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Topological spin textures, such as magnetic skyrmions, are a spectacular manifestation of mag-
netic frustration and anisotropy. Most known skyrmion systems are restricted to a topological
charge of one, require an external magnetic field for stabilization, and are only reported in a few
materials. Here, we investigate the possibility that the Kitaev anisotropic-exchange interaction sta-
bilizes a higher-order skyrmion crystal in the insulating van der Waals magnet Nil,. We unveil and
explain the incommensurate static and dynamic magnetic correlations across three temperature-
driven magnetic phases of this compound using neutron scattering measurements, simulations, and
modeling. Our parameter optimisation yields a minimal Kitaev-Heisenberg Hamiltonian for Nils
which reproduces the experimentally observed magnetic excitations. Monte Carlo simulations for
this model predict the emergence of the higher-order skyrmion crystal but neutron diffraction and
optical experiments in the candidate intermediate temperature regime are inconclusive. We discuss
possible deviations from the Kitaev-Heisenberg model that explains our results and conclude that
Nils, in addition to multiferroic properties in the bulk and few-layer limits, is a Kitaev bulk material
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proximate to the finite temperature higher-order skyrmion crystal phase.

INTRODUCTION

Magnetic skyrmions, the topological solitons defined
by the winding number of a spin texture [1, 2], are a
fascinating manifestation of complex magnetism and a
possible platform for spintronics applications [3]. Many
realizations of magnetic skyrmions have been reported
following the discovery of a skyrmion crystal — a phase of
matter characterized by a periodic arrangement of mag-
netic skyrmions — in metallic MnSi under an applied
magnetic field [4, 5]. However, for all reported mate-
rials [2, 6, 7], the topological number (or topological
charge) Ng of the individual solitons is limited to one
(skyrmions) or half (merons) [2, 6, 7]. However, higher-
order skyrmions with Ny > 1 are theoretically possible
[8]. Crystalline phases of such magnetic objects display
extreme spin noncoplanarity and are predicted to host
unconventional transport phenomena and the possibility
to control their topological number using external per-
turbations [8-10].

Two distinct mechanisms are known to stabilize N
= 1 skyrmion crystal phases: the Dzyalosinskii-Moriya
(DM) interaction in non-centrosymmetric systems or
the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interac-
tion in metallic systems [6, 11-16]. However, a finite mag-
netic field is invariably required to stabilize the skyrmion
phase. In this context, a path to realizing higher-order

skyrmion phases, especially with N, = 2 (SkX-2 phase),
has been theoretically suggested for Kondo lattice mod-
els [8, 11, 16]. A new mechanism was recently discovered
to stabilize the SkX-2 phase: the Kitaev exchange inter-
action [9]. In this case, the bond-directional Ising-like
anisotropic exchange interactions select a SkX-2 phase
that differs from all the previous realizations [10, 17, 18]
because it is stabilized in a thermal equilibrium state
without a magnetic field. However, the magnetic field
can control the topological charge of individual solitons
[8, 9]. Although, to our knowledge, there is no experi-
mental report of the SkX-2 phase in a bulk material, our
present work shows that the van der Waals multiferroic
antiferromagnet Nily is a promising candidate.

Nil, belongs to a large family of van der Waals
(vdW) transition-metal dihalides (see Fig.la for the crys-
tal structure) with rich magnetic properties [19]. All
triangular-lattice iodine-based compounds in this series
display exotic magnetism [20-24], including multipolar
excitations [25] and Kitaev exchange interactions en-
hanced by the spin-orbit coupling in the iodine ligands
[26]. However, Nil; is unique as the only known multifer-
roic with a stable multiferroic phase down to the bilayer
[21] and the monolayer limits [24]. In bulk form, Nil, dis-
plays two magnetic phase transitions at Ty = 75 K and
Tn2 = 59.5 K; see Fig.1b for susceptibility measurements
and Fig.lc for an overview of temperature-dependent
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FIG. 1. Crystal structure and magnetic phases in Nilz a, Crystal structure of Nils in R3m. The grey spheres represent
Ni2* ions, and the purple spheres represent Iodine ions. b, Magnetic susceptibility of single crystal Nil; measured with different
directions under a magnetic field poH = 0.5 Tesla. The two grey lines serve as a guide to the eye, marking two magnetic phase
transitions. ¢, Schematic representation of magnetic phase transition in Nily. The upper panels show the magnetic and lattice
Bragg peaks of Nil, at T = 100 K (right), T = 70 K (Middle) and T' = 4 K (left). For elastic neutron scattering data, the
integration range is AL = [—0.1,0] and AE = [—1, 1] meV with an incident neutron energy of E; = 11.5 meV. The intensity
of the T = 100 K and 70 K data was 3 times increased compared to T' = 4 K, as shown in the bottom right of the figures.
The lower panels depict cartoons of the possible magnetic structure in each magnetic phase. The arrow colour indicates the
magnitude of the z-direction magnetic moment at each spin site (consistent with fig.4). On the bottom of ¢, cartoon of the

lattice transformation at the multiferroic phase transition.

elastic neutron scattering patterns and cartoons of the as-
sociated magnetic structures. When the sample is cooled
through the second magnetic transition at Tns, the para-
magnetic centrosymmetric space group R3m changes into
an orthorhombic structure [20]. Concomitantly, a multi-
ferroic phase is established with an incommensurate heli-
cal magnetic structure (MF-Helix) with the propagation
vector Qe = (0.1384, 0, 1.457) [20], electric polariza-
tion P along the (1, 1, 0) direction, and a strong optical
second harmonic generation (SHG) signal [21, 23, 24].
Given the small lattice distortion, all reciprocal lattice
vectors are indexed in the paramagnetic cell through-
out this text. The intermediate phase between Tx; and
Tno is less understood than the multiferroic phase and is
characterized by a commensurate out-of-plane magnetic
structure with propagation vector Q,,; = (0.083, 0.083,
1.5). The absence of the SHG signal suggests that the in-
version symmetry is preserved in the intermediate phase,
seemingly indicating a simple collinear antiferromagnetic
structure [21, 23, 24]. However, first-principles calcula-
tions for Nily contrast with this simple scenario: these
yield sizable frustrated further-neighbor and Kitaev ex-
change interactions predicted to conspire in stabilizing
a SkX-2 phase in the monolayer limit [8, 27, 28]. This

leads to the tantalizing possibility of realizing the SkX-
2 phase — or one of its proximate phases — in Nils and
warrants a full experimental investigation of the nature
of the intermediate phase. Experimental investigation of
spin correlations in bulk Nils is expected to be difficult
due the comparatively small moment, the large energy
bandwidth of the system, and the incommensurate and
fully three-dimensional nature of the magnetic order.

RESULTS

We use elastic and inelastic neutron scattering mea-
surements, supported by semiclassical spin dynamics sim-
ulations and inverse modeling techniques, to refine the
model Hamiltonian of bulk Nil,. We first discuss spin ex-
citations in the correlated paramagnet (PM) just above
Tn1. Spin correlations unambiguously reflect the pres-
ence of antiferromagnetic Kitaev interactions. By fur-
ther considering excitations in the intermediate (IN) and
multiferroic (MF) phases, we fully quantified the rele-
vant energy scales of the material system and obtained a
quantitative understanding of its exchange Hamiltonian.
Classical Monte-Carlo and Landau-Lifshitz simulations



for this refined model correctly capture the experimental
static and dynamic spin correlations in the intermediate
phase between Tx; and Tyno. Simulations for the refined
parameters favor a multi-Q,, over a single-Q,, ground-
state, i.e., a SkX-2 magnetic ground state. While our
experiments cannot unambiguously distinguish between
these two scenarios, our data-informed approach points
at the importance of the Kitaev interaction to explain
the intermediate temperature phase in bulk Nil, what
places this material, at, or proximate to, a high topolog-
ical number skyrmion crystal phase.

We start by defining a minimal bilinear magnetic
Hamiltonian for Nils based on the symmetry constraints
of the paramagnetic R3m space group, allowing bond-
dependent anisotropic exchange interactions. According
to first-principles calculations[8, 27, 28], the Heisenberg
and Kitaev interactions are expected to dominate on the
nearest-neighbor bonds, and we restrict our analysis to
these two terms. Further neighbor interactions are also
required to explain our results. However, since most Ni-
based compounds comprising networks of edge-sharing
octahedral show small second nearest neighbor intralayer
coupling Jo, we neglect this parameter in our model[29—
32]. Thus, our magnetic Hamiltonian contains four inde-
pendent parameters and reads:

W= Y

(i,3)1€{a,B v}

3,(;1,(;2
[11Si-8; + KS]ST|+ > JuSi-8;
<ivj>n

where n = 1, 3 indicates the intralayer n-th nearest neigh-
bor, n = ¢, co indicates the interlayer n-th nearest neigh-
bor coupling, and K indicates the Kitaev interaction for
X-Y-and Z-bond (see Fig.S1 for definitions).

With a minimal model at hand, we examine the possi-
ble zero-temperature magnetic structure of Nil, using the
direct classical energy minimization and the Luttinger-
Tisza method [33]. Assuming that a single-Q,,, magnetic
structure is stabilized without lattice distortion, we find
that the form of Q,, in the triangular plane only depends
on the sign of the Kitaev term (see Supplementary Infor-
mation and Fig.52). An antiferromagnetic (AFM, K >0)
Kitaev term stabilizes a propagation vector Q,,(K > 0)
along the (1,1,0) direction. In contrast, a ferromagnetic
term (FM, K <0) yields Q,,(K <0) along the (1,0,0) di-
rection. The additional role of the interlayer coupling
can be captured by direct energy minimization. The
first-neighbor interlayer coupling J.; alone cannot ex-
plain the out-of-plane incommensurate order observed
below Tns. In contrast, the second-neighbor interlayer
coupling J.o yields the correct doubly incommensurate
Q.2 if the constraint J.; = —0.031.J.5 is fulfilled. How-
ever, the incommensurate nature of out-of-plane mag-
netic order only emerges when the in-plane order propa-
gates along the (1,0,0) direction. In the experiment, Nils
has Q. || (1,1,0) at Tne < T < Tn1 without lattice dis-
tortion. Thus, calculations point to an antiferromagnetic
Kitaev term consistent with previous theoretical studies
[9, 27, 28].

To gain more insight into microscopic exchange inter-
actions, we turn to the magnetic response in the corre-
lated paramagnetic regime of Nily just above Txp. This
regime allows the extraction of model parameters without
describing spin waves that emerge from a complex, po-
tentially multi-Q,,,, magnetic structure, does not require
precise knowledge of the instrument resolution function,
and assumes that thermal fluctuations dominate over
quantum effects in the spectral response [34]. Moreover,
the paramagnetic signal is sensitive to bond-dependent
anisotropy through an out-of-plane intensity dependence
originating from the polarization factor of the neutron
scattering cross-section [34]. The momentum transfer
Q and energy transfer £ dependence of the paramag-
netic signal of Nily at 7" = 100 K is shown in Fig. 2a
along several high-symmetry paths in reciprocal space
Q = (H,K,L) for an average L = 0 and L = 1.5 (see
Fig.S3 for the definition of paths in the hexagonal Bril-
louin zone). The intensity of neutron scattering is con-
centrated close to the Brillouin zone center due to the
long real-space length associated with 27/|Q,,|. In ad-
dition, Fig.2b-e shows the energy-integrated (AE =1, 6]
meV) paramagnetic signal (inelastic diffuse scattering) in
two momentum-space planes, Q = (H, K, L) with fixed
L =0, 1.5 and Q = (H,0,L). For L = 0, we observe
hexagonally-shaped diffuse scattering at low-Q and near
zone centers, Fig.2b. When L = 41.5, the 6-fold inten-
sity becomes 3-fold symmetric with an orientation de-
pending on the sign of L (see Fig.54). In our model,
this L-dependent behavior of the diffuse scattering is the
unique signature of a Kitaev interaction [34].

As a next step, we calculate the neutron scattering
intensity at finite temperature using Landau-Lifshitz dy-
namics (LLD) [35] for the Hamiltonian of Eq.1 under the
constraints imposed by the low-temperature magnetic
structure. We used a Bayesian optimization algorithm to
estimate the exchange parameters by globally minimiz-
ing the x? loss function between the model predictions
and the momentum- and energy-dependence of the in-
elastic paramagnetic scattering at 7" = 100 and 200 K.
The data is split into six representative two-dimensional
slices (two momentum-energy slices in Fig.2a and Fig.S5,
four constant-energy slices with AE = [1, 6] meV in
Fig.2b-e and Fig.S5b-e) for each temperature, and the
loss function is calculated over all intensity pixels in the
set. Because the T' = 100 K data only covers a band-
width of 8 meV, we used the T' = 70 K signal to better
capture the scale of the exchange interactions by reach-
ing an energy transfer of 20 meV. This is justified by the
insensitivity of the high-energy inelastic signal at T' =
70 K to details of the underlying magnetic order, given
the proximity to Tn1. Bayesian optimization yields J; =
-7.4(1) meV, K = 2.5(5) meV, J3 = 2.7(1) meV and Jeo
= 1.2(1) meV as best parameters (see the supplementary
information and Fig.S6 for details). LLD calculations
with these parameters agree with the data at T'= 100 K,
as shown on the right side of Fig.2a and the bottom half
of Fig.2b-e. Fig.2f shows the excitations in the interme-
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FIG. 2. Energy-resolved paramagnetic and intermediate-phase excitations in Nilz a, Energy-resolved neutron
scattering intensity in the paramagnetic regime at 7' = 100 K along the symmetry directions of the hexagonal Brillouin zone
with incident energy of E; = 11.5 meV (see Fig.S2 for the directions). The upper figure is for average L = 0, and the bottom
is for L = 1.5. The left side is the data, and the right side is the LLD simulation for our optimized exchange model. For the
high symmetry points, I't = (0,0,L), I'f = (0,1,L), K* = (1/3,1/3,L), and T'},, = (£n,0, L). Throughout, the intensity is
integrated over AL = L+[—0.2,0.1] b-e, Energy-integrated paramagnetic scattering intensity integrated over AE = [1, 6] meV
from the E; = 11.5 meV data at T = 100 K. b-c, e shows the (H, K, L) plane with L = 0,1.5, —1.5, respectively. d shows the
(H,0, L) plane integrated over AK = [—0.1,0.1]. f, Energy-resolved neutron-scattering intensity at 7' = 70 K with an incident
energy of E; = 40 meV. The upper figure is L = 0, and the bottom is L = 1.5. g, shows constant-energy line cut through Fig.2f
near the two Gamma points, I'Y and 'Y, with L = 0 and 1.5 at T = 70 K. The colour bar indicates the energy-integrated
region of each constant-energy slice. Black lines show the LLD simulation with a given energy integration range.

diate phase at T' = 70 K, for which our model faithfully
captures the V-shaped excitations near the zone centers.
Constant energy slices at 7' = 70 K, shown in Fig.2g,
clarify the nature of the V-shaped excitations as dispers-
ing coherent modes as a two-peak structure emerges in
both data and simulations.

We now turn to the broadband measurements of the
magnetic excitation spectrum in the MF-Helix phase at T'
= 5 K. Fig.3a shows that broad spin-wave like excitations
emerge from the Q,,2 points of reciprocal space, with a
bandwidth greater than the £ = 20 meV reach of our
measurements and a local maximum around F = 8 meV.
The spin gap at the magnetic Bragg peak is less than 0.3
meV (see Fig.S57). Since the lattice distorts below Tno
[20], we performed simulations in the phase using the ex-
change parameters obtained above but with a slight devi-
ation (1% of J1) of the nearest-neighbor Heisenberg inter-
action to mimic the distorted triangular lattice and stabi-
lize the observed single-Q,,, magnetic order (see Fig.S1).

Combining an incommensurate magnetic order with a
spin-anisotropic Kitaev interaction makes it impossible
to solve the spin-wave Hamiltonian in the conventional,
single-Q,,, spiral approximation. Instead, we simulated
the spin-wave spectrum in the low-temperature limit by
adopting a 1 x 14 x 2 super-cell whose dimensions ap-
proximate the inverse length of the Q,,,2 propagation vec-
tor. We minimized the classical energy using the classical
Monte-Carlo simulation and performed a linear spin-wave
theory for the obtained classical equilibrium spin config-
uration. While this approach cannot fully capture the
incommensurate nature of out-of-plane order and excita-
tions, the simulations reasonably describe the experimen-
tal results without further tuning exchange interactions,
see Fig.3b-e for constant energy slices.
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FIG. 3. Spin-wave spectrum of in the low-temperature phase of Nil; a, Spin-wave spectrum of the MF-Helix phase
at T = 5 K with an incident energy of F; = 40 meV. The upper panel shows the L = 0 spectrum, and the bottom panel shows
the spectrum at L = 1.5. The left panels display the experimental data, while the right panel presents simulations based on the
linear spin-wave theory (LSWT) using the best-fit parameters for the PM phase. b-e, Energy-integrated spin-wave spectrum
integrated over AL = [-0.25, 0.25]. The energy integration range for each figure is specified at the top of the respective panel.
The left side of each panel shows experimental data and the right side shows the LSWT simulation. The colour bar represents
the intensity of the dynamic structure factor of both data and simulations.

DISCUSSION

Our investigation establishes a minimal exchange
Hamiltonian that captures the elastic, diffuse, and inelas-
tic neutron scattering response of Nils in three distinct
thermodynamic phases. With this success, we turn to
the precise nature of the magnetic ground state in the
intermediate phase between Ty; and Tno. As neutron
scattering experiments average over the entire sample,
it is challenging to determine whether the intermediate
phase corresponds to a multi-Q,,, structure or domains
of a single-Q,,, structure. This distinction is made crisp
by Monte-Carlo simulations of the low-temperature mag-
netic structure with our best model parameters and for
two different lattice symmetries (see the Supplementary
Information). Remarkably, for the orthorhombic lattice
structure that supports the multiferroic phase, the mag-
netic ground state corresponds to a spin helix with an in-
plane propagation vector along the (1,0,0) direction (see
Fig.4a). However, for the hexagonal lattice structure, the
in-plane propagation vector changes to (1,1,0) with anti-
ferromagnetically coupled layers, and the spin texture is
highly non-coplanar; this is a clear signature of the stabi-

lization of the SkX-2 phase in the simulations, see Fig.4b.
These results are consistent with the intertwined nature
of the lattice distortion/multiferroic transition and the
change of magnetic structure observed in experiments.
To go further, we first discuss the mechanism by which
the SkX-2 phase is stabilized in simulations before turn-
ing to a critical analysis of our data in the intermediate
phase.

To better understand the origin of the non-collinear
spin texture analytically, we model the putative SkX-2
magnetic structure using a triple-Q,, model, where each
Q., n = 1,2,3 is associated with a longitudinal spin-
density wave as follows [8, 15, 36, 37]:

3
S(ri) =Y Anéncos(Qy i + ¢n)

n=1

(1)

where S(r;) is the spin moment at position r;, and
A, is the contribution of each of three Q,, é, are
three mutually orthogonal unit vectors, ¢,, is the phase
factor associated with each of the propagation vec-
tors Ql = (qM7QM715)7 Q2 = (_Qqﬂ%(bnyl-5)a Q3
(¢ms —2Gm, 1.5) with g, = 0.083 fixed to the experimen-
tal value. We fit this analytical form to the spin con-
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FIG. 4. Lattice-symmetry dependent magnetic ground
state in Nil; a, Real-space spin configuration of the spiral
phase obtained from the Monte Carlo simulation on an or-
thorhombic lattice. The colour bar indicates the z-direction
spin moment. b, Real-space spin configuration of the SkX-2
phase based on the classical MC simulation with a hexagonal
lattice. ¢, Schematic representation of the SkX-2 spin texture
decomposed into three spin-density-wave modes.

figurations obtained from MC simulations, with the unit
vectors é, aligned with the axes of the Kitaev anisotropy,
which gives excellent agreement for A,, = 0.7765 for each
n (see the Supplementary Information). In these condi-
tions, the triple-Q,, structure describes a perfect SkX-2
crystalline phase with a high topological charge per soli-
ton (see Fig.4c).

We now turn to the distinction between a single-Q,,, or-
dered structure with three domains and a single-domain
triple-Q,,, structure. This is important because several
frustrated multiferroic compounds are known to display
a two-step ordering: a single-Q,,, spin-density-wave first
sets in, and precedes, upon cooling, the onset of a single-
Q. helical structure with multiferroic properties [38—
41]. This phenomenology usually relies on the existence
of uniaxial easy-axis anisotropy. However, Nil, appears
strikingly different from these examples: we expect the
large Kitaev interaction to stabilize a triplet of spin-
density-wave-like modes, each polarized along three mu-
tually orthogonal easy axes. It is not energetically favor-
able to stabilize the single-Q,,, spin-density-wave phase
in our hexagonal four parameters model of Nil,. More
generally, the symmetry-allowed exchanges anisotropies
for the paramagnetic space group of Nily allow for a devi-
ation from a pure Heisenberg-Kitaev model. We expect
these deviations, that are not necessary to explain our
current neutron scattering data, to complicate the sta-
bilization of three longitudinal spin-density waves with
equal amplitude (the Sk-2 phase). For this reason, it
is reasonable to conclude that our modeling effort sup-
ports Nils as being proximate to a finite-temperature Sk-
2 phase but not necessarily exactly in that phase.

On the experimental side, as inversion symmetry is
not broken by the superposition of three spin-density

wave modes with equal amplitude, neither SHG nor fer-
roelectricity is expected in the putative SkX-2 phase,
as observed experimentally for Nily [22]. However, the
bulk crystals of Nil, display weak linear optical dichro-
ism below T [24], indicating that the underlying mag-
netic structure breaks the 3-fold rotation symmetry of
the paramagnetic lattice. Such a finite linear dichroism
signal can be interpreted in two ways: an unequal dis-
tribution of three single-Q,, spin-density-wave domains
across the sample, or a non-equilateral triple-Q,,, SkX-2
phase with imbalanced A, amplitudes due to the ther-
mal fluctuations, or sub-leading anisotropic terms in the
Hamiltonian as discussed above. Other optical measure-
ments, such as circular dichroism, are complicated by the
antiferromagnetic out-of-plane correlation and are incon-
clusive.

In an attempt to create a population imbalance be-
tween putative single-Q,, domains, we also performed
a neutron diffraction experiment in an applied magnetic
field along the a-axis. The sample was cooled in zero field
from its paramagnetic state at T'= 100 K to T" = 62 K
(below Tn1) and then to T =5 K (below Tn2). The ex-
periment was repeated while field cooling in yugH =5 T
to T = 62 K and then 7" = 5 K. While the inte-
grated intensity of the Q,,1 Bragg peaks (see Fig. S9d)
at T'= 62 K does not change appreciably between field-
cooled and zero-field cooled conditions, the intensity of
the Q.2 Bragg peaks at T = 5 K significantly redis-
tributes, see Fig.S9b. While this behavior is consistent
with the existence of a triple-Q,, magnetic structure be-
low Tn1, the difference in behavior between the Q,,; and
Q.2 peaks could also originate from the elevated tem-
perature and too low magnetic-field scale, and the result
of this experiment is inconclusive.

In conclusion, Nils is a unique quantum material that
bridges the realm of fundamental Kitaev quantum mag-
netism with applied two-dimensional thin-layer multifer-
roicity. Our neutron scattering and semi-classical mod-
eling results demonstrate a sizable Kitaev interaction
in this van der Waals triangular-lattice antiferromagnet.
Along with four other exchange parameters, this leads
to a minimal model that successfully describes the static
and dynamical magnetic properties in reciprocal space
for three distinct thermodynamic phases: a cooperative
paramagnet above 75 K, an intermediate phase between
59.5 and 75 K, and multiferroic helicoidal phase below
59.5 K. In simulations, this model unambiguously stabi-
lizes an intermediate triple-Q,, structure corresponding
to a higher-order SkX-2 skyrmion crystal. Remarkably,
this phase corresponds to the coherent superposition of
three orthogonal polarized spin-density wave modes and
is entirely stabilized by the Kitaev interaction without re-
quiring the two otherwise conventional skyrmion mech-
anisms of the RKKY and DM interactions. In experi-
ments, the single-Q,,, or triple-Q,,, nature of this interme-
diate phase remains to be fully understood, given the ex-
treme sensitivity of the latter to slight lattice distortions.
This issue can only be address by new, although rather



difficult, measurements done in real space, or by few-layer
studies, which will remove the out-of-plane magnetic or-
der.

METHODS
Sample growth and characterization

Nil, single crystals were synthesized using the chemi-
cal vapour transport (CVT) method. Nickel powder and
crystalline iodine (99.99% purity) were weighed in the
stoichiometric ratio, with a 5% excess of iodine, to ensure
a complete reaction. The mixture was sealed in a quartz
tube under vacuum conditions. The sealed quartz was
placed in a horizontal two-zone furnace, where the end
zones were heated to 750 and 720 °C, respectively, over 6
hours. The furnace was held at these fixed temperatures
for one week to facilitate crystal growth, followed by slow
cooling to room temperature for five days. The result-
ing crystals formed shiny grey flakes with dimensions of
approximately 5 x 5 x 0.1 mm?. The quality of the syn-
thesized crystal was assessed using the magnetic suscep-
tibility measurement. Temperature- and magnetic field-
dependent magnetization were measured using a SQUID
magnetometer (Quantum Design, MPMS3). Measure-
ments were performed on single crystals across a temper-
ature range of 2 to 300 K, with the magnetic field H =
5000 Oe.

Neutron scattering measurements

Inelastic neutron scattering measurements were con-
ducted using the SEQUOIA spectrometer at the Spalla-
tion Neutron Source (SNS), Oak Ridge National Labo-
ratory (ORNL), USA [42]. For these measurements, 20
pieces of Nil, single crystals were coaligned with a to-
tal mass of around 1 gram. Because of the hygroscopic
nature of the sample, the crystals were covered with
hydrogen-free glue (CYTOP) and mounted in an air-tight
sample holder attached to the bottom of a closed-cycle
refrigerator. To cover the bandwidth of the magnetic ex-
citations, three incident energies (F; = 8, 11.5, and 40
meV) were used. The sample was measured at various
temperatures: T = 5, 70, 100, and 200 K for E; = 11.5
meV and T = 5 and 70 K for E; = 40 meV. Data re-
duction was performed using the MANTID [43] software
at the ORNL analysis clusters. For the final analysis,
the data were symmetrized along the threefold rotational
symmetry axis (0,0, L) of the scattering pattern using the
HORACE software package [44] to improve statistical re-
liability.

Another inelastic neutron scattering measurement was
performed using the HRC spectrometer at the MLF, J-
PARC, Japan [45]. For this experiment, approximately
70 coaligned Nil, single crystals with a total mass of 2.5
grams were used. The HRC beamline employed a Fermi

chopper (A) operated at 600 Hz, with two incident neu-
tron energies (F; = 60 and 18 meV). Magnetic Bragg
peaks were tracked by measuring at three angles (¢ =
-77.5°%, -68.52, and -59.5°) while increasing the tempera-
ture from 20 to 80 K.

Neutron diffraction was performed on a single crys-
tal of Nil, using the DEMAND [46] diffractometer at
the High Flux Isotope Reactor (HFIR), Oak Ridge Na-
tional Laboratory (ORNL), USA. DEMAND was oper-
ated with the wavelength of A = 1.533 A=, The sample
was inserted in a cryomagnet with a maximum field of
woH = 5 T applied along the a direction. The sample
was rotated along the magnetic field axis and the position
sensitive detector adjusted to capture up to five equiva-
lent magnetic Bragg peaks in each of the ordered phases
of NIIQ

Spin dynamics simulation

The momentum- and energy-dependent neutron scat-
tering intensity in the paramagnetic regime was calcu-
lated using the Landau-Lifshitz dynamics (LLD) method
using the Sunny.jl code [47, 48]. The Monte Carlo simu-
lation employed a supercell size of 30 x 30 x 10. At each
temperature, the initial spin configuration was thermal-
ized using the standard Langevin sampler with a time
step of dt = 0.00135meV ~! and the damping parame-
ter A = 0.1 for the Langevin sampler. The thermaliza-
tion process involved 3000 Langevin time steps to ensure
equilibrium. After thermalization, the equation of mo-
tion for the sampled spin configuration was integrated
using Landau-Lifshitz dynamics. Five spin configura-
tions were sampled, with 1000 Langevin time steps be-
tween each sample. The sampled configurations were
Fourier-transformed to reconstruct the intensity of the
momentum- and energy-dependent neutron scattering.
To account for the differences between classical and quan-
tum mechanical behaviour, the calculated classical cor-
relations were adjusted using the classical-quantum cor-
rection factor, ensuring accurate comparison with the ex-
perimental data.

We performed LSWT calculations using Sunny.jl [47,
48]. The incommensurate magnetic order combined with
the spin-anisotropic Kitaev interaction makes it challeng-
ing to solve the spin-wave Hamiltonian using the conven-
tional, single-Q spiral approximation. To overcome this
limitation, we adopted the kernel polynomial method [49]
to simulate the low-temperature spectrum. The calcula-
tions were conducted with a 1 x 14 x 2 supercell chosen
to approximate the inverse length of the Q,,> propaga-
tion vector. We minimized the classical energy using the
classical Monte Carlo simulation and performed linear
spin-wave theory for the obtained classical equilibrium
spin configuration.
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SUPPLEMENTAL INFORMATION

I. LUTTINGER-TISZA METHOD AND CLASSICAL ENERGY MINIMIZATION

The magnetic phase diagram for Nils within the J; — K —J3 model was calculated using the standard Luttinger-Tisza
method [33]. Using the Fourier transform, we can rewrite the model Hamiltonian (Eq.1) as

H :Z\II,QHQ'IJQ
A B C D
where Hq = C A+BEFE
D E A

A = [Jl - ] Fy + JoFy + J3Fy

B %K [cos(2mQn) — cos(2mQy) — cos(2m(Qn + Qx)]
C = —?K [cos(2m(Qn + Qx)) — cos(2mQx)]

D = —?K [cos(2m(Qn + Qx)) — cos(2mQx)]

Fi =2c0s(2mQy) + 2c0s(27Qx) + 2c0s(27(Qn + Qx))

Fy  =2cos(2m(2Qn + Qx)) + 2cos(2m(2Qx + Qn)) + 2cos(2m(Qn — Qx))
F3 = 2cos(4nQy) + 2cos(4nQx) + 2cos(4m(Qn + Qx))

where the vector ¥ = {Sq.2, 5qQ.y, 5q,- } is defined from the Fourier-transformed components S, , = ZQ SQ@eiQ'T.
Using the Luttinger-Tisza formalism, the ground state is determined by solving the eigenvalue problem HoWVg = eq¥q
while satisfying the weak constraint y_, [5;|* = NS? (N is a number of the lattice sites). We found that the direction
of the propagation vector of the J; — K — J3 model solely depends on the Kitaev interaction if J3 is large enough. An
antiferromagnetic (AFM, K > 0) Kitaev term stabilizes a propagation vector Q,,(K > 0) along the (1,1,0) direction.
In contrast, a ferromagnetic term (FM, K < 0) yields Q,, (K < 0) along the (1,0,0) direction.

To observe the influence of interlayer coupling, we analytically calculated modulations in the propagation vector
along the c-axis. Considering the 1st and 2"¢ n.n. interlayer coupling (see Fig.lc) and in-plane propagation vector
parallel to (1, 0, 0) direction, we can obtain the equation of modulation of the propagation vector along the c-axis as

¢ (277621) _ Jezsin (87T3Qh) — (Je1 + 2Jc2)sin (4“Qh) 4 2.1 sin <2th) .

’ Jezsin (%) + (Je1 + 2Jc2)sin (47@}‘) + 2Jc1 510 (2”Qh)

Since we have @ = 1.457 & @Q, = 0.1358 at the MF-Helix phase, this equation gives J.; = —0.035J.2. This implies
that 27¢ n.n. interlayer coupling determines the pitch of the out-of-plane incommensurate order, and 1 n.n. interlayer
coupling is negligible. This trend is also consistent with the previous DFT calculation [28]. If the in-plane propagation
vector is parallel to the [1, 1, 0] direction, we can obtain an equation of modulation of the out-of-plane propagation
vector as

sin (27;@[) [Je1 (2c0s(2mQn) + 1) + Jeo (2cos(4mQn) +1)] =0 (S2)

This equation shows that if the in-plane propagation vector is along the [1, 1, 0] direction, the out-of-plane has
no incommensurate order. This result is consistent with our observation at the IN phase, where the out-of-plane
propagation vector is commensurate at ¢J; = 1.5.

II. FITTING PROCESS DETAILS

The paramagnetic inelastic neutron scattering intensity was analyzed by calculating using Landau-Lifshitz dynamics
(LLD) for classical dipoles as implemented in the Sunny.jl package [47, 48]. The Bayesian optimization method [50, 51]



was employed to extract a model of exchange interactions from the data. We investigated a hyperparameter space
with four parameters: J;, K, J5 and J.5. The searching space was bounded for each parameter with .J; = [-8, -4] meV,
K =10, 8] meV, J; = [0, 4] meV, and J.o = [0, 4] meV after the initial rough analysis. The final optimization proceeds
as follows: From the initial choice of parameters, we first performed simulated annealing of the spin structure in a
14 x 14 x 6 crystallographic supercell using a Langevin sampler thermalized from 200 to 0.01 K. For each temperature,
we performed 5000 Langevin time steps for thermalization with a time step of dt = 0.00128meV ~! and a damping
parameter A = 0.01 for the Langevin sampler. After the thermalization, 4000 Langevin time steps were used between
each sample. Each run’s calculated heat capacity determined the system’s T cq. From the extracted T cq, we
scaled the temperature for LLD to the observed T as follows:

Tyata
Tscalc = dat X TN.cal (83)
TN '

where Tiqqie is the temperature used for simulating the LLD with given data with temperature Ty,+,. We used three
different experimental temperature data for Bayesian: T = 70, 100, and 200 K. The fitted data is split into six
representative two-dimensional slices (two momentum-energy slices in Fig.2a and Fig.S5, four constant energy slices
with AE = [1, 6] in Fig.2b-e and Fig.S5b-¢) for each temperature, and the loss function calculated over all intensity
pixels in the set. Because the T' = 100 K data only covers a bandwidth of 8 meV, we used the T" = 70 K signal to
better capture the scale of the exchange interactions by reaching an energy transfer of 20 meV. This is justified by
the insensitivity of the high-energy inelastic signal at T = 70 K to details of the underlying magnetic order, given the
proximity to Tni.

The momentum- and energy-dependent neutron scattering intensity in the paramagnetic regime was calculated
using the Landau-Lifshitz dynamics (LLD) method. The supercell size for the Monte-Carlo simulation was set for
30 x 30 x 10. Before sampling, the initial spin configuration at a given temperature was thermalized using the
standard Langevin sampler. We used the time step dt = 0.00135 meV ! and the damping parameter A — 0.1
for the Langevin sampler. The thermalization was done with the 3000 Langevin time steps. After thermalization,
the equation of motion of the sampled spin configuration was integrated using Landau-Lifshitz dynamics. Up to
five sampled configurations are Fourier-transformed to reconstruct the momentum- and energy-dependent neutron
scattering, with 1000 Langevin time steps between the samples. The calculated classical correlations were corrected
using the classical-quantum correction factor to fit the data. The goodness-of-fit between data and simulations was
determined by calculating y?:

14
V= 35 Ugutan (i) = (2 + 81 # Learn i, 1)) (54)

n=1 4,j

where n indicates the number of 2D data slices included in the fit, and I4atan(é,7) shows the intensity of the data at
point (4, 7) of a 2D slice. Icain(4,7) is the intensity of the simulation at (i,j) coordination, and Sy, So are the scale
and background parameters, respectively, to minimize the x? [52]. After calculating the goodness-of-fit at one step
of the optimization process, the parameters set for the next calculation are guessed based on the Gaussian process
model. Fig.S4 shows the convergence of each parameter based on this Bayesian optimization method.

IIT. CLASSICAL MONTE CARLO SIMULATION

The standard Monte Carlo Metropolis simulations with simulated annealing were used for the ground state energy
simulation. The supercell size for the Monte Carlo simulation was set for 24 x 24 x 2. For each temperature, we
perform 15000 spin flip steps. The temperature step started at 200 K, and the next temperature was 4% lower than
the previous temperature steps. The annealing stopped when the temperature reached 0.01 K.

IV. THE TRANSFORMATION BETWEEN THE CUBIC AXIS AND THE CRYSTALLOGRAPHIC AXIS

In the Kitaev model, it is conventional to use the cubic axis, whose axes are parallel to the direction of the
transition metal and the three upper ligands in the ideal octahedrons. However, given the symmetry in a crystal, it is
convenient and realistic to use the crystallographic axes to represent bond-dependent anisotropy [53]. We can convert
the generalized Kitaev-Heisenberg model (i.e., J — K — T' — IV model) into the J; — A} — J1+ — J,+ model in the
crystallographic axes by rotating the reference frame. The transformation from the cubic axes to the crystallographic



frame Scryst = RSeubic is given by the rotation matrix:

1 1 1
V2 6 3
~ 1 1 1
Ro=|"V2 V6_ V3 (S5)
1

S

After the rotation of the reference frame, the relation between J; — K —I' —T" to J; — A; — J4+4+ — J,+ can be written
as

1

Ji =300+ AlJo +205x +2V2,4) (50

K =-2J41 —V2J,4 (57
1

I = §<—J01 + ArJor — 4Jex +V2J,1) (58)
1

rr = 6(—2J01 + 200 Jor + 4Jes — V2,1) (59)

For the Heisenberg-Kitaev model, it can be simplified as follows:

K
Jo =.J1+ 3 (S10)
A =1 (S11)
Jot K
J = = —— S12
e =12 =G ($12)

V. ANALYTIC FORM OF THE SKYRMION PHASE

We can write the Ny, = 2 Skyrmion as an approximation of a linear combination of three spin-density-wave as
follows [8, 36]:

3
S(r;) ~ Z Apéneos (Qu - i + ¢n) (S13)
n=1

where S(r;) is the spin moment at position r; and A, is the ratio, é, is the unit vector, ¢,, is the phase factor of
propagation vector Q1 = (¢m, ¢m, 1.5), Q2 = (—2¢m, Gm, 1.5), Q3 = (¢m), 2¢m, 1.5) with g, = 0.083. From our fitting,
é1 = (0.7048,-0.4118,—0.5776) and A; = Ay = A3 = 0.7601, ¢; = 0.13767, ¢ = 0.88997, ¢35 = 0.9707.

TABLE S1. The best fitting parameter set from the Bayesian optimization and conversion into crystallographic axis. Note
that the J.i is automatically determined by Jo1 = -0.031J.2. The standard deviation of the best fitting parameter set was
estimated by 1% of the minimum x?2.

(in meV) J1 K J3 Jei Je2
our model -7.392 2.459 2.724 -0.038 1.243

Standard deviation 0.141 0.456 0.111 0.058
(in meV) Jo1 Ay Jit Jat

Crystallographic Axis -6.6 1 -0.4 -1.13
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FIG. S1. a, Exchange path of paramagnetic Nil, defined in Eq.1 in the main text. The red arrows indicate the intralayer
coupling and the orange arrows indicate the interlayer coupling. b, Exchange path of Nilz with orthorhombic unit cell. Blue
and red arrows indicate the two different first nearest-neighbor interaction Ji and Ji, respectively. Ji is 1% smaller than the
J1 to stabilize the experimental magnetic order. ¢, Description of Kitaev-type exchange on the paramagnetic Nily lattice. Each
colour bond indicates the specific Ising axis defined as a 3 x 3 matrix on the right side of the figure.
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FIG. S2. Magnetic phase diagram of J; — K — J3 model using the Luttinger-Tisza method. Colourmap indicates the length of
the propagation vector in units of reciprocal lattice.
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FIG. S3. Brillouin zone and convention of high-symmetric points. The orange lines indicate the path of the inelastic neutron
scattering data shown in Fig.2-3.
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FIG. S4. The out-of-plane signature of the paramagnetic scattering intensity depends on the sign of the Kitaev interaction.
For the FM Kitaev interaction, we used the same parameter set as the AFM Kitaev model and changed the sign of the Kitaev
interaction. The paramagnetic scattering intensity was integrated with energy AE = [1, 6] meV and along AK = [-0.015,
0.015] and AL = 1.5 + [-0.2, 0.2].
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FIG. S5. a, Energy-resolved neutron scattering intensity in the paramagnetic regime at 7" = 200 K along the symmetry
directions of the hexagonal Brillouin zone with incident energy of E; = 11.5 meV (see Fig.S2 for the directions). The upper
figure is for average L = 0, and the bottom is for L = 1.5. The left side is the data, and the right side is the LLD simulation
for our optimized exchange model. For the high symmetry points, T'§ = (0,0,L), T = (0,1,L), K* = (1/3,1/3,L), and
%, = (#n,0,L). Throughout, the intensity is integrated over AL = L + [<0.2,0.1] b-e, Energy-integrated paramagnetic
scattering intensity integrated over AE = [1, 6] meV from the F; = 11.5 meV data at T = 100 K. b-c, e shows the (H, K, L)
plane with L = 0,1.5, —1.5, respectively. d shows the (H,0, L) plane integrated over AK = [-0.1,0.1].
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FIG. S6. The convergence of Bayesian optimization fitting for each variable. Red stars show the best-fit parameters for each
exchange interaction. The grey area indicates the statistical range of calculated x? for the best-fit parameter set. The colour
of the points indicates the value of x2.



Energy transfer (meV)

SR 0 i
[0, O, L] (r.l.u)

FIG. S7. Low-energy excitation of MF-Helix phase at 5 K with incident energy E; = 8 meV. The data were integrated with
AH = [-0.2,0.2] and AK = [-0.2, 0.2].
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FIG. S8. Temperature dependence of the magnetic Bragg peaks measured at HRC, J-PARC, Japan. The magnetic Bragg
peaks are integrated with AE = [-1, 1] meV and AL = 1.5 + [—0.1,0.1]. The orange line indicates the magnetic Bragg peak
along the (1, 1, 0) direction, and the blue line indicates the magnetic Bragg peak along the (1, 0, 0) direction.
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FIG. S9. a, Schematic view of three magnetic Bragg peaks of Nil; at 7' = 1.5 K. Each magnetic Bragg peak is symmetrically
equivalent as Qmi = (0.1384,0,1.456). b, Intensity of the three magnetic Bragg peaks after field-cooling with poH = 5 T
(gold) and turn off the magnetic field (blue). Each number corresponds to the peak in a. ¢, Schematic view of six magnetic
Bragg peaks at T' = 62 K. Each magnetic Bragg peak is symmetrically equivalent as Qm2 = (0.083,0.083,1.5). d, Intensity of
the six magnetic Bragg peaks after field-cooling with uoH =5 T (gold) and turn off the magnetic field (blue). Each number
corresponds to the peak in c. e, Field dependence of the magnetic Bragg peak after the field training. Red arrow indicates the
propagation of the field from 5T to OT. Each color corresponds to the magnetic Bragg peak in ¢
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