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ABSTRACT. The past decade has witnessed groundbreaking developments in metalloenzyme-
catalyzed free radical transformations which were previously unknown or uncommon in native

metalloenzymology. Guided by mechanistic understandings from organic, organometallic and



biochemistry, an array of radical reactions has been developed using various metalloprotein
catalysts based on first-row transition metal cofactors including Fe, Co and Cu. The structural and
functional diversity and the readily tunable active-site environment of metalloproteins offer an
excellent opportunity to solve the challenging chemo-, regio- and stereoselectivity problems in
radical-mediated transformations facing synthetic chemists. In this Review, we summarize
metalloprotein-catalyzed radical reactions based on the reactive intermediates involved, including
carbon-centered radicals, nitrogen-centered radicals, oxygen-centered radicals, and metal
carbenoids and nitrenoids with radical character. We further survey the reaction mechanism,
enzyme engineering strategies, and substrate scope of these metalloprotein-catalyzed radical
transformations, providing an overview of the current status of metalloenzymology unknown or

uncommon in native biochemistry.
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1. Introduction

As reactive intermediates with unpaired electron(s), free radicals have long been recognized
as versatile intermediates in organic synthesis.!”® However, challenges in taming these highly
reactive intermediates for more efficient and selective transformations have hampered their
broader adaption in synthetic chemistry. Over the past decade, free radical chemistry has

experienced a renaissance, due to the exciting development of new strategies such as transition

7-11 12-15 16,17

metal catalysis,””' photoredox catalysis, and electrochemistry, allowing radicals to form

under mild conditions in a controllable manner. However, due to the difficulties in maintaining
tight association between the transiently formed radical intermediate and the chiral catalyst,

inducing high levels of regio- and stereocontrol over radical-mediated transformations has

remained a daunting task in asymmetric catalysis with small-molecule catalysts.!3-20

As nature’s privileged catalysts underlying the chemistry of life, enzymes are capable of

21-23

facilitating challenging reactions with outstanding efficiency and selectivity, including free

radical-mediated processes. Natural radical enzymes, including anaerobic radical enzymes such as

24-26 27,28

radical S-adenosylmethionine (SAM) enzymes and cobalamin-dependent enzymes,*’~° as well

29-36 37-40 41-44

as aerobic enzymes such as heme and nonheme oxygenases and halogenases use a
plethora of interesting mechanisms to promote challenging open-shell processes. Over the past
decade, by cross-pollinating ideas from synthetic chemistry and enzymology, mechanism-guided
enzyme repurposing and engineering have greatly expanded the catalytic repertoire of naturally
occurring enzyme systems. The excellent tunability of naturally occurring metalloprotein catalysts
provides an opportunity to impose high degrees of stereocontrol over otherwise challenging radical

reactions, thereby complementing the state-of-the-art chiral small-molecule catalysts designed to

facilitate asymmetric radical transformations.'®2° To date, using photochemistry to trigger radical



generation, natural enzymes based on diverse organic cofactors including nicotinamide,*>4¢

45-47 148-54

flavin, pyridoxa and thiamine®>° have been reprogrammed to catalyze unnatural
enantioselective reactions using a radical mechanism. Possessing a redox-active and catalytically
versatile first-row transition-metal cofactor, metalloenzymes hold the potential of promoting free
radical formation and transformation using a complementary metallocofactor-enabled redox
mechanism. Furthermore, the unique reactivity of first-row transition metal elements holds the

potential for challenging bond formation, allowing a range of unnatural asymmetric radical

reactions to be advanced.

Prior to 2021, several carbene transfer and nitrene transfer reactions from the pioneering
studies of Arnold and Fasan were proposed to proceed via Fe—C and Fe—N bond containing
intermediates with substantial radical character on Fe-bound organic ligand.*% In 2021, our
group reported the first examples of unnatural stereoselective free radical reactions catalyzed by a
repurposed natural P450 enzyme.** Since 2021, a range of metalloenzyme-catalyzed free radical
reactions using various radical generation mechanisms have been developed. In this Review, we
survey recent advances of natural metalloenzyme-catalyzed free radical transformations not found
or uncommon in native enzymology, including their mechanism, enzyme engineering, and
substrate scope. Based on different classes of radical intermediates involved, this Review is
structured into five sections, including transformations involving carbon-centered radicals,
transformations involving nitrogen-centered radicals, transformations involving oxygen-centered
radicals, transformations involving metal nitrenoids with radical character on the nitrenoid
nitrogen, and transformations involving metal carbenoids with radical character on the carbenoid
carbon (Figure 1). As excellent earlier reviews have summarized metalloenzyme-catalyzed

carbene transfer and nitrene transfer reactions published before 2021,°0-3 this review only covers



recent progress of carbene and nitrene transfer reactions involving radical intermediates published

after 2021. Important related studies using artificial metalloenzymes (ArMs) are out of the scope

of our review and we direct readers to outstanding recent reviews from experts in this field.®>-"3
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Figure 1. Summary of representative metalloenzymes and non-native radical intermediates. (A)
General challenge for catalytic enantiocontrol over free radical-mediated transformations; (B)
Metalloenzyme-catalyzed free radical transformations; (C) Summary of previously studied

metalloenzymes and the radical intermediates involved in these transformations.



2. Transformations involving carbon-centered radicals

Carbon-centered radicals represent essential reactive intermediates in both synthetic
methodology and natural product synthesis.”’*”"7 In native metalloenzymology, carbon-centered
radicals are involved in various anaerobic and aerobic transformations. In this section, we review
metalloenzyme-catalyzed unnatural transformations involving carbon-centered radicals that have

been reported since 2021.

2.1 Addition of carbon-centered radical to alkenes

Alkene difunctionalization represents an important strategy to generate molecular complexity
from easily available olefin building blocks.”®% Among these methods, radical-mediated
stereoselective alkene difunctionalization processes triggered by the addition of a carbon-centered
radical across the C=C double bond of an alkene could potentially enable the construction of
multiple stereogenic centers in an efficient manner. In 2021, by capitalizing on the innate redox
properties of the heme cofactor, our lab engineered cytochromes P450 to catalyze atom transfer
radical cyclization (ATRC) reactions®! with excellent diastereo- and enantioselectivity.®* In the
proposed catalytic cycle (Figure 2), through the halogen atom transfer between the a-haloamide
substrate and the P450 enzyme in its ferrous state, a reactive a-carbonyl radical is generated, along
with the formation of the ferric enzyme containing a Fe—Br bond. Within the enzyme’s active site,
the addition of this incipient a-carbonyl radical to the pendant alkene occurs in an enantioselective
manner, giving rise to a new cyclized alkyl radical. Finally, through a halogen rebound mechanism
involving the enzymatic Fe(IlI)-Br species, diastereoselective C—Br bond formation affords the

final ATRC product and regenerates the ferrous protein catalyst.
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Figure 2. Proposed catalytic cycle for the biocatalytic stereoselective atom-transfer radical

cyclization.

First, the evaluation of an in-house metalloenzyme collection led to the identification of two
serine-ligated P450 variants, P411-CIS T438S (“P”)*? and P41lpime,? allowing either
enantiomeric form of the ATRC product to be generated with promising enantioselectivity (Figure
3A—C). Subsequent directed evolution targeting active-site residues proximal to the heme cofactor
furnished improved variants, including P450aTrcaser (P T3271 1263Q L181F A82T H266T) and
P450aTRCase2 (P41 1piane2 P327C S400A L181V T438Q L436T). Using whole E. coli cells harboring
P450aTRCase1, the (R)-enantiomeric product formed in 8110 TTN and 97:3 e.r.. Using P450 aTrCase2,

the (S)-enantiomer was generated in 3350 TTN and 9:91 e.r..

To gain further understanding of reaction mechanism and the origin of stereoselectivity in this

P450-catalyzed atom transfer radical cyclization reaction, our group carried out computational



studies using molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM)
simulations.?* These studies revealed the role of beneficial mutation 1263Q as a key hydrogen bond
donor to engage the amide carbonyl group, facilitating bromine atom abstraction and enhancing
radical cyclization enantiocontrol. Further QM/MM studies showed that due to the steric repulsion
between the olefin and the heme, the (Re)-face-attack transition state has an activation energy 2.5
kcal/mol lower than of the (Si)-face attack transition state, leading to the (R)-enantiomeric
cyclization product (Figure 3D). Substrates with different substituted benzyl group were tolerated,
providing the corresponding ATRC products in TTNs of up to 8,110. Products bearing a gem-
difluoromethyl moiety and contiguous quaternary stereocenters could also be prepared. 3-Lactams

were also accessible with P450aTrcase2 A330K (Figure 3E).
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Figure 3. P450-catalyzed enantioselective atom transfer radical cyclization (ATRC). (A) Directed
evolution of P450atrcase1; (B) Directed evolution of P450aTrcase2; (C) The illustration of active
sites: the left was made from 4H23 (PDB ID) and the right was made from SUCW (PDB ID); (D)
Probing the origin of enantioselectivity by QM/MM studies; (E) Selected ATRC products;

reactions were carried out using whole E. coli cells overexpressing P450atrcase’s (ODgoo = 5-30).

In 2022, Bruns and coworkers further demonstrated that heme-dependent myoglobin (Mb)

was also capable of catalyzing atom transfer radical cyclization reactions for y-lactam synthesis
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(Figure 4A).%° Replacing the Fe-bound histidine with a serine provided the Mb H93S variant with
improved activity (Figure 4B). Similar or slightly improved total turnover numbers (TTNs) were
observed with whole E. coli cells than those with purified protein.®* Additionally, o,0,0-
trichloroamide substrates were also transformed into the desired o,a-dichlorolactam. Radical clock
studies using a substrate bearing a cyclopropyl moiety afforded the corresponding ring opening
product, further confirming the radical-mediated nature of this myoglobin-catalyzed cyclization
(Figure 4C). Despite extensive efforts, no enantioselectivity was observed in these myoglobin-

catalyzed ATRC processes.

[¢]
R — ~
J\K Tl
Mb H93S . :
(0.1 mol%) AVS o
Bn Me Bn /
=N N cl }
Cl
62+6TTN 22+1TTN
(with protein) (with protein)
101 +3TTN 24 +1TTN
(with whole cells)  (with whole cells)
(C)
(0]
[¢]
M Ph
k JS(Br MbHoas |\ ° g Me
v Me (0 1 mol%) Me N Me
—
Br /
35TTN

Figure 4. Mb H93S-catalyzed atom transfer radical cyclization. (A) Selected substrate scope;
reactions were carried out using purified Mb H93S (0.1 mol%) or whole E. coli cells
overexpressing Mb H93S (ODeoo = 40); (B) The illustration of active site was made from the

structure of IWLA (PDB ID); (C) Radical clock experiment.

Nonheme Fe enzymes have also been reprogrammed to catalyze stereoselective radical

transformations. Inspired by transition metal-catalyzed trifluoromethylazidation and related

12



processes, %0 the groups of Huang and Jia independently developed enantioselective styrene
trifluoromethylazidation using nonheme Fe enzymes hydroxymandelate synthase (HMS) and
quercetin 2,3-dioxygenase (QueD), respectively. In their proposed biocatalytic mechanism,
Togni’s reagent® is first reduced by Fe(I) to generate the trifluoromethyl radical. Subsequent
addition of this trifluoromethyl radical to the styrene substrate leads to a new benzylic radical.

Finally, enantioselective radical rebound with the Fe(III)-N; intermediate in the nonheme Fe

enzyme’s active site furnishes enantioenriched trifluoromethylazidation product (Figure 5A).
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Figure 5. Nonheme Fe enzyme-catalyzed enantioselective trifluoromethylazidation of styrenes.
(A) Proposed reaction mechanism; (B) Directed evolution of A0HMS-CF3; (C) Directed evolution
of BsQueD-CF3; (D) The left illustration of active site was made from 2R5V (PDB ID); The right

illustration was made from 1Y3T (PDB ID); (E) Selected substrate scope studies; reactions were
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carried out using lysate of AJoHMS-CF3; (ODgoo = 40, 1.5 mol%) or purified BsQueD-CF3 (2

mol%).

Huang reported the use and engineering of nonheme Fe-dependent hydroxymandelate
synthase from Amycolatopsis orientalis (AoHMS)?! to catalyze the enantioselective
trifluoromethylazidation of styrenes.®? To facilitate nonheme enzyme engineering for this
unnatural radical reaction, the authors developed a high-throughput fluorescence screening assay
using the Staudinger ligation of the organic azide products.” In each site-saturation mutagenesis
(SSM) library, the top 15 hits based on enzyme activity from fluorescence assay were further
evaluated based on enantioselectivity using chiral HPLC methods. With a sextuple mutant
AoHMS-QGHLYV (F188Q T214G Q305H F307L F330Y I335V) as the parent, iterative rounds
of SSM and screening targeting residues close to the nonheme Fe catalytic triad resulted in
AoHMS-QGHLYV S201V N334S E190D L338A Y339V S332G G328S, which improved the
enantioselectivity (91:9 e.r.) of the trifluoromethylazidation product. Additional random
mutagenesis using error-prone PCR (epPCR)**% introduced another three mutations including
P173L, D228N, and A269T, which slightly improved product enantioselectivity (92:8 e.r.). Finally,
three additional mutations V342A, Q226P, and L303M were introduced to furnish the final variant

AoHMS-CF3, with an enantioselectivity of 95:5 e.r. (Figure 5B and 5D).

Jia engineered the nonheme Fe enzyme quercetin 2,3-dioxygenase from Bacillus subtilis
(BsQueD)**Y7 for trifluoromethylazidation.”® Starting from wt BsQueD, directed evolution via
SSM and screening improved enzyme activity and enantioselectivity. Among the beneficial
mutations identified, replacing the Fe-bound glutamate with a histidine (E241H) enhanced the
yield and enantioselectivity of the trifluoromethylazidation product. Another mutation F295M was

found to invert the enantioselectivity (70:30 e.r.). Further rounds of SSM and screening in an

15



iterative manner led to BsQueD-CF3 (BsQueD E241H F295M L3321 H239L L330Y N326D L239P
D233E Y330F Q203T V269C), provided the product in 5% yield and 92:8 e.r. (Figure 5C, 5D).
Further reaction condition optimization showed that using 2 mol% purified BsQueD-CF; and 3 wt%
TPGS-750-M,” the yield of the desired product could be further improved. The two extensively
engineered nonheme systems independently developed by Huang and Jia shared a broad substrate
scope using 1.5 mol% AoHMS-CF3 lysate and 2 mol% purified BsQueD-CF3 respectively (Figure

SE).

Metal substitution in nonheme enzymes allows the convenient replacement of the native
catalytic center with alternative transition metals, giving rise to metalloenzymes with altered

100,101

catalytic activities with broad synthetic applications. Early pioneering studies by

102 Hartwig!% and Simaan!%* replacing nonheme Fe with Cu and Rh explored metal-

Kazlauskas,
substituted nonheme enzymes in Lewis acid and hydroformylation chemistry. Recently, Huang
reported the use of Cu-substituted nonheme enzyme SadA as Lewis acid catalysts to facilitate
asymmetric Conia-ene reactions.!®® Inspired by these results and Buchwald’s previously

developed copper-catalyzed radical trifluoromethylation,!%¢-198

in 2025, Huang and coworkers
reported the elegant use of Cu-substituted 40HMS variants for the biocatalytic intramolecular
alkene oxytrifluoromethylation.'” In their proposed mechanism, Togni’s reagent II is reduced by
the Cu-substituted AoHMS to generate the trifluoromethyl radical. Subsequent addition of this
trifluoromethyl radical to the alkene leads to a new carbon-centered radical. Finally,

enantioselective C—O bond formation mediated by the nonheme Cu center furnishes

enantioenriched CFs-substituted lactones.

Evaluation of Huang’s engineered A/oHMS variants in the presence of Cu(Il) led to Cu-

substituted 40HMS-V5 (40HMS-QGHLYV S201V N334S E190D L338A Y339V)*? as an

16



excellent starting point, provided the product in 22% yield and 86:14 e.r. Directed evolution
through five rounds of SSM and one round of random mutagenesis resulted in the final variant
AoHMS-AOT (AoHMS-V5 A196T V203H A338V V339E D190E V335M H305R), providing the
product in 37% yield and 97.5:2.5 e.r. (Figure 6A and 6B). Using 1.2 mol% cell-free lysate of
AoHMS-AOT, a range of substrates was tolerated, providing the corresponding products in up to
99% yields and 98:2 e.r.. Both - and 6-lactones were also produced in an enantioenriched fashion,

showcasing the synthetic versatility of the enzyme (Figure 6C).
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Figure 6. Cu-substituted AoHMS-catalyzed enantioselective intramolecular alkene
oxytrifluoromethylation. (A) Directed evolution of AoHMS-AOT; (B) The illustration of active
site was made from 2R5V (PDB ID); (C) Selected substrate scope studies; reactions were carried

out using cell-free lysate of A0HMS-AOT (ODsoo = 80, 1.2 mol%).
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% such as adenosylcobalamin (AdoCbl)-dependent isomerases,'!!

Bi>-dependent enzymes!!
methyl-cobalamin (MeCbl)-dependent methyltransferases,?” and dehalogenases'!? use cobalamin
as the metallocofactor. The unique redox properties and diverse reactivity of the cobalamin
cofactor provide an excellent opportunity for unnatural radical reactions to be advanced. In 2022,
Lewis engineered transcription factor CarH''® from Thermus thermophilus by fusing an N-terminal
Hise-MBP tag to increase its solubility and introducing a H132G mutation to generate an open
coordination site at Co center. The apo form of this CarH H132G construct was reconstituted with
hydroxocobalamin (HOCbI),!'* which was termed as CarH* (MBP-TtCarH H132G).!'> CarH*
catalyzed C(sp?)-H alkylation of styrenes using diazoacetate and diazoacetamide, displaying 2—
6.5-fold higher yields relative to the free hydroxocobalamin cofactor (Figure 7A). In the proposed
catalytic cycle, the hydroxocobalamin is first reduced to form the cob(I)alamin, which interacts
with the diazoacetate substrate to generate a cob(Ill)alamin-alkyl complex upon electron
transfer/proton transfer (ET/PT) events. This cob(Ill)alamin-alkyl complex is proposed to be in
equilibration with cob(II)alamin and a carbon-center radical. The addition of this carbon-centered
radical to styrene affords a new benzylic radical, which reacts with cob(Il)alamin via B-H
elimination to provide the alkylated styrene as the final product along with the cob(Ill)alamin
hydride, which regenerates cob(I)alamin upon deprotonation and complete the catalytic cycle

(Figure 7B).
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Figure 7. Styrene C-H alkylation catalyzed by CarH*. (A) Selected substrate scope; reactions
were carried out using purified CarH* (4.4 mol%) or hydroxocobalamin (HOCbI, 4.4 mol%); (B)

Proposed catalytic cycle.

Lewis further reported a CarH*-catalyzed radical cyclization for the synthesis of y-lactams
and 8-lactams (Figure 8).!'® Due to the unique ability of cobalamin to allow for B-H elimination,
this CarH*-catalyzed radical cyclization exhibited a preference for olefin formation, thus
complementing the reactivity of heme-based enzymes. Compared to free Bi> cofactor, Bia-
dependent protein CarH* showed improved catalytic activity and alkene/alkane chemoselectivity,
further demonstrating the potential of protein catalysts to solve challenging chemoselectivity

problems (Figure 8 A). Mechanistically, the catalytic cycle is proposed to start via the reaction of
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the a-chloro-alct-difluoroamide with Co(I) to form a Co(Ill)-alkyl complex. This Co(IlI)-alkyl
complex readily equilibrates with the Co(II) alkyl radical form to allow radical cyclization to the
pendant olefin, generating a new alkyl radical intermediate. -H elimination from this radical
species with Co(Il) provides the cyclized alkene product and the Co(Ill)-H complex, which
subsequently regenerates Co(I) via deprotonation. The cyclized alkane product is proposed to form
via reduction of the corresponding alkyl radical intermediate (Figure 8B). In this CarH*-catalyzed
radical cyclization, the ala-difluorocarbonyl moiety was proposed to play a key role in stabilizing
the Co(III)-CF2R species due to the more polar Co(Il)-C bond with the gem-difluoro group.

Enantioselective variants of this CarH*-catalyzed radical cyclization remained challenging.
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Figure 8. Radical cyclization catalyzed by CarH*. (A) Selected substrate scope, the alkene/alkane
ratio in parenthesis refers to the yield of alkenes versus alkanes based on GC analysis; reactions

were carried out using purified CarH* (0.5 mol%) or B12 (0.5 mol%); (B) Proposed catalytic cycle.

Transition-metal hydride intermediates play a critical role in the enzymology of naturally
occurring [NiNi]-, [NiFe]-, and Fe-dependent hydrogenases.!!”"!!” In synthetic chemistry, first-
row transition-metal hydride species based on Fe, Co, and Mn catalyzes a range of synthetically

120-123 yising a metal-hydride hydrogen atom

useful hydrofunctionalization of alkenes and alkynes
transfer (MHAT) mechanism.!2%!22 Inspired by this versatile MHAT catalytic manifold recently
studied by the synthetic organic community, pioneering research has led to the successful
repurposing of both nonheme Fe enzymes and heme enzymes to allow for unnatural enzymatic
MHAT activities. Over the past several years, several hydrogen and hydride transfer reactions have
been described with Zn- and Fe-dependent enzymes. In this review, we summarize processes
where radical intermediates are likely involved. Elegant recent studies from Hartwig and Ji using

124-126 and Ward and Ji using Fe-dependent heme and nonheme

Zn-dependent carbonic anhydrases
enzymes'2”1?% for metal hydride-mediated carbonyl reductions via a polar mechanism are out of

the scope of this review.

In 2023, Chen, Chang, Guo and co-workers reported the use of Fe/aKG-dependent nonheme
enzymes to catalyze the Mukaiyama hydration of olefins using a putative MHAT mechanism
(Figure 9).'%° A range of styrenes was converted into the corresponding hydration products using
nonheme Fe enzymes reconstituted from 0.2 mol% purified apo protein and 0.2 mol% Fe(II).
Further studies suggested that the oxygen atom in the hydration product is derived from O2. No
enantioselectivity was observed for the hydration products. Deuterium incorporation studies using

NaBD4 showed 100% deuterium incorporation at the B-position and 15% deuterium incorporation
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at the a-position of the hydration product (Figure 9B). EPR studies suggested that the ferric protein
was reduced by NaBH4 to the ferrous protein, which was re-oxidized to the ferric state in the

presence of O>. However, spectroscopic characterization of the putative Fe—H species remained

difficult.

(A) 0.2 mol% purified apo
' nonheme enzymes

i . 0.2mol% Fe(NH,)(SOy),
1 XXy’
OT . NaBH, (5.0 equiv) O—
A air

OH

Me
MeO'
95% (DiOH) 74% (D|OH) 33% (DIOH)  62% (DiOH)
99% (Hneap) 85% (Hneap) 35% (Hneap) 55% (Hneap)
OH OH (
©)\/COZH :: :f CH\
e
19% (DiOH) 37% (DiOH) 16% (D|OH 83% (DiOH)
49% (Hneap) 85% (Hneap) 11% (Hneap) 23% (Hneap)
(B) Hneap OH 100% D

A NaBD,, O, WD
—_—
HD [ H

H
15% D

Figure 9. Biocatalytic Mukaiyama hydration of alkenes via MHAT. (A) Selected substrate scope;

(B) The deuterium incorporation study.

In 2025, the Ward lab elegantly repurposed cytochromes P450 to catalyze asymmetric radical
cyclization reactions via MHAT-generated carbon-centered radicals (Figure 10).'3% Wild-type
P450pMm3*° was found to catalyze this radical cyclization under MHAT conditions using PhSiH3 as
the hydrogen atom donor under air. The use of 1 mol% purified P450sm3 provided the cyclized
(S)-product in 13% yield with 13 TTN and 31:69 e.r.. Using 0.1 mol% purified CYP119,'3! the

(R)-enantiomer of the cyclized product formed in 34% yield, 336 TTN and 64:36 e.r.. Three rounds
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of directed evolution were carried out with P450sm3, giving rise to a triple mutant P450swm3 F87L
A74Q 1263Q (P450sMm3_LQQ) with improved activity and enantioselectivity (44% yield, 44 TTN
and 6:94 e.r.) (Figure 10A). Similarly, iterative SSM and screening of CYP119 furnished CYP119
D77R T214V L205V T213 Q22H A209T 1208S (CYP119 MHATase), providing the (R)-
enantiomer in 30% yield, 305 TTN and 85:15 e.r. (Figure 10B). The addition of TPGS-750-M
further improved the conversion of this biocatalytic reaction.!*? Using evolved P450 variants,
substrates possessing a range of aryl sulfonamides and radical acceptors were successfully

transformed using 0.05-0.1 mol% biocatalyst in the form of whole E. coli cells (Figure 10C).

(A) (8)

CO,Me Me CO,Me Me
Me _ purified P450gy3 variant Me STC0Me P purified CYP119 variant Me CO,Me
O, 0,
\( (1 mol%) \Z@ \( (0.1 mol%) A
N PhSiH3 lil N PhSiH3 ’I‘

_Il_s Ts _||_s TPGS-750-M Ts
entry P450g,; variant ey yield TTN entry CYP119 variant & yield TTN
1 P450gum3 31:69 13% 13 1 CYP119 66:34 34% 336
2 P450gy; F87L 16:84 10% 10 2 CYP119 D77R T214V 71:29 42% 420
3 P450gy; F87L A74Q 11:89 24% 24 3 CYP119 D77R T214V L205V T213G 76:24 30% 300
4 P450gy3 F87L A74Q 1263Q 6:04 44% 44 4 CYP119 D77R T214V L205V T213G 85:15 30% 305

(P450gus_LQQ) Q22H A209T 208S (CYP119 MHATase)

Ts Ts Ts Ts Ts Ts
P450gy5_LQQ P450gy3_LQQ P450gy3_LQQ P450gy3_VQQ P450gy3_VQQ P450gy3_VQQ
23% vyield, 233 TTN 9% vyield, 186 TTN 41% yield, 824 TTN 32% yield, 325 TTN 44% yield, 885 TTN 8% yield, 153 TTN
8:92e.r. 26:74 e.r. 6:94 e.r. 2:98 e.r. 13:87 e.r. 2:98e.r.

Figure 10. P450-catatalyzed enantioselective radical cyclization via MHAT. (A) Directed

evolution of P450sMm3 LQQ for (S)-product: the illustration of active site was made from 21J2
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(PDB ID); (B) Directed evolution of CYP119 MHATase for (R)-product: the illustration of active
site was made from 1107 (PDB ID); (C) Selected substrate scope; reactions were carried out using
whole E. coli cells overexpressing P450sm3_LQQ (0.05 mol%) or purified P450sm3 F87V A74Q

1263Q (P4508m3_VQQ, 0.05-0.1 mol%).

Mechanistic studies revealed that the ferric P450 enzyme was reduced by PhSiH3 to afford
the ferrous enzyme, which is re-oxidized to the Fe(IIl) state by air. Deuterium labelling studies
showed that the hydrosilane reagent was the hydrogen atom donor for MHAT and water served as
the proton donor for the final protonation step. Based on these results, Ward proposed that in the
plausible catalytic cycle, the Fe(Ill) P450 enzyme first reacts with PhSiH; to form an Fe(III)-H
species, which undergoes MHAT with the alkene moiety to generate a carbon-centered radical and
an Fe(Il) species. Enzyme-controlled radical addition to the pendant a/B-unsaturated carbonyl
moiety forms a new carbon-centered radical, which undergoes concerted proton-coupled electron
transfer (PCET) with water-bound P450-Fe(Il) complex to afford the cyclized chiral product

(Figure 11).
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Figure 11. Proposed catalytic cycle for the P450-catalyzed asymmetric radical cyclization via

MHAT.

In 2025, Athavale and co-workers elegantly engineered protoglobins for the asymmetric
hydrogenation of unactivated olefins via a novel MHAT and HAT mechanism with active-site
cysteine as the putative H atom donor.!*3 Initial metalloprotein screening identified a protoglobin
variant from Aeropyrum pernix (ApePgb C45G W59L Y60V V63R F145Q 11491, HAToc) as a

4 several single

promising candidate. To introduce an active-site cysteine as H atom donor,!
cysteine mutants were generated by site-directed mutagenesis and HAToc V60C was found to
deliver the asymmetric hydrogenation product in 3.8% yield and 91:9 e.r.. Directed evolution

through an additional four rounds of SSM furnished the final variant HATr-5 (HATOC V60C

QI45E L69N V89G L59M) with excellent activity and enantioselectivity. The asymmetric
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hydrogenation reaction was carried out using whole E. coli cells overexpressing HATr-5 (ODsoo
= 50) and product was obtained in 44.8% yield and 98:2 e.r. (Figure 12A). The yield was further
increased by using purified protein catalyst in the presence of TPGS-750-M. A range of 3-
methylene piperidine, pyrrolidine, and azepine substrates with different N-protecting groups were
tolerated, providing hydrogenation products in good yields and enantioselectivity (Figure 12B).
Mechanistic studies were consistent with a stepwise radical pathway for this process. In the
proposed catalytic cycle, the ferric heme protein reacts with phenylsilane to generate the Fe(IlI)—
H species, which undergoes MHAT with the olefin substrate to generate a carbon-centered radical
and the Fe(Il) protein. The carbon-centered radical subsequently undergoes asymmetric hydrogen
atom transfer with the active-site cysteine, delivering the asymmetric hydrogenation product and
a thiyl radical. Final proton-coupled electron transfer (PCET) between the thiyl radical and Fe(II)

center regenerates the ferric heme species and the cysteine thiol (Figure 12C).
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Figure 12. Biocatalytic asymmetric hydrogenation of unactivated olefins. (A) Directed evolution
of HATR-5: the illustration of active site was made from SEUM (PDB ID); (B) Selected substrate
scope; reactions were carried out using purified HATr-5 (0.2 mol%) in the presense of 6 wt%
TPGS-750-M; (C) Proposed catalytic cycle for the biocatalytic asymmetric hydrogenation of

olefins via MHAT and HAT.

2.2 Addition of carbon-centered radicals to arenes

Radical functionalization of arenes represents a powerful method to prepare substituted

aromatic compounds.'*> In native enzymology, radical functionalization of aromatic substrates
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often involve oxidative processes catalyzed by monooxygenases and dioxygenases.'*%"138 Recent
development of metalloenzyme-catalyzed unnatural radical functionalization of aromatic
compounds would further expand the toolbox of arene functionalization and allow chiral aromatic

scaffolds to be prepared in a highly enantioenriched fashion.

In 2023, our lab reported an enantioconvergent radical cyclization to arenes using engineered
cytochromes P450 (Figure 13).!% In our proposed catalytic cycle (Figure 13A), the P450 enzyme
in its ferrous state first undergoes single-electron transfer to the 2-halo-1,3-dicarbonyl substrate,
leading to a carbon-centered radical along with the oxidized ferric state enzyme. Subsequent
addition of this nascent carbon-centered radical to the pendant aromatic ring within the enzyme
active site occurs in an enantioselective fashion, furnishing a cyclized dearomatized radical
intermediate. Further radical-polar crossover converts this radical to the enantioenriched 3,3-
disubstituted oxindole product. Previous studies from Mayer!*’ and our computational studies
suggest the potential involvement of heme propionate in a proton-coupled electron transfer (PCET)

mechanism for the oxidation of dearomatized radical intermediate.

In this study, evaluation of a collection of P450 variants led to the identification of P411pianc2
and P411piane3,®® providing the (S)- and (R)-enantiomeric products with 66:34 e.r. and 36:64 e.r.,
respectively. Subsequent iterative SSM and screening furnished two final variants, including
P450arc1 (P41 1pianc2 W263Q L181M T438G H266L) and P450arc2 (P41 1piancs G437A V327P N70S
A330F G74P) (Figure 13B). Using whole E. coli cells harboring P450a1, the (S)-product was
obtained in 77% yield, 1,330 TTN and 96:4 e.r.. The (R)-product was obtained in 88% yield, 1,890
TTN and 12:88 e.r. using P450ac2. Another closely-related variant P450arc3 (P450ac1 G438T
L266H L78C V328E S332A) was found to catalyze the kinetic resolution of a-chloroamide

substrate. At 55% conversion, the (R)-enantiomeric substrate was recovered in 45% yield and 94:6
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e.r. (Figure 13C). These results further demonstrated the excellent tunability of P450 enzymes to
allow for both enantioconvergent transformation and kinetic resolution through a common radical-

based mechanism.
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Figure 13. P450-catalyzed enantioconvergent radical cyclization to arenes. (A) Proposed catalytic

cycle; (B) Directed evolution of P450.rc1 and P450..c2: illustrations of active sites were made from
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SUCW (PDB ID); (C) Enantiodivergent transformation and kinetic resolution in P450-catalyzed

radical cyclization to arenes.

In 2024, our lab further expanded this P450-catalyzed radical arene functionalization to
asymmetric radical dearomatization reactions.'*? Asymmetric dearomatization represent a
valuable method to transform planar aromatic compounds into chiral three-dimensional
products.!#!-1% Despite recent development using other mechanisms for catalytic asymmetric
dearomatization, free radical-mediated dearomatization has remained challenging in asymmetric
catalysis.!*>1% Thus, the P450 radical dearomatases developed in our lab provided a solution to
bridge this gap. In the proposed catalytic cycle (Figure 14), the a-carbonyl radical forms via single
electron transfer between the a-halocarbonyl substrate and the ferrous P450 catalyst. Dearomative
radical cyclization of this a-carbonyl radical to the pendant phenol affords a dearomatized radical
intermediate. The oxidative radical-polar crossover finally provides the dearomatized spirocyclic
product with contiguous quaternary centers in an enantioenriched manner. This electron transfer

also regenerates the ferrous P450 and complete the catalytic cycle.
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Figure 14. Proposed catalytic cycle for P450-catalyzed stereoselective radical dearomatization.

In enzyme evaluation, P411-CIS 1263G L437F V87F P248T (P1) was found to promote the
radical dearomatization of indole substrates, providing the corresponding spirocyclic product in
19% yield, 39 TTN and 83:17 e.r.. Three rounds of SSM and screening targeting active-site
residues furnished a triple mutant P1 L181V A78C F437A (P450:a41), providing the product in 90%
yield, 182 TTN and 97:3 e.r. (Figure 15A). Enantioconvergent radical dearomatization of racemic
phenol substrates was also achieved using P2 F437P L436A L75F G268P (P450:a44), providing the
product in 95% yield, 870 TTN and 91:9 e.r.. Improved enantioselectivity (94:6 e.r.) could be
achieved with a higher loading of P450:.44 (Figure 15B). Substrate scope studies showed that a
range of indoles and phenols were accommodated by these evolved P450 radical dearomatases
(Figure 15C). Biocatalytic enantiodivergent radical dearomatization of pyrroles could also be

achieved with P450.42 (P411-CIS L75A L181A A82V) and P450raa3 (P41 1pianc2 W2631 G268A
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P327T V328A E267L), giving rise to either the (R)- (94% yield, 2,320 + 30 TTN and 91:9 e.r.) or
the (S)-product (76% yield, 3,230 = 10 TTN and 8:92 e.r.) with good yield and enantioselectivity
(Figure 15D). Upon the inclusion of 2 wt% TPGS-1000, the naphthol substrate with low solubility
was also smoothly transformed in 84% yield, 1,510 = 80 TTN and 97:3 e.r. using P450;.45 (P411-

CIS T438S)™ (Figure 15E).
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Figure 15. P450-catalyzed enantioselective radical dearomatization. (A) Directed evolution of
indole dearomatase P450:.41: the illustration of active site was made from SUCW (PDB ID); (B)
Directed evolution of phenol dearomatase P450:.q4: the illustration of active site was made from

SUCW (PDB ID); (C) Selected substrate scope; reactions were carried out using cell-free lysate of
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P450541 (1 mol%) or P450.d4 (0.6 mol%); “A higher P450 loading (ODgoo = 120) was used,
bStarting variant P2 was used; (D) P450-catalyzed enantiodivergent radical dearomatization of

pyrroles; (E) P450-catalyzed enantioselective radical dearomatization of naphthol.

Lewis and coworkers reported that the Bi2-dependent protein CarH* could catalyze reductive
radical dearomatization in the presence of titanium (III) citrate, affording dearomatized spirocyclic
products possessing a 1,3-cyclohexadiene (Figure 16).!'¢ This radical dearomatization follows an
overall mechanism similar to that described in Figure 8. The a.-chloro-a,ct-difluoroamide substrate
first reacts with the Co(I) protein to form a Co(Ill)-alkyl intermediate. This Co(IlI)-alkyl species
readily generates an «,a-difluoro-ci-carbonyl radical and a Co(II) species via homolytic cleavage
of the Co(III)-C bond, allowing radical cyclization with the electron-deficient aromatic ring to
provide a dearomatized radical intermediate. Single-electron reduction and protonation of this
radical finally lead to the dearomatized product. Lewis and coworkers found that a range of arenes
bearing an electron-withdrawing substituent could be converted, providing dearomatized products
often with higher yields compared to free Bi>. Heterocycles including a pyridine and a thiophene
were also readily transformed under these conditions (Figure 16A). In addition to y-lactams, -
lactams could also be prepared from substrates bearing an extended linker, although a mixture of
dearomatization product and C—H functionalization product were observed (Figure 16B). No

enantioselectivity was observed for these CarH*-catalyzed radical dearomatization reactions.
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Figure 16. CarH*-catalyzed reductive radical dearomatization. (A) Selected substrate scope for y-
lactams; reactions were carried out using purified CarH* (0.5 mol%) or Bi2 (0.5 mol%); (B) &-

Lactam formation.

In 2025, our lab reported the first catalytic asymmetric Smiles rearrangement proceeding
through the enantioselective addition of a carbon-centered radical to the ipso-carbon of the
arylsulfonyl moiety (Figure 17).!47 In the proposed catalytic cycle, the racemic N-arylsulfonyl-o-
chloroamide substrate is first reduced via single electron transfer from the ferrous P450 enzyme to
generate an a-carbonyl radical. This radical then undergoes enantioselective radical cyclization to

the ipso-carbon of the arylsulfonyl moiety to generate a dearomatized radical intermediate. SO
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extrusion results in the formation of an amidyl radical, which undergoes a formal hydrogen atom
transfer reaction to provide the acyclic amide product possessing a quaternary stereocenter.

Alternatively, this amidyl radical may undergo a 5-exo-trig radical cyclization to the arene leading

to the lactam product (Figure 17A).
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Figure 17. Biocatalytic asymmetric radical Smiles rearrangement. (A) Proposed catalytic cycle;
(B) Directed evolution of P450smites; (C) The illustration of active site was made from the structure
of SUCW (PDB ID); (D) Selected substrate scope; reactions were carried out using cell-free lysate

of P450smitest (ODsoo = 120, 0.30-0.34 mol%).

Despite the multiple pathways available, our lab showed that both the chemoselectivity and
enantioselectivity could be controlled through enzyme engineering. Initial evaluation of our P450
radical cyclase panel revealed that the previously engineered pyrrole dearomatase P450;,43'3?
catalyzed this radical Smiles rearrangement with the acyclic amide as the major product
(amide:lactam = 79:21, 76:24 e.r.). Six rounds of directed evolution led to two final P450 aryl
radical migratases, including P450smites1 (P450rad3 L267R L436C L82C N70H A330M 1401P) and
P450smiles2 (P450raa3 L267R L436C L82C N70H A330M 1401V). With P450smiks1, the acyclic
amide was obtained in 91% yield with 230 TTN, 90:10 e.r. and an amide:lactam selectivity of 96:4.
P450smites2 allowed further improved chemoselectivity favoring the acyclic amide (85% yield, 290
TTN, 88:12 e.r. and an amide:lactam selectivity of 99:1) (Figure 17B and 17C). Classical
molecular dynamics (MD) simulations of the amidyl radical intermediate in the final variant
P450smites2 revealed the importance of hydrogen bonding interactions with the L267R guanidium
and C-H/n interactions in stabilizing the amidyl radical and disfavoring its cyclization. Both
electron-rich or electron-deficient arenes were found to be compatible with this radical Smiles
rearrangement, demonstrating this transformation is insensitive to the electronic properties of the

arene (Figure 17D).
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2.3 Functionalization of carbon-centered radicals via a rebound mechanism

The central mechanism in heme and nonheme Fe enzyme-catalyzed C—H hydroxylation and
halogenation lies in the formation of a transient carbon-centered radical and subsequent radical
rebound for C-O and C-X bond formation.*!3%424 In this section, we review metalloenzyme-

catalyzed functionalization reactions involving a radical rebound mechanism.

In nature, a-ketoglutarate-dependent (aKG) nonheme Fe halogenases catalyze diverse
chlorination and bromination reactions via radical rebound with Fe(IIT)-X intermediates.'*-!> In
the presence of exogenous anions such as azide and nitrate, promiscuous radical rebound activities
including C-H azidation and C—H nitration have long been studied with a range of «KG-dependent
halogenases (Figure 18). In 2014, Bollinger and coworkers reported that SyrB2 catalyzed C—H
azidation and C—H nitration with modest activity of L-2-aminobutyrate loaded to the carrier protein
SyrB1.161n 2019, Chang and coworkers found that SwHalB catalyzed the 5-azidation of the amino
acid substrate.'®! In 2020, Weng and coworkers reported that SeDAH could catalyze the C-H

azidation of dechloroacutumine.!?

In 2022, Buller and coworkers used engineered WelO5* for
the C—H azidation and nitration of Soraphen A.!>” The chemoselectivity of C—H azidation over
hydroxylation is often controlled by the positioning of the radical intermediate within the enzyme’s

active site. It remains a nontrivial task to generalize the chemoselectivity trend previously

optimized to a broader range of substrates.
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Figure 18. Promiscuous C-H azidation and C-H nitration activities with aKG-dependent

nonheme Fe halogenases.

Very recently, in 2025, Tang discovered and characterized a novel dinuclear copper
halogenase, ApnU, which performs selective C(sp®)-H chlorination, bromination, iodination,
azidation and thiocyanation through a distinct copper-based mechanism (Figure 19A).!63
Additionally, this enzymatic conversion in the absence of chloride showed markedly reduced
activity and led to the formation of desaturation product, accompanied by trace amount of
hydroxylation product (Figure 19B). This finding is in contrast to aKG-dependent nonheme Fe
halogenases, where C—H hydroxylation often competes with halogenation. These results indicated
that with these copper-dependent halogenases, chloride binding is likely important for both radical

generation and hydroxyl rebound suppression. The pioneering studies from Tang further expands
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the catalytic repertoire of enzymatic halogenation and highlights the diversity of natural

metalloenzymes capable of effecting C(sp*)-H functionalization.
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Figure 19. Copper enzyme ApnU-catalyzed C(sp?)-H functionalization. (A) ApnU-catalyzed
C(sp*)-H chlorination, bromination, iodination, azidation and thiocyanation with different anions.

(B) ApnU-catalyzed desaturation in the absence of halide anions.

The overall catalytic cycle of aKG-dependent halogenase-catalyzed C—H azidation is depicted
in Figure 20A. Using a-ketoglutarate as the co-substrate and O as the oxidant, a reactive Fe(IV)-
oxo intermediate forms from the ferrous enzyme. This ferryl intermediate undergoes rapid
hydrogen atom abstraction from the substrate, leading to a carbon-centered radical along with a
ferric intermediate. Upon radical rebound with the Fe(II1)-N3 intermediate, the alkyl azide product
forms and the ferrous enzyme is regenerated. If hydroxy rebound occurs with the Fe(IIT)(N3)(OH)
species, C—H hydroxylation product would form. Prior studies showed that natural Fe/aKG-
dependent C—H hydroxylases typically feature a two-histidine-one-carboxylate facial triad,
whereas Fe/aKG-dependent halogenases have a two-histidine facial dyad to allow for halogen
anion binding.!*® Guided by these insights, in 2017, Boal and Liu successfully converted a
Fe/aKG-dependent hydroxylase SadA into a halogenase by introducing a single D157G mutation

to convert the Fe-binding aspartate to a glycine.!®* This SadA D157G single mutant transformed
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its native substrate into a mixture of C—H chlorination and hydroxylation products, with the
hydroxylated product accounting for 70% of combined products.!®* In 2021, Chang and coworkers
used bioinformatic analysis, DNA shuffling and high-throughput enzyme engineering to convert
a mnative C-H hydroxylase into a chlorinase Chi-14, achieving an excellent

chlorination:hydroxylation selectivity of 92:8.16°

In 2022, starting from SadA D157G (termed as SadX), Lewis reported the directed evolution
of SadX to enable the C—H azidation of a broader range of substrates (Figure 20).!° Four rounds
of random mutagenesis using epPCR and screening furnished SadX 4-IC (SadX I71V R172H
F152L 138V Q233R F261L V381 R48C), providing the azide product in 91% conversion with an
improved azidation/hydroxylation selectivity (N3/OH = 4.09) at 10 mol% SadX loading (Figure
20B).!97 Substrates bearing other substituents were also transformed into the azidation products

with modest to good chemoselectivity (Figure 20C).
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Figure 20. Biocatalytic C—H azidation catalyzed by SadA D157G. (A) Generally accepted
catalytic cycle; (B) Directed evolution of SadA; (C) Selected substrate scope; reactions were

carried out using purified SadX variants (10 mol%).

Recently, through cooperative catalysis using nonheme Fe enzymes and photoredox catalysts,
our lab'®® and the Huang lab'®® independently developed enantioselective photobiocatalytic
decarboxylative radical functionalization of N-hydroxyphthalimide (NHPI) esters derived from

easily available carboxylic acids. Mechanistically, both groups proposed that the excited
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photosensitizer (eosin Y'% or fluorescein!®) oxidizes the ferrous Fe center to form a ferric center
along with the radical anion state of the photosensitizer (Figure 21A). The radical anion
subsequently reduces the NHPI ester upon single-electron transfer, leading to a carbon-centered
radical. This newly formed carbon-centered radical reacts with the nonheme Fe(III)-Nj3
intermediate, affording the enantioenriched organic azide product via radical rebound (Figure

21B).
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Figure 21. Enantioselective photobiocatalytic radical functionalization of N-hydroxyphthalimide
(NHPTI) esters. (A) Nonheme Fe enzyme-catalyzed decarboxylative azidation, thiocyanation, and

isocyanation of redox-active esters. (B) Proposed dual catalytic cycle.

Using eosin Y as the photocatalyst and green LED irradiation, Huang engineered a 4-
hydroxyphenylpyruvate dioxygenase from Strptomyces avermitlis (SavHPPD)!7? to catalyze the
enantioselective formation of C(sp?)-N3 and C(sp?)-SCN bonds.!®® Directed evolution through
SSM and screening targeting active-site residues resulted in a quadruple mutant SavHPPD-PC

(SavHPPD V189A S230Y Q255A C188A, Figure 22A and 22B). Although this final variant only
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showed a modest increase in activity, it significantly enhanced the enantioselectivity from 79:30
e.r. (wt SavHPPD) to 94:6 e.r. (SavHPPD-PC). With SavHPPD-PC, thiocyanation using SCN™ also
provided products in moderate yield and enantioselectivity (Figure 22F). In Huang’s study, Stern-
Volmer quenching suggested that Fe(II) with SavHPPD-PC was an effective quencher of excited-
state eosin Y. Huang proposed that active site of SaevHPPD-PC could accommodate the NHPI ester

substrate, allowing efficient interception of the radical intermediate with the nonheme Fe center.

Parallel to Huang’s study, our lab repurposed a nonheme Fe extrodiol dioxygenase,

metapyrocatechase from Pseudomonas putida (PpMPC),!"!

which shares only 16% sequence
identity with Huang’s SavHPPD, for enantioselective decarboxylative radical azidation,
thiocyanation, and isocyanation. Directed evolution targeting substrate tunnel residues provided a
final triple mutant PpMPC azidase (PpMPC 1291L L155F F302Y), giving rise to the alkyl azide
product in 74% yield and 99.5:0.5 e.r. with 1 mol% enzyme loading and irradiation at 440 nm.
Further engineering and the reaction condition optimization for thiocyanation led to another triple
mutant, PpMPC 1291L L155F 1204L (PpMPC thiocyanase), which delivered the corresponding
thiocyanation product in 54% yield and 95:5 e.r. with irradiation at 525 nm (Figure 22C and 22D).
The engineered enzymes tolerated a range of NHPI esters bearing electron-donating and electron-
withdrawing groups. PpMPC thiocyanase also catalyzed decarboxylative isocyanation using
sodium isocyanate. The resulting isocyanate could be trapped in situ with aniline to provide the
corresponding unsymmetrical urea in 20% yield and 98:2 e.r. (Figure 22E). Our lab noted a
network of hydrophobic residues at the entrance of the substrate tunnel, including L155, V188,

F191 1204, L.248, 1287, 1291, F302, and M303, to serve as a hydrophobic lid to encapsulate the

substrate binding pocket, potentially facilitating selective radical capture (Figure 22D). Based on
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this finding and the limited active site volume, in contrast to Huang’s report, our lab proposed that

the carbon-centered radical forms outside the enzyme’s active site and travels into the pocket.
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Figure 22. Nonheme Fe enzyme-catalyzed enantioselective decarboxylative azidation,
thiocyanation and isocyantion. (A) Directed evolution of SavHPPD-PC for enantioselective
decarboxylative azidation. (B) The illustration of active site was made from 1T47 (PDB ID). (C)
Directed evolution of PpMPC azidase and PpMPC thiocyanase for enantioselective
decarboxylative azidation and thicyanation; the azidation reaction was conducted using 1 mol%
purified PpMPC whereas the thiocyanation reaction was conducted using 2 mol% purified
PpMPC. (D) The illustration of active site was made from IMPY (PDB ID). (E) PpMPC
thiocyanase-catalyzed decarboxylative isocyanation. (F) Selected substrate scope of SavHPPD-PC;
Reactions were carried out with 0.2 mol% purified SavHPPD-PC. (G) Selected substrate scope of
PpMPC azidase and PpMPC thiocyanase; reactions were carried out with 1 mol% purified PpMPC

azidase or 2 mol% PpMPC thiocyanase; PpMPCMH = PpMPC 12911 L155F Y255H.

Inspired by decarboxylative C(sp?)-N coupling via synergetic copper and photoredox
catalysis developed by the Hu group,'”? in 2025, Huang and coworkers developed a biocatalytic
decarboxylative C(sp?)-N coupling with N-hydroxyphthalimide (NHPI) esters and anilines
through cooperative catalysis using rhodamine B (RhB) as the photoredox catalyst and copper-
substituted phenylalanine hydroxylase (PAH) from Chromobacterium violaceum (CvPAH)!7 as
the biocatalyst.!'” In the photoredox cycle, RhB*~ reduces the NHPI ester via single-electron
transfer, leading to a carbon-centered radical. This newly formed carbon-centered radical reacts
with the Cu(Il)-amide intermediate within the enzyme active site, affording the enantioenriched

C(sp*)-N coupling product (Figure 23).
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Figure 23. Proposed dual catalytic cycle for the enantioselective photobiocatalytic radical

decarboxylative C(sp*)-N coupling of N-hydroxyphthalimide (NHPI) esters and anilines.

Initial evaluation of wild type CvPAH with copper as the catalytic center led to the desired
coupling product in 1.5% yield and 16% ee. Directed evolution of CvPAH through SSM targeting
active-site residues furnished a quintuple mutant, CvPAH F107L Y130S W180A P134L Y179W
(CvPAH-aminase), which produced the product in 19% yield and 94% ee (Figure 24A and 24B).
By using an excess of NHPI ester (4.5 equiv), the yield of C—N coupling product was increased
to 92% with the enantioselectivity unaffected. With 1.0-1.3 mol% cell-free lysate of CvPAH-
aminase, a range of racemic NHPI esters and anilines were tolerated and transformed into the

enantioconvergent C(sp*)-N coupling products in moderate to high yields and enantioselectivities
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(Figure 24C). Mechanistic studies confirmed the formation of the carbon-centered radical and the

essential role of copper catalytic center.
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Figure 24. Cu-substituted CvPAH-catalyzed enantioselective photobiocatalytic radical
decarboxylative C(sp®)-N coupling of N-hydroxyphthalimide (NHPI) esters and anilines. (A)

Directed evolution of CvPAH-aminase. (B) The illustration of active site was made from 1LTV
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(PDB ID). (C) Selected substrate scope; reactions were carried out with 1.0-1.3 mol% cell-free

lysate of CvPAH-aminase.

2.4 Anti-Markovnikov oxidation of alkenes

P450-catalyzed oxidation of alkenes proceeding through Fe=O intermediates typically
provides epoxidation products.'” In contrast, P450-catalyzed anti-Markovnikov oxidation (aMOx)
of alkenes leading to carbonyl products with an anti-Markovnikov site selectivity is rare, although
such products were previously observed with biosynthetic P450 enzymes.!”® Using cytochrome
P450 from the rhodobacterium Labrenzia Aggregata (P4501a1),'”” Arnold and Hammer
engineered P450 anti-Markovnikov oxidases (aMOx) as a biocatalytic solution to the challenging
anti-Markovnikov alkene hydrofunctionalization problem (Figure 25).!78 In the proposed catalytic
cycle, the highly reactive compound I reacts with the styrene substrate to form a short-lived carbon-
centered radical. In the conventional epoxidation pathway, rapid C—O bond formation from this
intermediate delivers the epoxide product. In the unusual anti-Markovnikov oxidation pathway,
this short-lived carbon-centered radical undergoes an intramolecular single electron transfer from
the carbon-centered radical to the Fe center, which would provide the carbon cation intermediate.
Subsequent 1,2-hydride migration furnishes the anti-Markovnikov carbonyl product and the ferric

P450 enzyme to complete the catalytic cycle.!”
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Figure 25. Proposed catalytic cycle for biocatalytic anti-Markovnikov oxidation of alkenes.

Directed evolution of P450.a1 allowed substantial improvement in the catalytic activity and
selectivity towards the anti-Markovnikov carbonyl product. Four random mutated libraries created
by epPCR targeting the heme domain were screened using a high-throughput colorimetric method
using Purpald,'® leading to a quintuple mutant P450ra; TI21A N201K N209S Y385H E418G
with increased TTN and aMOx selectivity. An additional six rounds of SSM and screening using
HPLC furnished the final variant aMOx with eight additional mutations, further improving the
TTN and aMOx selectivity (Figure 26A). Use of an alcohol dehydrogenase (ADH) allowed the
conversion of aldehyde products to the corresponding alcohols to avoid undesired side reactions
of aldehydes. Various substituted styrene substrates were transformed with TTNs ranging from
730 to 4,500 in an anti-Markovnikov fashion using the combination of aMOx and ADH in a lysate

form. The 1,2-hydride migration was found to be a stereospecific process, allowing (S)-2-
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phenylpropan-1-ol product to form in 93:7 e.r. from the corresponding substrate. Internal alkenes
were also tolerated by this first generation aMOx enzyme. The resulting ketones were reduced by
ADH to form the corresponding enantioenriched alcohols with excellent enantioselectivity and
moderate aMOx selectivity (Figure 26B). Hammer and Garcia-Borras further studied the origin of
the aMOx selectivity.!” It was found that the final variant aMOx exerted conformational control
over the carbon-centered radical intermediate, facilitating the intramolecular SET process and the

rapid succeeding 1,2-hydride migration.
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Figure 26. P450-catalyzed anti-Markovnikov oxidation of alkenes. (A) Directed evolution of
aMOx; (B) Selected substrate scope; reactions were carried out with 0.005 mol% cell-free lysate

of aMOx and 10 U ADH.
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Hammer and coworkers further evolved aMOx activity to allow internal alkenes to be
converted to ketone products.'®! A starting variant P450pa1 P7E (P450La1 T121A V1231 N201K
H206W N209S 1326V Y385H E418G) was selected from the initial screening. 12 new mutations
from 11 rounds of SSM and screening led to the final ketone synthase (KS) variant, providing the
ketone product in 2,600 TTN and 75% chemoselectivity using cell-free lysate (Figure 27A). The
final KS variant showed good catalytic activities and chemoselectivities towards a range of
substrates. An a-chiral ketone was obtained in 87:13 e.r., although with reduced activity and
chemoselectivity (Figure 27B). Computational studies revealed that rigidification of the active site

by these newly introduced mutations led to improved catalytic activity and chemoselectivity.
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N xMe (0.0125 mol%) N Me
( ) |
Ot 7 O, NADH S o0
entry P450 variant ketop e TTN
selectivity
1 P450, a4 20% 72
2 P450,4; P7E 31% 225
3 P450, 51 P7E W206A T210V 44% 660
4 P450,41 P7E W206A T210V E282D 51% 1,600

R120Q
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P450,41 P7E W206A T210V E282D
6 R120Q V210l K393L V208Q A117Q 68% 2,090
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R120Q V210l K393L V208Q A117Q
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Cl Me
Cl Me B
\©/\ﬂ/ Me Me
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O
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Figure 27. Biocatalytic anti-Markovnikov oxidation of internal alkenes (A) Directed evolution of
ketone synthase; (B) Selected substrate scope; reactions were carried out with 0.0125 mol% cell-

free lysate of KS.

2.5 Intermolecular radical C—C coupling

Designing new metalloenzyme mechanisms for radical-mediated C—C bond formation
remains an ongoing challenge. In 2025, Huang and coworkers developed a photobiocatalytic
enantioselective a-alkylation of 2-acyl imidazoles, affording a-chiral ketones in excellent
enantioselectivity.'®? Using cupin proteins previously investigated by Itoh featuring a Lewis acidic
Cu center,'®-1% Huang and coworkers found that Thermotoga maritima cupin variants!86187
Tm1287-E68A and Tm1459-H52A produced opposite enantiomers of the C—C bond forming
products (Figure 28A, entry 1 and 5). Subsequent site-directed mutagenesis of residues within 6 A
of the metal center led to optimized mutants 7m1287 E68A R23Y M22F and Tm1459 H52G
F104V (Figure 28B amd 28D), allowing enantiodivergent C—C bond formation. A range of

substituted 2-acyl imidazoles and phenacyl chlorides were well tolerated, furnishing products with

excellent stereocontrol (Figure 28C).
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Enzyme (3 mol%)
CuSOy, (6 mol%)

</\’)J\/ )J\/ Ru(bpy)3Cls (2 mol%)

KPi buffer, DMSO
blue LED, Ny, 12 h

entry protein yield (%) er. (S:R)
1 wt Tm1287 78 81:19
2 Tm1287 E68A 91 86.5:13.5
3 Tm1287 E68A R23Y 94 95.5:4.5
4 Tm1287 E68A R23Y M22F (LAse®) 94 96.5:3.5
5 wt Tm1459 61 50:50
6 Tm1459 H52G 84 20:80
7 Tm1459 H52G F104V (LAseR) 91 6:94
[¢] (0] (e]
<N/\ Ph N\ Ph N\ Ph
\ 9
N Ph N Ph Ph
“Ph “Me Z
(0] o (o]
LAseS: LAseS: LAseS: LAseS:

94%, 96.5:3.5 e.r. 75%, 97:3 e.r. 97%, 95:5 e.r. 60%, 80.5:19.5 e.r.
LAseR: LAsef: LAsef: LAsef W56A:
91%, 4:96 e.r. 78%, 8.5:91.5e.r. 86%, 5:95 e.r. 35%, 24.5:75.5 e.r.

(0]
N
N RS
~
C 9
N _Ph
i-Pr NO,

LAseS: LAseS:
71%, 96:4 e.r. Tm1459 H52A2; 69%, 93:7 e.r.
LAsef W56A: 70%, 86:14 e.r. LAsef W56A:

82%, 12.5:87.5 e.r. 70%, 8:92 e.r.

Figure 28. Enantiodivergent photobiocatalytic alkylation using Lewis acidic cupin protein. (A)
Directed evolution of LAse’ and LAse®; (B) The active-site illustration of 7m1287 was made from
104T (PDB ID); (C) Selected substrate scope, reaction conditions: 2-acyl imidazole (0.004 mmol),
phenacyl chloride (0.012 mmol), enzyme (3 mol%), CuSO4 (6 mol%), Ru(bpy):Clz (2 mol%), and
8% v/v DMSO in KP1i buffer (20 mM, pH 8.0) were stirred for 12 h at room temperature under an
N2 atmosphere with the illumination of 450460 nm LEDs, total volume of the reaction was 0.8
mL, “4-nitrobenzyl bromide was used; (D) The active-site illustration of 7m1459 was made from

1VJ2 (PDB ID).

In 2025, by interfacing photoredox chemistry with enzymatic Fe carbenoid chemistry, our

group developed a formal metal carbenoid-radical coupling process to enable the diastereo- and
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enantioselective intermolecular C—C bond formation (Figure 29).!38 In the proposed photoredox
catalytic cycle, single-electron oxidation of the organoboron by the excited photocatalyst (EB*)
provides a carbon-centered radical along with the reduced radical anion form of the photocatalyst.
Concurrent to the photoredox cycle, using an appropriate heme protein catalyst, reaction between
the diazo compound and the heme Fe center leads to an open-shell singlet Fe carbenoid!®® with
substantial radical character on the carbon center. This open-shell Fe carbenoid undergoes single
electron reduction with the photocatalyst radical anion followed by enantioselective proton transfer
to provide an Fe(Ill)-alkyl intermediate. This newly formed Fe(Ill)-alkyl complex undergoes a
stereoinvertive biomolecular homolytic substitution (Su2)'? with the photoredox-derived carbon-

centered radical resulting in radical C—C coupling product.

EB*
h OYO
BF3;K
Photoredox 8
catalysis
EB

EB~ 0\8/0

Metalloenzyme Me

catalysis
<2

Figure 29. Proposed catalytic cycle for the biocatalytic asymmetric radical cross-coupling.

56



Using eosin B as the photoredox catalyst, metalloprotein catalyst evaluation revealed a variant
of Rhodothermus marinus''cytochrome ¢ (Rma cyt ¢ VI5R M100D M103T) was capable of
catalyzing this intermolecular radical coupling in 53% yield and 88:12 e.r. (Figure 30). Four rounds
of directed evolution furnished a sextuple mutant Rma cyt ¢ V75R M76L M99R M100D T101G
MI103E (termed as Rma cyt cR-RPSPE) “allowing the C—C coupling product to form in 75% yield
and 94.5:5.5 e.r. (Figure 30A). Furthermore, our lab found that this new intermolecular radical
coupling strategy allowed for stereoselective secondary alkyl-secondary alkyl coupling. To
engineer an effective heme protein catalyst for the enantioconvergent transformation of racemic
secondary alkyltrifluoroborates, the generation and evaluation of a combinatorial library
simultaneously mutating loop residues 99—103 proved critical, leading to Rma cyt ¢ V75R M76l
M99K M100C T101G D102P M103F (Rma cyt cRKCCPF) allowing the alkyl-alkyl coupling
product to form with excellent diastereo- and enantioselectivity (78% yield, 96:4 d.r., and 93:7 e.r.,
Figure 30B and 30C). It was found that a range of organoboron substrates and diazo compounds
could be transformed with excellent stereoselectivities (Figure 30D). Our mechanistic and
computational studies suggested that an active-site proton donor residue (R75) may play a role in

enhanced enzyme activity and proton transfer enantioselectivity.
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2 mol% purified

o
(R) " Rma cyt ¢ variant /\)o]\ ©
Ph” O BRK  + e%owr Ph” " Noipr
N 10 mol% Eosin B =
2 hv (440 nm) Me
entry Rma cyt c variant e.r. yield
1 Rma cyt ¢ V75R M100D M103T 88:12 53%
2 Rma cyt ¢ V75R M100D M103V 90:10 64%
3 Rma cyt ¢ V75R M76L M100D M103V 93:7 69%
4 Rma cyt ¢ V75R M76L M100D T1011 M103V 94:6 73%
Rma cyt ¢ V75R M76L M99R M100D T101G M103E .
5 (Rma cyt cRLADGDE) 94555  75%
(B)
BF3K o 1 mol% purified Oi-Pr A Oi-Pr
Rma cyt ¢ variant e | _ e
+ S MeO MeO” N
N, 10 mol% Eosin B 83 + 3% yield 57 + 3% yield
hv (440 nm) 973 e.r. 98:2eur.
O
entry Rma cyt c variant e.I. d.r. yield 04//,_
1 Rma cyt ¢ V75R M100D M103T 67:33 85:15 71% Me
2 Rma cyt ¢ V75R M761 M100D M103T 69:31 78:22 72%
MeO'
Rma cyt ¢ V75R M761 M99K M100C T101G . o, vi
3 93:7 96:4 78% 85 + 2% yield 69 + 3% yield
D102P M103F (Rma cyt ¢RKCaPF) ° 046 dr. ObBer. 88:12d.r., 86:14 eor.

Figure 30. Biocatalytic asymmetric radical cross-coupling. (A) Directed evolution of Rma cyt c
variant for the radical coupling with benzyl trifluoroborate salt; (B) Directed evolution of Rma cyt
c variant for the radical coupling with secondary alkyltrifluoroborates; (C) The illustration of
active site was made from 3CP5 (PDB ID); (D) Selected substrate scope; reactions were carried

RLRDGDE

out with 2 mol% purified Rma cyt c or 1 mol% purified Rma cyt cRKCCPF,

2.6 Miscellaneous

In 2015, Carrera discovered that toluene dioxygenase (TDO)'*? catalyzed the conversion of
benzyl azide to benzonitrile, which could be further oxidized to produce a cis-diol product (Figure
31).193:194 The final nitrile product was obtained at a titer of 1.2 g/L culture media from a 5 L
bioreactor cultivating E. coli JM109 (pDTG601). The azido diol was obtained at a titer of 1.6 g/L,
which came from the double [3,3]-sigmatropic rearrangement of allylazide (Figure 31A).!%

Studies!** showed that the TDO-catalyzed benzylic C—H hydroxylation of benzyl azide occurred
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to generate an a-hydroxy benzylazide. Through the intermediacy of a Fe nitrenoid intermediate, a

benzaldoxime species forms, which undergoes dehydration to afford the nitrile product (Figure

31B and 31C).

(A)  EcolidM109

Ns (pDTG601)
harbounng
TDO
0,

| [3,3]- S|gmatroplcf1 6gL 12gL

rearrangement

B
(B) N3 CN ON

DO, 0, f DO, 0, @OH
OH

th Na\g/Ph Ns\rph Nitrogen /Pt

H OH H extrusion N OH

Figure 31. Toluene dioxygenase (TDO)-catalyzed oxidation of benzyl azide to benzonitrile. (A)
TDO-catalyzed oxidation of benzyl azide; (B) Proposed mechanism in benzonitrile formation; (C)

The illustration of active site of wt TDO was made from 3EN1 (PDB ID).
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In 2019, Chang and Guo reported that other nonheme Fe enzymes including LdoA and PolIL
could also catalyze this oxidative conversion of alkyl azides to the corresponding nitriles (Figure
32).1%° They found that L-leucine-5-hydroxylase (LdoA)!*® and polyoxin dihydroxylase (PolIL)"’
catalyzed the conversion of amino acids with a terminal azido group to the corresponding cyano-
containing amino acid products. Using 0.24 mol% purified LdoA, (S)-2-amino-5-azidopentanoic
acid was converted to the corresponding nitrile product with 150 TTN. Similarly, using 0.24 mol%
purified PolL, (S)-2-amino-4-azidobutanoic acid was converted with 180 TTN (Figure 32A). A
similar mechanism as that proposed by Carrera is likely operative with LdoA and PolL-catalyzed

alkyl azide conversions (Figure 32B).

(A) purified LdoA (0.24 mol%)
Fell (0.20 mol%)

N /\/\‘/COZH aKG (2.5 equiv) NC. COH
5 V\r

NH, sodium ascorbate (0.5 equiv) NH,
O,, 0.1 M Tris buffer pH 7.5, 4 °C
? 1S buterp 150 TTN

purified PolL (0.24 mol%)
Fell (0.20 mol%)

Nav\rcozH aKG (2.5 equiv) NC/\rCOZH

NH, sodium ascorbate (0.5 equiv) NH,
O,, 0.1 M Tris buffer pH 7.5, 4 °C 180 TTN

—F oV m— e o s o — O m—
Fe' FI Fe Ny I
N3 R R
\+r Ny, H,O H,O )\
H R H
OH /. P = \__ N0
! ! m—

Figure 32. Biocatalytic azide-directed nitrile synthesis. (A) Successful substrates and products;

(B) Proposed reaction pathway.
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3. Transformations involving nitrogen-centered radicals

Advances in nitrogen-centered radical chemistry has opened up new avenues for the synthesis
of diverse nitrogen-containing compounds.'®® Additionally, nitrogen-centered radicals also play
an important role in the biosynthesis of complex natural products.!®® In recent years, a range of
reactions involving nitrogen-centered radicals, including intramolecular addition to n-systems,?*
intermolecular addition to m-systems,?°!"2> and 1,5-hydrogen-atom transfer (1,5-HAT) with
nitrogen-centered radicals, have been harnessed for the development of new-to-nature biocatalytic
reactions. These results underscored the synthetic potential of nitrogen-centered radicals,
particularly when combined with enzymatic platforms capable of finely tuning their high reactivity

and selectivity.

Remote C—H functionalization via nitrogen-centered radical-mediated 1,5-HAT is a powerful
strategy for the construction of complex molecules.?** This concept can be traced back over a
century to the classical Hofmann-Loffler—Freytag (HLF) reaction.?’> In 2016, Cook and co-
workers developed a fluorine atom transfer reaction using fluoroamides as substrates to achieve
C(sp®)-H bond fluorination, proceeding through an iron-mediated amidyl radical intermediate.?%
In 2022, Huang and co-workers reprogrammed a nonheme Fe enzyme, (4-hydroxyphenyl)pyruvate
dioxygenase from Streptomyces avermitilis (SavHppD),'”° to catalyze an unnatural C(sp®)-H
azidation reaction via amidyl radical intermediates (Figure 33).27 Using N-fluoroamide as the
model substrate, the use of wild-type SavHppD afforded the desired azidation product with 250
TTN, 63:37 e.r., and a 9:1 azidation:fluorination selectivity. Using a newly developed high-
throughput screening assay based on copper-catalyzed azide-alkyne cycloaddition, Huang

evaluated more than 5,000 clones generated from epPCR and site-saturation mutagenesis.?*® These

efforts resulted in a sextuple mutant SavHppD V189A F216A P243A N245Q Q255A L3671
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(SavHppD Azl1), catalyzing the enantioselective C—H azidation with 1,340 TTN and 87:13 e.r.. To
further improve the enantioselectivity of the reaction, Huang reevaluated their in-house collection
of SavHppD variants and performed additional rounds of directed evolution using
chromatography-based screening. This led to a new septuple mutant SavHppD VI189A NI191A
S230L P24N245F Q255P L3671 (SavHppD Az2), providing the product with a slightly lower

activity (490 TTN) but excellent enantiocontrol (96:4 e.r., Figure 33A).

Michaelis-Menten kinetic analyses of SavHppD Azl, SavHppD Az2 and the wild-type
SavHppD showed that the kca/Km value of both SavHppD Azl and SavHppD Az2 increased by
approximately 2-fold compared to wt SavHppD. Specifically, the SavHppD Az1 variant showed a
4.1-fold increase in kcat (29.4 min~! (SavHppD Azl) versus 7.20 min~! (wt SavHppD)). However,
The Kwm of SavHppD Azl was 1.7-fold higher (790 mM) than that of wt SavHppD (470 mM),
indicating weaker substrate binding. In contrast, SavHppD Az2 exhibited a roughly 9-fold decrease
in kcat (3.39 min!) but a 6.6-fold smaller Ky (120 mM) relative to wt SavHppD, suggesting a
slower catalytic rate but tighter substrate binding. This is consistent with the observation that
SavHppD Az2 generally exhibited higher enantioselectivity but lower activity than SavHppD Azl
across a range of N-fluoroamide substrates (Figure 33B). DFT and MD analyses®” suggested that
the azide ligand (Ns") is positioned trans to the carboxylate ligand, which facilitates the activation
of substrate with the nonheme Fe center for efficient N-F bond activation. DFT calculations?’’
suggest that the initial N-F activation is the rate-determining step with an activation free energy
(AG*) of 17.2 kcal/mol. This fluorine atom abstraction is followed by a rapid 1,5-HAT step with
a much lower barrier (AG* = 3.9 kcal/mol) to generate a carbon-centered radical (Int-IIT), which is
positioned to undergo selective azide rebound with a low energy barrier (AG* = 4.4 kcal/mol)

(Figure 33C). Although the fluorine rebound pathway also exhibits a low intrinsic barrier (AG* =

62



5.0 kcal/mol), it is disfavored due to conformational constraints within the enzyme active site that
hinder the necessary substrate repositioning. This finding showcased the ability of enzymes to

control chemoselectivity through reactive intermediate positioning.
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Figure 33. Nonheme Fe enzyme catalyzed enantioselective C(sp*)-H azidation of N-fluoroamides.

(A) Directed evolution of SavHppD as azidases, the illustration of active site was made from the
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structure of 1T47 (PDB ID); (B) Selected substrate scope of SavHppD Azl and SavHppD Az2;

(C) Proposed catalytic cycle.

In 2024, our lab?!? and the Huang lab®!! contemporaneously reported nonheme Fe enzyme-
catalyzed enantioselective C(sp’)-F bond formation via C(sp®)-H functionalization.

213 and

Organofluorine compounds are ubiquitous in the pharmaceutical,?!? materials,
agrochemical industries?'* due to their unique chemical, physical, and biological properties.
However, to date, there is only a single naturally occurring fluorinase that catalyzes C(sp®)-F bond
formation in the conversion of S-adenosylmethionine to 5’-fluoro-5’-deoxyadenosine via a
bimolecular nucleophilic substitution (Sx2) mechanism.?!> Although numerous c-ketoglutarate-
dependent nonheme iron enzymes has been discovered and engineered to catalyze C—H bond

160,166,167 and nitration,'*® biocatalytic

functionalization, including halogenation,** azidation,
enantioselective C(sp®)-H fluorination via an analogous radical-mediated fluorine rebound

mechanism were not known prior to 2024 (Figure 34).

In Huang’s work, a triple mutant of (S)-2-hydroxypropylphosphonate epoxidase from
Streptomyces viridochromogenes®'® (SvHppE-Fluor) was engineered to obtain the (R)-
benzylfluoride product (150 TTN, 96.5:3.5 e.r. and 2.2:1 fluorination:reduction selectivity (Figure
34A and 34B). The Fe-binding glutamate was mutated to aspartate to generate additional space in
the active site to accommodate the substrate. Parallel to Huang’s work, our lab engineered a
sextuple mutant of 1-aminocyclopropane-1-carboxylic acid oxidase from Petunia hybrida
(ACCOcnr)*'7*® allowing the (S)-benzylfluoride product to form in 601 TTN, 95:5 e.r. and an
excellent fluorination:reduction selectivity of 98:2. With the exception of [184A, all the beneficial
mutations identified from directed evolution are distal to the Fe center, indicating the potential

importance of substrate tunnel engineering (Figure 34C and 34D). The excellent chemoselectivity
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favoring fluorination over reduction with ACCOcnr allowed enantioenriched organofluorine
compounds to be prepared on a gram scale. Together, ACCOcnr and SvHppE-Fluor allowed the

enantiodivergent synthesis of organofluorine products (Figure 34E).
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Figure 34. Nonheme Fe enzyme-catalyzed enantioselective C(sp®)-H fluorination. (A) Directed
evolution of HPPE-Fluor, reactions were carried out using whole E. coli cells overexpressing

SVHPPE (ODgoo = 40); (B) The active-site illustration of HPPE was made from 4J1X (PDB ID);
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(C) Directed evolution of ACCOcnr, reactions were carried out using whole E. coli cells
overexpressing ACCO (ODgoo = 30); (D) The active-site illustration of ACCO was made from
IW9Y (PDB ID); (E) Selected substrate scope of HPPE-Fluor and ACCOcwur, reactions were
carried out using whole E. coli cells overexpressing HPPE-Fluor (ODgoo = 5) and ACCOcnr (ODeoo

= 10).

DFT calculations from our lab and the Huang lab showed that the activation barrier for N-F
bond activation is 17.0 kcal/mol with HPPE and 11.8 kcal/mol with ACCO, indicating that this
fluorine atom abstraction is likely the rate-determination step of this transformation. Moreover, a
low activation barrier was observed for the radical rebound step (5.6 kcal/mol for HPPE, 3.4
kcal/mol for ACCO), suggesting that this rebound process is kinetically facile (Figure 35).
Classical molecular dynamics (MD) simulations of wt ACCO and ACCOcnr show that the key
mutations K158I, FO91L and T89A widen the substrate entrance tunnel. This structural insight
aligns with Michaelis-Menten kinetic experiments, which shows the enhanced enzymatic activity

resulting from the improved substrate binding enabled by the substrate tunnel engineering.

To investigate the mechanism of the chemoselectivity of the radical rebound step, Huang
examined the effect of additional azide anion on fluorine atom transfer. Using SvHppE-Fluor, the
fluorination product remained the predominant product, with a fluorination : azidation ratio of 17:1.
This is in contrast to their prior results in C—H azidation with SavHPPD,?°” where azidation was
favored over fluorination. DFT calculations?®” indicated that both azide rebound and fluorine
rebound are kinetically facile, with each proceeding with a low activation energy barrier. Together,
Huang proposed that with SavHppD, the carbon-centered radical is positioned closer to the azide,

promoting rapid azide rebound, whereas in SvHppE, the radical is oriented closer to the fluorine,
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enabling fluorine rebound. This positioning effect is also used to explain the selectivity of

halogenation versus hydroxylation in native nonheme halogenase enzymology** (Figure 35).
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Figure 35. Proposed catalytic cycle of nonheme Fe enzyme-catalyzed enantioselective C(sp®)-H

fluorination.

4. Transformations involving oxygen-centered radicals

Oxygen-centered organic radicals such as alkoxy radicals and phenoxy radicals also represent
versatile intermediates in organic synthesis.?!*22° In 2023, Zhong and coworkers reported a highly
enantioselective oxidative coupling reactions between 3-hydroxyindole-2-carboxylates and
various nucleophiles using copper efflux oxidase CueO??! as the biocatalyst and H>O, as the
external oxidant (Figure 36).22? Different types of nucleophiles, including indoles, pyrroles,
electron-rich arenes and -ketoesters, were compatible with this CueO-catalyzed process (Figure
36A). Based on radical trapping experiments,??* Zhong proposed that this CueO-catalyzed reaction
involves the formation of a phenoxyl radical and an oxidized 3-indolone ester as the intermediates.
Isolation and characterization of this oxidized 3-indolone ester intermediate was unsuccessful, due

to its high reactivity. Based on docking studies, Zhong proposed that this 3-indolone ester is bound
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to CueO through hydrogen bonding interactions, allowing enantioinduction in the nucleophilic

addition event (Figure 36B).

CueO (0.1 mol%)

\ H,0, (5.0 equiv) com

\ coMe — > Q4+ poete
NuH (1.5 equiv) N Nu

(:E/g/cone OzMe @@COZMS
N
H I /EQ

N

H

92% yield 75% yield 73% yield
99% ee >99% ee 98% ee

oone COMe
COzEt COMe
COPh
COQEt

W/

MeO

78% yield 54% yieId 75% yieId
>99% ee >19:1dr., 91% ee  >19:1d.r.,, >99% ee
(B) OH i e} 1

CueO/H,0,
B —————
CO,Me — N\ CO,Me
oxidation N

L H .
ueO/H,0, loxidation
0]

A\

N

H

(0] -

Nu-H
CoMe o -
“'Nu enzyme-controlled ,)—CO:Me

H nucleophilic addition N

o

Figure 36. CueO-catalyzed enantioselective oxidative coupling of 3-hydroxyindole-2-
carboxylates and other nucleophiles. (A) Selected substrate scope; reactions were carried out using

0.1 mol% cell-free lysate of CueO; (B) Proposed mechanism.

P450 enzymes could also induce the formation of oxygen-centered radical via single-electron
oxidation of organic substrates using the highly reactive Fe=O intermediate.?>*?2> In 2015, Miiller
reported that biosynthetic P450 enzymes including KtnC and DesC catalyzed C—-C coupling

providing biaryl natural products.’’* Based on these findings, in 2022, Narayan reported the
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development of P450-catalyzed oxidative coupling of electron-rich aromatic compounds for the
enantioselective synthesis of biaryl products.??> In 2025, based on their previous studies, Narayan
and coworkers further reported a biocatalytic deracemization of BINOL derivatives using
cytochromes P450 (CYP158A2)%%, allowing access to enantioenriched atropisomers from racemic
ones (Figure 37).2?7 They proposed that this deracemization proceeds through the intermediacy of
phenoxyl radicals following single-electron oxidation, allowing the rotation around the biaryl C—
C bond. Upon further single-electron reduction, the biaryl compound is regenerated and
enrichment in the major atropisomer occurred during this oxidation-reduction-based
deracemization cycle (Figure 37A). Using 2 mol% purified CYP158A2, a wide range of binaphthol
substrates were converted into enantioenriched form under these P450-catalyzed deracemization

conditions (Figure 37B).
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5. Transformations involving metal nitrenoids with radical character on the nitrogen

Transition-metal nitrenoid-mediated reactions are useful tools for the construction of
nitrogen-containing organic compounds. The use of metalloenzymes to catalyze unnatural nitrene
transfer reactions dates back to 1985, when Dawson and Breslow reported the use of mammalian
microsomal P450s to catalyze C—H amidation using iminoiodinanes as the nitrene precursor.??®
Despite this early report, the development of effective metalloprotein catalysts for stereoselective
nitrene transfer reactions remained largely dormant until recently. In 2013, groundbreaking
research from Arnold®? and Fasan®® led to P450-catalyzed enantioselective C—H amidation
reactions using sulfonylazide substrates. Since then, a wide range of metalloenzyme-catalyzed

83.230-232 and intermolecular C—H amination,**

nitrene transfer reactions, including intramolecular
sulfidesimidation?** and related [2,3]-sigmatropic rearrangement,?**> as well as aziridination,?
have been rapidly advanced through the use of sulfamoyl azide or carbonazidates as the nitrene

precursors. Nitrene transfer reactions have been extensively reviewed elsewhere.®*53

Here, we
review progress made after 2021 on metalloenzyme-catalyzed nitrene transfer reactions, where the

metal nitrenoid intermediate features substantial radical characters on the nitrenoids nitrogen.

5.1 Metalloenzyme-catalyzed C—H amination

Since the groundbreaking work from Arnold and Fasan in 2013, organic azides have been
widely used in heme protein-catalyzed nitrene transfer reactions.’>3237 Compared to sulfonyl
azides and other organic azides bearing an electron-withdrawing group on the nitrogen, alkyl and

aryl azides nitrenes have been largely underexplored in biocatalytic nitrene transfer processes.

In 2023, Arnold and co-workers developed a biocatalytic intramolecular C(sp?)-H amination

of alkyl and aryl azides using serine-ligated P450s (“P411s”) for the enantioselective synthesis of
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nitrogen heterocycles (Figure 38).23% A panel of engineered hemoproteins was evaluated, among
which the previously engineered carbene transferase P411 M177L from the Arnold lab exhibited
the highest initial activity, affording the pyrrolidine product in 4% yield and 82:18 e.r.. Through
eight rounds of directed evolution, the final variant P411 M177L L75E Q437L A330Q M118V
F77C S72W Q73A L436R (P411-PYS-5149) was identified, delivering the product in 66% yield
and 91:9 e.r. (Figure 38A). P411-PYS-5149 not only showed an excellent scope for benzylic
C(sp*)-H amination but also exhibited initial activity toward the amination of unactivated C(sp*)—

H bonds (Figure 38B).
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Figure 38. 411 catalyzed nitrene transfer for enantiosynthesis of Chiral N-heterocyclic
compounds. (A) Directed evolution of enantioselective alkyl nitrene transferase; (B) Selected
substrate scope of enantioselective alkyl nitrene transfer, the experiments were conducted using
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5UCW (PDB ID).
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Arnold and coworkers found that an intermediate variant P411-PYS-5148 from this
pyrrolidine synthase lineage exhibited promising activity for the synthesis of indolines, although
with moderate enantioselectivity. Introduction of the L437P mutation improved this
enantioselectivity. Ultimately, the triple mutant P411-PYS-5148 L437P L181N (P411-PYS-5151)
delivered the methylindoline product in 64% yield and 92:8 e.r. (Figure 38C). DFT calculations
were also carried out to understand the activity differences between alkyl and aryl nitrene
intermediates. Based on DFT results, for alkyl azide substrates, Fe nitrenoid generation is the rate-
limiting step in this C—H amination reaction. The activation barrier for nitrenoid formation (24.6
kcal/mol) is much higher than that of the subsequent HAT step (13.5 kcal/mol). In contrast, for
aryl azide substrates, the HAT step has a higher barrier (20.8 kcal/mol) than the nitrogen extrusion
step (18.0 kcal/mol), due to the increased stability of the N-aryl-substituted Fe nitrenoid. Together,
these results revealed the distinct activity of N-alkyl-substituted Fe nitrenoid intermediates, when

compared to their N-sulfonyl and N-aryl congeners.

In heme protein-catalyzed nitrene transfer reactions, the competing reduction of nitrene
precursors catalyzed by the same protein catalyst represents a key issue in the optimization of
synthetically useful processes.?*? In 2024, Hilvert and co-workers investigated the myoglobin-
catalyzed azide reduction reaction, showing that this process proceeds via a reactive anionic
ferrous intermediate (Figure 39A).2*° Through combined UV-visible spectroscopy, Mossbauer
spectroscopy, X-ray crystallography and computational studies, Hilvert shed light on this
intermediate and proposed a catalytic cycle that diverges from the canonical nitrene transfer
pathways (Figure 39B). They demonstrated that this azide reduction process is regulated by the

amount of dithionite (Figure 39A). These findings highlight the importance of redox tuning of
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heme proteins, further suggesting that modulating the reduction potential of myoglobin via protein

engineering or cofactor modification could enhance its efficiency in nitrene transfer catalysis.
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Figure 39. Myoglobin-catalyzed azide reduction. (A) Chemoenzymatic cascade for Knorr pyrrole

synthesis; (B) Proposed catalytic cycle for azide reduction using myoglobin.

In addition to organic azides, hydroxylamine derivatives were also used as effective nitrene
precursors in biocatalytic nitrene transfer reactions. In 2018, Ohnishi and co-workers discovered
that a hydroxylamine ester is a key intermediate in natural biosynthetic pathways. They found that
BezE, a cytochrome P450 from Streptomyces sp. R118, facilitated the cyclization of geranylated
p-acetoxyaminobenzoic acid via a nitrene transfer mechanism through N—O bond cleavage (Figure
40A).2% In 2017, Ryan and co-workers reported that heme enzymes KtzT?*! and PipS?* catalyzed
N-N bond formation in the biosynthesis of piperazate natural products. Mechanistic studies
suggested the involvement of a Fe nitrenoid intermediate generated from a hydroxylamine

precursor (Figure 40B).
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reactions starting from hydroxylamine derivatives. (A) Nitrene transferase BezE-catalyzed
biosynthesis of benzastatin natural products; (B) Heme enzyme-catalyzed N-N bond formation in

L-piperazic acid biosynthesis.

Prior to the discovery of biosynthetic nitrene transfer processes using hydroxylamine
derivatives, in 2019, Arnold reported that engineered cytochrome c¢ variants could catalyze the
enantioselective aminohydroxylation of styrenes using O-pivaloylhydroxylamine as the nitrene
precursor (Figure 41).243 This work represents the first use of hydroxylamine derivatives as nitrene
precursors in unnatural enzymatic amination reactions, demonstrating a wide range of new nitrene

transfer reactions could be advanced using this class of nitrene precursors.
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Figure 41. Rma cyt c-catalyzed enantioselective aminohydroxylation of styrenyl olefins.

Based on their previous studies on P411-catalyzed amination of benzylic and allylic C(sp?)—

H bonds,*** in 2022, Arnold reported new P411 variants to allow for the asymmetric propargylic

C(sp®)-H amination O-pivaloylhydroxylamine triflic acid as the aminating reagent (Figure 42).24°

P411-B4 was chosen as the template for directed evolution of propargylic C(sp®)-H aminating

enzymes. Through eight rounds of iterative SSM and screening, beneficial mutations including

E267D, N395C, G437Q, S72T, S438G, T269V, H266S and A74K were identified, culminating in

PA-G8, which enabled the efficient enantioselective propargylic amination of 1-phenyl-1-butyne

(Figure 42A and 42C). PA-GS8 exhibited a broad substrate scope (>2,000 TTN, 82-96% ee).

Propargylic substrates bearing a longer alkyl chain showed a slight decrease in catalytic activity

but improved enantioselectivity (Figure 42B).
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Figure 42. P411-catalyzed enantioselective amination of propargylic C(sp®)-H bonds. (A)
Directed evolution of PA-G8; (B) Selected substrate scope of enantioselective propargylic C(sp*)—
H amination. Biocatalytic reactions were conducted using whole E. coli cells overexpressing P411-

PYS-5149 (ODe¢oo = 20). (C) The illustration of active site was made from SUCW (PDB ID).

In 2022, the Arnold lab reported another breakthrough, allowing enantioselective C(sp*)-H
amination to be carried out with completely unactivated alkane substrates featuring C(sp*)-H

bonds with a high bond dissociation energy (BDE > 95 kcal/mol) (Figure 43).2*6 Arnold selected
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methylcyclohexane, a substrate structurally similar to toluene, as a model substrate to
simultaneously evaluate C(sp?)-H amination using O-pivaloyl-hydroxylammonium triflate and
C(sp®)-H amidation using N-acetyl-O-pivaloyl hydroxylamine. A previously evolved allylic
C(sp’)-H amination variant, APA6 (renamed uPAO0),** was identified as the most active
biocatalyst. In parallel, the previously evolved benzylic amidation variant, iIAMDS5-Y263V
(renamed uAMDO0),?* exhibited the highest activity for C(sp*)-H amidation. Through nine rounds
of directed evolution using both SSM and epPCR, ten beneficial mutations M177L, M188Q,
E409S, A330H, L740H, L780P, M263L, L333M, D251N and L188C were introduced, resulting
in uPA9 (Figure 43A and 43C). uPA9 catalyzed enantioselective C(sp*)—H amination with a nearly
20-fold higher activity, 86% site selectivity, 8:1 diastereoselectivity and 93:7 enantioselectivity,
furnishing (1R,3S)-methylcyclohexylamine as the major product. Furthermore, nine rounds of
directed evolution led to uAMD9 carrying added beneficial mutations S438T, A74V, R226T,
V74Q, S400A, G252V, M212V, N573T, S640E, Q74M, A388S, L233V, axial ligand mutation
S400A and a premature stop codon I710A. uAMD9 catalyzed the formation of (IS, 2R)-2-
methylcyclohexanamine acetate with 120 TTN, 91% site-selectivity, 7:1 d.r. and 85:15 e.r. (Figure
43B and 43C). All the mutants in uAMD evolutionary trajectory exhibited excellent oxygen
tolerance, with minimal differences in activity and selectivity under aerobic and anaerobic
conditions. Moreover, u4AMD9 was capable of amidating linear alkanes such as hexane and heptane,
showing preferential regioselectivity for the C3 position, although with moderate

enantioselectivity (Figure 43D).
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Figure 43. P411-catalyzed enantioselective amination and amidation of unactivated C(sp®)-H

bonds. (A) Directed evolution of uPA9 for the enantioselective amination of unactivated C(sp*)—
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H bonds; (B) Directed evolution of uAmD9 for the enantioselective amidation of unactivated
C(sp*)-H bonds; (C) The illustration of active site was made from SUCW (PDB ID); (D) Selected

substrate scope of enantioselective unactivated C(sp?)-H amination and amidation.

DFT calculations using an Fe porphyrin model complex revealed a higher energy barrier (AG*
= 29.7 kcal/mol) for the HAT step in the amidation of unactivated C(sp*)-H bonds compared to
benzylic C(sp?)-H systems (AG* = 22.0 kcal/mol). These findings indicated that the newly P411
variants likely lowered the activation barrier for the challenging C(sp*)-H functionalization. This
is consistent with MD simulations in uAMDS, which revealed stabilizing dispersion interactions

and hydrophobic interactions through directed evolution.

In 2024, Arnold and co-workers reported another P411-catalyzed enantioselective amination
of tertiary C(sp*)-H bonds, enabling the formation of c-tetrasubstituted carbinamines bearing a
minimally differentiated methyl-ethyl stereocenter (Figure 44).2*8 P411-TEA-5267 with three
mutations (C324L, N395R, and G438V) relative to P411gpa®** was selected as the starting point
for further engineering, furnishing the corresponding amine product with 20 TTN and 90% ee.
Through iterative rounds of SSM and screening targeting active-site residues located on a-helices
and flexible loops proximal to the heme cofactor, a septuple mutant P411-TEA-5267 M354E
R395S A327V M177Y S72T Q403A S395V (P411-TEA-5274) was evolved, affording the desired
product with 970 TTN and 92% ee. Interestingly, the S395V mutation located on the loop on the
other side of the substrate binding pocket of the heme cofactor, led to a 4-fold increase in catalytic

activity (Figure 44A and 44B).
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Figure 44. P411-catalyzed enantioselective amination of tertiary C(sp*)~H bonds. (A) Directed
evolution of tertiary C(sp?)-H aminase P411-TEA-5274; (B) The illustration of active site was

made from SUCW (PDB ID).

P411-TEA-5274 also demonstrated excellent regioselectivity, enabling selective C(sp*)-H
amination over competing C(sp?)-H amination and displaying preference for tertiary over primary
C(sp*)-H systems. In addition to benzylic substrates, P411-TEA-5274 was compatible with allylic
(70 TTN, 90% ee) and propargylic substrates (120 TTN, 67% ee) (Figure 45A). Finally, reactions
using enantiopure (R)-sec-butylbenzene and (S)-sec-butylbenzene led to products with retention
of configuration, but markedly different reactivities, indicating that P411-TEA-5274 is a kinetic

resolution catalyst that preferentially converts the (R)-enantiomer (Figure 45B).
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(R)- or (S)-sec-butylbenzene.

In 2024, Arnold and co-workers further reported a biocatalytic enantioselective amination of
a-C(sp?)—H bonds of carboxylic acid esters using thermostable protoglobin variants (Figure 46).2%
Biocatalytic a-C—H amination using a heme protein-catalyzed nitrene transfer mechanism is
hampered by the inherently slow hydrogen atom abstraction between the electrophilic metal-
nitrenoid and C-H bonds adjacent to electro-withdrawing groups. Using a range of alkyl and
benzylic carboxylic acid esters as the substrates, Arnold and coworkers evaluated an in-house
collection of heme proteins, including 96 engineered P411 nitrene transferases and 60 small heme
proteins (cytochromes ¢ and globins), through high-throughput screening. A thermostable
protoglobin from Aeropyrum pernix (ApPgb)*° containing three mutations (W59A, Y60G, and
F145G) was found to afford the desired (S)-amino ester product in 3% yield and 46% ee (Figure

46A). Subsequent rounds of epPCR and SSM led to the identification of nine beneficial mutations,
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including F156L, 197T, F175L, [137T, T97V, H136N, K36E, C45A and K159E, resulting in a new
a-ester aminase L-ApPgb-aEsA-GS8, catalyzing the o-C—H amination of ethyl 2-(4-
fluorophenyl)acetate in 41% yield and 84% ee. Further incorporation of three additional mutations,
including F73W, R90G and G60S, provided L-4pPgb-aEsA-G11, allowing the desired product to
form in 50% yield and 96% ee. Starting from L-4pPgb-aEsA-G8, introducing the F93A mutation
led to a new biocatalyst to provide the product in 19% yield and inverted enantiopreference,
allowing enantiodivergent C—H amination. Two additional rounds of SSM and screening provided
D-ApPgb-aEsA-G2, which produced the (R)-enantiomer in 62% yield and 72% ee (Figure 46A
and 46B). Both L-4ApPgb-aEsA-G11 and D-ApPgb-aEsA-G2 displayed a broad substrate scope
toward phenylacetic acid esters bearing various substituents, as well as a,a-disubstituted
carboxylic acid esters. These evolved mutants also exhibited detectable initial activity toward

aliphatic carboxylic esters (Figure 46C).
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+ PO~ ApPgb variant COOEt
F ot ————— >

ODggo=25-30 .

ApPgb variant yield TTN ee
ApPgb W59A Y60G F145G (L-GO) 3% 8 46%
L-GO F156L 197T 30% 67 68%

L-GO F156L 197T F157L 1137T T97V 41% 85 84%
H136N K36E C45A K159E (L-G8)

L-G8 F73W R90G G60S (L-G11) 50% 109 96%
L-G8 F93A (D-G0) 19% 34 —70%
L-G8 F93A W62G 49% 94 -57%
L-G8 F93A W62G L86G (D-G2) 62% 232 —72%

L-G11 L-G11 L-G11
26% yield, 81% ee 42% yield, 86% ee 31% yield, 74% ee
D-G2 D-G2 D-G2
49% yield, -62% ee 69% yield, —=75% ee 42% yield, —10% ee
NH, NH,
: < Me “NHZ
COOEt COOEt <
Cl MeO
L-G11 L-G11 L-G11
28% yield, 92% ee 26% yield, 78% ee 6% yield, 86% ee
D-G2 D-G2 D-G2

17% yield, =72% ee 17% yield, —-35% ee 28% yle'd, —32% ee

Figure 46. ApPgb catalyzed enantioselective amination of protic a-C(sp’)-H bonds in carboxylic
acid esters. (A) Directed evolution of L-ApPgb-aEsA and D-ApPgb-aEsA; (B) The illustration of
active site was made from 7UTE (PDB ID); (C) Selected substrate scope; reactions were conducted

using whole E. coli cells overexpressing ApPgb-aEsA (ODsoo = 20 + 3).

Despite advances in heme protein-catalyzed nitrene transfer using hydroxylamine esters, the

use of the parent unsubstituted hydroxylamine as nitrene precursors has remained elusive,?! in
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part due to the high N—O bond dissociation energy of hydroxylamine. In 2023, Arnold and co-
workers developed novel protoglobin nitrene transferases to allow for the use of hydroxylamine

as the aminating reagent (Figure 47).22

The protoglobin from Pyrobaculum arsenaticum
(ParPgb)?* was engineered to catalyze benzylic C(sp’)-H amination of 4-ethylanisole and
aminohydroxylation of 4-vinylanisole using hydroxylammonium chloride. Starting from ParPgb
WS59L V60Q (ParPgb 5209), directed evolution using SSM, epPCR and staggered extension
process (StEP) recombination®* was carried out, leading to a new variant, ParPgb-HY A-5213,
which harbors seven beneficial mutations Y57D, W59L, V60Q, V85I, I149F, V175A and Q177R.
ParPgb-HY A-5213 exhibited a 160-fold improvement in yield compared to ParPgb W59L V60Q
(Figure 47A and 47B). Upon further optimization of reaction conditions, the desired product was
obtained in 95% yield and >99% ee using 0.5 mol% biocatalyst. This newly evolved variant also

proved efficient in the conversion of a range of ethylbenzene substrates and in the

aminohydroxylation of styrenes (Figure 47C).
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(A) NH,

Me - E. coli harboring
/O/\ o ik, O ParPgb variant Me
MeO >
MeO

ODgog = 60
OH
X — E. coli harboring NH,
/©/\ *tho” NH3 c ParPgb variant
MeO ODggg = 60

MeO

TTN (yield) of T TN (vield) of

entry ParPgb variant A hydl?:;(I:Igtion
1 ParPgb W59L V60Q <5 25
2 ParPgb W59L V60Q W92R T148A 15 100
3 ParPgb W59L V60Q K26R E33D 70 150
Y57D 1149F Q177R
4 ParPgb W59L V60Q Y57D 180 280
193T H116M
5 ParPgb W59L V60Q Y57D 320 (12.4%) 300 (11.3%)

V851 1149F V175A Q177R
(ParPgb-HYA-5213)

B) « ©)

W22

52.8% yield 95.3% yield
149 >99% ee >99% ee
Y V'’
C 97t 8 OH OH
175 ot /‘:ﬁ NH, NH
: A\
/7\
>~ X ? FsC
\‘ — 21.6% yield 9.2% vyield
65% ee 88% ee

Figure 47. ParPgb-catalyzed enantioselective C(sp®)-H amination and aminohydroxylation using
hydroxylamine as a new aminating reagent in nitrene transfer. (A) Evolution trajectory of C—H
aminase and promiscuity toward aminohydroxylation of 4-vinylanisole; (B) The illustration of
active site was made from 2VEE (PDB ID); (C) Selected substrate scope of biocatalytic amination

and aminohydroxylation. Reactions were conducted using 0.5 mol% purified ParPgb-HY A-5213.

Michaelis-Menten kinetic studies of ParPgb-HYA-5213 and ParPgb-HY A-5209 were next
carried out to further understand the mutational effects. These studies showed a 180-fold kcat
improvement of ParPgb-HYA-5213 compared to the starting variant ParPgb-HYA-5209.
Furthermore, the Kv value for NH2OH of ParPgb-HY A-5213 dropped from 5.4 mM to 0.30 mM,

representing a 180-fold improvement in apparent substrate affinity. Together, the kca/Km value of
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1

these variants increased from 0.1 mM ™' min™! to 300 mM ™! min!, shedding light on the origin of
ghg g

enhanced catalytic efficiency in evolved protoglobin variants.

To elucidate the reaction mechanism, Arnold and coworkers conducted UV-vis spectroscopy
using ParPgb-HY A-5213 (Figure 48).25° In the presence of a 200-fold excess of sodium dithionite,
a prominent Soret band at 434 nm and a broad Q-band at 562 nm were observed, which were
distinct from the resting state hemoprotein with bands at 413 nm and 543nm. Upon the addition of
a 600-fold excess of hydroxylamine, a new UV-visible pattern with three characteristic bands at
425, 530, and 560 nm was observed, indicating the formation of a new species, Eredna, from the
reaction between Ereq and NH2OH (Figure 48B). Ereqna was found to decompose slowly to Eox
under ambient conditions. However, in the presence of a substrate bearing a benzylic C(sp*)-H
bond, Eredna rapidly converted to Eox, accompanied by the formation of the amination product

(Figure 48C).

Further studies with alternative aminating reagents including nitrite (NO2"), nitric oxide (NO),
and nitroxyl (HNO) revealed the generation of new UV-vis absorption bands at 422 nm and 568
nm, which are assigned to Eeq. This Ereq species decayed to Eqx within 100 min for NO>™ and NO
and 30 min for HNO. Additionally, EPR spectroscopy revealed that Er.q exhibited identical signal
peaks in the presence of different aminating regents, including NO.~, NO, HNO, and NH-OH
(Figure 48D). HR-ESI-MS analysis confirmed the formation of the desired aminated product when
the spin-trapping regent DMPO was used (Figure 48E). Importantly, all the tested aminating
reagents produced the aminated product with varying yields but consistently high
enantioselectivity. Specifically, NH,OH provided 90.7% yield, NO,™ provided 26.25% yield, NO

provided 17.8%, yield and HNO provided 89.8% yield (Figure 48F). These findings suggest the

88



involvement of a common iron-nitrosyl intermediate, which may further generate an iron-nitrenoid

species within the enzyme active center to drive the amination reaction.

Ered Me, !
—_—
NH,OH o

NH,

DMPO-adduct
observed by HR-ESI-MS

Me  parPgb- e
HYA-5213
—_— NH,
NH,OH
0.%)50 4(‘30 450 560 550 G(I)O 650 Meo MeO
(€ Wavelength / nm XX XX
10 —Ea|  |NOS i 100} < {100
— I
l 0 min 80r 180
® \ ¢ .
e 9 Q
g . 30 min ‘SNHZOH 260 ‘60@
Fe ie} .
2 ° @
< a0k la0 @
_g ] 40 40
M’V\\/ﬂ/— oo i B 120
04‘; LN IRy IRy A 41;0

1 1 1 1 1
‘350 400 450 500 550 600 650 1140 1160 1180 1200 1220 1240 1260 NO,~ ®NO,~ NO  HNO NHOH'SNH,OH
Wavelength / nm Magnetic Field / mT [N]-source

Figure 48. Spectroscopic and mechanistic studies. (A) Key intermediates in heme protein-
catalyzed C(sp*)-H amination; (B) UV-vis spectra of ParPgb-HYA-5213 protein in its resting
state (Eox) and reduced state (Ereq) and the hydroxylamine adduct of the reduced protein (Ereana);
(C) UV—vis spectra collected during the decomposition of Ereqra to Eox, With isosbestic points at
438 and 572 nm; (D) Experimental (black line) and simulated (red line) Q-band pseudomodulated
EPR spectra of the putative {FeNO}’ species in a frozen solution at 15 K, obtained by mixing Ered
with different aminating reagents including NH,OH, NO>~, NO, HNO, '"NH,OH, and 'NO;".

*Indicates a background signal from the resonator; (E) HR-ESI-MS spectra of DMPO adducts
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obtained by treating Ec.a and DMPO with NH>OH; (F) Biocatalytic nitrene transfer to the benzylic
C—H bond of p-ethylanisole with different aminating sources using purified 0.5 mol% ParPgb-
HYA-5213. DMPO = 5,5-Dimethyl-1-pyrroline N-oxide. Adapted with permission from J. Am.

Chem. Soc. 2024, 146, 20556-20562. Copyright 2024 American Chemical Society.

5.2 Metalloprotein-catalyzed C—H amidation

Compared to N-sulfonyl Fe nitrenoids and unprotected Fe nitrenoid, N-acyl Fe nitrenoids are
prone to Curtius rearrangement and thus remain underexplored in biocatalytic nitrene

transfer.236:237

To address this challenge, in 2021, Arnold and co-workers developed an
intermolecular benzylic C(sp®)-H amidation by directed evolution and substrate walking,
providing a series of P411 variants that catalyzed benzylic C(sp*)-H amidation using acylnitrene

precursors (Figure 49).24

iAMD4 containing four beneficial mutations was evolved after four
rounds of SSM and screening, enabling the benzylic amidation of 4-ethylanisole with 3-phenyl-N-
(pivaloyloxy)nitrenoids in 475 TTN and 95:5 e.r. (Figure 49A, reaction I). Activity enhancement
was mainly attributed to V328T near the heme cofactor. However, this variant exhibited very low
activity for the benzylic amidation of ethylbenzene with N-(pivaloyloxy)acetamide (Figure 49A,
entry 5). Subsequent introduction of C78L and S438Q mutations close to the heme cofactor
provided iAMD6, which demonstrated a nearly 100-fold increase in activity toward reaction II.
These mutations also abolished the activity for reaction I. Further engineering resulted in the final
variant iAMD?9, giving rise to the amide product in 57% yield, 1,580 TTN and >99% ee (Figure
49A). iAMDY also showed a good substrate scope (Figure 49B). Using iAMDS, Arnold
investigated the effect of different nitrene precursors, including N-hydroxyacetamide, O-pivaloyl,

O-acetate, and dioxazolone using 4-ethylanisole as the model substrate (Figure 49C). Their results

revealed that the O-pivaloylhydroxylamine exhibited a 2—4-fold higher reactivity compared to
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other related nitrenoids precursors including the O-acetylhydroxylamine and dioxazolone, whereas

the free N-hydroxyacetamide only provided a trace amount of product.

(A)Reaction I: o Reaction II: )OI\
o} J\/\ o}
Me )J\/\ E. coli harboring HN Ph Me )]\ E. coli harboring HN™ “Me
+ HN ph P411 variant *HN Me P411 variant :
- _—
Meo Opiv ODggo = 30 Me Spiv ODggp = 30 ©/\Me
MeO
reaction | reaction Il
entry P411 variant TTN e.r.  TTN (yield) e.r.
1 iAMDO N.D. N.D. N.D. N.D.
2 iAMDOV78C 40 N.D. <10 N.D.
3 iAMDOV78C V328T 440 85:15 <10 N.D.
4 iAMDO V78C V328T N70S 349 90:10 <10 N.D.
5 iAMDO V78C V328T N70S 1401L (iAMD4) 475 95:5 <10 N.D.
6 iAMDOV78C V328T N70S 1401L C78L (iAMD5) 445 83:17 153 N.D.
7 iAMD4 C78L S438Q (iAMD6) <10 N.D. 863 >99:1
8 iAMD5 S438Q L82M 907 >99:1
9 iAMDS5 S438Q L82M L181Q (iAMDS8) 1,096 >99:1
10 iIAMD5 S438Q L82M L4371 (iIAMD8b) 1,319 >99:1
1 iIAMD5 S438Q L82M L4371 A74S (iAMD9) 1,581 (57%) >99:1
(B) NHAc NHAG Me  NHAc (€) o
- Me . i
Me Me Me M ) ) HN)I\Me
nitrenoid precursors H
Me _—
- - M
iAMDS iAMDS iAMD9 MeO El.;q‘;‘(/l’ggigci’;‘n”tg °
1,360 TTN 1,800 TTN 1,760 TTN MeO
>99% ee >99% ee >99% ee e
l;lHAc l;lHAc _NH Ac o o o) o
- : Me . ! O/(
OP; OA« OH
o b D
H H N H
Me
iAMDS8 iAMDY iAMDS8 Relative
1,290 TTN 2,090 TTN 1,500 TTN activity 1.0 0.4 03 trace
>99% ee >99% ee 76% ee

Figure 49. P411-catalyzed enantioselective amidation of benzylic C(sp®)-H bonds. (A) Directed

evolution for C(sp®)-H amidation using reactions I and II as the model system. Active-site

illustration was made from SUCW (PDB ID); (B) Selected substrate scope; (C) Relative activity

of 4-ethylanisole in iAMDB8-catalyzed C(sp*)-H amidation with different nitrene precursors.

In 2023, Fasan and co-workers reported a myoglobin-catalyzed intramolecular C(sp*)-H

amidation mediated by N-acyl Fe nitrenoid species generated from dioxazolones, a class of easily

accessible acyl nitrene precursor,**%2%

allowing the enantioselective synthesis of f—, y—, and -
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lactams (Figure 50).2°° Using 3-phenylpropyldioxazolone as the substrate, the sperm whale
myoglobin H64V variant (Mb H64V) afforded the desired lactam product in 2% yield and 96% ee.
In contrast, other heme proteins evaluated, including P450s, cytochromes c, peroxidases, and wt
Mb exhibited no activity. Given the key effects of the H64 residue in carbene®®! and nitrene??’
transfer activity, Fasan and coworkers further evaluated their in-house collection of Mb variants
bearing mutation at residue 64. Mb H64V V68A (Mb*) previously evolved by the same group
from enantioselective carbene transfer,?¢! was identified as the optimal biocatalyst, affording the
lactam product in 50% yield and >99% ee, despite the formation of 40% reduced byproduct and
10% y-lactone as side products. Additional variants bearing mutations at residues 64 and 68 were
next studied. Mb H64A V68A conferred no enantioselectivity, indicating that the protein is highly
sensitive to mutations at these sites (Figure S0OA and 50B). Through further optimization of organic
co-solvent and reaction buffer, the chemoselectivity was improved (75% yield and >99% ee).
Screening of myoglobin variants bearing active-site mutations and one additional round of SSM
afforded Mb L29T H64T V6SL (Mb'™), providing the opposite enantiomer ent-lactam with 91%
ee. Notably, both Mb* and Mb™™ exhibited good substrate tolerance for the enantioselective
synthesis of y-lactams, while Mb* also showed high activity and selectivity in the formation of p-
and 3-lactams. In y-lactam formation, the newly evolved Mb* show higher activity for the
substrates bearing an electron-donating group, whereas in B-lactam formation, a different trend

was observed (Figure 50C).
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/./< E. coli harboring
% o Mb variant \/\)I\
PhMN/

Iactam amide Iactone
entry Mb variant yield of lactam lactam:amide:lactone ee
1 wild-type Mb 0 0:100:0 -
2 Mb H64V 2% 2:96:2 96%
3 Mb H64V V68G 5% 5:90:5 80%
4 Mb H64A V68A 5% 5:90:5 0
5 Mb H64G V68A 10% 10:75:15 74%
6 Mb H64G V68G 10% 10:80:10 1%
7 Mb H64V V68A (Mb*) 50% 50:40:10 99%
(0]
HN
HN
S
\L_s cl
Mb*: Mb*: Mb*: Mb*: Mb*: Mb*:
75%, 99% ee 45%, 91% ee 65%, 98% ee 90%, 99% ee 75%, 99% ee 22%, 99% ee 78%, 99% ee
MbTTL: MbTTL: MbTTL: MbTTL:
-91% ee -79% ee —-57% ee -99% ee

Figure 50. Myoglobin-catalyzed enantioselective intramolecular C(sp?)~H amidation using
dioxazolones. (A) Directed evolution of Mb*; (B) The illustration of active site was made from
1JW8 (PDB ID); (C) Selected substrate scope for the biocatalytic amination for B-lactams, y-

lactams and 8-lactams; reactions were conducted using 2 mol% purified Mb variants.

In 2024, Arnold and co-workers extended their biocatalytic enantioselective C(sp®)—H
amidation to organosilane substrates (Figure 51).22 A cytochrome P450 variant, uAmD5-5117,
which was previously evolved for the amidation of unactivated C(sp®)—H bonds,?*¢ was the only
enzyme displaying initial activity in this enantioselective amidation of benzyltrimethylsilane,
albeit with a very low activity (0.1% yield). Through four rounds of epPCR and recombination by
staggered extension process (StEP), eight beneficial mutations, including T328A, N573D, E839G,
R47H, E143K, F77S, F662C and K670 were introduced to uAmDS5-5117, resulting in a 34-fold
increase in activity. Although the simultaneous truncation of both the FAD and FMN reductase

domains reduced enzyme activity, truncation of the FAD domain enhanced catalytic efficiency as
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well as protein expression. By combining this truncation with the introduction of a key mutation

T327P, a new variant, P411-SIA-5289 was obtained, delivering the product in 111 TTN and 99%

ee. Finally, three additional beneficial mutations S70M, V263L, and T436A were introduced into

P411-SIA-5289 to provide P411-SIA-5291, providing 34% yield and 99% ee. This represented a

430-fold improvement in catalytic activity (Figure 51A and 51C). P411-SIA-5291 tolerated a

range of benzylsilane substrates. When substrate possessing an olefin moiety was applied, the

P411-SIA-5291 catalyzed benzylic a-Si—C(sp®)—H amidation preferentially over aziridination

(Figure 51B).
(A) NHAc
(j/\SiMe3 ) E. coli harboring ;
+ PivONHAc P411 variant SiMe3
ODggp = 30 ©/\
P450 variant TTN (yield)
uAmD5-5117 2
5117 T328A N573D E839G (P411-SIA-5285) 20
5285 R47H E143K 20
5285 R47H E143K F77S 26
5285 R47H E143K F77S F662C K670I 68
5285 R47H E143K F77S F662C K670I T327P AFAD 11
(P411-SIA-5289)
5289 S70M V263L 194
5289 S70M V263L T436A 250 (34%)
(P411-SIA-5291)
(B) NHAc {c }}\

Nog's

167 +1 TTN /
>99:1 e.r.

NHAC

gk
J</ 4

Me

149 +3TTN
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A
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Figure 51. P411-catalyzed enantioselective amination of a-Si—C(sp®)-H bonds. (A) Directed
evolution of P411-SIA-5291; Active-site illustration was made from SUCW (PDB ID); (B)

Selected substrate scope.

In 2025, Fasan and co-workers reported engineered myoglobins to catalyze the intramolecular
C(sp’)-H amination of carbamate derivatives, allowing the enantioselective construction of
oxazolidinones (Figure 52).2%% Using Mb*, a range of phenyl ethyl carbamate substrates bearing
different N-protecting groups, such as N-hydroxy, N-pivaloyl, N-benzoyl and N-tosyl were
evaluated. All the tested substrates showed measurable initial activity and excellent
enantioselectivity, within the N-benzoyl group providing the highest initial activity (Figure 52A).
Screening of myoglobin variants led to a triple mutant Mb H64V V68A Y 146F, delivering the
desired product in 82% yield and 99:1 e.r.. On the other hand, Mb F43V I107E produced the
opposite enantiomer in 48% yield and 92:8 e.r.,, allowing enantiodivergent access to
oxazolidinones. Time course experiments using the model substrate were performed to compare
Mb H64V V68A Y146F with Fasan’s Mb H64V V68A variant (Mb*). These studies revealed
improved chemoselectivity favoring the desired amidation product, indicating that the Y146F

mutation suppresses unproductive electron transfer (Figure 52B).232
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o HN 10
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>99:1 d.r., 99:1 e.r. 82% yield, 99:1 e.r.
MbVE: 35% yield MbVE: 3
>99:1 d.r., 99:1 e.r. 48% vyield, 8:92 e.r. [ 146 &

Figure 52. Mb-catalyzed intramolecular enantioselective amination of carbamate derivatives. (A)
Evaluation of different carbamate derivatives; (B) Represent substrate scope of the biocatalytic
enantiodivergent amination; MbVAF = Mb H64V V68A Y146F, MbYE = Mb F43V 1107E; the

illustration of active site was made from 1MBI (PDB ID).

In 2019, Arnold and co-workers engineered a nonheme ethylene-forming enzyme from
Pseudomonas savastanoi (PsEFE)*%* to perform nitrene transfer reactions. These results constitute
the first examples of nonheme Fe enzyme catalyzed nitrene transfer (Figure 53).2% They found the
co-substrate 2-oxoglutarate in the native reaction could be replaced by N-oxalylglycine (NOG) and
acetate in the unnatural aziridination reaction, leading to a 7.75-fold and 6.72-fold increase in
activity, respectively (Figure 53A). Furthermore, a similar trend was also observed in PsEFE-

catalyzed intramolecular C(sp®)-H amidation reaction (Figure 53B).
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(A) 0, o PsEFEenzyme /18

N \\S/i (0.2 mol%) N
* Na Fe(NH,)5(SO,)2
aKG
Me

entry  deviation from standard conditions  relative activity

1 none 1.00

2 no aKG 0.52

3 acetate instead of aKG 6.72

4 NOG instead of aKG 7.75
B Q. 0 0
(B) \\S/, PsEFE enzyme W0 \\S//

\NS (0.2 mol%) S\ . \NH2
Fe(NH,)5(SO4). NH
aKG

Me Me Me

deviation from
standard conditions

wild type acetate instead of aKG 12 n.d. 62%

PsEFE variant TTN (yield) ee selectivity

PsEFEVHMM none 31 61%  79%
PsEFEVHMM no aKG 27 nd. 77%
PsEFEVHMM  acetate instead of aKG 240  7.3%  97%
PsEFEVHMM NOG instead of aKG 33 nd. 80%
PSEFEVMM none 130 nd.  90%
PsEFEVMM no aKG 25 nd.  47%

PsEFEVMM acetate instead of aKG 310 9.4%  96%
PSEFEVMM NOG instead of aKG 450 (90%) 48%  >99%

Figure 53. Ethylene forming enzyme (EFE)-catalyzed enantioselective nitrene transfer reaction.
(A) PsEFE-catalyzed aziridination; (B) PsEFE-catalyzed intramolecular C(sp?*)-H amidation;
PsEFEVEMM = pgEFE R171V R227H F314M C317M, PsEFEVMM = PsEFE R171V F314M

C317M. (C) The illustration of active site was made from 6CBA (PDB ID).
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Parallel to this study from the Arnold lab, in 2020, Fasan and coworkers reported the use of
Rieske dioxygenases, including toluene dioxygenase (TDO),”® naphthalene dioxygenase
(NDO),%¢72%% and chlorobenzene dioxygenase (CBDO),>%° for the intramolecular C(sp®)-H

amidation,?”°

achieving good chemoselectivity of the desired amidation over other undesired
pathways. Among these, NDO-catalyzed C—H amidation showed a good oxygen tolerance,
affording 45% yield and over 90% selectivity on a one-gram scale for the conversion of 2,4,6-

triisopro-pylbenzensulfonyl azide using E. coli JM109 (DE3) harboring NDO cells in a 5 L

bioreactor.

Fasan and coworkers also evaluated various types of other nonheme iron enzymes, including
Rieske and Fe/aKG-dependent dioxygenases and halogenases (Figure 54). They found that the
presence of aKG had varying effects on the catalytic activity of aKG enzymes in this unnatural
C(sp’)-H amidation. Among these nonheme enzymes tested, H6H?’! and WelO5%7? exhibited
detectable activity. These results demonstrated the potential nonheme Fe enzymes to facilitate

these nitrene transfer reactions.
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Me Me Me Me

O (@]
\
\S/< E. coli harboring “Séo
N3 nonheme NH
—_—
Me Me (N832F9(34%4)2 Me
600 = M
Me Me Me Me''®
Sulfonamide
Me E. coli harboring
0. 0 nonheme Me >=O
Y (NH4)2Fe SOy)2
N3 ODggo = 40
Carboxamide
. sulfonamide carboxamide
enzyme  condition  yiei4 (selectivity)  yield (selectivity)
TauD A 27% (63%) not active
TauD B 13% (62%) not active
AlkB A not active 2% (30%)
AlkB B not active not active
Gab A 14% (57%) not active
Gab B 13% (53%) not active
AsqJ A 24% (67%) not active
AsqJ B 12% (59%) not active
H6H A 13% (33%) 6% (27%)
H6H B not active not active
WelO5 A 15% (58%) not active
WelO5 B 13% (61%) 3% (80%)

Figure 54. Nonheme Fe enzyme-catalyzed intramolecular C(sp*)-H amidation. Condition A: no

additives, condition B: oK G, ascorbate and Fe salts were added.

In 2025, our lab reported the use of nonheme Fe enzymes for enantioselective non-canonical
amino acid synthesis via a 1,3-nitrogen migration reaction (Figure 55).2”3 Inspired by the important

work from Meggers,?’#275

we capitalized on the availability of multiple open coordination sites of
nonheme Fe to allow for the simultaneous binding of two substrate-derived fragments, allowing
this nitrogen migration process to occur with excellent efficiency and enantioselectivity. In this
proposed catalytic cycle, the activation of the azanyl ester substrate with nonheme Fe leads to an
Fe nitrenoid with a bound carboxylate. This intermediate subsequently undergoes an
intramolecular 1,5-hydrogen atom transfer, providing an iron bound a-carboxylate radical.

Subsequent radical rebound between the Fe-bound nitrogen group species and the a-carboxylate

radical facilitates the enantioselective C—N bond formation (Figure 55).
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Figure 55. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration reaction. (A)

Biocatalytic enantioselective synthesis of non-canonical amino acids; (B) Proposed catalytic cycle.

We found that 1-aminocyclopropane-1-carboxylic acid oxidase from Petunia hybrida
(ACCO),2!7 previously studied by our lab for enantioselective fluorine atom transfer,?! resulted
in the formation of N-Boc-L-phenylglycine in good initial activity and enantioselectivity.

Furthermore, isopenicillin N synthase from Emericella nidulans,>’6->"®

sharing a similar overall
structure and an evolutionarily related nonheme Fe enzyme with ACCO, enable a
stereocomplementary synthesis of N-Boc-D-phenylglycine in 2.5% yield and 66:34 e.r. (Figure
56).27%280 Directed evolution of ACCO and IPNS via iterative SSM and screening provided several
highly efficient nonheme nitrogen migratases. Among these, ACCOnim1 (ACCO 1184A KI158T
K172V L186V GI156E R175P V236G G173R) and IPNSnim (IPNS V185L 1187V S1021 R279H)

catalyzed the enantioselective amination of prochiral substrates with complementary

enantiopreference, enabling highly enantioselective synthesis of either D- or L- arylglycines.
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ACCOnim2 (ACCO 1184A K158T K172V L186V G156E R175P V236K G173V F250L) allowed
the enantioconvergent conversion of racemic azanyl ester substrates with a tertiary C(sp*)-H bond
into ala-disubstituted a-amino acids which are challenging to synthesize via conventional
biocatalysis methods based on reductive amination or transamination. ACCOnim3 (ACCONim2
A248T S246F A180F G156T) catalyzed the asymmetric construction of challenging methyl-ethyl
stereocenters via enantioconvergent C(sp®)-H amination (Figure 56A). ACCOimi, IPNSxim and
ACCOnim2 demonstrated a broad substrate scope for the enantioselective synthesis of -
monosubstituted and ala-disubstituted non-canonical amino acids. Moreover, this biocatalytic
reaction could be carried out on a gram scale using cell-free lysate prepared from 0.5 L expression

culture (Figure 56B).
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Figure 56. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration. (A) Directed

evolution of 1,3-nitrogen migratase ACCOnim1 and ACCOnim2 for the enantioselective synthesis
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of a-substituted and ala-disubstituted a-amino acids. The illustration of active site was made from
IWA6 (PDB ID); (B) Directed evolution of IPNSnim for the enantiodivergent synthesis of
arylglycines. The illustration of active site was made from 1BKO (PDB ID); (C) Selected substrate
scope of ACCOnim1, ACCOnim2, ACCOnim3 and IPNSnim. Reactions were conducted using cell-

free lysate of ACCO (ODeoo = 5—10) or whole E. coli cells overexpressing IPNS (ODgoo = 5-10).

In our kinetic isotope effect (KIE) studies, for engineered ACCOnim1 a ku/kp value of (5.5 +
0.3) was observed with azanyl ester and azanyl ester-d>, indicating that the C(sp®)-H cleavage via
1,5-hydrogen atom transfer is irreversible and is involved in the rate-determining step. By contrast,
the engineered enantiopreference-switching migratase IPNSnim gave a kn/kp value of (1.11 +0.09),
suggesting a shift in rate-determining step between these two engineered nonheme Fe enzymes.
(Figure 57A). Furthermore, intramolecular KIE studies with enantioenriched (R)-azanyl ester-d;
and (S)-azanyl ester-d; were carried out using ACCOnim1, [PNSxim and ACCOnim2. A similar kn/kp
value was observed for the enantioselective nitrogen migratase ACCOnim1, providing a near-zero
AGenantioselectivity based on the free energy analysis of the HAT process (Figure 57B).2%! This finding
suggests that ACCOnimi evolved for the secondary C(sp’)-H amination is almost non-
enantioselective for hydrogen atom transfer. In contrast, for ACCOnim2, a large of ku/kp value of
9.3 £ 0.8 was observed for (R)-azanyl ester-di, whereas a smaller value of 2.1 & 0.1 was detected
for (S)-azanyl ester-di (Figure 57C). This disparity corresponds to a modest AGenantioselectivity and an
e.r. of 67:33, suggesting a small degree of enantioselectivity during the HAT step. Strikingly,
IPNSnim showed a highly enantioselective HAT step, with a ku/kp value of 24 for (R)-azanyl ester-
di and only 0.11 for (S)-azanyl ester-dicorresponding to a significant AGenantioselectivity and an e.r. of
94:6 (Figure 57D). Computational studies using density functional theory (DFT) calculations and

molecular dynamics (MD) simulations showed that IPNS and ACCO adopt two different substrate
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binding modes, including a nitrene trans-to-His mode and a nitrene-trans-to-carboxylate mode,
respectively. Classical MD simulations shed light on important interactions between the substrate
and active-site residues that control the substrate binding mode and enantioselectivity. We note
that important related studies from Pan using the streptavidin-biotin technology?®? has led to ArMs

to allow for the same enantioselective nitrogen migration reactions.?
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Figure 57. Mechanistic studies. (A) KIE determined by independently measured initial rates of 1a
and l1a-d».; (B) Intramolecular KIE studies with enantiopure (R)-azanyl ester-di and (S)-azanyl
ester-di using ACCOnimi1; (C) Intramolecular KIE studies with enantiopure (R)-azanyl ester-d; and
(S)-azanyl ester-di using ACCOnim2; (C) Intramolecular KIE studies with enantiopure (R)-azanyl
ester-d; and (S)-azanyl ester-di using IPNSnim; (E) Dissecting the KIE and enzymatic enantio-

induction effects by quantitative free energy analysis.
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After our initial report,?”” Xiao/Huang?%* and Zhao?®* also reported nonheme Fe enzymes for
nitrogen migration using azanyl esters with a different, methoxycarbonyl N-protecting group
(Figure 58). In Xiao and Huang’s work, a triple mutant of isopenicillin N synthase from Aspergillus
nidulans*’ 2" (AniIPNS Y91G 1187H T331V) was engineered to provide N-COOMe-D-
phenylglycine in 72% yield and 98% ee with a TTN of 1281 (Figure 58A). In Zhao and Chen’s
work, a double mutant of leucoanthocyanidin dioxygenase from Arabidopsis thaliana®® (A1LDOX
F304L T239S) was engineered to afford the same product in 81% yield and 97:3 e.r. with a TTN
of 850 (Figure 58B). We also note that important related studies from Pan using the streptavidin-
biotin technology?®? has led to ArMs to allow for the same enantioselective nitrogen migration
reactions.?®®> These excellent contributions further highlight the versatility of non-heme iron

enzymes in enabling the non-native transformations.
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Figure 58. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration using

methoxycarbonyl group protected azanyl esters. (A) Directed evolution of IPNS-GHV. The

illustration of active site was made from 1WO05 (PDB ID); (B) Directed evolution of 4/LDOX LS.

The illustration of active site was made from 1GP5 (PDB ID); (C) Selected substrate scope of

IPNS-GHV and 4/LDOX_LS. Reactions were conducted using whole E. coli cells overexpressing

IPNS (ODeoo = 30) or cell-free lysate of AZLDOX LS (ODgoo = 50).
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Inspired by olefin difunctionalization using Fe-nitrene intermediates,?®’ 2% in 2025, Huang?*!

292

and Jia=’~ each reported nonheme Fe enzyme-catalyzed enantioselective aminoazidation of alkenes.

In Huang’s work, a septuple mutant of 4-hydroxymandelate synthase from Amycolatopsis
orientalis (AoHMS Q305H T214L L303A F330T V203C I335W G331W, denoted A0HMSamaz)
was engineered to afford the (R)-aminoazidation product in 44% yield and 95.5:4.5 e.r. using p-
methoxystyrene as the substrate and O-pivaloylhydroxylamine triflic acid (PONT) as the nitrene
precursor (Figure 59A). Jia engineered a quintuple mutant of Bacillus subtilis quercetin 2,3-
dioxygenase (BsQueD AK174 S116R T118A I71L L51V, denoted BsQueDar), allowing (S)-2-
aminoazidation product to form in 9.6% yield and 96:4 e.r. (Figure 59B). Upon further
optimization of reaction conditions, whole-cell transformation afforded the product in 49%, 174
TTN and 97:3 e.r.. Engineered BsQueD tolerated styrenes bearing electron-donating or electron-
withdrawing substituents (Figure 59C and 59D). In addition, BsQueD also catalyzed thiocyanation
and isocyanation, with the resulting products being intramolecularly trapped by amines to furnish

the corresponding chiral 2-aminothiazolines and 2-aminooxazolines (Figure 59E).
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Figure 59. Nonheme Fe enzyme-catalyzed enantioselective aminative difunctionalization of
alkenes. (A) Directed evolution of 4/0HMS. The illustration of active site was made from 2R5V
(PDB ID); (B) Directed evolution of BsQueD. The illustration of active site was made from 1Y3T

(PDB ID); (C) Selected substrate scope of AoHMSamaz. Reactions were conducted using purified
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enzymes (1-2 mol%); (D) Selected substrate scope for aminoazidation; reactions were conducted
using whole E. coli cells overexpressing BsQueDar (ODsoo = 32); (E) Selected substrate scope for
synthesis of chiral 2-aminothiazolines and 2-aminooxazolines; reactions were conducted using

whole E. coli cells overexpressing BsQueDar (ODsoo = 32).

6. Transformations involving metal carbenoids with radical character on the carbenoid

carbon

Transition-metal carbenoids represent versatile intermediates underlying a variety of
synthetically useful transformations.?®>%> Since the pioneering work from the Arnold lab
documented the first examples of heme protein-catalyzed cyclopropanation in 2013,¢ a wide
range of heme protein catalysts have been developed to enable diverse carbene transfer
reactions,®* % including C-H insertion,?*’ N-H insertion,?*® Si—H insertion,?*® B-H insertion,>"

1

cyclopropanation,®! cyclopropenation,’®? bicyclobutanation®*®, and various rearrangement

reactions.** These advances prior to 2020 have been comprehensively reviewed elsewhere.%0-6
Previous studies showed that these Fe carbenoid species can be described as Fe(I1I)-bound carbon-
centered radical, as their open shell singlet (OSS) state were shown to be the most stable spin state.
Herein, we review carbene transfer reactions proceeding through a stepwise radical mechanism,
with an emphasis on recent studies that appeared after 2021. Carbene transfer reactions that are
not proposed to proceed via a stepwise radical mechanism are not covered by this review, although
it is also possible for these processes to involve radical intermediates. We refer our readers to other

excellent recent reviews that focus on biocatalytic carbene transfer chemistry.59-63
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6.1 Heme protein-catalyzed cyclopropanation

In 2022, Arnold and co-workers developed a biocatalytic carbene transfer using diazirines®%
as carbene precursors, expanding the scope of biocatalytic carbene transfer beyond the use of diazo
compounds (Figure 60).2° Using 3-phenyl-3H-diazirine lacking an electron-withdrawing -
substituent, a protoglobin variant 4pePgb W59L Y60V F145Q catalyzed the enantioselective
cyclopropanation of acrylate in <1% yield with a 2:1 cis:trans ratio. Subsequent directed evolution
led to the introduction of seven beneficial mutations, including V63R, 11491, C45G, C102S, V60A,
G61V and F175L, resulting in ApePgb GLAVRSQLL. This evolved ApePgb variant delivered the
cyclopropane product in 28% yield, with a 6:1 d.r. and 86:14 e.r., representing a >150-fold
improvement relative to 4pePgb LVQ (Figure 60A and 60B). ApePgb GLAVRSQLL also

catalyzed N—-H insertion and Si—H insertion reactions with varying activities (Figure 60C).
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Figure 60. ApePgb-catalyzed enantioselective cyclopropanation using diazirines as the carbene
precursors. (A) Evolution trajectory of ApePgb GLAVRSQLL for cyclopropanation; (B) The
illustration of active site was made from 7UTE (PDB ID); (C) Substrate promiscuity of the new
evolved ApePgb GLAVRSQLL variant using diazirine as the carbene precursor. Adapted with

permission from J. Am. Chem. Soc. 2022, 144, 8892—8896. Copyright 2022 American Chemical

Society.
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Trapping experiments using dibenzocyclooctyne revealed that a [3+2] cycloaddition adduct®®’
formed in the presence ApePgb GLAVRSQLL, suggesting that a diazo compound was likely
generated in situ (Figure 61A). Computational studies®® suggested that the diazo intermediate
likely arises from an enzyme-catalyzed isomerization. Additionally, the cyclopropanation may

proceed via a stepwise diradical mechanism (Figure 61B).
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Figure 61. Mechanistic studies. (A) Reaction of dibenzocyclooctyne amine with
phenyldiazomethane. (B) Proposed mechanism for the biocatalytic carbene transfer reaction using

diazirines.

In 2023, Arnold, Huang and co-workers reported the biocatalytic enantioselective synthesis
of cis-trifluoromethyl-substituted ~cyclopropanes using an engineered protoglobin,>®

complementing the existing method for trans-cyclopropane synthesis (Figure 62).3!° Building
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upon the previous work from the Arnold lab on the synthesis of cis-cyclopropanes from
unactivated alkanes and ethyl diazoacetate, a protoglobin from Aeropyrnum pernix*>° was found
to catalyze the formation of cis-product with 110 TTN and 87:13 d.r.. Subsequent rounds of SSM
and screening introduced two beneficial mutations, W59L and Y60Q, into ApePgb, resulted in a
3.8-fold improvement in activity. ApePgb Y60G F73W furnished trans-product with 20 TTN. The
key mutations controlling stereoselectivity could be transferred to homologous proteins to allow
similar diastereocontrol to be achieved. For example, a protoglobin from Methanosarcina
acetivorans (MaPgb)*!'1312 with 57% sequence identify of ApePgb showcased the utility of transfer
of mutations. MaPgb LQ afforded the cis-product in 360 TTN and 98:2 d.r., while MaPgb GW
produced the trans-product in 270 TTN and 92:8 d.r. (Figure 62A—C). MaPgb LQ catalyzed the
cyclopropanation of diverse alkenes, including electron-rich and electron-deficient styrenes,

unactivated alkenes and heteroatom-substituted alkenes (Figure 62D).

DFT calculations indicate that the reaction of benzyl acrylate and trifluorodiazoethane
proceeds via a radical-mediated stepwise mechanism, due to the strong electron-withdrawing
effects of the CF3 group on the Fe carbenoid intermediate and the electron-deficient nature of
acrylates used. C—C bond formation resulting from the addition of Fe carbenoid to the C=C double

bond is rate-determining.
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(e]
BnO. N CFs  E. coli harboring oF
+ protoglobin BnO 3
N. —_— n
ODggp = 45
entry Pgb variant yield (cis) TTN d.r.

1 ApePgb 5% 110 87:13
2 ApePgb W59L Y60Q (ApePgb LQ) 18% 420 946
3  ApePgb Y60G F73W (ApePgb GW) 1% 20 11:89
4 MaPgb W59L Y60Q (MaPgb LQ) 20% 360 98:2
5 MaPgb Y60G F73W (MaPgb GW) 6% 270 8:92

(B) Me o
BO. CFs  E. coli harboring
n + ||/ protoglobin BhO CFg
P —_— n
(0] OD600 =45 Me’
entry Pgb variant yield (cis) TTN d.r.

1 ApePgb 27% 550 97:3
2 ApePgb W59L Y60Q (ApePgb LQ) 46% 1,060 98:2
3 ApePgb Y60G F73W (ApePgb GW) 14% 210 928
4 MaPgb W59L Y60Q (MaPgb LQ) 41% 760 99:1

5 MaPgb Y60G F73W (MaPgb GW) 8% 380 82:18

I~ X =)
] i\
AW/ o Vand {f‘ 7
War? N4 | =
a1 X1 A \ =
(D) R CFg E. coli harboring R! CF4
& + 0 ApePgb W59L Y60Q v
R? N2 ODggo = 45 R
(o] (0]
CF3
CF3 CFy MeOOC”
BnO BnO R MeOOC
Me'
30 +4% 35 +13% 30 +0.6%

560 +2 TTN 650 + 170 TTN 570 +60 TTN
97:3d.r., 89% ee 98:2 d.r., 80% ee 99:1 d.r., >99% ee
Ph CF. CF. O, CF,

v 8 Ph/v 8 Ph” v 8
43 +11% 15+0.1% 46 £ 1%
810+ 110 TTN 290 +40 TTN 870120 TTN
98:2d.r.,, 17% ee 77:23 d.r.,, 96% ee 86:14 d.r.

Figure 62. Protoglobin-catalyzed stereoselective cyclopropanation using a-trifluoromethyl diazo
substrates. (A) Diastereo-divergent biocatalytic cyclopropanation of benzyl acrylate; (B)
Cyclopropanation of benzyl methacrylate; (C) The illustration of active site of MaPgb was made

from 2VEB (PDB ID). (D) Selected substrate scope of ApePgb LQ-catalyzed cyclopropanation
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using ala/a-trifluorodiazoethane. The absolute stereochemistry of cyclopropane products was not

determined.

For benzyl methacrylate, all variants provided the cis-cyclopropane as the major product
(Figure 62B). Restrained MD simulations in MaPgb LQ and GW variants suggest that key active-
site residues control the orientation of the Fe carbenoid intermediate. For both benzyl acrylate and
benzyl methacrylate, MaPgb LQ favored pro-cis near-attack conformations due to preorganization
and steric constraints. In contrast, MaPgb GW adopted an alternative Fe carbenoid orientation with
benzyl acrylate, leading to trans-selectivity. With the bulkier benzyl methacrylate, steric hindrance
forced the GW variant to adopt pro-cis conformations, consistent with the observed shift in

diastereoselectivity.

In 2024, Fasan and co-workers reported a myoglobin-catalyzed intramolecular
cyclopropanation of benzothiophenes and related heterocycles to synthesize the sp3-rich tetracyclic
compounds (Figure 63).!> A myoglobin variant bearing five beneficial mutations H64F V638G
I1107A F431 F46L (MbgTic.c2) converted benzo[b]thiophen-2-ylmethyl 2-diazoacetate into the
desired product in 75% yield and >99% ee. The introduction of H64V and V68G mutations
improved the enantioselectivity, while [107A, F431 and F46L enhanced catalytic activity by
approximately 20-fold (Figure 63A and 63C). Although Mbgric.c2 demonstrated good substrate
compatibility for the cyclopropanation of a C2-functionalized benzothiophene, it was ineffective
in the transformation of C3-functionalized benzothiophene. Further Mb variant screening led to
Mb H64V V68A, allowing the product to form in 23% yield and >99% ee. Further protein
engineering provided Mb H64V V68A L29F 1107L (Mbsric-c3) as the optimal carbene transferase
for the cyclopropanation of C3-functionalized benzothiophenes (Figure 63B and 63C). After

further optimization of reaction conditions, 3-substituted thiophene derivatives were transformed
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into tetracyclic products in 99% yield and >99% ee under 4 °C with slow addition of the substrate.
Both Mbgric-c2 and MbgTic.c3 exhibited excellent enantioselectivity and functional group tolerance
in the stereoselective cyclopropanation of benzothiophene or benzofuran substrates bearing diazo

ester groups at the C2 or C3 position (Figure 63D).
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(A) N, Y

\\,( Mb (0.8 mol%)
o) N328204
w 50 mM KPi, RT
S

entry Mb variant yield ee
1 wild-type Mb 0 -
2 Mb H64F 2% 61
3 Mb H64F V68G 4% >99
4 Mb H64F V68G [107A 46% >99
5 Mb H64F V68G [107A 75% >99
6 F43l F46L (BTIC-C2)
7 Mb H64F V68G [107A F43I 31% >09

Mb H64F V68G [107A F46L 35% >99
Mb (0.8 mol%)
Z; Na28204
(:Eg T50 MM KPi, RT

entry Mb variant
1 wild-type Mb 0 -
2 BTIC-C2 0 -
3 Mb H64V 0 -
4 Mb V68G 0 -
5 Mb H64V V68A 23% >99
6 Mb H64V V68A L29F 55% >99
7 Mb H64V V68A L29F 60% >99

1107L (BTIC-C3)

oy o
(0]
Br S s H S H
BTIC-C2 BTIC-C3 BTIC-C3
44% yield, 99% ee >99% vyield, 99% ee  42% yield, 98% ee
O (o] O. (0]
HH o
eO. -
Tt e
o I
S o M g M
BTIC-C2 BTIC-C3 BTIC-C3

>99% vyield, 99% ee >99% vyield, 99% ee  >99% yield, 50% ee

Figure 63. Myoglobin-catalyzed enantioselective intramolecular cyclopropanation of benzofurans

and benzothiophenes. (A) Directed evolution of Mbgsric.c2 for cyclopropanation of C2-
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functionalized benzothiophene; (B) Directed evolution of Mbgric.c3 for cyclopropanation of C3-
functionalized benzothiophene; (C) The illustration of active site was made from 1JW8 (PDB ID);

(D) Selected substrate scope using 0.8 mol% purified enzyme.

In 2023, Armold and co-workers reported a P4ll-catalyzed kinetic resolution
cyclopropanation, enabling the stereoselective synthesis of 1,2,3-polysubstituted cyclopropanes
and the recovery of (E)-enol acetates from a mixture of (Z/E)-olefins (Figure 64).>'* They initiated
the reaction using a 1:1 mixture of (Z/E)-butyrophenone-derived enol acetate and o-
diazoacetonitrile. A previously evolved variant for intramolecular C(sp*)-H nitrene insertion,
P411-INC-5182,% was identified as the best active biocatalyst in the initial screen, affording the
cyclopropane product in 9% yield and 68 TTN. Further screening of the P411 variants led to the
identification of P411-INC-5182 [327P Y263 W, which provided the product in 33% yield and 230
TTN. Through iterative rounds of SSM and screening, two additional beneficial mutations, Q437V
and N70S, were introduced, generating P411-INC-5185. This final variant delivered the
cyclopropane product in 50% yield, 540 TTN, >99:1 d.r. and 95% ee, while the remaining olefin

exhibited a Z/FE ratio of 2:98 (Figure 64A and 64B).

118



*) 0hc nog N

P A
N CN .
A Me > " \Me
E. coli harboring
_ P411 variants
ZIE=11 ODgyo = 30
entry P411 variant yield TTN
1 P411-INC-5182 9% 68
2 5182 1327P Y263W 33% 230
3 5182 1327P Y263W Q437V 49% 427
4 5182 1327P Y263W Q437V N70S 50% 536
(P411-INC-5185)

<o)

Figure 64. P411-catalyzed enantioselective synthesis of 1,2,3-polisubstituted cyclopropanes. (A)
Directed evolution of cyclopropanase P411-INC-5185; (B) The illustration of active site was made

from SUCW (PDB ID).

When stereochemically pure (Z)-butyrophenone-derived enol acetate was used as the
substrate, P411-INC-5185 catalyzed the reaction to afford the cyclopropane product in 89% yield,
840 TTN, >99:1 d.r. and 95% ee, whereas no conversion was observed for the (£)-substrate (Figure
65A). Arnold and coworkers discovered that the W263M mutant of P411-INC-5185 (P411-INC-
5186) not only converted (Z)-butyrophenone-derived enol acetate into the corresponding
cyclopropane but also the (E)-butyrophenone-derived enol acetate into a-alkylated ketone (Figure

65B).
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(A) OAc /\CN AcO

N N A
M _— RN
®  Ecol harboring Me
P411-INC-5185

(2)-isomer 89% yield, 840 TTN
>99:1 d.r.,, 95% ee

OAc aco N
N7 CN %1
N _— o \Me
E. coli harboring
Me P411-INC-5185
(E)-isomer
E. coli harboring
P411-INC-5185 ©/<]
/\
CN Me
ZE=1A 50% yield, 540 TTN fg/'szlrgg
>99:1dr, 95% ee 98% stereopurlty
(B)
OAc E. coli harboring
)\/\ P411-INC-5186 A0, A Et
Ph Me —>
N # e
(2)-isomer 91% yield, 670 TTN

>99% chemoselectivity
>99:1 d.r., 98% ee

OAc
E. coli harboring
Ph” X P411- IN05186 Me + AcO, é JEt
Me /\CN

(E)-isomer 30% yield, 220 TTN
>99% chemoselectivity
97% ee

Figure 65. Mechanistic studies. (A) P411-INC-5185-catalyzed enantioselective cyclopropanation
of a mixture of (Z/E)-butyrophenone-derived enol acetate. (B) P411-INC-5186-catalyzed

cyclopropanation of (Z)-butyrophenone-derived enol acetate and a-alkylation of (E)-substrate.

DFT calculations suggest that the cyclopropanation reaction follows a radical-mediated
stepwise mechanism. In this computed catalytic cycle, the Fe carbenoid intermediate (Int-II) is
generated from the heme protein and the diazo substrate. The B-carbon of the electron-rich enol
acetate subsequently interacts with the electrophilic carbenoid carbon to form the (Z)-Int-III or
(E)-Int-IIT intermediate, depending on the specific (Z)- or (E)-enol acetate being used. The

enantioselectivity of the reaction is determined by the formation of the first C—C bond, favoring
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the (S)-configured stereocenter. (E)-Int-III is preferably converted to the a-alkylated product

(Figure 66).
CN
z o~
AcO, A Et (N:FE:N) N7 CN
A N N
PH 'l'o N
_O Intl 2
Ser
Ph,, . JOAC AcO,, . ,Ph /‘n/\CN
N N
H H, ~Fo~
X wo ;g;M (e
N_ LN O NC N
(N:FeiN) (N:FeiN) Ser/o
\|/ Int-ll
-Int-lll
O (2-Int-Il o &
Ser” @ Ser/l

OAc

Ph N e

(Z/E)-isomer

Figure 66. Proposed mechanism of P411-catalyzed enantioselective synthesis of 1,2,3-

polisubstituted cyclopropanes.

6.2 C(sp®)-H insertion

Biocatalytic C(sp*)-H insertion reactions were first realized by the Arnold group in 2019
using serine-ligated P450 variants (“P411”).2%7 Since then, the development of P450-catalyzed
stereoselective C(sp*)-H insertion has provided a range of synthetically useful methods.3!>-3!8
While the exact mechanism remains to be further elucidated, both concerted and stepwise
mechanisms were proposed in previous reports.’!” In 2024, Fasan and coworkers reported a
regiodivergent C—H insertion of indolines with ethyl diazoacetate (EDA) as the carbene precursor
via a stepwise radical mechanism using engineered CYP119 variants (Figure 67).22° A previously

engineered mutant CYP119-137 (CYP119 F153G A209G T213G V254A C317S)3!¢ was found to

promote the formation of C—H functionalization products at three different sites, along with other
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demethylation/desaturation/N—H insertion products. Directed evolution of this starting variant
furnished CYP119-168 (CYP119 F153G T213A V254W C317S) and CYP119-235 (CYP119
F153G L205W T213A V254A C3178), favoring the a- and B-C—H functionalization of the model
substrate, respectively (Figure 67A and 67B). A range of indolines with different substituents were
converted to the corresponding products with excellent TTN and enantioselectivities using intact
E. coli cells harboring engineered CYP119. C—H insertion at the N-Me group was also observed
with CYP119-235 for 5-methylated and 6-methylated indolines. Fasan and Zhang proposed a
stepwise radical mechanism supported by DFT calculations. The formation of desaturation,
demethylation and N—H insertion side products is also in accord with their proposed stepwise

radical mechanism (Figure 67B).
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93:7 e.r. 92:8 e.r, 81:19d.r. 6,140 TTN
5,980 TTN 2,490 TTN with CYP119-235
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Figure 67. CYP119-catalyzed regio- and enantioselective C—H insertion reactions. (A) The site-
selective C—H insertion and engineering of CYP119 variants. The illustration of active site was
made from 1TO7 (PDB ID); (B) Selected substrate scope and observed side products; reactions

were carried out using whole E. coli cells overexpressing CYP119 variants (ODgoo = 60).
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7. Summary of recently engineered metalloenzymes for unnatural radical reactions

To date, a range of heme and nonheme enzymes have been used to develop unnatural radical
reactions. Due to their excellent evolvability and synthetic versatility of the heme cofactor,
cytochromes P450, particularly the self-sufficient P450sm3 (CYP102A1) previously exploited for
native oxidation chemistry,**-*> have proven highly valuable in enzyme reprogramming, including
the development of asymmetric radical transformations. CYP119 represents another widely used
P450 enzymes for unnatural reaction development. Here, we summarize the latest results on P450
repurposing and engineering in the context of unnatural radical-mediated reactions (Table 1). As
can be seen from Table 1, active site engineering remains an effective strategy to improve the
catalytic activity and stereoselectivity of mechanistically diverse new-to-nature reactions. The
fully encapsulated active site and the excellent evolvability of biotechnologically useful P450

enzymes allowed difficult stereocontrol to be readily achieved through active site tuning.

Other than P450s, smaller heme proteins including cytochromes ¢ and various globins have
also found use in stereoselective radical biocatalysis (Table 1). The thermostable Rma cytochrome
¢ has been engineered for intermolecular C—C coupling, and key residues are located in the 75-77
a-helix and the 99-103 loop. Sperm whale myoglobin (Mb) and various thermophilic protoglobins
are also widely used, particularly in carbene and nitrene transfer processes involving radical
intermediates. Additionally, Biz-dependent proteins such as CarH* have also emerged as
promising biocatalysts, although achieving enantioselective transformations have remained a
challenge. Several Cu-dependent metalloenzymes, such as laccase CueO, halogenase ApnU, and
cupin protein Lase, have also been found applications in radical-meditated asymmetric

transformations through a promiscuous substrate binding activation.

124



Table 1. Summary of heme proteins and Co/Cu-dependent proteins used in asymmetric radical

reactions

entr

engineered

enzyme

wt enzyme
(Uniprot
ID)

developed reaction

(Figure number)

mutations relative to

wt protein

research

group
(ref.)

P45 OATRCasel

P45050s
(P14779)

atom transfer radical

cyclization

(Figure 3)

V78A, A82T, F87V,
P1428S, T1751, L181F,
A184V, S226R,
H236Q, E252G,
1263Q, H266T,
T268A, A290V,
T3271, L353V, 1366V,
C4008, T438S, E442K

Yang®

P45 OATRCaseZ

P4505:s
(P14779)

atom transfer radical

cyclization

(Figure 3)

A74G, V78L, ASB2L,
F87A, P142S, T175],
MI177L, L181V,
A184V, S226R,
H236Q, E252G,
1263W, T268G,
A290V, T327C,
A328V, L353V,
1366V, C400A, L437F,
T438Q, E442K, AFAD

Yang®

P4 5 Oarc 1

P4505:s
(P14779)

radical cyclization
arenes

(Figure 13)

to

A74G, V78L, ASB2L,
F87A, P142S, T175],
MI177L, L181M,
A184V, S226R,
H236Q, E252G,
1263Q, H266L,
T268G, A290V,
T327P, A328V,
L353V, 1366V, C400S,

Yang139
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T436L, L437F,
T438G, E442K, AFAD

N70S, A74P, V78A,
A82L, F87G, P142S,

T1751, M177L,
Al184V, S226R,
radical cyclization to | H236Q, E252G,
P450pMm3
P450uc2 arenes 1263Y, T268G, | Yang'’
(P14779) )
(Figure 13) A290V, T327P,
A328V, A330F,
L353V, 1366V, C400S,
T436L, L437A,
E442K, AFAD
A74G, V78C, AR82L,
F87A, P142S, T175],
M177L, L181M,
Al184V, S226R,
radical cyclization to | H236Q, E252G,
P450pMm3
P450uc3 arenes 1263Q, T268G, | Yang'’
(P14779) )
(Figure 13) A290V, T327P,
A328E, S332A,
L353V, 1366V, C400S,
T436L, L437F,
E442K, AFAD
V78C, F87L, P142S,
T1751, L181V,
Al184V, S226R,
radical dearomatization
P4508m3 H236Q, P248T,
P450r0a1 of indoles Yang'*?
(P14779) ) E252G, 1263G,
(Figure 15)
T268A, A290V,

L353V, 1366V, C400S,
L437A, E442K
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L75A, V78A, AS82V,
F87V, P142S, T175],

radical dearomatization | L181A, Al84V,
P4508Mm3
7 P450r0a2 of pyrroles S226R, H236Q, | Yang'**
(P14779) ]
(Figure 15) E252G, T268A,
A290V, L353V,
1366V, C400S, E442K
A74G, V78L, AR82L,
F87A, P142S, T175],
M177L, Al184V,
radical dearomatization | S226R, H236Q,
P4508Mm3
8 P450r0a3 of pyrroles E252G, E267L, | Yang'**
(P14779)
(Figure 15) T268A, A290V,
L353V, 1366V, C400S,
T436L, L437F,
E442K, AFAD
A74G, L75F, V78C,
AR2L, F87A, P142S,
T1751, M177L,
L181M, Al184V,
radical dearomatization
P4508m3 S226R, H236Q,
9 P450;244 of phenols Yang'#
(P14779) ) E252G, 1263Q, T268P,
(Figure 15)
A290V, T327P,
A328V, L353V,
1366V, C400S, T436A,
L437P, E442K, AFAD
V78A, F87V, P142S,
T1751, A184V, S226R,
radical dearomatization
P4508Mm3 H236Q, E252G,
10 P450;a45 of 2-naphthols Yang'*
(P14779) T268A, A290V,

(Figure 15)

L353V, 1366V, C400S,
T438S, E442K
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N70H, A74G, V78L,
A82C, F87A, P142S,

T1751, MI177L,
Al184V, S226R,
radical Smiles
P4508Mm3 H236Q, E252G,
11 P450smitest rearrangement Yang'’
(P14779) ) E267R, T268A,
(Figure 17)
A290V, A330M,
L353V, 1366V, C400S,
1401P, T436C, L437F,
E442K, AFAD
N70H, A74G, V78L,
A82C, F87A, P142S,
T1751, MI177L,
Al184V, S226R,
radical Smiles
P4508Mm3 H236Q, E252G,
12 P450smiles2 rearrangement Yang'?’
(P14779) ) E267R, T268A,
(Figure 17)
A290V, A330M,
L353V, 1366V, C400S,
1401V, T436C, L437F,
E442K, AFAD
metal-hydride H atom
P4508Mm3 30
13 P450sm3_LQQ transfer F87L, A74Q, 1263Q Ward'
(P14779) )
(Figure 10)
N70S, A74S, V78L,
A82M, F87A, P142S,
T1751, L181Q,
Al184V, S226R,
intermolecular  benzyl
P450sm3 H236Q, E252G, o
14 iAMDY C(sp*)-H amidation Arnold*"’
(P14779) ) 1263Y, T268G,
(Figure 49)
A290V, A328T,

L353V, 1366V, C400S,
1401L, L4371, T438Q,
E442K
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R47H, N70M, A74Q,
F77S, V78L, AR2L,
F87A, P142S, E143K,
T1751, A184V, S226T,

intermolecular  benzyl | H236Q, E252V,
P411-SIA- P450sm3
15 C(sp’)-H amidation 1263L, T268Q, | Arnold**
5291 (P14779)
(Figure 51) A290V, T327P,
L353V, 1366V,
C400A, 1401L,
T436A, E442K,
N573D, AFAD
S72W, Q73A, A74G,
L75E, F77C, V78L,
AS82L, F87A, M118V,
P142S, T1751, M177L,
Al84V, S226R,
intramolecular  benzyl
P411-PYS- P450sm3 H236Q, E252G,
16 C(sp’)-H amination Arnold*®
5149 (P14779) 1263Y, H266V,
(Figure 38)
T268G, A290V,
T3271, A328V,
A330Q, L353V,
1366V, C400S, T436R,
E442K
S72W, Q73A, A74G,
L75E, F77C, V78L,
AS82L, F87A, M118V,
P142S, T1751, M177L,
intramolecular aliphatic
P411-PYS- P450sm3 L181N, Al184V,
17 C(sp*)-H amination Arnold*®
5151 (P14779) S226R, H236Q,
(Figure 38)
E252G, 1263Y,
H266V, T268G,
A290V, T3271,
A328V, A330Q,

129



L353V, 1366V, C4008S,
T436L, L437P, E442K

S72T, AT74K, A78M,
A82L, F87A, P142S,
T1751, A184V, S226R,

H236Q, E252G,
propargylic ~ C(sp’)-H | 1263M, H266S,
P4508Mm3
18 | PA-G8 amination E267D, T268P, | Arnold**
(P14779)
(Figure 42) T269V, A290V,
A328YV, L353V,
1366V, N395C,
C4008S, L437Q,
T438G, E442K
V78M, AS82L, F87A,
M118Q, P1428S,
T1751, M177L,
A184V, L188C,
S226R, H236Q,
intermolecular
D251N, E252G,
amination
P450sm3 1263L, E267D, T268P,
19 uPA9 of unactivated C(sp’)-H Arnold**
(P14779) A290V, T327A,
bonds
) A328YV, A330H,
(Figure 43)
L333M, L353V,
1366V, N395R,
C4008S, E409S, 1437F,
T438S, E442K,
L740H, L.780P
S72T, V78M, AS82L,
F87A, P142S, T175],
intramolecular  benzyl
P411-TEA- P450BMm3 M177Y, Al184V,
20 C(sp*)-H amination Arnold**®
5274 (P14779) S226R, H236Q,
(Figure 44)
E252G, 1263M,
E267D, T268P,
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A290V, T327V,
A328V, L353V,
M354E, 1366V,
N395V, A399G,
C4008S, Q403A,

LA437F, T438V, E442K

N70S, A74M, L75Y,
V78L, AS82L, F87A,
P142S, T1751, L181I,

Al184V, M212V,
S226T, L233V,
H236Q, E252V,
intermolecular
1263V, T268G,
P4508m3 amidation of unactivated
21 uAMD9 A290V, A328T, | Arnold**
(P14779) | C(sp*)-H bonds
) L353V, 1366V,
(Figure 43)
A399S, C400A, 1401L,
L437F, E442K,
N573D, S640P,
N706T, Y707M,
E708K, G709E,
1710A
N70S, A74G, V78L,
AR2L, F87A, P142S,
T1751, M177L,
Al184V, S226R,
cyclopropanation of
P411-INC- P450sMm3 H236Q, E252G,
22 alkenes Arnold*"
5185 (P14779) ) 1263W, T268G,
(Figure 64)
A290V, T327P,
A328V, L353V,
1366V, C400S, T436L,
L437V, E442K, AFAD
PASOLAT | anti-Markovnikov TI121A, N201K,
23 aMOx o Arnold
(AOPOF6) oxidation of alkenes N209S, Y385H,
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(Figure 25) E418G, AI103L, | and
M118L, R120H, | Hammer'”®
V1231, 1326V,
V327M, H385V,
M391L
TI121V, V1231,
N201K, H206A,
N209S, 1326V,
P450; A, anti-Markovnikov Y385H, E418G,
24 KS oxidation of alkenes T210V, E282D, | Hammer'®!
(AOPOF6) | (Figure 27) R120Q, K393L,
V208Q, Al117Q,
L111Y, V204H,
L424W, M274F
metal-hydride H atom | D77R, T214V, L205V,
CYP119 CYP119 30
25 transfer T213G, Q22H, A209T, | Ward
MHATase (Q55080) )
(Figure 10) 1208S
F153A, A209G,
CYP119 | C(sp*)-H insertion
26 CYP119-137 (055080) | (Fi 67) T213G, V254A, | Fasan®*
igure
s C317S
CYP119 C(sp’)-H insertion F153G, T213A, 0
27 CYP119-168 ) Fasan
(Q55080) | (Figure 67) V254W, C317S
N . F153G, L205W,
28 CYP119-235 cypitg | Sn merton T213A V254A, | Fasan®®
- . , , | Fasan
(Q55080) (Figure 67)
C317S
intermolecular  radical | V75R, M76L, M99R,
29 Rima vt | Rma eyt e Cc-C li M100D T101G, | Yang'®®
—C cross couplin, , , ang
CRLRDGDE (B3FQSS) p g
(Figure 30) MI103E
intermolecular  radical | V75R, M76I, M99K,
30 Rima vt | Rma eyt ¢ Cc-C li M100C T101G, | Yang'®®
—C couplin , , ang
CRIKCGPF (B3FQSS) p g

(Figure 30)

D102P, M103F
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aminohydroxylation of

Y44T, M76Q, TOS8L,

Rma ¢yt c | Rma cyt c
31 styrenyl olefins M99V, M100S, | Arnold**
“TQL” (B3FQS5) )
(Figure 41) T101P, M103G
WS59A, Y60G, F145G,
intermolecular benzylic | F156L, 197T, F157L,
ApePgb
32 | ApPgb L-G11 (OIYFE4) C(sp®)-H amination 1327T, T97V, H136N, | Arnold*¥
(Figure 46) K36E, C45A, KI159E,
F73W, R90G, G60S
WS59A, Y60G, F145G,
intermolecular  benzyl | F156L, 197T, F157L,
ApePgb
33 | ApPgb D-G2 (Q9YFF4) C(sp®)-H amination 1327T, T97V, H136N, | Arnold*¥
(Figure 46) K36E, C45A, KI159E,
F93A, W62G, L86G
cyclopropanation of
C35G, W59L, Y60A,
ApePgb ApePgb alkenes with a-CF3 diazo
34 G61V, V63R, C102S, | Arnold™®
GLAVRSQLL | (Q9YFF4) | substrate
) F145Q, [149L, F175L
(Figure 60)
cyclopropanation of
ApePgb alkenes with a-CF3 diazo
35 ApePgb LQ WS59L, Y60Q Arnold®”
(Q9YFF4) | substrate
(Figure 62)
cyclopropanation of
ApePgb alkenes with a-CF3 diazo
36 ApePgb GW Y60G, F73W Arnold®”
(Q9YFF4) | substrate
(Figure 62)
cyclopropanation with a- Arnold
MaPgb YCIOPIoP
37 MaPgb LQ CF; diazo substrate WS59L, Y60Q and
(Q8TLYY) )
(Figure 62) Huang®”
cyclopropanation with a- Arnold
MaPgb YCIOPIoP
38 MaPgb GW CF; diazo substrate Y60G, F73W and
(Q8TLYY) )
(Figure 62) Huang®”
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intermolecular  benzyl

C(sp*)-H amination and

Y57D, WS59L, V60Q,

ParPgb-HYA- | ParPgb
39 aminohydroxylation of | V85I, 1149F, V175A, | Arnold**
5213 (A4WICT)
styrenes QI177R
(Figure 47)
atom transfer radical
Mb
40 | MbH93S cyclization H93S Bruns®
(P68082) )
(Figure 4)
intramolecular benzylic
Mb H64V | Mb
41 C(sp’)-H amidation H64V, V68A Fasan*®
V68A (Mb*) (P68082) )
(Figure 50)
Mb intramolecular benzylic
42 | Mb¥A* C(sp®)-H amidation H64V, V68A, Y146F | Fasan®®
(P68082) )
(Figure 52)
Mb intramolecular benzylic
43 Mb"E C(sp®)-H amidation F43V, 1107E Fasan’®
(P68082) )
(Figure 52)
intramolecular
Mb cyclopropanation of [ H64F, V68G, 1107A,
44 Mbgricc2 . Fasan®"?
(P68082) | benzothiophenes F431, F46L
(Figure 63)
intramolecular
Mb cyclopropanation of [ H64V, V68A, L29F,
45 Mbgric.cs . Fasan®"?
(P68082) | benzothiophenes 1107L
(Figure 63)
C45G WS59L Y60V
biocatalytic asymmetric
ApePgb V63R F145Q 1149L
46 HATR-5 hydrogenation of olefins Athavale'”
(Q9YFF4) ) Ql45E L69N V889G
(Figure 12)
L59M
C(sp’)-H alkylation of | Apo HI132G + N-
CarH styrenes/intramolecular | terminal Hiss-MBP tag
47 CarH* Lewis''>!16
(Q746J7) | radical cyclization with hydroxocobalami

(Figure 8 and 16)
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CueO oxidative cross coupling | -
48 CueO . Zhong??
(P36649) (Figure 36)
C(sp*)-H chlorination, | -
bromination, iodination,
ApnU
49 ApnU azidation and Tang'®
(S8B5U1) ) )
thiocyanation
(Figure 19)
enantiodivergent radical | E68A R23Y M22F
Tm1287
50 LAse® alkylation Huang'®
(Q9X113) )
(Figure 28)
enantiodivergent radical | H52G F104V
Tm1459
51 LAse® alkylation Huang'®
(Q9X1HO) )
(Figure 28)

The past five years have witnessed exciting progress in developing nonheme enzymes-

catalyzed stereoselective radical reactions that were previously unknown in nature (Table 2).

Compared with heme enzymes, nonheme enzymes offer more diverse coordination chemistry,

multiple open coordination sites, and greater flexibility in metal ion substitution. Given the short

history of engineering nonheme enzymes for synthetically valuable transformations, substantial

advances are likely in the coming decade. Interestingly, in recently developed radical rebound

reactions forming C—F, C-N3, C-NCS, C-NCO, and C-SCN bonds, highly active nonheme Fe

enzymes including ACCO, HPPE, HPPD, HMS, QueD and MPC are not «KG dependent in their

native function. This suggests that certain structural features of these enzymes could be exploited

for the discovery of new nonheme biocatalysts for unnatural transformations.

Table 2. Summary of nonheme Fe enzyme variants used in asymmetric radical reactions.
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engineered

wt enzyme ) ' coordina | Developed research
ent | enzyme native function )
) (Uniprot ted reaction group
ry | (Figure (metal center) .
ID) residues | (metal center) (ref)
number)
1-
) H177, C(sp®y-H
ACCOcur ACCO Aminocyclopropane o "
1 D179, fluorination Yang®!
(Figure 34) (Q085006) -1-carboxylic acid
H234 (Fe)
oxidase (Fe)
1-
H177, 1,3-nitrogen
ACCOnim ACCO aminocyclopropane-
2 ' .| D179, migration Yang”?
(Figure 56) (Q085006) I-carboxylic  acid
) H234 (Fe)
oxidase (Fe)
H214, 1,3-nitrogen
IPNSnim IPNS isopenicillin N o
3 D216, migration Yang®®
(Figure 56) (P05326) synthase (Fe)
H270 (Fe)
H214, 1,3-nitrogen
IPNS-GHV IPNS isopenicillin N
4 D216, migration Xiao®™*
(Figure 57) (P05326) synthase (Fe)
H270 (Fe)
H232, 1,3-nitrogen
AL DOX LS | LDOX leucoanthocyanidin
5 (Fi 57) (Q963232) | di (Fo) D234, migration Zhao™
igure ioxygenase (Fe
s ve H288 (Fe)
PpMPC H153, decarboxylative
PpMPC Metapyrocatechase . S o
6 azidase H214, radical azidation | Yang'®
) (P06622) (Fe)
(Figure 22) E265 (Fe)
decarboxylative
PpMPC H153, radical
PpMPC Metapyrocatechase ) ) o
7 thiocyanase H214, thiocyanation, Yang'®
(P06622) (Fe) ) )
(Figure 22) E265 and isocyanation
(Fe)
hydroxymandelate Hie61, trifluoromethylazi
AoHMS-CF; | AoHMS ) o
8 synthase H241, dation of alkenes | Huang
(Figure 5) (052791)
(Fe) E320 (Fe)
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hydroxymandelate Hie61, aminoazidation of
AoHMS Ama AoHMS
9 synthase H241, alkenes Huang®'
(Figure 59) (052791)
(Fe) E320 (Fe)
hydroxymandelate Hie61, aminoazidation of
AoHMS-AOT | AoHMS
10 ) synthase H241, alkenes Huang'?”
(Figure 6) (052791)
(Fe) E320 (Fe)
He62,
quercetin 2,3- trifluoromethylazi
BsQueD-CF; | BsQueD ] Hé64, ] ]
11 dioxygenase dation of alkenes | Jia”™
(Figure 5) (P42106) E69,
(Fe) (Fe)
H103
Ho62, aminative
quercetin 2,3- ) o
BsQueDar BsQueD Ho64, difubctionalizatio
12 ) dioxygenase Jia®?
(Figure 59) (P42106) (Fo) E69, n of alkenes
e
H103 (Fe)
4- decarboxylative
SavHPPD-PC | SavHPPD | hydroxyphenyl HIT, idati d
av - av roxyphenylpyru azidation an
13 YEOPREPY H270, Huang'®’
(Figure 22) (Q53580) vate  dioxygenase £349 thiocyanation
(Fe) (Fe)
4-
H187, C(sp®y-H
SavHPPD Az | SavHPPD | hydroxyphenylpyru
14 (Fi 33) (053586) g H270, azidation Huang®”’
igure vate 10Xygenase
E349 (Fe)
(Fe)
(S)-2- H137,
C(sp’-H
SvHppE-Fluor | SYHPPE hydroxypropylphos | E141,
15 fluorination Huang®!!
(Figure 34) (Q56185) phonate epoxidase | H179 (Fo)
e
(Fe)
CvPAH- phenylalanine H138, decarboxylative
CvPAH
16 | aminase hydroxylase H143, radical amination | Huang'™
) (P30967)
(Figure 24) (Fe) E184 (Cu)
aziridination/
H189,
PsEFEYVHMM PsEFE ethylene-forming intramolecular
17 , D191, _ Arnold*®
(Figure 53) (P32021) enzyme (Fe) 68 benzylic C(sp’)—

H amidation
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(Fe)
oxidation of
H222, .
TDO TDO toluene dioxygenase benzyl azide to
18 H228, Carrera'®?
(Figure 31) (ASWA4F1) | (Fe) benzonitrile
D376
(Fe)
intramolecular
NDO NDO hthal H208, benzylic C(sp’)
naphthalene enzylic Sp)—
P POA110 d‘p Fe) 2By y'd | P
10xygenase (ke amidation
( ) yg ( D362
(Fe)
H155
SadX 4-IC SadA prolyl 4- C—H azidation
20 D157 Lewis'”’
(Figure 20) (QOB2N4) | hydroxylase (Fe) 046 (Fe)

8. Conclusions

Over the past five years, metalloenzyme-catalyzed free radical transformations that are rare
or absent in native enzymology have expanded rapidly. These unnatural reactions engage an array
of reactive radical species, including carbon-, nitrogen-, and oxygen-centered radicals, as well as
transition-metal nitrenoids and carbenoids with radical character. By leveraging the redox
properties of first-row transition metals, radical initiation strategies have been broadened. In
particular, single-electron transfer (SET) oxidation or reduction of radical precursors has proven
effective for generating radicals directly within metalloenzyme active sites, enabling diverse
stereoselective transformations. Highly reactive radical species can also be formed through
photoredox catalytic cycles, either inside or proximal to the enzyme active site, and subsequently
diffuse into the pocket to couple with other reaction partners. The integration of exogenous
photocatalysts with metalloenzymes allows for the controlled generation of radical intermediates

independent of the intrinsic redox potential of the metallocofactor, opening new avenues for
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designing unnatural biocatalytic radical transformations. Critically, the malleable chiral pockets of
enzymes now enable high levels of enantioselectivity to be achieved in free radical-mediated
transformations, which was long considered a challenge in asymmetric catalysis. Furthermore,

321,322

emerging technologies, including high-throughput screening, machine learning—guided

323-326 327-331

directed evolution, and Al-assisted de novo protein design, promise to accelerate the

development of protein catalysts. Together with mechanism-guided reaction design, these
advances are poised to expand the scope of metalloenzyme-catalyzed radical reactions in the years

ahead.
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