [0,1)? (and therefore %ZSE&C S LY, € S) = 1) and Lemma
(Multinomial concentration) yields

p > a Qb 1
Er, > (Pl U Ajn) — R(8)| § 2l b s

~Y
n ; (67
SeSy JE€IS kN + Z"'E[bn]d i,bn

Using this and Equation [21 (and that |Sy| = 2% and K,, > log,(k,,)), we have that

Knp . K, (k—1)p K,
— 1 Zie[b ]daz’bn 1 —1/2 —k(p—2
Ep WP(PO,Pn)5<> + n E LY gk
0'"p 2 n+zie[bn]’i Qib, 1= 2 1

Zie[b J¢ b 1 0
n 42 (max(1, 252G PN #£ 2p) + K, I(d = 2p) ) . 923
N4 D icpngd Qisba ( ( )I(d # 2p) ( p)) (23)

Sky? +

Applying Assumptions (1| and [2| now allows us to conclude that IEPUW{)’(PO,P”) < n=% when d < 2p, <

n~d log(n) when d = 2p and < n~7 when d > 2p. The < arguments of this proof do not depend on Py
(through constants or through eventuality) and so we conclude

n=1/2 d < 2p.
sup Ep,WE(Po, P,) S 4 n~P/?log(n) d=2p.
Fo€Pa n—P/d d > 2p.

6.3 Proof of Lemma [

We now prove Lemma,

Proof of Lemma. We will use the general dual formulation of W, distance and then apply Mcdiarmid’s
inequality (McDiarmid et al.| (1989)); see Proposition 1 of |Combes| (2024) for the statement of the Standard
Mecdiarmid inequality). Towards this end, define for u,v € Py

Wy v) = AWy (s, ). (24)

*

WP(u,v) is the optimal transport cost between i, v under the rescaled Polish space ([0,1)%,d=1/2[| - — - ||2)
with optimal transport costs being distance raised to the p'” power. Also the diameter of [0,1)¢ in the
rescaled space is 1 EL Thus letting

Co := {f|f : [0,1)% = [0,1], f continuous w.r.t d~/2||- — -2},

3Rescaling the space to have diameter 1 is not technically nescessary to apply the dual formulation of Wp but we do it here
so that we only need to account for the diameter of the true space of interest at the end of the proof

11
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and for f € Cp letting f¢:[0,1) — R be the function satisfying

rw = sw (1@ -d e -yl). (25)

z€[0,1)4

the conditions of |Weed & Bach| (2019) proposition 19 are satisfied and we have for u,v € Py,

Wﬁ(/% v)=sup E,f —E, f° (26)
fety

We now prove the bounded difference inequality nescessary to apply Mcdiarmid’s inequality. So let z,, =

(1,22, ..., Zn_1,7,) € [0,1)? and z!, = (v1,22,...,Tn_1,7,) € [0,1)%. Additionally we use the notation
*

W,(Py, P,(z)) to indicate that P, is constructed from z € [0,1)9, and let j, € [b,]? and j.r € [b,]¢ satisfy
that @, € Aj, p, and ), € A; 5, and let Cjp, = >.i I(x; € Ajp,) for j € [by]¢. Via equation [26] and
expressing expectations as sums over the partition members A; ;, , we thus have that

*

Wp (Pn(mn)va) - w*/p (pn(x;z)a PO)

o Ci
— Sup Z b:ll J:bn + J)bn /
rees |i&oma \F 2iep,g %ion Ja

, C.
sup Z b;il < b, + Cjp, /
A

frecy, FElbn] N {durdur} n+ Zie[bn]d Q4.b,,

aq. +C 71[ ‘r{: .I’ c
be ( “’*’"nJrZw*b“[' ]dfj_fj )> /A f(x)de — Exp,l(X € Aj, 0, ) (X)+
ic[by, 2,0n

f(x)d$> —Exop (X € A5, ) f9(X)| —

3:bn

f'(m)dw> —Exopl(X € 45,) /" “(X) + (27

J,bn

Jz,bn

aj ,.b +O‘,b +]I(J$ #Jﬂ?/)
L R / "(@)dz — Exp (X € A; 5. ) (X
n( ”"'Zie[bn]d Qi b, A I (@)dz X~ ol Gor b ) (X))

3t b
We write the above equality more succinctly as
W (Pa(@n), Po) = Wy (Palzs,), Po) = sup (J1(f) + J2(f)) — Sup (J1(f) + Js(f")) (28)
cCy 'e€Cyp

where J1 : C, = R, Jy : Cp, = R, J3: C, — R are defined as

L=y b;i< 2t Gt /
A

z)dx | —Ex.p (X € A; (X)),
n+zie[va]d Qb f( ) ) X~ Po ( J’bn)f( )

FEbR)N\{G G} ibn
and
d aj b, + Cjb, .
Jo(f) = Z by f(x)dr | —Ex.p (X € Aj,bn)f (X),
je{jmg‘z,} n + Zie[b"]d ai,bn Aj:bn
and

0300 + s — Uo7 i)
J f .:bi = el / fxdx_ENDI[XEA.z,n f/CX+
) (et G MI 280 [ oyl € )00

G bn

(29)
a5, + Cjob, + 1Jx # Jar)
by | e / z)de — Exp0(X € Aj,5,)1“(X).
n < n+ Zie[bn]d Q4 b, Ajm/,bn f( ) X~ P ( Do ,bn)f ( )
Now observe that by adding and subtracting Js(f)
sup J1(f) + J2(f) < sup Ji(f) + J3(f) + sup Jo(f) — J5(f). (30)

fety fety fely

12
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Using this and Equation we have that

Wy (Pa(®n), Po) = Wy (Pu(a1,), Po) < sup J2(f) = Js(f)- (31)

In the difference Jo(f) — J3(f), the expectations involving f€¢ cancel and thus

* *

Wy (Pn(xn)vp0) - W, (Pn(“';t)a PO)
. . . . — 1 'w .I'
S sup [(bi/ f(x)dx> ( a]z7bn + C z,bn _ aJa:7bn + C z,bn (J #] )) +
Ajybn

fec n+ D i, )¢ Yiba N+ D e, ]t Yibn
j .7 50, CV‘/ ) j . +C/ +]I 'w .I'
b / )z | [ este T Coarbe Garbn + Coar iy + 1o 7 32) (32)
Ajz’ b n -+ Z’ie[bn]d ai7bn n —+ Zie[bn]d Oéi_’bn
de .a: .:L”
= sup —= Uz 7 Jo) / f(z)dx —/ f(z)dz
fety n + Zie[b"]d ai’b" A.’im-,hn Ajl,/,bn

1
< )
n
where note in the last inequality we have used that C, consists of only non-negative functions bounded

above by 1, and that for each j € [b,]?, fA. dr = 7. By an identical argument, W, (Pn(a:’n),Po) —

T -
J:bn b

W, (13" (zn), Po) < % and so we conclude that

‘V[*/P (pn(-"’/n)apo) - I/f}p (pn(mn)vpo) | S

S|

Since z!, € [0,1)? was arbitrary the bounded difference condition in the last coordinate is satisfied with bound
%. The argument for the other n — 1 coordinates proceeds identically and so we conclude by Mcdiarmid’s
inequality that for e > 0

Py <me (Pn, Po) — ]Epom;;f (Pn, Py) > e> < exp(—2ne?). (33)

Finally recall for all u,v € Py, Wy(u,v) = dl/QWp (1, v). Using this and Equation and that W, is
symmetric the lemma follows. O

6.4 Proof of Lemma [

We now prove Lemma

Proof of Lemma[5. The first inequality we present below upper bounds the W} distance between histograms
using the multi-resolution upper bound. So again using Lemma |§| and the sets Ig , from Equation we
have for n € N,m, 7y € Strd—1

i 1 Kn.p Kn 1 (k—=1)p
WE (., (71), 0, (2)) < dP/* (2) +> (2) S [, (m1)(S) — v, (m2)(S)]
k=1 SeSk

Knp  Kan (k—1)p
= |(3) 2 (3) S lenmi U A U A

S€eSy JE€Is k,n JE€IS kN

) 1\ Knp Kn 1 (k=1)p
=d (2) + (2> Dol mi— Y ™y

SESy |F€Is,k,n JE€IS kn

=
Il
—

13
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Also, for m; € 8’291 and k € [K,,], define

Vn(’ll'hk) = Z Z 1§ — Z EZ:L(Wj‘Yl,...,Yn) . (35)

S€Sy |J€Is k,n J€Is kn

Using Equation the definition in Equation the preimage form of II,, (Equation |ﬂ), the definition of P,

Equation E[), the definition of 2 (the posterior measure over the simplex S?»9~1), and that by Assumption
and the definition of 7,,(d,p) in Equation |12} 2=5~? = o(72(d,p)) (as n — oo) we have that almost surely
under Py and eventually in n and for each d € N;p > 1

I, (P € Py : W,(P, P,) > 1,(d,p))
=z (my € ST W (Y, (m1), 9y, (Bex (x|Y1, ..., Y2))) = 78(d, p))

K
1 - 1
< <7r1 €S s > Sty V(LK) 2 d_p/ZTﬁ(d,p)>

k=1
o 1 (36)
<z <7r1 c Sbnd-1 . 50 Dp Va(my, k) > 2d_p/27'5(d7p)>
k=1
Kno g
<z (m €SI Y e Valm k) 2 2p—1d‘”273;’(d,p>>-
k=1

We will now derive an upper bound on sup,, ¢ gv,a-1 max;e(k, ] Vo (m1, k) which, if it holds, ensures the event
inside the probability of the last line of Equation [36] must be false. We will use this upper bound and the
union bound to control from above the probability in the last line of Equation Regarding the upper
bound on sup,, ¢ svna—1 Maxje(x,] Va(m1, k), note that

K, v ak (0% K,
S (s 2 - WS e ), (37)
k=1 \/n + Z‘ié[bn]d Q5 b, \/n + Zié[bn]d Qi b, k=1

To see the < in Equation observe that by Assumption [2| the total prior concentration is dominated
by n and therefore the term in front of the summand on LHS of < is = %. Thus by definition of
72(d,p) (Equation [12)), this is sufficient to conclude LHS < 72(d,p) in the d < 2p case. In the d = 2p
case the sum contributes a factor log(n) to LHS and so again LHS < 72(d,p). In the d > 2p case, the sum

d_
contributes an asymptotic factor 2Kn(5-P) < |2 7P = n3—§ to LHS so that LHS = log” (n)n~4 and so again
LHS < 72(d,p). By Equation for each d € N,p > 1, we set C(d, p) sufficiently large so that eventually
inn

K dk
n loo™ (1)2%
S ok og (n)27 < 2P=1gP/27P(d, p). (38)
k=1 \/n + Zie[b"]d Q4.b,,

The upper bound on supy, csvni-1 Maxjc(x, ] Vo (w1, k) we are seeking is thus

log” (n)2

\/TL + Zie[bn]d a’i,bn

Thus with Cy(d,p) sufficiently large so that Equation [38| holds, we have that eventually in n and almost
surely under Py

2kp

K

51

2 (m € StdTl N T Vo (my, k) > 207 AP (d, p)>
k=1

14
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odk
<z <7r1 €Sl 3k € {1,2,...,K,} s.t Vyu(my, k) > 1og7(n)\/
n+ D iepnd Qibn

Kn

dk
<> (wl € SV, (my k) > logw)\/ 2 ) , (39)

n+ Zje[bn]d Qj.b,,

where in the last line we have used the union bound. Now recall {Is,}ses, partitions [b,]? for
k € {1,2,...,K,}. In particular, since z; = Dirichlet(-|{e}, }jep,ja), under 23, {3 ;. mitses, ~

Dirichlet({}_jer, , . 055, Yses,). Moreover, > gcs D icro O u. = Dicipals ¥ bn o4 D el b

Finally note that by definition of Sy, |Sk| = 2%. So forn € Nand k € {1,2,..., K,,} applying Dirichlet con-
centration of measure Lemma |8 with ¢ := log™7(n) , we have that for C(d,p) sufficiently large, eventually
in n and almost surely under P,

K

" 9dk
g 25w € 8V, (m, k) > log? (n) < K,log™7(n). (40)
k=1 ( N+ D ielba]d Qibn

Finally note K,, = [log(k,)] < log(ky,) + 1 < 2log(n) and the asymptotic arguments of this proof do not
depend on P, either through constants or eventuality. Thus by Equations and we have that for
each d € N and p > 1 and C;(d, p) sufficiently large, and an N(d, p) (depending only on d, p but not on P),
and n > N

I, (P € Py : Wy(P, P,) > 7,(d,p)) < 2log' ™ (n) (41)

almost surely under P. O

7 Conclusions

In this work we obtained minimax optimal PCRs for unconstrained distribution estimation on [0, 1]¢ under-
neath the Wasserstein-p distances for every data dimension d. To the best of our knowledge these are the first
PCRs achieving minimaxity for every problem dimension d under Wp,,p > 1 distance. Our proof technique
avoids verifying a Kullback-Liebler prior support condition by using conjugacy and a direct analysis of the
posterior distribution.

These results may be useful to practitioners needing to estimate a distribution underneath a Wasserstein
distance when they have some knowledge prior to data collection about the shape of the distribution they
are estimating, intend to encode this through a prior distribution to potentially achieve increased accuracy
at low sample sizes, and yet simultaneously require a guarantee of precision at large sample sizes that is
robust to inaccurate prior selection.

An important area for future work is to determine whether for high dimensional data, Bayesian models can
adaptively achieve minimax optimal PCRs underneath Wasserstein-p distances in constrained distribution
estimation settings where it is safe to assume that the distribution to be estimated is of low entropy or has
a smooth density.

8 Appendix

8.1 Proofs of Lemmas Regarding Minimax-Conscious PCRs

In this section we prove the lemmas that relate PCRs to minimax rates. The first proof is inspired by |Ghosal
et al. (2000) Theorem 2.5.

Proof of Lemmal[I. Define H,, : Py — [0,1] as

H,(Q):=1L,(P € Py:d(P,Q) < €,)

15
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and
Zy = sup H,(Q)
QEPa
and define the n' estimator P, to satisfy H,(P,) > Z, — 1; recall II,, is a function of the sample Y7, ...,Y,,

and therefore so is P,. By the lemma assumption, and since z, < % eventually, there exists an N such that
for n > N such that for every Py € Py

Po (Hn(Po) >2/3) 21— 6n (42)
And since for Py € Py, the event H, (FPy) > = 1mphes Zp > 2 3, and in particular Hn(Pn) > %, we also have
that for n > N and every Py € Py

X 1 2

Now note that by definition of H,, and since II,, is a probability measure, for every Py,

A 1 2 ~ oA
{Hn(Pn) > 2} N [Hn(PO) > 3} C [EIQ € Py : max(d(Po, @),d(P,,Q)) < €,
Using this and Equation [43| and triangle inequality, for n > N and each Py € Py,
Py(d(Py, P,) < 2¢,) >1 -6, (44)

Using this and that d is bounded above on P; and that d,, < €, by assumption, we have that for n > N

sup Ep,d(Po, Po) Sén+ 00 Sen (45)
PyePy
Thus the lemma statement now follows by the definition of the minimax rate. O

proof of Lemma[2. Let Py € P;. By the lemma assumption, we have that
Z n(P € Pa:d(P,Py) > €n) > z,) Zé < o0 (46)

By the Borel-Cantelli Lemma we conclude that with probability 1 under Py, it is eventually true that
I, (P € Py:d(P,Py) > en) < 2
Since z,, — 0, we conclude that almost surely under Py

I,(P € Py : d(P,Py) > €,) = 0
O

In the introduction we claim that an almost sure PCR holding uniformily over a finite distribution class
cannot decay faster than the minimax rate for that class. While we do not actually use this claim in our
work, for completeness, a proof of this claim is provided below. This lemma is also inspired by |Ghosal et al.
(2000) Lemma 2.5.

Lemma 9. Let (C,(Z) be a finite metric space of probability distributions, and Il,, a sequence of posterior

iid
~ PO7

distributions over C. Further suppose for every Py € C, whenever Yq,...,Y,, ...
I, (P € C: d(Py, P) > €,) — 0 Py almost surely.
Then there exists a sequence of estimators P, € C, such that

max Ep,d(Py, P,) < 2€,

16
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for sufficiently large n. In particular if z, satisfies

i >
1r1;.)f max Ep,d(Po, P) Z zn,

where the inf is taken over estimators P based on n observations, then €, 2 z,.

Proof. Define
H,:C—[0,]1]

as
H,(Q):=1,(PeC:dP,Q) < en)

and

Ty = rélgéc H,(Q)

and let P, = arg maxgee Hn(Q). For Py € C, since
I, (P €C:d(Py, P) > ¢,) — 0 Py almost surely,

we have with probability 1 under Py there is an N(Fp) such that for n > N(P)

H,(Py) >

N

In particular Hn(Pn) > % as well. Since II,, is a probability measure and with probability 1 under Py, when
n > N(Py), min(H,(P,), H,(Py)) > L, we have that

{PeC:d(P,P,) <e,}N{P eC:d(P,P) <ep}#0

with probability 1 under Py for n > N(Fp). Letting Q) be any point common to both these sets, we have
that

J(P07pn) S J(P()v Q) + J(van) S 26n

with probability 1 under Py for n > N(Pp). In particular, E,,d(Pp, P,) < 2¢, for n > N(P). This argument
holds for all Py € C, so letting N = maxpec N(P), we conclude that for n > N

~ N

<
gﬁ%)é Epod(,P()7 Pn) < 2671
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