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ABSTRACT. The past decade has witnessed groundbreaking developments in metalloenzyme-

catalyzed free radical transformations which were previously unknown or uncommon in native 

metalloenzymology. Guided by mechanistic understandings from organic, organometallic and 
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biochemistry, an array of radical reactions has been developed using various metalloprotein 

catalysts based on first-row transition metal cofactors including Fe, Co and Cu. The structural and 

functional diversity and the readily tunable active-site environment of metalloproteins offer an 

excellent opportunity to solve the challenging chemo-, regio- and stereoselectivity problems in 

radical-mediated transformations facing synthetic chemists. In this Review, we summarize 

metalloprotein-catalyzed radical reactions based on the reactive intermediates involved, including 

carbon-centered radicals, nitrogen-centered radicals, oxygen-centered radicals, and metal 

carbenoids and nitrenoids with radical character. We further survey the reaction mechanism, 

enzyme engineering strategies, and substrate scope of these metalloprotein-catalyzed radical 

transformations, providing an overview of the current status of metalloenzymology unknown or 

uncommon in native biochemistry. 
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1. Introduction 

As reactive intermediates with unpaired electron(s), free radicals have long been recognized 

as versatile intermediates in organic synthesis.1–6 However, challenges in taming these highly 

reactive intermediates for more efficient and selective transformations have hampered their 

broader adaption in synthetic chemistry. Over the past decade, free radical chemistry has 

experienced a renaissance, due to the exciting development of new strategies such as transition 

metal catalysis,7–11 photoredox catalysis,12–15 and electrochemistry,16,17 allowing radicals to form 

under mild conditions in a controllable manner. However, due to the difficulties in maintaining 

tight association between the transiently formed radical intermediate and the chiral catalyst, 

inducing high levels of regio- and stereocontrol over radical-mediated transformations has 

remained a daunting task in asymmetric catalysis with small-molecule catalysts.18–20  

As nature’s privileged catalysts underlying the chemistry of life, enzymes are capable of 

facilitating challenging reactions with outstanding efficiency and selectivity,21–23 including free 

radical-mediated processes. Natural radical enzymes, including anaerobic radical enzymes such as 

radical S-adenosylmethionine (SAM) enzymes24–26 and cobalamin-dependent enzymes,27,28 as well 

as aerobic enzymes such as heme29–36 and nonheme oxygenases37–40 and halogenases41–44 use a 

plethora of interesting mechanisms to promote challenging open-shell processes. Over the past 

decade, by cross-pollinating ideas from synthetic chemistry and enzymology, mechanism-guided 

enzyme repurposing and engineering have greatly expanded the catalytic repertoire of naturally 

occurring enzyme systems. The excellent tunability of naturally occurring metalloprotein catalysts 

provides an opportunity to impose high degrees of stereocontrol over otherwise challenging radical 

reactions, thereby complementing the state-of-the-art chiral small-molecule catalysts designed to 

facilitate asymmetric radical transformations.18–20 To date, using photochemistry to trigger radical 
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generation, natural enzymes based on diverse organic cofactors including nicotinamide,45,46 

flavin,45–47 pyridoxal48–54 and thiamine55–59 have been reprogrammed to catalyze unnatural 

enantioselective reactions using a radical mechanism. Possessing a redox-active and catalytically 

versatile first-row transition-metal cofactor, metalloenzymes hold the potential of promoting free 

radical formation and transformation using a complementary metallocofactor-enabled redox 

mechanism. Furthermore, the unique reactivity of first-row transition metal elements holds the 

potential for challenging bond formation, allowing a range of unnatural asymmetric radical 

reactions to be advanced.  

Prior to 2021, several carbene transfer and nitrene transfer reactions from the pioneering 

studies of Arnold and Fasan were proposed to proceed via Fe–C and Fe–N bond containing 

intermediates with substantial radical character on Fe-bound organic ligand.60–63 In 2021, our 

group reported the first examples of unnatural stereoselective free radical reactions catalyzed by a 

repurposed natural P450 enzyme.64 Since 2021, a range of metalloenzyme-catalyzed free radical 

reactions using various radical generation mechanisms have been developed. In this Review, we 

survey recent advances of natural metalloenzyme-catalyzed free radical transformations not found 

or uncommon in native enzymology, including their mechanism, enzyme engineering, and 

substrate scope. Based on different classes of radical intermediates involved, this Review is 

structured into five sections, including transformations involving carbon-centered radicals, 

transformations involving nitrogen-centered radicals, transformations involving oxygen-centered 

radicals, transformations involving metal nitrenoids with radical character on the nitrenoid 

nitrogen, and transformations involving metal carbenoids with radical character on the carbenoid 

carbon (Figure 1). As excellent earlier reviews have summarized metalloenzyme-catalyzed 

carbene transfer and nitrene transfer reactions published before 2021,60–63 this review only covers 
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recent progress of carbene and nitrene transfer reactions involving radical intermediates published 

after 2021. Important related studies using artificial metalloenzymes (ArMs) are out of the scope 

of our review and we direct readers to outstanding recent reviews from experts in this field.65–73 

 

Figure 1. Summary of representative metalloenzymes and non-native radical intermediates. (A) 

General challenge for catalytic enantiocontrol over free radical-mediated transformations; (B) 

Metalloenzyme-catalyzed free radical transformations; (C) Summary of previously studied 

metalloenzymes and the radical intermediates involved in these transformations. 
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2. Transformations involving carbon-centered radicals 

Carbon-centered radicals represent essential reactive intermediates in both synthetic 

methodology and natural product synthesis.9,74–77 In native metalloenzymology, carbon-centered 

radicals are involved in various anaerobic and aerobic transformations. In this section, we review 

metalloenzyme-catalyzed unnatural transformations involving carbon-centered radicals that have 

been reported since 2021.  

2.1 Addition of carbon-centered radical to alkenes 

Alkene difunctionalization represents an important strategy to generate molecular complexity 

from easily available olefin building blocks.78–80 Among these methods, radical-mediated 

stereoselective alkene difunctionalization processes triggered by the addition of a carbon-centered 

radical across the C=C double bond of an alkene could potentially enable the construction of 

multiple stereogenic centers in an efficient manner. In 2021, by capitalizing on the innate redox 

properties of the heme cofactor, our lab engineered cytochromes P450 to catalyze atom transfer 

radical cyclization (ATRC) reactions81 with excellent diastereo- and enantioselectivity.64 In the 

proposed catalytic cycle (Figure 2), through the halogen atom transfer between the α-haloamide 

substrate and the P450 enzyme in its ferrous state, a reactive α-carbonyl radical is generated, along 

with the formation of the ferric enzyme containing a Fe–Br bond. Within the enzyme’s active site, 

the addition of this incipient α-carbonyl radical to the pendant alkene occurs in an enantioselective 

manner, giving rise to a new cyclized alkyl radical. Finally, through a halogen rebound mechanism 

involving the enzymatic Fe(III)–Br species, diastereoselective C–Br bond formation affords the 

final ATRC product and regenerates the ferrous protein catalyst. 



 9 

 

Figure 2. Proposed catalytic cycle for the biocatalytic stereoselective atom-transfer radical 

cyclization. 
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studies using molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) 

simulations.84 These studies revealed the role of beneficial mutation I263Q as a key hydrogen bond 

donor to engage the amide carbonyl group, facilitating bromine atom abstraction and enhancing 

radical cyclization enantiocontrol. Further QM/MM studies showed that due to the steric repulsion 

between the olefin and the heme, the (Re)-face-attack transition state has an activation energy 2.5 

kcal/mol lower than of the (Si)-face attack transition state, leading to the (R)-enantiomeric 

cyclization product (Figure 3D). Substrates with different substituted benzyl group were tolerated, 

providing the corresponding ATRC products in TTNs of up to 8,110. Products bearing a gem-

difluoromethyl moiety and contiguous quaternary stereocenters could also be prepared. δ-Lactams 

were also accessible with P450ATRCase2 A330K (Figure 3E). 
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Figure 3. P450-catalyzed enantioselective atom transfer radical cyclization (ATRC). (A) Directed 

evolution of P450ATRCase1; (B) Directed evolution of P450ATRCase2; (C) The illustration of active 

sites: the left was made from  4H23 (PDB ID) and the right was made from 5UCW (PDB ID); (D) 

Probing the origin of enantioselectivity by QM/MM studies; (E) Selected ATRC products; 

reactions were carried out using whole E. coli cells overexpressing P450ATRCase’s (OD600 = 5–30). 
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(Figure 4A).85 Replacing the Fe-bound histidine with a serine provided the Mb H93S variant with 

improved activity (Figure 4B). Similar or slightly improved total turnover numbers (TTNs) were 

observed with whole E. coli cells than those with purified protein.64 Additionally, α,α,α-

trichloroamide substrates were also transformed into the desired α,α-dichlorolactam. Radical clock 

studies using a substrate bearing a cyclopropyl moiety afforded the corresponding ring opening 

product, further confirming the radical-mediated nature of this myoglobin-catalyzed cyclization 

(Figure 4C). Despite extensive efforts, no enantioselectivity was observed in these myoglobin-

catalyzed ATRC processes.  

   

Figure 4. Mb H93S-catalyzed atom transfer radical cyclization. (A) Selected substrate scope; 

reactions were carried out using purified Mb H93S (0.1 mol%) or whole E. coli cells 

overexpressing Mb H93S (OD600 = 40); (B) The illustration of active site was made from the 

structure of 1WLA (PDB ID); (C) Radical clock experiment. 
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processes,86–90 the groups of Huang and Jia independently developed enantioselective styrene 

trifluoromethylazidation using nonheme Fe enzymes hydroxymandelate synthase (HMS) and 

quercetin 2,3-dioxygenase (QueD), respectively. In their proposed biocatalytic mechanism, 

Togni’s reagent89 is first reduced by Fe(II) to generate the trifluoromethyl radical. Subsequent 

addition of this trifluoromethyl radical to the styrene substrate leads to a new benzylic radical. 

Finally, enantioselective radical rebound with the Fe(III)–N3 intermediate in the nonheme Fe 

enzyme’s active site furnishes enantioenriched trifluoromethylazidation product (Figure 5A). 
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Figure 5. Nonheme Fe enzyme-catalyzed enantioselective trifluoromethylazidation of styrenes. 

(A) Proposed reaction mechanism; (B) Directed evolution of AoHMS-CF3; (C) Directed evolution 

of BsQueD-CF3; (D) The left illustration of active site was made from 2R5V (PDB ID); The right 

illustration was made from 1Y3T (PDB ID); (E) Selected substrate scope studies; reactions were 
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carried out using lysate of AoHMS-CF3 (OD600 = 40, 1.5 mol%) or purified BsQueD-CF3 (2 

mol%). 

Huang reported the use and engineering of nonheme Fe-dependent hydroxymandelate 

synthase from Amycolatopsis orientalis (AoHMS)91 to catalyze the enantioselective 

trifluoromethylazidation of styrenes.92 To facilitate nonheme enzyme engineering for this 

unnatural radical reaction, the authors developed a high-throughput fluorescence screening assay 

using the Staudinger ligation of the organic azide products.93 In each site-saturation mutagenesis 

(SSM) library, the top 15 hits based on enzyme activity from fluorescence assay were further 

evaluated based on enantioselectivity using chiral HPLC methods. With a sextuple mutant 

AoHMS-QGHLYV (F188Q T214G Q305H F307L F330Y I335V) as the parent, iterative rounds 

of SSM and screening targeting residues close to the nonheme Fe catalytic triad resulted in 

AoHMS-QGHLYV S201V N334S E190D L338A Y339V S332G G328S, which improved the 

enantioselectivity (91:9 e.r.) of the trifluoromethylazidation product. Additional random 

mutagenesis using error-prone PCR (epPCR)94,95 introduced another three mutations including 

P173L, D228N, and A269T, which slightly improved product enantioselectivity (92:8 e.r.). Finally, 

three additional mutations V342A, Q226P, and L303M were introduced to furnish the final variant 

AoHMS-CF3, with an enantioselectivity of 95:5 e.r. (Figure 5B and 5D).  

Jia engineered the nonheme Fe enzyme quercetin 2,3-dioxygenase from Bacillus subtilis 

(BsQueD)96,97 for trifluoromethylazidation.98 Starting from wt BsQueD, directed evolution via 

SSM and screening improved enzyme activity and enantioselectivity. Among the beneficial 

mutations identified, replacing the Fe-bound glutamate with a histidine (E241H) enhanced the 

yield and enantioselectivity of the trifluoromethylazidation product. Another mutation F295M was 

found to invert the enantioselectivity (70:30 e.r.). Further rounds of SSM and screening in an 
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iterative manner led to BsQueD-CF3 (BsQueD E241H F295M L332I H239L L330Y N326D L239P 

D233E Y330F Q203T V269C), provided the product in 5% yield and 92:8 e.r. (Figure 5C, 5D). 

Further reaction condition optimization showed that using 2 mol% purified BsQueD-CF3 and 3 wt% 

TPGS-750-M,99  the yield of the desired product could be further improved. The two extensively 

engineered nonheme systems independently developed by Huang and Jia shared a broad substrate 

scope using 1.5 mol% AoHMS-CF3 lysate and 2 mol% purified BsQueD-CF3 respectively (Figure 

5E). 

Metal substitution in nonheme enzymes allows the convenient replacement of the native 

catalytic center with alternative transition metals, giving rise to metalloenzymes with altered 

catalytic activities with broad synthetic applications.100,101 Early pioneering studies by 

Kazlauskas,102 Hartwig103 and Simaan104 replacing nonheme Fe with Cu and Rh explored metal-

substituted nonheme enzymes in Lewis acid and hydroformylation chemistry. Recently, Huang 

reported the use of Cu-substituted nonheme enzyme SadA as Lewis acid catalysts to facilitate 

asymmetric Conia-ene reactions.105 Inspired by these results and Buchwald’s previously 

developed copper-catalyzed radical trifluoromethylation,106–108 in 2025, Huang and coworkers 

reported the elegant use of Cu-substituted AoHMS variants for the biocatalytic intramolecular 

alkene oxytrifluoromethylation.109 In their proposed mechanism, Togni’s reagent II is reduced by 

the Cu-substituted AoHMS to generate the trifluoromethyl radical. Subsequent addition of this 

trifluoromethyl radical to the alkene leads to a new carbon-centered radical. Finally, 

enantioselective C–O bond formation mediated by the nonheme Cu center furnishes 

enantioenriched CF3-substituted lactones.  

Evaluation of Huang’s engineered AoHMS variants in the presence of Cu(II) led to Cu-

substituted AoHMS-V5 (AoHMS-QGHLYV S201V N334S E190D L338A Y339V)92 as an 
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excellent starting point, provided the product in 22% yield and 86:14 e.r. Directed evolution 

through five rounds of SSM and one round of random mutagenesis resulted in the final variant 

AoHMS-AOT (AoHMS-V5 A196T V203H A338V V339E D190E V335M H305R), providing the 

product in 37% yield and 97.5:2.5 e.r. (Figure 6A and 6B). Using 1.2 mol% cell-free lysate of 

AoHMS-AOT, a range of substrates was tolerated, providing the corresponding products in up to 

99% yields and 98:2 e.r.. Both β- and δ-lactones were also produced in an enantioenriched fashion, 

showcasing the synthetic versatility of the enzyme (Figure 6C). 



 18 

 

Figure 6. Cu-substituted AoHMS-catalyzed enantioselective intramolecular alkene 

oxytrifluoromethylation. (A) Directed evolution of AoHMS-AOT; (B) The illustration of active 

site was made from 2R5V (PDB ID); (C) Selected substrate scope studies; reactions were carried 

out using cell-free lysate of AoHMS-AOT (OD600 = 80, 1.2 mol%). 
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B12-dependent enzymes110 such as adenosylcobalamin (AdoCbl)-dependent isomerases,111 

methyl-cobalamin (MeCbl)-dependent methyltransferases,27 and dehalogenases112 use cobalamin 

as the metallocofactor. The unique redox properties and diverse reactivity of the cobalamin 

cofactor provide an excellent opportunity for unnatural radical reactions to be advanced. In 2022, 

Lewis engineered transcription factor CarH113 from Thermus thermophilus by fusing an N-terminal 

His6-MBP tag to increase its solubility and introducing a H132G mutation to generate an open 

coordination site at Co center. The apo form of this CarH H132G construct was reconstituted with 

hydroxocobalamin (HOCbl),114 which was termed as CarH* (MBP-TtCarH H132G).115 CarH* 

catalyzed C(sp2)–H alkylation of styrenes using diazoacetate and diazoacetamide, displaying 2–

6.5-fold higher yields relative to the free hydroxocobalamin cofactor (Figure 7A). In the proposed 

catalytic cycle, the hydroxocobalamin is first reduced to form the cob(I)alamin, which interacts 

with the diazoacetate substrate to generate a cob(III)alamin-alkyl complex upon electron 

transfer/proton transfer (ET/PT) events. This cob(III)alamin-alkyl complex is proposed to be in 

equilibration with cob(II)alamin and a carbon-center radical. The addition of this carbon-centered 

radical to styrene affords a new benzylic radical, which reacts with cob(II)alamin via β-H 

elimination to provide the alkylated styrene as the final product along with the cob(III)alamin 

hydride, which regenerates cob(I)alamin upon deprotonation and complete the catalytic cycle 

(Figure 7B). 



 20 

  

Figure 7. Styrene C–H alkylation catalyzed by CarH*. (A) Selected substrate scope; reactions 

were carried out using purified CarH* (4.4 mol%) or hydroxocobalamin (HOCbl, 4.4 mol%); (B) 

Proposed catalytic cycle. 
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the a-chloro-a,a-difluoroamide with Co(I) to form a Co(III)-alkyl complex. This Co(III)-alkyl 

complex readily equilibrates with the Co(II) alkyl radical form to allow radical cyclization to the 

pendant olefin, generating a new alkyl radical intermediate. β-H elimination from this radical 

species with Co(II) provides the cyclized alkene product and the Co(III)-H complex, which 

subsequently regenerates Co(I) via deprotonation. The cyclized alkane product is proposed to form 

via reduction of the corresponding alkyl radical intermediate (Figure 8B). In this CarH*-catalyzed 

radical cyclization, the a,a-difluorocarbonyl moiety was proposed to play a key role in stabilizing 

the Co(III)–CF2R species due to the more polar Co(III)–C bond with the gem-difluoro group. 

Enantioselective variants of this CarH*-catalyzed radical cyclization remained challenging. 
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Figure 8. Radical cyclization catalyzed by CarH*. (A) Selected substrate scope, the alkene/alkane 

ratio in parenthesis refers to the yield of alkenes versus alkanes based on GC analysis; reactions 

were carried out using purified CarH* (0.5 mol%) or B12 (0.5 mol%); (B) Proposed catalytic cycle. 

Transition-metal hydride intermediates play a critical role in the enzymology of naturally 

occurring [NiNi]-, [NiFe]-, and Fe-dependent hydrogenases.117–119 In synthetic chemistry, first-

row transition-metal hydride species based on Fe, Co, and Mn catalyzes a range of synthetically 

useful hydrofunctionalization of alkenes and alkynes120–123 using a metal-hydride hydrogen atom 

transfer (MHAT) mechanism.120,122 Inspired by this versatile MHAT catalytic manifold recently 

studied by the synthetic organic community, pioneering research has led to the successful 

repurposing of both nonheme Fe enzymes and heme enzymes to allow for unnatural enzymatic 

MHAT activities. Over the past several years, several hydrogen and hydride transfer reactions have 

been described with Zn- and Fe-dependent enzymes. In this review, we summarize processes 

where radical intermediates are likely involved. Elegant recent studies from Hartwig and Ji using 

Zn-dependent carbonic anhydrases124–126 and Ward and Ji using Fe-dependent heme and nonheme 

enzymes127,128 for metal hydride-mediated carbonyl reductions via a polar mechanism are out of 

the scope of this review. 

In 2023, Chen, Chang, Guo and co-workers reported the use of Fe/αKG-dependent nonheme 

enzymes to catalyze the Mukaiyama hydration of olefins using a putative MHAT mechanism 

(Figure 9).129 A range of styrenes was converted into the corresponding hydration products using 

nonheme Fe enzymes reconstituted from 0.2 mol% purified apo protein and 0.2 mol% Fe(II). 

Further studies suggested that the oxygen atom in the hydration product is derived from O2. No 

enantioselectivity was observed for the hydration products. Deuterium incorporation studies using 

NaBD4 showed 100% deuterium incorporation at the β-position and 15% deuterium incorporation 
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at the α-position of the hydration product (Figure 9B). EPR studies suggested that the ferric protein 

was reduced by NaBH4 to the ferrous protein, which was re-oxidized to the ferric state in the 

presence of O2. However, spectroscopic characterization of the putative Fe–H species remained 

difficult. 

  

Figure 9. Biocatalytic Mukaiyama hydration of alkenes via MHAT. (A) Selected substrate scope; 

(B) The deuterium incorporation study. 
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of directed evolution were carried out with P450BM3, giving rise to a triple mutant P450BM3 F87L 

A74Q I263Q (P450BM3_LQQ) with improved activity and enantioselectivity (44% yield, 44 TTN 

and 6:94 e.r.) (Figure 10A). Similarly, iterative SSM and screening of CYP119 furnished CYP119 

D77R T214V L205V T213 Q22H A209T I208S (CYP119 MHATase), providing the (R)-

enantiomer in 30% yield, 305 TTN and 85:15 e.r. (Figure 10B). The addition of TPGS-750-M 

further improved the conversion of this biocatalytic reaction.132 Using evolved P450 variants, 

substrates possessing a range of aryl sulfonamides and radical acceptors were successfully 

transformed using 0.05–0.1 mol% biocatalyst in the form of whole E. coli cells (Figure 10C).  

 

Figure 10. P450-catatalyzed enantioselective radical cyclization via MHAT. (A) Directed 

evolution of P450BM3_LQQ for (S)-product: the illustration of active site was made from 2IJ2 
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(PDB ID); (B) Directed evolution of CYP119 MHATase for (R)-product: the illustration of active 

site was made from 1IO7 (PDB ID); (C) Selected substrate scope; reactions were carried out using 

whole E. coli cells overexpressing P450BM3_LQQ (0.05 mol%) or purified P450BM3 F87V A74Q 

I263Q (P450BM3_VQQ, 0.05–0.1 mol%). 

Mechanistic studies revealed that the ferric P450 enzyme was reduced by PhSiH3 to afford 

the ferrous enzyme, which is re-oxidized to the Fe(III) state by air. Deuterium labelling studies 

showed that the hydrosilane reagent was the hydrogen atom donor for MHAT and water served as 

the proton donor for the final protonation step. Based on these results, Ward proposed that in the 

plausible catalytic cycle, the Fe(III) P450 enzyme first reacts with PhSiH3 to form an Fe(III)–H 

species, which undergoes MHAT with the alkene moiety to generate a carbon-centered radical and 

an Fe(II) species. Enzyme-controlled radical addition to the pendant a,b-unsaturated carbonyl 

moiety forms a new carbon-centered radical, which undergoes concerted proton-coupled electron 

transfer (PCET) with water-bound P450–Fe(II) complex to afford the cyclized chiral product 

(Figure 11). 
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Figure 11. Proposed catalytic cycle for the P450-catalyzed asymmetric radical cyclization via 

MHAT.  
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hydrogenation reaction was carried out using whole E. coli cells overexpressing HATR-5 (OD600 

= 50) and product was obtained in 44.8% yield and 98:2 e.r. (Figure 12A). The yield was further 

increased by using purified protein catalyst in the presence of TPGS-750-M. A range of 3-

methylene piperidine, pyrrolidine, and azepine substrates with different N-protecting groups were 

tolerated, providing hydrogenation products in good yields and enantioselectivity (Figure 12B). 

Mechanistic studies were consistent with a stepwise radical pathway for this process. In the 

proposed catalytic cycle, the ferric heme protein reacts with phenylsilane to generate the Fe(III)–

H species, which undergoes MHAT with the olefin substrate to generate a carbon-centered radical 

and the Fe(II) protein. The carbon-centered radical subsequently undergoes asymmetric hydrogen 

atom transfer with the active-site cysteine, delivering the asymmetric hydrogenation product and 

a thiyl radical. Final proton-coupled electron transfer (PCET) between the thiyl radical and Fe(II) 

center regenerates the ferric heme species and the cysteine thiol (Figure 12C). 
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Figure 12. Biocatalytic asymmetric hydrogenation of unactivated olefins. (A) Directed evolution 

of HATR-5: the illustration of active site was made from 8EUM (PDB ID); (B) Selected substrate 

scope; reactions were carried out using purified HATR-5 (0.2 mol%) in the presense of 6 wt% 

TPGS-750-M; (C) Proposed catalytic cycle for the biocatalytic asymmetric hydrogenation of 

olefins via MHAT and HAT. 
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often involve oxidative processes catalyzed by monooxygenases and dioxygenases.136–138 Recent 

development of metalloenzyme-catalyzed unnatural radical functionalization of aromatic 

compounds would further expand the toolbox of arene functionalization and allow chiral aromatic 

scaffolds to be prepared in a highly enantioenriched fashion. 

In 2023, our lab reported an enantioconvergent radical cyclization to arenes using engineered 

cytochromes P450 (Figure 13).139 In our proposed catalytic cycle (Figure 13A), the P450 enzyme 

in its ferrous state first undergoes single-electron transfer to the 2-halo-1,3-dicarbonyl substrate, 

leading to a carbon-centered radical along with the oxidized ferric state enzyme. Subsequent 

addition of this nascent carbon-centered radical to the pendant aromatic ring within the enzyme 

active site occurs in an enantioselective fashion, furnishing a cyclized dearomatized radical 

intermediate. Further radical-polar crossover converts this radical to the enantioenriched 3,3-

disubstituted oxindole product. Previous studies from Mayer140 and our computational studies 

suggest the potential involvement of heme propionate in a proton-coupled electron transfer (PCET) 

mechanism for the oxidation of dearomatized radical intermediate.  

In this study, evaluation of a collection of P450 variants led to the identification of P411Diane2 

and P411Diane3,83 providing the (S)- and (R)-enantiomeric products with 66:34 e.r. and 36:64 e.r., 

respectively. Subsequent iterative SSM and screening furnished two final variants, including 

P450arc1 (P411Diane2 W263Q L181M T438G H266L) and P450arc2 (P411Diane3 G437A V327P N70S 

A330F G74P) (Figure 13B). Using whole E. coli cells harboring P450arc1, the (S)-product was 

obtained in 77% yield, 1,330 TTN and 96:4 e.r.. The (R)-product was obtained in 88% yield, 1,890 

TTN and 12:88 e.r. using P450arc2. Another closely-related variant P450arc3 (P450arc1 G438T 

L266H L78C V328E S332A) was found to catalyze the kinetic resolution of α-chloroamide 

substrate. At 55% conversion, the (R)-enantiomeric substrate was recovered in 45% yield and 94:6 
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e.r. (Figure 13C). These results further demonstrated the excellent tunability of P450 enzymes to 

allow for both enantioconvergent transformation and kinetic resolution through a common radical-

based mechanism. 

  

Figure 13. P450-catalyzed enantioconvergent radical cyclization to arenes. (A) Proposed catalytic 

cycle; (B) Directed evolution of P450arc1 and P450arc2: illustrations of active sites were made from 
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5UCW (PDB ID); (C) Enantiodivergent transformation and kinetic resolution in P450-catalyzed 

radical cyclization to arenes. 

In 2024, our lab further expanded this P450-catalyzed radical arene functionalization to 

asymmetric radical dearomatization reactions.132 Asymmetric dearomatization represent a 

valuable method to transform planar aromatic compounds into chiral three-dimensional 

products.141–144 Despite recent development using other mechanisms for catalytic asymmetric 

dearomatization, free radical-mediated dearomatization has remained challenging in asymmetric 

catalysis.145,146 Thus, the P450 radical dearomatases developed in our lab provided a solution to 

bridge this gap. In the proposed catalytic cycle (Figure 14), the α-carbonyl radical forms via single 

electron transfer between the α-halocarbonyl substrate and the ferrous P450 catalyst. Dearomative 

radical cyclization of this α-carbonyl radical to the pendant phenol affords a dearomatized radical 

intermediate. The oxidative radical-polar crossover finally provides the dearomatized spirocyclic 

product with contiguous quaternary centers in an enantioenriched manner. This electron transfer 

also regenerates the ferrous P450 and complete the catalytic cycle. 
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Figure 14. Proposed catalytic cycle for P450-catalyzed stereoselective radical dearomatization. 
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achieved with P450rad2 (P411-CIS L75A L181A A82V) and P450rad3 (P411Diane2 W263I G268A 
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P327T V328A E267L), giving rise to either the (R)- (94% yield, 2,320 ± 30 TTN and 91:9 e.r.) or 

the (S)-product (76% yield, 3,230 ± 10 TTN and 8:92 e.r.) with good yield and enantioselectivity 

(Figure 15D). Upon the inclusion of 2 wt% TPGS-1000, the naphthol substrate with low solubility 

was also smoothly transformed in 84% yield, 1,510 ± 80 TTN and 97:3 e.r. using P450rad5 (P411-

CIS T438S)82 (Figure 15E).  
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Figure 15. P450-catalyzed enantioselective radical dearomatization. (A) Directed evolution of 

indole dearomatase P450rad1: the illustration of active site was made from 5UCW (PDB ID); (B) 

Directed evolution of phenol dearomatase P450rad4: the illustration of active site was made from 

5UCW (PDB ID); (C) Selected substrate scope; reactions were carried out using cell-free lysate of 
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P450rad1 (1 mol%) or P450rad4 (0.6 mol%); aA higher P450 loading (OD600 = 120) was used; 

bStarting variant P2 was used; (D) P450-catalyzed enantiodivergent radical dearomatization of 

pyrroles; (E) P450-catalyzed enantioselective radical dearomatization of naphthol.  

Lewis and coworkers reported that the B12-dependent protein CarH* could catalyze reductive 

radical dearomatization in the presence of titanium (III) citrate, affording dearomatized spirocyclic 

products possessing a 1,3-cyclohexadiene (Figure 16).116 This radical dearomatization follows an 

overall mechanism similar to that described in Figure 8. The a-chloro-a,a-difluoroamide substrate 

first reacts with the Co(I) protein to form a Co(III)-alkyl intermediate. This Co(III)-alkyl species 

readily generates an a,a-difluoro-a-carbonyl radical and a Co(II) species via homolytic cleavage 

of the Co(III)–C bond, allowing radical cyclization with the electron-deficient aromatic ring to 

provide a dearomatized radical intermediate. Single-electron reduction and protonation of this 

radical finally lead to the dearomatized product. Lewis and coworkers found that a range of arenes 

bearing an electron-withdrawing substituent could be converted, providing dearomatized products 

often with higher yields compared to free B12. Heterocycles including a pyridine and a thiophene 

were also readily transformed under these conditions (Figure 16A). In addition to g-lactams, d-

lactams could also be prepared from substrates bearing an extended linker, although a mixture of 

dearomatization product and C–H functionalization product were observed (Figure 16B). No 

enantioselectivity was observed for these CarH*-catalyzed radical dearomatization reactions. 
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Figure 16. CarH*-catalyzed reductive radical dearomatization. (A) Selected substrate scope for g-

lactams; reactions were carried out using purified CarH* (0.5 mol%) or B12 (0.5 mol%); (B) d-

Lactam formation. 

In 2025, our lab reported the first catalytic asymmetric Smiles rearrangement proceeding 

through the enantioselective addition of a carbon-centered radical to the ipso-carbon of the 

arylsulfonyl moiety (Figure 17).147 In the proposed catalytic cycle, the racemic N-arylsulfonyl-α-

chloroamide substrate is first reduced via single electron transfer from the ferrous P450 enzyme to 

generate an α-carbonyl radical. This radical then undergoes enantioselective radical cyclization to 
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extrusion results in the formation of an amidyl radical, which undergoes a formal hydrogen atom 

transfer reaction to provide the acyclic amide product possessing a quaternary stereocenter. 

Alternatively, this amidyl radical may undergo a 5-exo-trig radical cyclization to the arene leading 

to the lactam product (Figure 17A).  
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Figure 17. Biocatalytic asymmetric radical Smiles rearrangement. (A) Proposed catalytic cycle; 

(B) Directed evolution of P450Smiles; (C) The illustration of active site was made from the structure 

of 5UCW (PDB ID); (D) Selected substrate scope; reactions were carried out using cell-free lysate 

of P450Smiles1 (OD600 = 120, 0.30–0.34 mol%).  

Despite the multiple pathways available, our lab showed that both the chemoselectivity and 

enantioselectivity could be controlled through enzyme engineering. Initial evaluation of our P450 

radical cyclase panel revealed that the previously engineered pyrrole dearomatase P450rad3132 

catalyzed this radical Smiles rearrangement with the acyclic amide as the major product 

(amide:lactam = 79:21, 76:24 e.r.). Six rounds of directed evolution led to two final P450 aryl 

radical migratases, including P450Smiles1 (P450rad3 L267R L436C L82C N70H A330M I401P) and 

P450Smiles2 (P450rad3 L267R L436C L82C N70H A330M I401V). With P450Smiles1, the acyclic 

amide was obtained in 91% yield with 230 TTN, 90:10 e.r. and an amide:lactam selectivity of 96:4. 

P450Smiles2 allowed further improved chemoselectivity favoring the acyclic amide (85% yield, 290 

TTN, 88:12 e.r. and an amide:lactam selectivity of 99:1) (Figure 17B and 17C). Classical 

molecular dynamics (MD) simulations of the amidyl radical intermediate in the final variant 

P450Smiles2 revealed the importance of hydrogen bonding interactions with the L267R guanidium 

and C–H/p interactions in stabilizing the amidyl radical and disfavoring its cyclization. Both 

electron-rich or electron-deficient arenes were found to be compatible with this radical Smiles 

rearrangement, demonstrating this transformation is insensitive to the electronic properties of the 

arene (Figure 17D).  
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2.3 Functionalization of carbon-centered radicals via a rebound mechanism 

The central mechanism in heme and nonheme Fe enzyme-catalyzed C–H hydroxylation and 

halogenation lies in the formation of a transient carbon-centered radical and subsequent radical 

rebound for C–O and C–X bond formation.41,39,42,44 In this section, we review metalloenzyme-

catalyzed functionalization reactions involving a radical rebound mechanism. 

In nature, α-ketoglutarate-dependent (αKG) nonheme Fe halogenases catalyze diverse 

chlorination and bromination reactions via radical rebound with Fe(III)–X intermediates.148–159 In 

the presence of exogenous anions such as azide and nitrate, promiscuous radical rebound activities 

including C–H azidation and C–H nitration have long been studied with a range of αKG-dependent 

halogenases (Figure 18). In 2014, Bollinger and coworkers reported that SyrB2 catalyzed C–H 

azidation and C–H nitration with modest activity of L-2-aminobutyrate loaded to the carrier protein 

SyrB1.160 In 2019, Chang and coworkers found that SwHalB catalyzed the d-azidation of the amino 

acid substrate.161 In 2020, Weng and coworkers reported that SaDAH could catalyze the C–H 

azidation of dechloroacutumine.162 In 2022, Buller and coworkers used engineered WelO5* for 

the C–H azidation and nitration of Soraphen A.157 The chemoselectivity of C–H azidation over 

hydroxylation is often controlled by the positioning of the radical intermediate within the enzyme’s 

active site. It remains a nontrivial task to generalize the chemoselectivity trend previously 

optimized to a broader range of substrates.  
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Figure 18. Promiscuous C–H azidation and C–H nitration activities with αKG-dependent 

nonheme Fe halogenases. 

Very recently, in 2025, Tang discovered and characterized a novel dinuclear copper 
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the catalytic repertoire of enzymatic halogenation and highlights the diversity of natural 

metalloenzymes capable of effecting C(sp3)–H functionalization.  

 

Figure 19. Copper enzyme ApnU-catalyzed  C(sp3)–H functionalization. (A) ApnU-catalyzed 

C(sp3)–H chlorination, bromination, iodination, azidation and thiocyanation with different anions. 

(B) ApnU-catalyzed desaturation in the absence of halide anions. 
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its native substrate into a mixture of C–H chlorination and hydroxylation products, with the 

hydroxylated product accounting for 70% of combined products.164 In 2021, Chang and coworkers 

used bioinformatic analysis, DNA shuffling and high-throughput enzyme engineering to convert 

a native C–H hydroxylase into a chlorinase Chi-14, achieving an excellent 

chlorination:hydroxylation selectivity of 92:8.165  

In 2022, starting from SadA D157G (termed as SadX), Lewis reported the directed evolution 

of SadX to enable the C–H azidation of a broader range of substrates (Figure 20).166 Four rounds 

of random mutagenesis using epPCR and screening furnished SadX 4-IC (SadX I71V R172H 

F152L I38V Q233R F261L V38I R48C), providing the azide product in 91% conversion with an 

improved azidation/hydroxylation selectivity (N3/OH = 4.09) at 10 mol% SadX loading (Figure 

20B).167 Substrates bearing other substituents were also transformed into the azidation products 

with modest to good chemoselectivity (Figure 20C). 
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Figure 20. Biocatalytic C–H azidation catalyzed by SadA D157G. (A) Generally accepted 

catalytic cycle; (B) Directed evolution of SadA; (C) Selected substrate scope; reactions were 

carried out using purified SadX variants (10 mol%). 
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photosensitizer (eosin Y169 or fluorescein168) oxidizes the ferrous Fe center to form a ferric center 

along with the radical anion state of the photosensitizer (Figure 21A). The radical anion 

subsequently reduces the NHPI ester upon single-electron transfer, leading to a carbon-centered 

radical. This newly formed carbon-centered radical reacts with the nonheme Fe(III)–N3 

intermediate, affording the enantioenriched organic azide product via radical rebound (Figure 

21B). 

 

Figure 21. Enantioselective photobiocatalytic radical functionalization of N-hydroxyphthalimide 

(NHPI) esters. (A) Nonheme Fe enzyme-catalyzed decarboxylative azidation, thiocyanation, and 

isocyanation of redox-active esters. (B) Proposed dual catalytic cycle. 
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showed a modest increase in activity, it significantly enhanced the enantioselectivity from 79:30 

e.r. (wt SavHPPD) to 94:6 e.r. (SavHPPD-PC). With SavHPPD-PC, thiocyanation using SCN– also 

provided products in moderate yield and enantioselectivity (Figure 22F). In Huang’s study, Stern-

Volmer quenching suggested that Fe(II) with SavHPPD-PC was an effective quencher of excited-

state eosin Y. Huang proposed that active site of SavHPPD-PC could accommodate the NHPI ester 

substrate, allowing efficient interception of the radical intermediate with the nonheme Fe center.  

Parallel to Huang’s study, our lab repurposed a nonheme Fe extrodiol dioxygenase, 

metapyrocatechase from Pseudomonas putida (PpMPC),171 which shares only 16% sequence 

identity with Huang’s SavHPPD, for enantioselective decarboxylative radical azidation, 

thiocyanation, and isocyanation. Directed evolution targeting substrate tunnel residues provided a 

final triple mutant PpMPC azidase (PpMPC I291L L155F F302Y), giving rise to the alkyl azide 

product in 74% yield and 99.5:0.5 e.r. with 1 mol% enzyme loading and irradiation at 440 nm. 

Further engineering and the reaction condition optimization for thiocyanation led to another triple 

mutant, PpMPC I291L L155F I204L (PpMPC thiocyanase), which delivered the corresponding 

thiocyanation product in 54% yield and 95:5 e.r. with irradiation at 525 nm (Figure 22C and 22D). 

The engineered enzymes tolerated a range of NHPI esters bearing electron-donating and electron-

withdrawing groups. PpMPC thiocyanase also catalyzed decarboxylative isocyanation using 

sodium isocyanate. The resulting isocyanate could be trapped in situ with aniline to provide the 

corresponding unsymmetrical urea in 20% yield and 98:2 e.r. (Figure 22E). Our lab noted a 

network of hydrophobic residues at the entrance of the substrate tunnel, including L155, V188, 

F191 I204, L248, L287, I291, F302, and M303, to serve as a hydrophobic lid to encapsulate the 

substrate binding pocket, potentially facilitating selective radical capture (Figure 22D). Based on 
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this finding and the limited active site volume, in contrast to Huang’s report, our lab proposed that 

the carbon-centered radical forms outside the enzyme’s active site and travels into the pocket. 
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Figure 22. Nonheme Fe enzyme-catalyzed enantioselective decarboxylative azidation, 

thiocyanation and isocyantion. (A) Directed evolution of SavHPPD-PC for enantioselective 

decarboxylative azidation. (B) The illustration of active site was made from 1T47 (PDB ID). (C) 

Directed evolution of PpMPC azidase and PpMPC thiocyanase for enantioselective 

decarboxylative azidation and thicyanation; the azidation reaction was conducted using 1 mol% 

purified PpMPC whereas the thiocyanation reaction was conducted using 2 mol% purified 

PpMPC. (D) The illustration of active site was made from 1MPY (PDB ID). (E) PpMPC 

thiocyanase-catalyzed decarboxylative isocyanation. (F) Selected substrate scope of SavHPPD-PC; 

Reactions were carried out with 0.2 mol% purified SavHPPD-PC. (G) Selected substrate scope of 

PpMPC azidase and PpMPC thiocyanase; reactions were carried out with 1 mol% purified PpMPC 

azidase or 2 mol% PpMPC thiocyanase; PpMPCLFH = PpMPC I291L L155F Y255H. 

Inspired by decarboxylative C(sp3)–N coupling via synergetic copper and photoredox 

catalysis developed by the Hu group,172 in 2025, Huang and coworkers developed a biocatalytic 

decarboxylative C(sp3)–N coupling with N-hydroxyphthalimide (NHPI) esters and anilines 

through cooperative catalysis using rhodamine B (RhB) as the photoredox catalyst and copper-

substituted phenylalanine hydroxylase (PAH) from Chromobacterium violaceum (CvPAH)173 as 

the biocatalyst.174 In the photoredox cycle, RhB•– reduces the NHPI ester via single-electron 

transfer, leading to a carbon-centered radical. This newly formed carbon-centered radical reacts 

with the Cu(II)-amide intermediate within the enzyme active site, affording the enantioenriched 

C(sp3)–N coupling product (Figure 23). 
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Figure 23. Proposed dual catalytic cycle for the enantioselective photobiocatalytic radical 

decarboxylative C(sp3)–N coupling of N-hydroxyphthalimide (NHPI) esters and anilines. 
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(CvPAH-aminase), which produced the product in 19% yield and 94% ee (Figure 24A and 24B). 
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(Figure 24C). Mechanistic studies confirmed the formation of the carbon-centered radical and the 

essential role of copper catalytic center. 

 

Figure 24. Cu-substituted CvPAH-catalyzed enantioselective photobiocatalytic radical 

decarboxylative C(sp3)–N coupling of N-hydroxyphthalimide (NHPI) esters and anilines. (A) 

Directed evolution of CvPAH-aminase. (B) The illustration of active site was made from 1LTV 
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(PDB ID). (C) Selected substrate scope; reactions were carried out with 1.0–1.3 mol% cell-free 

lysate of CvPAH-aminase. 

2.4 Anti-Markovnikov oxidation of alkenes 

P450-catalyzed oxidation of alkenes proceeding through Fe=O intermediates typically 

provides epoxidation products.175 In contrast, P450-catalyzed anti-Markovnikov oxidation (aMOx) 

of alkenes leading to carbonyl products with an anti-Markovnikov site selectivity is rare, although 

such products were previously observed with biosynthetic P450 enzymes.176 Using cytochrome 

P450 from the rhodobacterium Labrenzia Aggregata (P450LA1),177 Arnold and Hammer 

engineered P450 anti-Markovnikov oxidases (aMOx) as a biocatalytic solution to the challenging 

anti-Markovnikov alkene hydrofunctionalization problem (Figure 25).178 In the proposed catalytic 

cycle, the highly reactive compound I reacts with the styrene substrate to form a short-lived carbon-

centered radical. In the conventional epoxidation pathway, rapid C–O bond formation from this 

intermediate delivers the epoxide product. In the unusual anti-Markovnikov oxidation pathway, 

this short-lived carbon-centered radical undergoes an intramolecular single electron transfer from 

the carbon-centered radical to the Fe center, which would provide the carbon cation intermediate. 

Subsequent 1,2-hydride migration furnishes the anti-Markovnikov carbonyl product and the ferric 

P450 enzyme to complete the catalytic cycle.179 
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Figure 25. Proposed catalytic cycle for biocatalytic anti-Markovnikov oxidation of alkenes. 

Directed evolution of P450LA1 allowed substantial improvement in the catalytic activity and 

selectivity towards the anti-Markovnikov carbonyl product. Four random mutated libraries created 
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with increased TTN and aMOx selectivity. An additional six rounds of SSM and screening using 

HPLC furnished the final variant aMOx with eight additional mutations, further improving the 

TTN and aMOx selectivity (Figure 26A). Use of an alcohol dehydrogenase (ADH) allowed the 

conversion of aldehyde products to the corresponding alcohols to avoid undesired side reactions 

of aldehydes. Various substituted styrene substrates were transformed with TTNs ranging from 

730 to 4,500 in an anti-Markovnikov fashion using the combination of aMOx and ADH in a lysate 

form. The 1,2-hydride migration was found to be a stereospecific process, allowing (S)-2-

FeIII

O H
H

H
Ph

FeIV

O H
H

HPh
FeIV

O H
H

HPh

FeIII

O H

H
Ph

H

FeIV

O

FeIII

compound I

O
H

Ph
H

H FeIV

H
Ph

H
H

O H
Ph

H
H

O

Ph

epoxidation cycle

aMOx cycle

OaMOX, O2, NADH

2-phenylacetaldehydestyrene



 52 

phenylpropan-1-ol product to form in 93:7 e.r. from the corresponding substrate. Internal alkenes 

were also tolerated by this first generation aMOx enzyme. The resulting ketones were reduced by 

ADH to form the corresponding enantioenriched alcohols with excellent enantioselectivity and 

moderate aMOx selectivity (Figure 26B). Hammer and Garcia-Borràs further studied the origin of 

the aMOx selectivity.179 It was found that the final variant aMOx exerted conformational control 

over the carbon-centered radical intermediate, facilitating the intramolecular SET process and the 

rapid succeeding 1,2-hydride migration.  

  

Figure 26. P450-catalyzed anti-Markovnikov oxidation of alkenes. (A) Directed evolution of 

aMOx; (B) Selected substrate scope; reactions were carried out with 0.005 mol% cell-free lysate 

of aMOx and 10 U ADH. 
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Hammer and coworkers further evolved aMOx activity to allow internal alkenes to be 

converted to ketone products.181 A starting variant P450LA1 P7E (P450LA1 T121A V123I N201K 

H206W N209S I326V Y385H E418G) was selected from the initial screening. 12 new mutations 

from 11 rounds of SSM and screening led to the final ketone synthase (KS) variant, providing the 

ketone product in 2,600 TTN and 75% chemoselectivity using cell-free lysate (Figure 27A). The 

final KS variant showed good catalytic activities and chemoselectivities towards a range of 

substrates. An α-chiral ketone was obtained in 87:13 e.r., although with reduced activity and 

chemoselectivity (Figure 27B). Computational studies revealed that rigidification of the active site 

by these newly introduced mutations led to improved catalytic activity and chemoselectivity.  
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Figure 27. Biocatalytic anti-Markovnikov oxidation of internal alkenes (A) Directed evolution of 

ketone synthase; (B) Selected substrate scope; reactions were carried out with 0.0125 mol% cell-

free lysate of KS.  

2.5 Intermolecular radical C–C coupling  

Designing new metalloenzyme mechanisms for radical-mediated C–C bond formation 

remains an ongoing challenge. In 2025, Huang and coworkers developed a photobiocatalytic 

enantioselective α-alkylation of 2-acyl imidazoles, affording α-chiral ketones in excellent 

enantioselectivity.182 Using cupin proteins previously investigated by Itoh featuring a Lewis acidic 

Cu center,183–185 Huang and coworkers found that Thermotoga maritima cupin variants186,187 

Tm1287-E68A and Tm1459-H52A produced opposite enantiomers of the C–C bond forming 

products (Figure 28A, entry 1 and 5). Subsequent site-directed mutagenesis of residues within 6 Å 

of the metal center led to optimized mutants Tm1287 E68A R23Y M22F and Tm1459 H52G 

F104V (Figure 28B amd 28D), allowing enantiodivergent C–C bond formation. A range of 

substituted 2-acyl imidazoles and phenacyl chlorides were well tolerated, furnishing products with 

excellent stereocontrol (Figure 28C).  
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Figure 28. Enantiodivergent photobiocatalytic alkylation using Lewis acidic cupin protein. (A) 

Directed evolution of LAseS and LAseR; (B) The active-site illustration of Tm1287 was made from 

1O4T (PDB ID); (C) Selected substrate scope, reaction conditions: 2-acyl imidazole (0.004 mmol), 

phenacyl chloride (0.012 mmol), enzyme (3 mol%), CuSO4 (6 mol%), Ru(bpy)3Cl2 (2 mol%), and 

8% v/v DMSO in KPi buffer (20 mM, pH 8.0) were stirred for 12 h at room temperature under an 

N2 atmosphere with the illumination of 450–460 nm LEDs, total volume of the reaction was 0.8 

mL, a4-nitrobenzyl bromide was used; (D) The active-site illustration of Tm1459 was made from 

1VJ2 (PDB ID). 
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enantioselective intermolecular C–C bond formation (Figure 29).188 In the proposed photoredox 

catalytic cycle, single-electron oxidation of the organoboron by the excited photocatalyst (EB*) 

provides a carbon-centered radical along with the reduced radical anion form of the photocatalyst. 

Concurrent to the photoredox cycle, using an appropriate heme protein catalyst, reaction between 

the diazo compound and the heme Fe center leads to an open-shell singlet Fe carbenoid189 with 

substantial radical character on the carbon center. This open-shell Fe carbenoid undergoes single 

electron reduction with the photocatalyst radical anion followed by enantioselective proton transfer 

to provide an Fe(III)-alkyl intermediate. This newly formed Fe(III)-alkyl complex undergoes a 

stereoinvertive biomolecular homolytic substitution (SH2)190 with the photoredox-derived carbon-

centered radical resulting in radical C–C coupling product.  

  

Figure 29. Proposed catalytic cycle for the biocatalytic asymmetric radical cross-coupling.  
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Using eosin B as the photoredox catalyst, metalloprotein catalyst evaluation revealed a variant 

of Rhodothermus marinus191cytochrome c (Rma cyt c V75R M100D M103T) was capable of 

catalyzing this intermolecular radical coupling in 53% yield and 88:12 e.r. (Figure 30). Four rounds 

of directed evolution furnished a sextuple mutant Rma cyt c V75R M76L M99R M100D T101G 

M103E (termed as Rma cyt cRLRDGDE), allowing the C–C coupling product to form in 75% yield 

and 94.5:5.5 e.r. (Figure 30A). Furthermore, our lab found that this new intermolecular radical 

coupling strategy allowed for stereoselective secondary alkyl-secondary alkyl coupling. To 

engineer an effective heme protein catalyst for the enantioconvergent transformation of racemic 

secondary alkyltrifluoroborates, the generation and evaluation of a combinatorial library 

simultaneously mutating loop residues 99–103 proved critical, leading to Rma cyt c V75R M76I 

M99K M100C T101G D102P M103F (Rma cyt cRIKCGPF), allowing the alkyl-alkyl coupling 

product to form with excellent diastereo- and enantioselectivity (78% yield, 96:4 d.r., and 93:7 e.r., 

Figure 30B and 30C). It was found that a range of organoboron substrates and diazo compounds 

could be transformed with excellent stereoselectivities (Figure 30D). Our mechanistic and 

computational studies suggested that an active-site proton donor residue (R75) may play a role in 

enhanced enzyme activity and proton transfer enantioselectivity. 
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Figure 30. Biocatalytic asymmetric radical cross-coupling. (A) Directed evolution of Rma cyt c 

variant for the radical coupling with benzyl trifluoroborate salt; (B) Directed evolution of Rma cyt 

c variant for the radical coupling with secondary alkyltrifluoroborates; (C) The illustration of 

active site was made from 3CP5 (PDB ID); (D) Selected substrate scope; reactions were carried 

out with 2 mol% purified Rma cyt cRLRDGDE or 1 mol% purified Rma cyt cRIKCGPF.  
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to generate an a-hydroxy benzylazide. Through the intermediacy of a Fe nitrenoid intermediate, a 

benzaldoxime species forms, which undergoes dehydration to afford the nitrile product (Figure 

31B and 31C).  

 

Figure 31. Toluene dioxygenase (TDO)-catalyzed oxidation of benzyl azide to benzonitrile. (A) 

TDO-catalyzed oxidation of benzyl azide; (B) Proposed mechanism in benzonitrile formation; (C) 

The illustration of active site of wt TDO was made from 3EN1 (PDB ID). 
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In 2019, Chang and Guo reported that other nonheme Fe enzymes including LdoA and PoIL 

could also catalyze this oxidative conversion of alkyl azides to the corresponding nitriles (Figure 

32).195 They found that L-leucine-5-hydroxylase (LdoA)196 and polyoxin dihydroxylase (PoIL)197 

catalyzed the conversion of amino acids with a terminal azido group to the corresponding cyano-

containing amino acid products. Using 0.24 mol% purified LdoA, (S)-2-amino-5-azidopentanoic 

acid was converted to the corresponding nitrile product with 150 TTN. Similarly, using 0.24 mol% 

purified PoIL, (S)-2-amino-4-azidobutanoic acid was converted with 180 TTN (Figure 32A). A 

similar mechanism as that proposed by Carrera is likely operative with LdoA and PoIL-catalyzed 

alkyl azide conversions (Figure 32B).  

 

Figure 32. Biocatalytic azide-directed nitrile synthesis. (A) Successful substrates and products; 

(B) Proposed reaction pathway. 
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3. Transformations involving nitrogen-centered radicals 

Advances in nitrogen-centered radical chemistry has opened up new avenues for the synthesis 

of diverse nitrogen-containing compounds.198 Additionally, nitrogen-centered radicals also play 

an important role in the biosynthesis of complex natural products.199 In recent years, a range of 

reactions involving nitrogen-centered radicals, including intramolecular addition to p-systems,200 

intermolecular addition to p-systems,201–203 and 1,5-hydrogen-atom transfer (1,5-HAT) with 

nitrogen-centered radicals, have been harnessed for the development of new-to-nature biocatalytic 

reactions. These results underscored the synthetic potential of nitrogen-centered radicals, 

particularly when combined with enzymatic platforms capable of finely tuning their high reactivity 

and selectivity. 

Remote C–H functionalization via nitrogen-centered radical-mediated 1,5-HAT is a powerful 

strategy for the construction of complex molecules.204 This concept can be traced back over a 

century to the classical Hofmann–Löffler–Freytag (HLF) reaction.205 In 2016, Cook and co-

workers developed a fluorine atom transfer reaction using fluoroamides as substrates to achieve 

C(sp3)–H bond fluorination, proceeding through an iron-mediated amidyl radical intermediate.206 

In 2022, Huang and co-workers reprogrammed a nonheme Fe enzyme, (4-hydroxyphenyl)pyruvate 

dioxygenase from Streptomyces avermitilis (SavHppD),170 to catalyze an unnatural C(sp3)–H 

azidation reaction via amidyl radical intermediates (Figure 33).207 Using N-fluoroamide as the 

model substrate, the use of wild-type SavHppD afforded the desired azidation product with 250 

TTN, 63:37 e.r., and a 9:1 azidation:fluorination selectivity. Using a newly developed high-

throughput screening assay based on copper-catalyzed azide-alkyne cycloaddition, Huang 

evaluated more than 5,000 clones generated from epPCR and site-saturation mutagenesis.208 These 

efforts resulted in a sextuple mutant SavHppD V189A F216A P243A N245Q Q255A L367I 
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(SavHppD Az1), catalyzing the enantioselective C–H azidation with 1,340 TTN and 87:13 e.r.. To 

further improve the enantioselectivity of the reaction, Huang reevaluated their in-house collection 

of SavHppD variants and performed additional rounds of directed evolution using 

chromatography-based screening. This led to a new septuple mutant SavHppD V189A N191A 

S230L P24N245F Q255P L367I (SavHppD Az2), providing the product with a slightly lower 

activity (490 TTN) but excellent enantiocontrol (96:4 e.r., Figure 33A).  

Michaelis-Menten kinetic analyses of SavHppD Az1, SavHppD Az2 and the wild-type 

SavHppD showed that the kcat/KM value of both SavHppD Az1 and SavHppD Az2 increased by 

approximately 2-fold compared to wt SavHppD. Specifically, the SavHppD Az1 variant showed a 

4.1-fold increase in kcat (29.4 min−1 (SavHppD Az1) versus 7.20 min−1 (wt SavHppD)). However, 

The KM of SavHppD Az1 was 1.7-fold higher (790 mM) than that of wt SavHppD (470 mM), 

indicating weaker substrate binding. In contrast, SavHppD Az2 exhibited a roughly 9-fold decrease 

in kcat (3.39 min−1) but a 6.6-fold smaller KM (120 mM) relative to wt SavHppD, suggesting a 

slower catalytic rate but tighter substrate binding. This is consistent with the observation that 

SavHppD Az2 generally exhibited higher enantioselectivity but lower activity than SavHppD Az1 

across a range of N-fluoroamide substrates (Figure 33B). DFT and MD analyses209 suggested that 

the azide ligand (N₃⁻) is positioned trans to the carboxylate ligand, which facilitates the activation 

of substrate with the nonheme Fe center for efficient N–F bond activation. DFT calculations207 

suggest that the initial N–F activation is the rate-determining step with an activation free energy 

(ΔG⧧) of 17.2 kcal/mol. This fluorine atom abstraction is followed by a rapid 1,5-HAT step with 

a much lower barrier (ΔG⧧ = 3.9 kcal/mol) to generate a carbon-centered radical (Int-III), which is 

positioned to undergo selective azide rebound with a low energy barrier (ΔG⧧ = 4.4 kcal/mol) 

(Figure 33C). Although the fluorine rebound pathway also exhibits a low intrinsic barrier (ΔG⧧ = 
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5.0 kcal/mol), it is disfavored due to conformational constraints within the enzyme active site that 

hinder the necessary substrate repositioning. This finding showcased the ability of enzymes to 

control chemoselectivity through reactive intermediate positioning. 

 

Figure 33. Nonheme Fe enzyme catalyzed enantioselective C(sp3)–H azidation of N-fluoroamides. 

(A) Directed evolution of SavHppD as azidases, the illustration of active site was made from the 

367

216

243

230

189

255

191

245

FeII
O

N

N

NH
His

NH
His

Glu

O

FeII
O

N

N

NH
His

NH
His

Asp

O

F

IIIV

N3

FeIII
O

N

N

NH
His

NH
His

Glu

O

II

F

N3

fluorine atom transfer

(rac)-I

II

Unnatural Nonheme 
Enzymes for

C(sp3)‒H azidation
stereoselective 

radical interception

1,5-hydrogen atom transfer (HAT)

N

O

F

N

O

N
H

O

N3

N
H

O

VI

N3
− F−

III

•

Me

N

O
t-Bu

F

E. coli harboring
nonheme enzyme

OD600 = 10
Fe(II), NaN3

Me

N
H

O
t-Bu

CuAAC
F

Me

N
H

O
t-Bu

N3

Az1 1,670 TTN, 77:23 e.r.
Az2 580 TTN, 96.5:3.5 e.r.

Me

N
H

O
t-Bu

N3

Az1 5,300 TTN, 56:44 e.r.
Az2 630 TTN, 94:6 e.r.

Me

OMe

N
H

O
t-Bu

Az1 3,610 TTN, 79:21 e.r.
Az2 250 TTN, 94:6 e.r.

N3

entry

1
2
3
4
5

6

7

Sav HPPD
HPPD V189A N245Q

HPPD V189A N245Q L367I
HPPD V189A N245Q L367I Q255A
HPPD V189A N245Q L367I Q255A 

P243A F216A (HPPD Az1)
HPPD V189A S230L P243G N245F 

Q255P L367I 
HPPD V189A N191A S230L P243G 
N245F Q255P L367I (HPPD Az2)

HPPD variant

250
320
410
760

1,340

430

490

CN/CH

3.0
7.8
9.8
9.3
15.5

13.4

19.3

60:40
75:25
79:21
88:12
87:13

94:6

96:4

CN/CF

9.0
18.8
27.6
35.5
53.8

33.2

30.6

e.r.TTN

Me

N
H

O
t-Bu

H
+

∆G⧧ = 17.2 kcal/mol

∆G⧧(azide rebound) 
        = 4.4 kcal/mol
∆G⧧(fluorine rebound) 
        = 5.0 kcal/mol

∆G⧧ = 3.9 kcal/mol

(A)

High-throughput
experimentation

Me

N
H

O
t-Bu

N3
+

(B) (C)

NF CH CF CN



 64 

structure of 1T47 (PDB ID); (B) Selected substrate scope of SavHppD Az1 and SavHppD Az2; 

(C) Proposed catalytic cycle. 

In 2024, our lab210 and the Huang lab211 contemporaneously reported nonheme Fe enzyme-

catalyzed enantioselective C(sp3)–F bond formation via C(sp3)–H functionalization. 

Organofluorine compounds are ubiquitous in the pharmaceutical,212 materials,213 and 

agrochemical industries214 due to their unique chemical, physical, and biological properties. 

However, to date, there is only a single naturally occurring fluorinase that catalyzes C(sp3)–F bond 

formation in the conversion of S-adenosylmethionine to 5’-fluoro-5’-deoxyadenosine via a 

bimolecular nucleophilic substitution (SN2) mechanism.215 Although numerous a-ketoglutarate-

dependent nonheme iron enzymes has been discovered and engineered to catalyze C–H bond 

functionalization, including halogenation,44 azidation,160,166,167 and nitration,160 biocatalytic 

enantioselective C(sp3)–H fluorination via an analogous radical-mediated fluorine rebound 

mechanism were not known prior to 2024 (Figure 34).  

In Huang’s work, a triple mutant of (S)-2-hydroxypropylphosphonate epoxidase from 

Streptomyces viridochromogenes216 (SvHppE-Fluor) was engineered to obtain the (R)-

benzylfluoride product (150 TTN, 96.5:3.5 e.r. and 2.2:1 fluorination:reduction selectivity (Figure 

34A and 34B). The Fe-binding glutamate was mutated to aspartate to generate additional space in 

the active site to accommodate the substrate. Parallel to Huang’s work, our lab engineered a 

sextuple mutant of 1-aminocyclopropane-1-carboxylic acid oxidase from Petunia hybrida 

(ACCOCHF)217,218 allowing the (S)-benzylfluoride product to form in 601 TTN, 95:5 e.r. and an 

excellent fluorination:reduction selectivity of 98:2. With the exception of I184A, all the beneficial 

mutations identified from directed evolution are distal to the Fe center, indicating the potential 

importance of substrate tunnel engineering (Figure 34C and 34D). The excellent chemoselectivity 
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favoring fluorination over reduction with ACCOCHF allowed enantioenriched organofluorine 

compounds to be prepared on a gram scale. Together, ACCOCHF and SvHppE-Fluor allowed the 

enantiodivergent synthesis of organofluorine products (Figure 34E). 

 

Figure 34. Nonheme Fe enzyme-catalyzed enantioselective C(sp3)–H fluorination. (A) Directed 

evolution of HPPE-Fluor, reactions were carried out using whole E. coli cells overexpressing 

SvHPPE (OD600 = 40); (B) The active-site illustration of HPPE was made from 4J1X (PDB ID); 
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(C) Directed evolution of ACCOCHF, reactions were carried out using whole E. coli cells 

overexpressing  ACCO (OD600 = 30); (D) The active-site illustration of ACCO was made from 

1W9Y (PDB ID); (E) Selected substrate scope of HPPE-Fluor and ACCOCHF, reactions were 

carried out using whole E. coli cells overexpressing HPPE-Fluor (OD600 = 5) and ACCOCHF (OD600 

= 10). 

DFT calculations from our lab and the Huang lab showed that the activation barrier for N–F 

bond activation is 17.0 kcal/mol with HPPE and 11.8 kcal/mol with ACCO, indicating that this 

fluorine atom abstraction is likely the rate-determination step of this transformation. Moreover, a 

low activation barrier was observed for the radical rebound step (5.6 kcal/mol for HPPE, 3.4 

kcal/mol for ACCO), suggesting that this rebound process is kinetically facile (Figure 35). 

Classical molecular dynamics (MD) simulations of wt ACCO and ACCOCHF show that the key 

mutations K158I, F91L and T89A widen the substrate entrance tunnel. This structural insight 

aligns with Michaelis-Menten kinetic experiments, which shows the enhanced enzymatic activity 

resulting from the improved substrate binding enabled by the substrate tunnel engineering.  

To investigate the mechanism of the chemoselectivity of the radical rebound step, Huang 

examined the effect of additional azide anion on fluorine atom transfer. Using SvHppE-Fluor, the 

fluorination product remained the predominant product, with a fluorination : azidation ratio of 17:1. 

This is in contrast to their prior results in C–H azidation with SavHPPD,207 where azidation was 

favored over fluorination. DFT calculations207 indicated that both azide rebound and fluorine 

rebound are kinetically facile, with each proceeding with a low activation energy barrier. Together, 

Huang proposed that with SavHppD, the carbon-centered radical is positioned closer to the azide, 

promoting rapid azide rebound, whereas in SvHppE, the radical is oriented closer to the fluorine, 
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enabling fluorine rebound. This positioning effect is also used to explain the selectivity of 

halogenation versus hydroxylation in native nonheme halogenase enzymology44 (Figure 35). 

 

Figure 35. Proposed catalytic cycle of nonheme Fe enzyme-catalyzed enantioselective C(sp3)–H 

fluorination. 
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to CueO through hydrogen bonding interactions, allowing enantioinduction in the nucleophilic 

addition event (Figure 36B). 

 

Figure 36. CueO-catalyzed enantioselective oxidative coupling of 3-hydroxyindole-2-

carboxylates and other nucleophiles. (A) Selected substrate scope; reactions were carried out using 

0.1 mol% cell-free lysate of CueO; (B) Proposed mechanism. 
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development of P450-catalyzed oxidative coupling of electron-rich aromatic compounds for the 

enantioselective synthesis of biaryl products.225 In 2025, based on their previous studies, Narayan 

and coworkers further reported a biocatalytic deracemization of BINOL derivatives using 

cytochromes P450 (CYP158A2)226, allowing access to enantioenriched atropisomers from racemic 

ones (Figure 37).227 They proposed that this deracemization proceeds through the intermediacy of 

phenoxyl radicals following single-electron oxidation, allowing the rotation around the biaryl C–

C bond. Upon further single-electron reduction, the biaryl compound is regenerated and 

enrichment in the major atropisomer occurred during this oxidation-reduction-based 

deracemization cycle (Figure 37A). Using 2 mol% purified CYP158A2, a wide range of binaphthol 

substrates were converted into enantioenriched form under these P450-catalyzed deracemization 

conditions (Figure 37B).  
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Figure 37. P450-catalyzed enantioselective deracemization of BINOLs. (A) The native function 

of KtnC, a biosynthetic P450 enzyme, is to catalyze the oxidative dimerization of 7-

demethylsiderin to produce (S)-orlandin; (B) Proposed mechanism for the deracemization of 

binaphthol derivatives; (C) Selected substrate scope; reactions were carried out using 2 mol% 

purified CYP158A2. 
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5. Transformations involving metal nitrenoids with radical character on the nitrogen 

Transition-metal nitrenoid-mediated reactions are useful tools for the construction of 

nitrogen-containing organic compounds. The use of metalloenzymes to catalyze unnatural nitrene 

transfer reactions dates back to 1985, when Dawson and Breslow reported the use of mammalian 

microsomal P450s to catalyze C–H amidation using iminoiodinanes as the nitrene precursor.228 

Despite this early report, the development of effective metalloprotein catalysts for stereoselective 

nitrene transfer reactions remained largely dormant until recently. In 2013, groundbreaking 

research from Arnold82 and Fasan229 led to P450-catalyzed enantioselective C–H amidation 

reactions using sulfonylazide substrates. Since then, a wide range of metalloenzyme-catalyzed 

nitrene transfer reactions, including intramolecular83,230–232 and intermolecular C–H amination,233 

sulfidesimidation234 and related [2,3]-sigmatropic rearrangement,235 as well as aziridination,236 

have been rapidly advanced through the use of sulfamoyl azide or carbonazidates as the nitrene 

precursors. Nitrene transfer reactions have been extensively reviewed elsewhere.60–63 Here, we 

review progress made after 2021 on metalloenzyme-catalyzed nitrene transfer reactions, where the 

metal nitrenoid intermediate features substantial radical characters on the nitrenoids nitrogen.  

5.1 Metalloenzyme-catalyzed C–H amination 

Since the groundbreaking work from Arnold and Fasan in 2013, organic azides have been 

widely used in heme protein-catalyzed nitrene transfer reactions.62,63,237 Compared to sulfonyl 

azides and other organic azides bearing an electron-withdrawing group on the nitrogen, alkyl and 

aryl azides nitrenes have been largely underexplored in biocatalytic nitrene transfer processes.  

In 2023, Arnold and co-workers developed a biocatalytic intramolecular C(sp3)–H amination 

of alkyl and aryl azides using serine-ligated P450s (“P411s”) for the enantioselective synthesis of 
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nitrogen heterocycles (Figure 38).238 A panel of engineered hemoproteins was evaluated, among 

which the previously engineered carbene transferase P411 M177L from the Arnold lab exhibited 

the highest initial activity, affording the pyrrolidine product in 4% yield and 82:18 e.r.. Through 

eight rounds of directed evolution, the final variant P411 M177L L75E Q437L A330Q M118V 

F77C S72W Q73A L436R (P411-PYS-5149) was identified, delivering the product in 66% yield 

and 91:9 e.r. (Figure 38A). P411-PYS-5149 not only showed an excellent scope for benzylic 

C(sp3)–H amination but also exhibited initial activity toward the amination of unactivated C(sp3)–

H bonds (Figure 38B). 
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Figure 38. 411 catalyzed nitrene transfer for enantiosynthesis of Chiral N-heterocyclic 

compounds. (A) Directed evolution of enantioselective alkyl nitrene transferase; (B) Selected 

substrate scope of enantioselective alkyl nitrene transfer, the experiments were conducted using 

suspensions of E. coli cells expressing P411-PYS-5149 (OD600 = 30); (C) Directed evolution of 

enantioselective aryl nitrene transferase, active-site illustration was made from the structure of 

5UCW (PDB ID).  
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Arnold and coworkers found that an intermediate variant P411-PYS-5148 from this 

pyrrolidine synthase lineage exhibited promising activity for the synthesis of indolines, although 

with moderate enantioselectivity. Introduction of the L437P mutation improved this 

enantioselectivity. Ultimately, the triple mutant P411-PYS-5148 L437P L181N (P411-PYS-5151) 

delivered the methylindoline product in 64% yield and 92:8 e.r. (Figure 38C). DFT calculations 

were also carried out to understand the activity differences between alkyl and aryl nitrene 

intermediates. Based on DFT results, for alkyl azide substrates, Fe nitrenoid generation is the rate-

limiting step in this C–H amination reaction. The activation barrier for nitrenoid formation (24.6 

kcal/mol) is much higher than that of the subsequent HAT step (13.5 kcal/mol). In contrast, for 

aryl azide substrates, the HAT step has a higher barrier (20.8 kcal/mol) than the nitrogen extrusion 

step (18.0 kcal/mol), due to the increased stability of the N-aryl-substituted Fe nitrenoid. Together, 

these results revealed the distinct activity of N-alkyl-substituted Fe nitrenoid intermediates, when 

compared to their N-sulfonyl and N-aryl congeners. 

In heme protein-catalyzed nitrene transfer reactions, the competing reduction of nitrene 

precursors catalyzed by the same protein catalyst represents a key issue in the optimization of 

synthetically useful processes.232 In 2024, Hilvert and co-workers investigated the myoglobin-

catalyzed azide reduction reaction, showing that this process proceeds via a reactive anionic 

ferrous intermediate (Figure 39A).239 Through combined UV-visible spectroscopy, Mössbauer 

spectroscopy, X-ray crystallography and computational studies, Hilvert shed light on this 

intermediate and proposed a catalytic cycle that diverges from the canonical nitrene transfer 

pathways (Figure 39B). They demonstrated that this azide reduction process is regulated by the 

amount of dithionite (Figure 39A). These findings highlight the importance of redox tuning of 
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heme proteins, further suggesting that modulating the reduction potential of myoglobin via protein 

engineering or cofactor modification could enhance its efficiency in nitrene transfer catalysis.  

 

Figure 39. Myoglobin-catalyzed azide reduction. (A) Chemoenzymatic cascade for Knorr pyrrole 

synthesis; (B) Proposed catalytic cycle for azide reduction using myoglobin. 

In addition to organic azides, hydroxylamine derivatives were also used as effective nitrene 

precursors in biocatalytic nitrene transfer reactions. In 2018, Ohnishi and co-workers discovered 

that a hydroxylamine ester is a key intermediate in natural biosynthetic pathways. They found that 

BezE, a cytochrome P450 from Streptomyces sp. RI18, facilitated the cyclization of geranylated 

p-acetoxyaminobenzoic acid via a nitrene transfer mechanism through N–O bond cleavage (Figure 

40A).240 In 2017, Ryan and co-workers reported that heme enzymes KtzT241 and PipS242 catalyzed 

N–N bond formation in the biosynthesis of piperazate natural products. Mechanistic studies 

suggested the involvement of a Fe nitrenoid intermediate generated from a hydroxylamine 

precursor (Figure 40B).   
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Figure 40. Biosynthetic processes involving heme-dependent enzyme-catalyzed nitrene transfer 

reactions starting from hydroxylamine derivatives. (A) Nitrene transferase BezE-catalyzed 

biosynthesis of benzastatin natural products; (B) Heme enzyme-catalyzed N–N bond formation in 

L-piperazic acid biosynthesis.  

Prior to the discovery of biosynthetic nitrene transfer processes using hydroxylamine 

derivatives, in 2019, Arnold reported that engineered cytochrome c variants could catalyze the 

enantioselective aminohydroxylation of styrenes using O-pivaloylhydroxylamine as the nitrene 

precursor (Figure 41).243 This work represents the first use of hydroxylamine derivatives as nitrene 

precursors in unnatural enzymatic amination reactions, demonstrating a wide range of new nitrene 

transfer reactions could be advanced using this class of nitrene precursors. 
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Figure 41. Rma cyt c-catalyzed enantioselective aminohydroxylation of styrenyl olefins. 

Based on their previous studies on P411-catalyzed amination of benzylic and allylic C(sp3)–

H bonds,244 in 2022, Arnold reported new P411 variants to allow for the asymmetric propargylic 

C(sp3)–H amination O-pivaloylhydroxylamine triflic acid as the aminating reagent (Figure 42).245 

P411-B4 was chosen as the template for directed evolution of propargylic C(sp3)–H aminating 

enzymes. Through eight rounds of iterative SSM and screening, beneficial mutations including 

E267D, N395C, G437Q, S72T, S438G, T269V, H266S and A74K were identified, culminating in 

PA-G8, which enabled the efficient enantioselective propargylic amination of 1-phenyl-1-butyne 

(Figure 42A and 42C). PA-G8 exhibited a broad substrate scope (>2,000 TTN, 82–96% ee). 

Propargylic substrates bearing a longer alkyl chain showed a slight decrease in catalytic activity 

but improved enantioselectivity (Figure 42B). 
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Figure 42. P411-catalyzed enantioselective amination of propargylic C(sp3)–H bonds. (A) 

Directed evolution of PA-G8; (B) Selected substrate scope of enantioselective propargylic C(sp3)–

H amination. Biocatalytic reactions were conducted using whole E. coli cells overexpressing P411-

PYS-5149 (OD600 = 20). (C) The illustration of active site was made from 5UCW (PDB ID). 
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methylcyclohexane, a substrate structurally similar to toluene, as a model substrate to 

simultaneously evaluate C(sp3)–H amination using O-pivaloyl-hydroxylammonium triflate and 

C(sp3)–H amidation using N-acetyl-O-pivaloyl hydroxylamine. A previously evolved allylic 

C(sp3)–H amination variant, APA6 (renamed uPA0),244 was identified as the most active 

biocatalyst. In parallel, the previously evolved benzylic amidation variant, iAMD5-Y263V 

(renamed uAMD0),247 exhibited the highest activity for C(sp3)–H amidation. Through nine rounds 

of directed evolution using both SSM and epPCR, ten beneficial mutations M177L, M188Q, 

E409S, A330H, L740H, L780P, M263L, L333M, D251N and L188C were introduced, resulting 

in uPA9 (Figure 43A and 43C). uPA9 catalyzed enantioselective C(sp3)–H amination with a nearly 

20-fold higher activity, 86% site selectivity, 8:1 diastereoselectivity and 93:7 enantioselectivity, 

furnishing (1R,3S)-methylcyclohexylamine as the major product. Furthermore, nine rounds of 

directed evolution led to uAMD9 carrying added beneficial mutations S438T, A74V, R226T, 

V74Q, S400A, G252V, M212V, N573T, S640E, Q74M, A388S, L233V, axial ligand mutation 

S400A and a premature stop codon I710∆. uAMD9 catalyzed the formation of (1S, 2R)-2-

methylcyclohexanamine acetate with 120 TTN, 91% site-selectivity, 7:1 d.r. and 85:15 e.r. (Figure 

43B and 43C). All the mutants in uAMD evolutionary trajectory exhibited excellent oxygen 

tolerance, with minimal differences in activity and selectivity under aerobic and anaerobic 

conditions. Moreover, uAMD9 was capable of amidating linear alkanes such as hexane and heptane, 

showing preferential regioselectivity for the C3 position, although with moderate 

enantioselectivity (Figure 43D). 
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Figure 43. P411-catalyzed enantioselective amination and amidation of unactivated C(sp3)–H 

bonds. (A) Directed evolution of uPA9 for the enantioselective amination of unactivated C(sp3)–
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H bonds; (B) Directed evolution of uAmD9 for the enantioselective amidation of unactivated 

C(sp3)–H bonds; (C) The illustration of active site was made from 5UCW (PDB ID); (D) Selected 

substrate scope of enantioselective unactivated C(sp3)–H amination and amidation. 

DFT calculations using an Fe porphyrin model complex revealed a higher energy barrier (∆G⧧ 

= 29.7 kcal/mol) for the HAT step in the amidation of unactivated C(sp3)–H bonds compared to 

benzylic C(sp3)–H systems (∆G⧧ = 22.0 kcal/mol). These findings indicated that the newly P411 

variants likely lowered the activation barrier for the challenging C(sp3)–H functionalization. This 

is consistent with MD simulations in uAMD8, which revealed stabilizing dispersion interactions 

and hydrophobic interactions through directed evolution. 

In 2024, Arnold and co-workers reported another P411-catalyzed enantioselective amination 

of tertiary C(sp3)–H bonds, enabling the formation of a-tetrasubstituted carbinamines bearing a 

minimally differentiated methyl-ethyl stereocenter (Figure 44).248 P411-TEA-5267 with three 

mutations (C324L, N395R, and G438V) relative to P411BPA244 was selected as the starting point 

for further engineering, furnishing the corresponding amine product with 20 TTN and 90% ee. 

Through iterative rounds of SSM and screening targeting active-site residues located on a-helices 

and flexible loops proximal to the heme cofactor, a septuple mutant P411-TEA-5267 M354E 

R395S A327V M177Y S72T Q403A S395V (P411-TEA-5274) was evolved, affording the desired 

product with 970 TTN and 92% ee. Interestingly, the S395V mutation located on the loop on the 

other side of the substrate binding pocket of the heme cofactor, led to a 4-fold increase in catalytic 

activity (Figure 44A and 44B).  
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Figure 44. P411-catalyzed enantioselective amination of tertiary C(sp3)–H bonds. (A) Directed 

evolution of tertiary C(sp3)–H aminase P411-TEA-5274; (B) The illustration of active site was 

made from 5UCW (PDB ID). 

P411-TEA-5274 also demonstrated excellent regioselectivity, enabling selective C(sp3)–H 

amination over competing C(sp2)–H amination and displaying preference for tertiary over primary 

C(sp3)–H systems. In addition to benzylic substrates, P411-TEA-5274 was compatible with allylic 

(70 TTN, 90% ee) and propargylic substrates (120 TTN, 67% ee) (Figure 45A). Finally, reactions 

using enantiopure (R)-sec-butylbenzene and (S)-sec-butylbenzene led to products with retention 

of configuration, but markedly different reactivities, indicating that P411-TEA-5274 is a kinetic 

resolution catalyst that preferentially converts the (R)-enantiomer (Figure 45B). 
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Figure 45. (A) Selected substrate scope; (B) P411-TEA-5274-catalyzed conversion of enantiopure 

(R)- or (S)-sec-butylbenzene.  

In 2024, Arnold and co-workers further reported a biocatalytic enantioselective amination of 

a-C(sp3)−H bonds of carboxylic acid esters using thermostable protoglobin variants (Figure 46).249 
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including F156L, I97T, F175L, I137T, T97V, H136N, K36E, C45A and K159E, resulting in a new 

a-ester aminase L-ApPgb-aEsA-G8, catalyzing the a-C−H amination of ethyl 2-(4-

fluorophenyl)acetate in 41% yield and 84% ee. Further incorporation of three additional mutations, 

including F73W, R90G and G60S, provided L-ApPgb-aEsA-G11, allowing the desired product to 

form in 50% yield and 96% ee. Starting from L-ApPgb-aEsA-G8, introducing the F93A mutation 

led to a new biocatalyst to provide the product in 19% yield and inverted enantiopreference, 

allowing enantiodivergent C−H amination. Two additional rounds of SSM and screening provided 

D-ApPgb-aEsA-G2, which produced the (R)-enantiomer in 62% yield and 72% ee (Figure 46A 

and 46B). Both L-ApPgb-aEsA-G11 and D-ApPgb-aEsA-G2 displayed a broad substrate scope 

toward phenylacetic acid esters bearing various substituents, as well as a,a-disubstituted 

carboxylic acid esters. These evolved mutants also exhibited detectable initial activity toward 

aliphatic carboxylic esters (Figure 46C). 
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Figure 46. ApPgb catalyzed enantioselective amination of protic a-C(sp3)–H bonds in carboxylic 

acid esters. (A) Directed evolution of L-ApPgb-aEsA and D-ApPgb-aEsA; (B) The illustration of 

active site was made from 7UTE (PDB ID); (C) Selected substrate scope; reactions were conducted 

using whole E. coli cells overexpressing ApPgb-aEsA (OD600 = 20 ± 3).  

Despite advances in heme protein-catalyzed nitrene transfer using hydroxylamine esters, the 
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part due to the high N–O bond dissociation energy of hydroxylamine. In 2023, Arnold and co-

workers developed novel protoglobin nitrene transferases to allow for the use of hydroxylamine 

as the aminating reagent (Figure 47).252 The protoglobin from Pyrobaculum arsenaticum 

(ParPgb)253 was engineered to catalyze benzylic C(sp3)–H amination of 4-ethylanisole and 

aminohydroxylation of 4-vinylanisole using hydroxylammonium chloride. Starting from ParPgb 

W59L V60Q (ParPgb 5209), directed evolution using SSM, epPCR and staggered extension 

process (StEP) recombination254 was carried out, leading to a new variant, ParPgb-HYA-5213, 

which harbors seven beneficial mutations Y57D, W59L, V60Q, V85I, I149F, V175A and Q177R. 

ParPgb-HYA-5213 exhibited a 160-fold improvement in yield compared to ParPgb W59L V60Q 

(Figure 47A and 47B). Upon further optimization of reaction conditions, the desired product was 

obtained in 95% yield and >99% ee using 0.5 mol% biocatalyst. This newly evolved variant also 

proved efficient in the conversion of a range of ethylbenzene substrates and in the 

aminohydroxylation of styrenes (Figure 47C). 
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Figure 47. ParPgb-catalyzed enantioselective C(sp3)–H amination and aminohydroxylation using 

hydroxylamine as a new aminating reagent in nitrene transfer. (A) Evolution trajectory of C–H 

aminase and promiscuity toward aminohydroxylation of 4-vinylanisole; (B) The illustration of 

active site was made from 2VEE (PDB ID); (C) Selected substrate scope of biocatalytic amination 

and aminohydroxylation. Reactions were conducted using 0.5 mol% purified ParPgb-HYA-5213. 
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representing a 180-fold improvement in apparent substrate affinity. Together, the kcat/KM value of 
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these variants increased from 0.1 mM−1 min−1 to 300 mM−1 min−1, shedding light on the origin of 

enhanced catalytic efficiency in evolved protoglobin variants. 

To elucidate the reaction mechanism, Arnold and coworkers conducted UV-vis spectroscopy 

using ParPgb-HYA-5213 (Figure 48).255 In the presence of a 200-fold excess of sodium dithionite, 

a prominent Soret band at 434 nm and a broad Q-band at 562 nm were observed, which were 

distinct from the resting state hemoprotein with bands at 413 nm and 543nm. Upon the addition of 

a 600-fold excess of hydroxylamine, a new UV-visible pattern with three characteristic bands at 

425, 530, and 560 nm was observed, indicating the formation of a new species, EredHA, from the 

reaction between Ered and NH2OH (Figure 48B). EredHA was found to decompose slowly to Eox 

under ambient conditions. However, in the presence of a substrate bearing a benzylic C(sp3)–H 

bond, EredHA rapidly converted to Eox, accompanied by the formation of the amination product 

(Figure 48C). 

Further studies with alternative aminating reagents including nitrite (NO2−), nitric oxide (NO), 

and nitroxyl (HNO) revealed the generation of new UV-vis absorption bands at 422 nm and 568 

nm, which are assigned to Ered. This Ered species decayed to Eox within 100 min for NO2− and NO 

and 30 min for HNO. Additionally, EPR spectroscopy revealed that Ered exhibited identical signal 

peaks in the presence of different aminating regents, including NO₂⁻, NO, HNO, and NH₂OH 

(Figure 48D). HR-ESI-MS analysis confirmed the formation of the desired aminated product when 

the spin-trapping regent DMPO was used (Figure 48E). Importantly, all the tested aminating 

reagents produced the aminated product with varying yields but consistently high 

enantioselectivity. Specifically, NH2OH provided 90.7% yield, NO2− provided 26.25% yield, NO 

provided 17.8%, yield and HNO provided 89.8% yield (Figure 48F). These findings suggest the 



 89 

involvement of a common iron-nitrosyl intermediate, which may further generate an iron-nitrenoid 

species within the enzyme active center to drive the amination reaction. 

 

Figure 48. Spectroscopic and mechanistic studies. (A) Key intermediates in heme protein-

catalyzed C(sp3)–H amination; (B) UV-vis spectra of ParPgb-HYA-5213 protein in its resting 

state (Eox) and reduced state (Ered) and the hydroxylamine adduct of the reduced protein (EredHA); 

(C) UV−vis spectra collected during the decomposition of EredHA to Eox, with isosbestic points at 

438 and 572 nm; (D) Experimental (black line) and simulated (red line) Q-band pseudomodulated 

EPR spectra of the putative {FeNO}7 species in a frozen solution at 15 K, obtained by mixing Ered 

with different aminating reagents including NH2OH, NO2−, NO, HNO, 15NH2OH, and 15NO2−. 

*Indicates a background signal from the resonator; (E) HR-ESI-MS spectra of DMPO adducts 
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obtained by treating Ered and DMPO with NH2OH; (F) Biocatalytic nitrene transfer to the benzylic 

C−H bond of p-ethylanisole with different aminating sources using purified 0.5 mol% ParPgb-

HYA-5213. DMPO = 5,5-Dimethyl-1-pyrroline N-oxide. Adapted with permission from J. Am. 

Chem. Soc. 2024, 146, 20556–20562. Copyright 2024 American Chemical Society. 

5.2 Metalloprotein-catalyzed C–H amidation 

Compared to N-sulfonyl Fe nitrenoids and unprotected Fe nitrenoid, N-acyl Fe nitrenoids  are 

prone to Curtius rearrangement and thus remain underexplored in biocatalytic nitrene 

transfer.256,257 To address this challenge, in 2021, Arnold and co-workers developed an 

intermolecular benzylic C(sp3)–H amidation by directed evolution and substrate walking, 

providing a series of P411 variants that catalyzed benzylic C(sp3)–H amidation using acylnitrene 

precursors (Figure 49).247 iAMD4 containing four beneficial mutations was evolved after four 

rounds of SSM and screening, enabling the benzylic amidation of 4-ethylanisole with 3-phenyl-N-

(pivaloyloxy)nitrenoids in 475 TTN and 95:5 e.r. (Figure 49A, reaction I). Activity enhancement 

was mainly attributed to V328T near the heme cofactor. However, this variant exhibited very low 

activity for the benzylic amidation of ethylbenzene with N-(pivaloyloxy)acetamide (Figure 49A, 

entry 5). Subsequent introduction of C78L and S438Q mutations close to the heme cofactor 

provided iAMD6, which demonstrated a nearly 100-fold increase in activity toward reaction II. 

These mutations also abolished the activity for reaction I. Further engineering resulted in the final 

variant iAMD9, giving rise to the amide product in 57% yield, 1,580 TTN and >99% ee (Figure 

49A). iAMD9 also showed a good substrate scope (Figure 49B). Using iAMD8, Arnold 

investigated the effect of different nitrene precursors, including N-hydroxyacetamide, O-pivaloyl, 

O-acetate, and dioxazolone using 4-ethylanisole as the model substrate (Figure 49C). Their results 

revealed that the O-pivaloylhydroxylamine exhibited a 2–4-fold higher reactivity compared to 
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other related nitrenoids precursors including the O-acetylhydroxylamine and dioxazolone, whereas 

the free N-hydroxyacetamide only provided a trace amount of product. 

 

Figure 49. P411-catalyzed enantioselective amidation of benzylic C(sp3)–H bonds. (A) Directed 

evolution for C(sp3)–H amidation using reactions I and II as the model system. Active-site 

illustration was made from 5UCW (PDB ID); (B) Selected substrate scope; (C) Relative activity 

of 4-ethylanisole in iAMD8-catalyzed C(sp3)–H amidation with different nitrene precursors.  

In 2023, Fasan and co-workers reported a myoglobin-catalyzed intramolecular C(sp3)–H 

amidation mediated by N-acyl Fe nitrenoid species generated from dioxazolones, a class of easily 

accessible acyl nitrene precursor,258,259 allowing the enantioselective synthesis of b-, g-, and d-
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lactams (Figure 50).260 Using 3-phenylpropyldioxazolone as the substrate, the sperm whale 

myoglobin H64V variant (Mb H64V) afforded the desired lactam product in 2% yield and 96% ee. 

In contrast, other heme proteins evaluated, including P450s, cytochromes c, peroxidases, and wt 

Mb exhibited no activity. Given the key effects of the H64 residue in carbene261 and nitrene229 

transfer activity, Fasan and coworkers further evaluated their in-house collection of Mb variants 

bearing mutation at residue 64. Mb H64V V68A (Mb*) previously evolved by the same group 

from enantioselective carbene transfer,261 was identified as the optimal biocatalyst, affording the 

lactam product in 50% yield and >99% ee, despite the formation of 40% reduced byproduct and 

10% g-lactone as side products. Additional variants bearing mutations at residues 64 and 68 were 

next studied. Mb H64A V68A conferred no enantioselectivity, indicating that the protein is highly 

sensitive to mutations at these sites (Figure 50A and 50B). Through further optimization of organic 

co-solvent and reaction buffer, the chemoselectivity was improved (75% yield and >99% ee). 

Screening of myoglobin variants bearing active-site mutations and one additional round of SSM 

afforded Mb L29T H64T V68L (MbTTL), providing the opposite enantiomer ent-lactam with 91% 

ee. Notably, both Mb* and MbTTL exhibited good substrate tolerance for the enantioselective 

synthesis of g-lactams, while Mb* also showed high activity and selectivity in the formation of b- 

and d-lactams. In g-lactam formation, the newly evolved Mb* show higher activity for the 

substrates bearing an electron-donating group, whereas in b-lactam formation, a different trend 

was observed (Figure 50C). 
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Figure 50. Myoglobin-catalyzed enantioselective intramolecular C(sp3)−H amidation using 

dioxazolones. (A) Directed evolution of Mb*; (B) The illustration of active site was made from 

1JW8 (PDB ID); (C) Selected substrate scope for the biocatalytic amination for b-lactams, g-

lactams and d-lactams; reactions were conducted using 2 mol% purified Mb variants.  

In 2024, Arnold and co-workers extended their biocatalytic enantioselective C(sp3)−H 

amidation to organosilane substrates (Figure 51).262 A cytochrome P450 variant, uAmD5-5117, 

which was previously evolved for the amidation of unactivated C(sp3)−H bonds,246 was the only 

enzyme displaying initial activity in this enantioselective amidation of benzyltrimethylsilane, 

albeit with a very low activity (0.1% yield). Through four rounds of epPCR and recombination by 

staggered extension process (StEP), eight beneficial mutations, including T328A, N573D, E839G, 

R47H, E143K, F77S, F662C and K670I were introduced to uAmD5-5117, resulting in a 34-fold 

increase in activity. Although the simultaneous truncation of both the FAD and FMN reductase 

domains reduced enzyme activity, truncation of the FAD domain enhanced catalytic efficiency as 
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well as protein expression. By combining this truncation with the introduction of a key mutation 

T327P, a new variant, P411-SIA-5289 was obtained, delivering the product in 111 TTN and 99% 

ee. Finally, three additional beneficial mutations S70M, V263L, and T436A were introduced into 

P411-SIA-5289 to provide P411-SIA-5291, providing 34% yield and 99% ee. This represented a 

430-fold improvement in catalytic activity (Figure 51A and 51C). P411-SIA-5291 tolerated a 

range of benzylsilane substrates. When substrate possessing an olefin moiety was applied, the 

P411-SIA-5291 catalyzed benzylic a-Si−C(sp3)−H amidation preferentially over aziridination 

(Figure 51B). 
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Figure 51. P411-catalyzed enantioselective amination of a-Si–C(sp3)–H bonds. (A) Directed 

evolution of P411-SIA-5291; Active-site illustration was made from 5UCW (PDB ID); (B) 

Selected substrate scope.  

In 2025, Fasan and co-workers reported engineered myoglobins to catalyze the intramolecular 

C(sp3)–H amination of carbamate derivatives, allowing the enantioselective construction of 

oxazolidinones (Figure 52).263 Using Mb*, a range of phenyl ethyl carbamate substrates bearing 

different N-protecting groups, such as N-hydroxy, N-pivaloyl, N-benzoyl and N-tosyl were 

evaluated. All the tested substrates showed measurable initial activity and excellent 

enantioselectivity, within the N-benzoyl group providing the highest initial activity (Figure 52A). 

Screening of myoglobin variants led to a triple mutant Mb H64V V68A Y146F, delivering the 

desired product in 82% yield and 99:1 e.r.. On the other hand, Mb F43V I107E produced the 

opposite enantiomer in 48% yield and 92:8 e.r., allowing enantiodivergent access to 

oxazolidinones. Time course experiments using the model substrate were performed to compare 

Mb H64V V68A Y146F with Fasan’s Mb H64V V68A variant (Mb*). These studies revealed 

improved chemoselectivity favoring the desired amidation product, indicating that the Y146F 

mutation suppresses unproductive electron transfer (Figure 52B).232 
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Figure 52. Mb-catalyzed intramolecular enantioselective amination of carbamate derivatives. (A) 

Evaluation of different carbamate derivatives; (B) Represent substrate scope of the biocatalytic 

enantiodivergent amination; MbVAF = Mb H64V V68A Y146F, MbVE = Mb F43V I107E; the 

illustration of active site was made from 1MBI (PDB ID).  

In 2019, Arnold and co-workers engineered a nonheme ethylene-forming enzyme from 

Pseudomonas savastanoi (PsEFE)264 to perform nitrene transfer reactions. These results constitute 

the first examples of nonheme Fe enzyme catalyzed nitrene transfer (Figure 53).265 They found the 

co-substrate 2-oxoglutarate in the native reaction could be replaced by N-oxalylglycine (NOG) and 

acetate in the unnatural aziridination reaction, leading to a 7.75-fold and 6.72-fold increase in 

activity, respectively (Figure 53A). Furthermore, a similar trend was also observed in PsEFE-

catalyzed intramolecular C(sp3)–H amidation reaction (Figure 53B). 
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Figure 53. Ethylene forming enzyme (EFE)-catalyzed enantioselective nitrene transfer reaction. 

(A) PsEFE-catalyzed aziridination; (B) PsEFE-catalyzed intramolecular C(sp³)–H amidation; 

PsEFEVHMM = PsEFE R171V R227H F314M C317M, PsEFEVMM = PsEFE R171V F314M 

C317M. (C) The illustration of active site was made from 6CBA (PDB ID). 
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Parallel to this study from the Arnold lab, in 2020, Fasan and coworkers reported the use of 

Rieske dioxygenases, including toluene dioxygenase (TDO),266 naphthalene dioxygenase 

(NDO),267,268 and chlorobenzene dioxygenase (CBDO),269 for the intramolecular C(sp3)–H 

amidation,270 achieving good chemoselectivity of the desired amidation over other undesired 

pathways. Among these, NDO-catalyzed C–H amidation showed a good oxygen tolerance, 

affording 45% yield and over 90% selectivity on a one-gram scale for the conversion of 2,4,6-

triisopro-pylbenzensulfonyl azide using E. coli JM109 (DE3) harboring NDO cells in a 5 L 

bioreactor.   

Fasan and coworkers also evaluated various types of other nonheme iron enzymes, including 

Rieske and Fe/aKG-dependent dioxygenases and halogenases (Figure 54). They found that the 

presence of aKG had varying effects on the catalytic activity of aKG enzymes in this unnatural 

C(sp3)–H amidation. Among these nonheme enzymes tested, H6H271 and WelO5272 exhibited 

detectable activity. These results demonstrated the potential nonheme Fe enzymes to facilitate 

these nitrene transfer reactions.  
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Figure 54. Nonheme Fe enzyme-catalyzed intramolecular C(sp3)–H amidation. Condition A: no 

additives, condition B: aKG, ascorbate and Fe salts were added.  

In 2025, our lab reported the use of nonheme Fe enzymes for enantioselective non-canonical 

amino acid synthesis via a 1,3-nitrogen migration reaction (Figure 55).273 Inspired by the important 

work from Meggers,274,275 we capitalized on the availability of multiple open coordination sites of 

nonheme Fe to allow for the simultaneous binding of two substrate-derived fragments, allowing 

this nitrogen migration process to occur with excellent efficiency and enantioselectivity. In this 

proposed catalytic cycle, the activation of the azanyl ester substrate with nonheme Fe leads to an 

Fe nitrenoid with a bound carboxylate. This intermediate subsequently undergoes an 

intramolecular 1,5-hydrogen atom transfer, providing an iron bound a-carboxylate radical. 

Subsequent radical rebound between the Fe-bound nitrogen group species and the a-carboxylate 

radical facilitates the enantioselective C–N bond formation (Figure 55). 
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Figure 55. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration reaction. (A) 

Biocatalytic enantioselective synthesis of non-canonical amino acids; (B) Proposed catalytic cycle. 

We found that 1-aminocyclopropane-1-carboxylic acid oxidase from Petunia hybrida 

(ACCO),217 previously studied by our lab for enantioselective fluorine atom transfer,210 resulted 

in the formation of N-Boc-L-phenylglycine in good initial activity and enantioselectivity. 
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structure and an evolutionarily related nonheme Fe enzyme with ACCO, enable a 
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catalyzed the enantioselective amination of prochiral substrates with complementary 

enantiopreference, enabling highly enantioselective synthesis of either D- or L- arylglycines. 
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ACCONim2 (ACCO I184A K158T K172V L186V G156E R175P V236K G173V F250L) allowed 

the enantioconvergent conversion of racemic azanyl ester substrates with a tertiary C(sp3)–H bond 

into a,a-disubstituted a-amino acids which are challenging to synthesize via conventional 

biocatalysis methods based on reductive amination or transamination. ACCONim3 (ACCONim2 

A248T S246F A180F G156T) catalyzed the asymmetric construction of challenging methyl-ethyl 

stereocenters via enantioconvergent C(sp3)–H amination (Figure 56A). ACCONim1, IPNSNim and 

ACCONim2 demonstrated a broad substrate scope for the enantioselective synthesis of a-

monosubstituted and a,a-disubstituted non-canonical amino acids. Moreover, this biocatalytic 

reaction could be carried out on a gram scale using cell-free lysate prepared from 0.5 L expression 

culture (Figure 56B). 
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Figure 56. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration. (A) Directed 

evolution of 1,3-nitrogen migratase ACCONim1 and ACCONim2 for the enantioselective synthesis 
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of a-substituted and a,a-disubstituted a-amino acids. The illustration of active site was made from 

1WA6 (PDB ID); (B) Directed evolution of IPNSNim for the enantiodivergent synthesis of 

arylglycines. The illustration of active site was made from 1BK0 (PDB ID); (C) Selected substrate 

scope of ACCONim1, ACCONim2, ACCONim3 and IPNSNim. Reactions were conducted using cell-

free lysate of ACCO (OD600 = 5–10) or whole E. coli cells overexpressing IPNS (OD600 = 5–10).  

In our kinetic isotope effect (KIE) studies, for engineered ACCONim1 a kH/kD value of (5.5 ± 

0.3) was observed with azanyl ester and azanyl ester-d2, indicating that the C(sp3)–H cleavage via 

1,5-hydrogen atom transfer is irreversible and is involved in the rate-determining step. By contrast, 

the engineered enantiopreference-switching migratase IPNSNim gave a kH/kD value of (1.11 ± 0.09), 

suggesting a shift in rate-determining step between these two engineered nonheme Fe enzymes. 

(Figure 57A). Furthermore, intramolecular KIE studies with enantioenriched (R)-azanyl ester-d1 

and (S)-azanyl ester-d1 were carried out using ACCONim1, IPNSNim and ACCONim2. A similar kH/kD 

value was observed for the enantioselective nitrogen migratase ACCONim1, providing a near-zero 

DGenantioselectivity based on the free energy analysis of the HAT process (Figure 57B).281 This finding 

suggests that ACCONim1 evolved for the secondary C(sp3)–H amination is almost non-

enantioselective for hydrogen atom transfer. In contrast, for ACCONim2, a large of kH/kD value of 

9.3 ± 0.8 was observed for (R)-azanyl ester-d1, whereas a smaller value of 2.1 ± 0.1 was detected 

for (S)-azanyl ester-d1 (Figure 57C). This disparity corresponds to a modest DGenantioselectivity and an 

e.r. of 67:33, suggesting a small degree of enantioselectivity during the HAT step. Strikingly, 

IPNSNim showed a highly enantioselective HAT step, with a kH/kD value of 24 for (R)-azanyl ester-

d1 and only 0.11 for (S)-azanyl ester-d1corresponding to a significant DGenantioselectivity and an e.r. of 

94:6 (Figure 57D). Computational studies using density functional theory (DFT) calculations and 

molecular dynamics (MD) simulations showed that IPNS and ACCO adopt two different substrate 
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binding modes, including a nitrene trans-to-His mode and a nitrene-trans-to-carboxylate mode, 

respectively. Classical MD simulations shed light on important interactions between the substrate 

and active-site residues that control the substrate binding mode and enantioselectivity. We note 

that important related studies from Pan using the streptavidin-biotin technology282 has led to ArMs 

to allow for the same enantioselective nitrogen migration reactions.283  

 

Figure 57. Mechanistic studies. (A) KIE determined by independently measured initial rates of 1a 

and 1a-d2.; (B) Intramolecular KIE studies with enantiopure (R)-azanyl ester-d1 and (S)-azanyl 

ester-d1 using ACCONim1; (C) Intramolecular KIE studies with enantiopure (R)-azanyl ester-d1 and 

(S)-azanyl ester-d1 using ACCONim2; (C) Intramolecular KIE studies with enantiopure (R)-azanyl 

ester-d1 and (S)-azanyl ester-d1 using IPNSNim; (E) Dissecting the KIE and enzymatic enantio-

induction effects by quantitative free energy analysis.  

D H
O

O

Ph

D NHBoc
OH

O

Ph

(S)-azanyl ester-d1 (R)-PhG-d1

H NHBoc
OH

O

Ph
+

87%, >99:1 e.r. 13%, >99:1 e.r.

H D
O

O

Ph

D NHBoc
OH

O

Ph

(R)-azanyl ester-d1 (R)-PhG-d1

H NHBoc
OH

O

Ph
+

85%, >99:1 e.r. 15%, >99:1 e.r.

∆GKIE ∆Genantioselectivity

ACCONim1

ACCONim2

–1.06 kcal/mol –0.04 kcal/mol

–0.86 kcal/mol –0.43 kcal/mol

e.r. of 1,5-HAT

52:48

67:33

NHBoc ACCONim1

ACCONim1NHBoc

D H
O

O

Ph

D NHBoc
OH

O

Ph

(S)-azanyl ester-d1 (R)-PhG-d1

H NHBoc
OH

O

Ph
+

90%, >99:1 e.r. 10%, >99:1 e.r.

H D
O

O

Ph

D NHBoc
OH

O

Ph

(R)-azanyl ester-d1 (R)-PhG-d1

H NHBoc
OH

O

Ph
+

68%, >99:1 e.r. 32%, >99:1 e.r.

NHBoc ACCONim2

ACCONim2
NHBoc

∆GKIE + ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(S)-azanyl ester-d1)
= –RTln(kH/kD) = –1.29 kcal/mol

(A) (B)

(C)

(E)

(R)-PhG

(R)-PhG(R)-PhG

(R)-PhG

∆GKIE – ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(R)-azanyl ester-d1)
= –RTln(kH/kD) = –1.02 kcal/mol

∆GKIE – ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(S)-azanyl ester-d1)
= –RTln(kH/kD) = –0.43 kcal/mol

∆GKIE + ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(S)-azanyl ester-d1)
= –RTln(kH/kD) = –1.10 kcal/mol

X X

NHBoc
O

O

Ph

X NHBoc
OH

O

Ph

ACCONim1 : kH/kD = 5.5 ± 0.3, HAT is rate-determining
IPNSNim : kH/kD = 1.1 ± 0.09, HAT is not rate-determining

X = H
X = D

X = H
X = D

IPNSNim or ACCONim1

D H
O

O

Ph

BocHN D
OH

O

Ph

(S)-azanyl ester-d1 (S)-PhG-d1

BocHN H
OH

O

Ph
+

10%, 96:4 e.r. 90%, 96:4 e.r.

H D
O

O

Ph

BocHN D
OH

O

Ph

(R)-azanyl ester-d1 (S)-PhG-d1

BocHN H
OH

O

Ph
+

96%, 96:4 e.r. 4%, 96:4 e.r.

NHBoc IPNSNim

IPNSNim
NHBoc

∆GKIE – ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(S)-azanyl ester-d1)
= –RTln(kH/kD) = 1.33 kcal/mol

(D)

(S)-PhG

(S)-PhG

∆GKIE + ∆Genantioselectivity = ∆∆G⧧H/D(HAT-(R)-azanyl ester-d1)
= –RTln(kH/kD) = –1.88 kcal/mol

IPNSNim –0.29 kcal/mol –1.59 kcal/mol 6:94



 105 

After our initial report,279 Xiao/Huang284 and Zhao285 also reported nonheme Fe enzymes for 

nitrogen migration using azanyl esters with a different, methoxycarbonyl N-protecting group 

(Figure 58). In Xiao and Huang’s work, a triple mutant of isopenicillin N synthase from Aspergillus 

nidulans276–278 (AniIPNS Y91G I187H T331V) was engineered to provide N-COOMe-D-

phenylglycine  in 72% yield and 98% ee with a TTN of 1281 (Figure 58A). In Zhao and Chen’s 

work, a double mutant of leucoanthocyanidin dioxygenase from Arabidopsis thaliana286 (AtLDOX 

F304L T239S) was engineered to afford the same product in 81% yield and 97:3 e.r. with a TTN 

of 850 (Figure 58B). We also note that important related studies from Pan using the streptavidin-

biotin technology282 has led to ArMs to allow for the same enantioselective nitrogen migration 

reactions.283 These excellent contributions further highlight the versatility of non-heme iron 

enzymes in enabling the non-native transformations. 
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Figure 58. Nonheme Fe enzyme-catalyzed enantioselective 1,3-nitogen migration using 

methoxycarbonyl group protected azanyl esters. (A) Directed evolution of IPNS-GHV. The 

illustration of active site was made from 1W05 (PDB ID); (B) Directed evolution of AtLDOX_LS. 

The illustration of active site was made from 1GP5 (PDB ID); (C) Selected substrate scope of 

IPNS-GHV and AtLDOX_LS. Reactions were conducted using whole E. coli cells overexpressing 

IPNS (OD600 = 30) or cell-free lysate of AtLDOX_LS (OD600 = 50).  
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Inspired by olefin difunctionalization using Fe-nitrene intermediates,287–290 in 2025, Huang291 

and Jia292 each reported nonheme Fe enzyme-catalyzed enantioselective aminoazidation of alkenes. 

In Huang’s work, a septuple mutant of 4-hydroxymandelate synthase from Amycolatopsis 

orientalis (AoHMS Q305H T214L L303A F330T V203C I335W G331W, denoted AoHMSAmAz) 

was engineered to afford the (R)-aminoazidation product in 44% yield and 95.5:4.5 e.r. using p-

methoxystyrene as the substrate and O-pivaloylhydroxylamine triflic acid (PONT) as the nitrene 

precursor (Figure 59A). Jia engineered a quintuple mutant of Bacillus subtilis quercetin 2,3-

dioxygenase (BsQueD ∆K174 S116R T118A I71L L51V, denoted BsQueDAF), allowing (S)-2-

aminoazidation product to form in 9.6% yield and 96:4 e.r. (Figure 59B). Upon further 

optimization of reaction conditions, whole-cell transformation afforded the product in 49%, 174 

TTN and 97:3 e.r.. Engineered BsQueD tolerated styrenes bearing electron-donating or electron-

withdrawing substituents (Figure 59C and 59D). In addition, BsQueD also catalyzed thiocyanation 

and isocyanation, with the resulting products being intramolecularly trapped by amines to furnish 

the corresponding chiral 2-aminothiazolines and 2-aminooxazolines (Figure 59E).  
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Figure 59. Nonheme Fe enzyme-catalyzed enantioselective aminative difunctionalization of 

alkenes. (A) Directed evolution of AoHMS. The illustration of active site was made from 2R5V 

(PDB ID); (B) Directed evolution of BsQueD. The illustration of active site was made from 1Y3T 

(PDB ID); (C) Selected substrate scope of AoHMSAmAz. Reactions were conducted using purified 
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enzymes (1–2 mol%); (D) Selected substrate scope for aminoazidation; reactions were conducted 

using whole E. coli cells overexpressing BsQueDAF (OD600 = 32); (E) Selected substrate scope for 

synthesis of chiral 2-aminothiazolines and 2-aminooxazolines; reactions were conducted using 

whole E. coli cells overexpressing BsQueDAF (OD600 = 32). 

6. Transformations involving metal carbenoids with radical character on the carbenoid 

carbon  

Transition-metal carbenoids represent versatile intermediates underlying a variety of 

synthetically useful transformations.293–295 Since the pioneering work from the Arnold lab 

documented the first examples of heme protein-catalyzed cyclopropanation in 2013,296 a wide 

range of heme protein catalysts have been developed to enable diverse carbene transfer 

reactions,60–63 including C–H insertion,297 N–H insertion,298 Si–H insertion,299 B–H insertion,300 

cyclopropanation,301 cyclopropenation,302 bicyclobutanation303, and various rearrangement 

reactions.304 These advances prior to 2020 have been comprehensively reviewed elsewhere.60–63 

Previous studies showed that these Fe carbenoid species can be described as Fe(III)-bound carbon-

centered radical, as their open shell singlet (OSS) state were shown to be the most stable spin state. 

Herein, we review carbene transfer reactions proceeding through a stepwise radical mechanism, 

with an emphasis on recent studies that appeared after 2021. Carbene transfer reactions that are 

not proposed to proceed via a stepwise radical mechanism are not covered by this review, although 

it is also possible for these processes to involve radical intermediates. We refer our readers to other 

excellent recent reviews that focus on biocatalytic carbene transfer chemistry.60–63  
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6.1 Heme protein-catalyzed cyclopropanation 

In 2022, Arnold and co-workers developed a biocatalytic carbene transfer using diazirines305 

as carbene precursors, expanding the scope of biocatalytic carbene transfer beyond the use of diazo 

compounds (Figure 60).306 Using 3-phenyl-3H-diazirine lacking an electron-withdrawing a-

substituent, a protoglobin variant ApePgb W59L Y60V F145Q catalyzed the enantioselective 

cyclopropanation of acrylate in <1% yield with a 2:1 cis:trans ratio. Subsequent directed evolution 

led to the introduction of seven beneficial mutations, including V63R, I149L, C45G, C102S, V60A, 

G61V and F175L, resulting in ApePgb GLAVRSQLL. This evolved ApePgb variant delivered the 

cyclopropane product in 28% yield, with a 6:1 d.r. and 86:14 e.r., representing a >150-fold 

improvement relative to ApePgb LVQ (Figure 60A and 60B). ApePgb GLAVRSQLL also 

catalyzed N–H insertion and Si–H insertion reactions with varying activities (Figure 60C). 
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Figure 60. ApePgb-catalyzed enantioselective cyclopropanation using diazirines as the carbene 

precursors. (A) Evolution trajectory of ApePgb GLAVRSQLL for cyclopropanation; (B) The 

illustration of active site was made from 7UTE (PDB ID); (C) Substrate promiscuity of the new 

evolved ApePgb GLAVRSQLL variant using diazirine as the carbene precursor. Adapted with 

permission from J. Am. Chem. Soc. 2022, 144, 8892–8896. Copyright 2022 American Chemical 

Society. 
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Trapping experiments using dibenzocyclooctyne revealed that a [3+2] cycloaddition adduct307 

formed in the presence ApePgb GLAVRSQLL, suggesting that a diazo compound was likely 

generated in situ (Figure 61A). Computational studies308 suggested that the diazo intermediate 

likely arises from an enzyme-catalyzed isomerization. Additionally, the cyclopropanation may 

proceed via a stepwise diradical mechanism (Figure 61B). 

 

Figure 61. Mechanistic studies. (A) Reaction of dibenzocyclooctyne amine with 

phenyldiazomethane. (B) Proposed mechanism for the biocatalytic carbene transfer reaction using 

diazirines.  
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upon the previous work from the Arnold lab on the synthesis of cis-cyclopropanes from 

unactivated alkanes and ethyl diazoacetate, a protoglobin from Aeropyrnum pernix250 was found 

to catalyze the formation of cis-product with 110 TTN and 87:13 d.r.. Subsequent rounds of SSM 

and screening introduced two beneficial mutations, W59L and Y60Q, into ApePgb, resulted in a 

3.8-fold improvement in activity. ApePgb Y60G F73W furnished trans-product with 20 TTN. The 

key mutations controlling stereoselectivity could be transferred to homologous proteins to allow 

similar diastereocontrol to be achieved. For example, a protoglobin from Methanosarcina 

acetivorans (MaPgb)311,312 with 57% sequence identify of ApePgb showcased the utility of transfer 

of mutations. MaPgb LQ afforded the cis-product in 360 TTN and 98:2 d.r., while MaPgb GW 

produced the trans-product in 270 TTN and 92:8 d.r. (Figure 62A–C). MaPgb LQ catalyzed the 

cyclopropanation of diverse alkenes, including electron-rich and electron-deficient styrenes, 

unactivated alkenes and heteroatom-substituted alkenes (Figure 62D).  

DFT calculations indicate that the reaction of benzyl acrylate and trifluorodiazoethane 

proceeds via a radical-mediated stepwise mechanism, due to the strong electron-withdrawing 

effects of the CF3 group on the Fe carbenoid intermediate and the electron-deficient nature of 

acrylates used. C–C bond formation resulting from the addition of Fe carbenoid to the C=C double 

bond is rate-determining.  
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Figure 62. Protoglobin-catalyzed stereoselective cyclopropanation using a-trifluoromethyl diazo 

substrates. (A) Diastereo-divergent biocatalytic cyclopropanation of benzyl acrylate; (B) 

Cyclopropanation of benzyl methacrylate; (C) The illustration of active site of MaPgb was made 

from 2VEB (PDB ID). (D) Selected substrate scope of ApePgb LQ-catalyzed cyclopropanation 
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using a,a,a-trifluorodiazoethane. The absolute stereochemistry of cyclopropane products was not 

determined. 

For benzyl methacrylate, all variants provided the cis-cyclopropane as the major product 

(Figure 62B). Restrained MD simulations in MaPgb LQ and GW variants suggest that key active-

site residues control the orientation of the Fe carbenoid intermediate. For both benzyl acrylate and 

benzyl methacrylate, MaPgb LQ favored pro-cis near-attack conformations due to preorganization 

and steric constraints. In contrast, MaPgb GW adopted an alternative Fe carbenoid orientation with 

benzyl acrylate, leading to trans-selectivity. With the bulkier benzyl methacrylate, steric hindrance 

forced the GW variant to adopt pro-cis conformations, consistent with the observed shift in 

diastereoselectivity.  

In 2024, Fasan and co-workers reported a myoglobin-catalyzed intramolecular 

cyclopropanation of benzothiophenes and related heterocycles to synthesize the sp3-rich tetracyclic 

compounds (Figure 63).313 A myoglobin variant bearing five beneficial mutations H64F V68G 

I107A F43I F46L (MbBTIC-C2) converted benzo[b]thiophen-2-ylmethyl 2-diazoacetate into the 

desired product in 75% yield and >99% ee. The introduction of H64V and V68G mutations 

improved the enantioselectivity, while I107A, F43I and F46L enhanced catalytic activity by 

approximately 20-fold (Figure 63A and 63C). Although MbBTIC-C2 demonstrated good substrate 

compatibility for the cyclopropanation of a C2-functionalized benzothiophene, it was ineffective 

in the transformation of C3-functionalized benzothiophene. Further Mb variant screening led to 

Mb H64V V68A, allowing the product to form in 23% yield and >99% ee. Further protein 

engineering provided Mb H64V V68A L29F I107L (MbBTIC-C3) as the optimal carbene transferase 

for the cyclopropanation of C3-functionalized benzothiophenes (Figure 63B and 63C). After 

further optimization of reaction conditions, 3-substituted thiophene derivatives were transformed 
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into tetracyclic products in 99% yield and >99% ee under 4 °C with slow addition of the substrate. 

Both MbBTIC-C2 and MbBTIC-C3 exhibited excellent enantioselectivity and functional group tolerance 

in the stereoselective cyclopropanation of benzothiophene or benzofuran substrates bearing diazo 

ester groups at the C2 or C3 position (Figure 63D).  
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Figure 63. Myoglobin-catalyzed enantioselective intramolecular cyclopropanation of benzofurans 

and benzothiophenes. (A) Directed evolution of MbBTIC-C2 for cyclopropanation of C2-
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functionalized benzothiophene; (B) Directed evolution of MbBTIC-C3 for cyclopropanation of C3-

functionalized benzothiophene; (C) The illustration of active site was made from 1JW8 (PDB ID); 

(D) Selected substrate scope using 0.8 mol% purified enzyme.  

In 2023, Arnold and co-workers reported a P411-catalyzed kinetic resolution 

cyclopropanation, enabling the stereoselective synthesis of 1,2,3-polysubstituted cyclopropanes 

and the recovery of (E)-enol acetates from a mixture of (Z/E)-olefins (Figure 64).314 They initiated 

the reaction using a 1:1 mixture of (Z/E)-butyrophenone-derived enol acetate and a-

diazoacetonitrile. A previously evolved variant for intramolecular C(sp3)–H nitrene insertion, 

P411-INC-5182,83 was identified as the best active biocatalyst in the initial screen, affording the 

cyclopropane product in 9% yield and 68 TTN. Further screening of the P411 variants led to the 

identification of P411-INC-5182 I327P Y263W, which provided the product in 33% yield and 230 

TTN. Through iterative rounds of SSM and screening, two additional beneficial mutations, Q437V 

and N70S, were introduced, generating P411-INC-5185. This final variant delivered the 

cyclopropane product in 50% yield, 540 TTN, >99:1 d.r. and 95% ee, while the remaining olefin 

exhibited a Z/E ratio of 2:98 (Figure 64A and 64B).  
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Figure 64. P411-catalyzed enantioselective synthesis of 1,2,3-polisubstituted cyclopropanes. (A) 

Directed evolution of cyclopropanase P411-INC-5185; (B) The illustration of active site was made 

from 5UCW (PDB ID). 

When stereochemically pure (Z)-butyrophenone-derived enol acetate was used as the 
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65A). Arnold and coworkers discovered that the W263M mutant of P411-INC-5185 (P411-INC-
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cyclopropane but also the (E)-butyrophenone-derived enol acetate into a-alkylated ketone (Figure 
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Figure 65. Mechanistic studies. (A) P411-INC-5185-catalyzed enantioselective cyclopropanation 

of a mixture of (Z/E)-butyrophenone-derived enol acetate. (B) P411-INC-5186-catalyzed 

cyclopropanation of (Z)-butyrophenone-derived enol acetate and a-alkylation of (E)-substrate. 
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the (S)-configured stereocenter. (E)-Int-III is preferably converted to the a-alkylated product 

(Figure 66). 

 

Figure 66. Proposed mechanism of P411-catalyzed enantioselective synthesis of 1,2,3-

polisubstituted cyclopropanes. 
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demethylation/desaturation/N–H insertion products. Directed evolution of this starting variant 

furnished CYP119-168 (CYP119 F153G T213A V254W C317S) and CYP119-235 (CYP119 

F153G L205W T213A V254A C317S), favoring the α- and β-C–H functionalization of the model 

substrate, respectively (Figure 67A and 67B). A range of indolines with different substituents were 

converted to the corresponding products with excellent TTN and enantioselectivities using intact 

E. coli cells harboring engineered CYP119. C–H insertion at the N-Me group was also observed 

with CYP119-235 for 5-methylated and 6-methylated indolines. Fasan and Zhang proposed a 

stepwise radical mechanism supported by DFT calculations. The formation of desaturation, 

demethylation and N–H insertion side products is also in accord with their proposed stepwise 

radical mechanism (Figure 67B).  
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Figure 67. CYP119-catalyzed regio- and enantioselective C–H insertion reactions. (A) The site-

selective C–H insertion and engineering of CYP119 variants. The illustration of active site was 

made from 1T07 (PDB ID); (B) Selected substrate scope and observed side products; reactions 

were carried out using whole E. coli cells overexpressing CYP119 variants (OD600 = 60). 
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7. Summary of recently engineered metalloenzymes for unnatural radical reactions 

To date, a range of heme and nonheme enzymes have been used to develop unnatural radical 

reactions. Due to their excellent evolvability and synthetic versatility of the heme cofactor, 

cytochromes P450, particularly the self-sufficient P450BM3 (CYP102A1) previously exploited for 

native oxidation chemistry,33,35 have proven highly valuable in enzyme reprogramming, including 

the development of asymmetric radical transformations. CYP119 represents another widely used 

P450 enzymes for unnatural reaction development. Here, we summarize the latest results on P450 

repurposing and engineering in the context of unnatural radical-mediated reactions (Table 1). As 

can be seen from Table 1, active site engineering remains an effective strategy to improve the 

catalytic activity and stereoselectivity of mechanistically diverse new-to-nature reactions. The 

fully encapsulated active site and the excellent evolvability of biotechnologically useful P450 

enzymes allowed difficult stereocontrol to be readily achieved through active site tuning. 

Other than P450s, smaller heme proteins including cytochromes c and various globins have 

also found use in stereoselective radical biocatalysis (Table 1). The thermostable Rma cytochrome 

c has been engineered for intermolecular C–C coupling, and key residues are located in the 75–77 

⍺-helix and the 99–103 loop. Sperm whale myoglobin (Mb) and various thermophilic protoglobins 

are also widely used, particularly in carbene and nitrene transfer processes involving radical 

intermediates. Additionally, B12-dependent proteins such as CarH* have also emerged as 

promising biocatalysts, although achieving enantioselective transformations have remained a 

challenge. Several Cu-dependent metalloenzymes, such as laccase CueO, halogenase ApnU, and 

cupin protein Lase, have also been found applications in radical-meditated asymmetric 

transformations through a promiscuous substrate binding activation. 
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Table 1.  Summary of heme proteins and Co/Cu-dependent proteins used in asymmetric radical 

reactions 

entr

y 

engineered 

enzyme 

wt enzyme 

(Uniprot 

ID) 

developed reaction 

(Figure number) 

mutations relative to 

wt protein 

research 

group 

(ref.) 

1 P450ATRCase1 
P450BM3 

(P14779) 

atom transfer radical 

cyclization 

(Figure 3) 

V78A, A82T, F87V, 

P142S, T175I, L181F, 

A184V, S226R, 

H236Q, E252G, 

I263Q, H266T, 

T268A, A290V, 

T327I, L353V, I366V, 

C400S, T438S, E442K 

Yang64 

2 P450ATRCase2 
P450BM3 

(P14779) 

atom transfer radical 

cyclization 

(Figure 3) 

A74G, V78L, A82L, 

F87A, P142S, T175I, 

M177L, L181V, 

A184V, S226R, 

H236Q, E252G, 

I263W, T268G, 

A290V, T327C, 

A328V, L353V, 

I366V, C400A, L437F, 

T438Q, E442K, ∆FAD  

Yang64 

3 P450arc1 
P450BM3 

(P14779) 

radical cyclization to 

arenes 

(Figure 13) 

A74G, V78L, A82L, 

F87A, P142S, T175I, 

M177L, L181M, 

A184V, S226R, 

H236Q, E252G, 

I263Q, H266L, 

T268G, A290V, 

T327P, A328V, 

L353V, I366V, C400S, 

Yang139 
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T436L, L437F, 

T438G, E442K, ∆FAD 

4 P450arc2 
P450BM3 

(P14779) 

radical cyclization to 

arenes 

(Figure 13) 

N70S, A74P, V78A, 

A82L, F87G, P142S, 

T175I, M177L, 

A184V, S226R, 

H236Q, E252G, 

I263Y, T268G, 

A290V, T327P, 

A328V, A330F, 

L353V, I366V, C400S, 

T436L, L437A, 

E442K, ∆FAD  

Yang139 

5 P450arc3 
P450BM3 

(P14779) 

radical cyclization to 

arenes 

(Figure 13) 

A74G, V78C, A82L, 

F87A, P142S, T175I, 

M177L, L181M, 

A184V, S226R, 

H236Q, E252G, 

I263Q, T268G, 

A290V, T327P, 

A328E, S332A, 

L353V, I366V, C400S, 

T436L, L437F, 

E442K, ∆FAD 

Yang139 

6 P450rad1 
P450BM3 

(P14779) 

radical dearomatization 

of indoles 

(Figure 15) 

V78C, F87L, P142S, 

T175I, L181V, 

A184V, S226R, 

H236Q, P248T, 

E252G, I263G, 

T268A, A290V, 

L353V, I366V, C400S, 

L437A, E442K 

Yang132 
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7 P450rad2 
P450BM3 

(P14779) 

radical dearomatization 

of pyrroles 

(Figure 15) 

L75A, V78A, A82V, 

F87V, P142S, T175I, 

L181A, A184V, 

S226R, H236Q, 

E252G, T268A, 

A290V, L353V, 

I366V, C400S, E442K 

Yang132 

8 P450rad3 
P450BM3 

(P14779) 

radical dearomatization 

of pyrroles 

(Figure 15) 

A74G, V78L, A82L, 

F87A, P142S, T175I, 

M177L, A184V, 

S226R, H236Q, 

E252G, E267L, 

T268A, A290V, 

L353V, I366V, C400S, 

T436L, L437F, 

E442K, ∆FAD 

Yang132 

9 P450rad4 
P450BM3 

(P14779) 

radical dearomatization 

of phenols 

(Figure 15) 

A74G, L75F, V78C, 

A82L, F87A, P142S, 

T175I, M177L, 

L181M, A184V, 

S226R, H236Q, 

E252G, I263Q, T268P, 

A290V, T327P, 

A328V, L353V, 

I366V, C400S, T436A, 

L437P, E442K, ∆FAD 

Yang132 

10 P450rad5 
P450BM3 

(P14779) 

radical dearomatization 

of 2-naphthols 

(Figure 15) 

V78A, F87V, P142S, 

T175I, A184V, S226R, 

H236Q, E252G, 

T268A, A290V, 

L353V, I366V, C400S, 

T438S, E442K 

Yang132 
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11 P450Smiles1 
P450BM3 

(P14779) 

radical Smiles 

rearrangement 

(Figure 17) 

N70H, A74G, V78L, 

A82C, F87A, P142S, 

T175I, M177L, 

A184V, S226R, 

H236Q, E252G, 

E267R, T268A, 

A290V, A330M, 

L353V, I366V, C400S, 

I401P, T436C, L437F, 

E442K, ∆FAD 

Yang147 

12 P450Smiles2 
P450BM3 

(P14779) 

radical Smiles 

rearrangement 

(Figure 17) 

N70H, A74G, V78L, 

A82C, F87A, P142S, 

T175I, M177L, 

A184V, S226R, 

H236Q, E252G, 

E267R, T268A, 

A290V, A330M, 

L353V, I366V, C400S, 

I401V, T436C, L437F, 

E442K, ∆FAD 

Yang147 

13 P450BM3_LQQ 
P450BM3 

(P14779) 

metal-hydride H atom 

transfer 

(Figure 10) 

F87L, A74Q, I263Q Ward130 

14 iAMD9 
P450BM3 

(P14779) 

intermolecular benzyl 

C(sp3)–H amidation  

(Figure 49) 

N70S, A74S, V78L, 

A82M, F87A, P142S, 

T175I, L181Q, 

A184V, S226R, 

H236Q, E252G, 

I263Y, T268G, 

A290V, A328T, 

L353V, I366V, C400S, 

I401L, L437I, T438Q, 

E442K 

Arnold247 
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15 
P411-SIA-

5291 

P450BM3 

(P14779) 

intermolecular benzyl 

C(sp3)–H amidation 

(Figure 51) 

R47H, N70M, A74Q, 

F77S, V78L, A82L, 

F87A, P142S, E143K, 

T175I, A184V, S226T, 

H236Q, E252V, 

I263L, T268Q, 

A290V, T327P, 

L353V, I366V, 

C400A, I401L, 

T436A, E442K, 

N573D, ΔFAD 

Arnold262 

16 
P411-PYS-

5149 

P450BM3 

(P14779) 

intramolecular benzyl 

C(sp3)–H amination 

(Figure 38) 

S72W, Q73A, A74G, 

L75E, F77C, V78L, 

A82L, F87A, M118V, 

P142S, T175I, M177L, 

A184V, S226R, 

H236Q, E252G, 

I263Y, H266V, 

T268G, A290V, 

T327I, A328V, 

A330Q, L353V, 

I366V, C400S, T436R, 

E442K 

Arnold238 

17 
P411-PYS-

5151 

P450BM3 

(P14779) 

intramolecular aliphatic 

C(sp3)–H amination 

(Figure 38) 

S72W, Q73A, A74G, 

L75E, F77C, V78L, 

A82L, F87A, M118V, 

P142S, T175I, M177L, 

L181N, A184V, 

S226R, H236Q, 

E252G, I263Y, 

H266V, T268G, 

A290V, T327I, 

A328V, A330Q, 

Arnold238 
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L353V, I366V, C400S, 

T436L, L437P, E442K  

18 PA-G8 
P450BM3 

(P14779) 

propargylic C(sp3)–H 

amination 

(Figure 42) 

S72T, A74K, A78M, 

A82L, F87A, P142S, 

T175I, A184V, S226R, 

H236Q, E252G, 

I263M, H266S, 

E267D, T268P, 

T269V, A290V, 

A328V, L353V, 

I366V, N395C, 

C400S, L437Q, 

T438G, E442K  

Arnold245 

19 uPA9 
P450BM3 

(P14779) 

intermolecular 

amination 

of unactivated C(sp3)–H 

bonds 

(Figure 43) 

V78M, A82L, F87A, 

M118Q, P142S, 

T175I, M177L, 

A184V, L188C, 

S226R, H236Q, 

D251N, E252G, 

I263L, E267D, T268P, 

A290V, T327A, 

A328V, A330H, 

L333M, L353V, 

I366V, N395R, 

C400S, E409S, I437F, 

T438S, E442K, 

L740H, L780P 

Arnold246 

20 
P411-TEA-

5274 

P450BM3 

(P14779) 

intramolecular benzyl 

C(sp3)–H amination 

(Figure 44) 

S72T, V78M, A82L, 

F87A, P142S, T175I, 

M177Y, A184V, 

S226R, H236Q, 

E252G, I263M, 

E267D, T268P, 

Arnold248 
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A290V, T327V, 

A328V, L353V, 

M354E, I366V, 

N395V, A399G, 

C400S, Q403A, 

L437F, T438V, E442K 

21 uAMD9 
P450BM3 

(P14779) 

intermolecular 

amidation of unactivated 

C(sp3)–H bonds 

(Figure 43) 

N70S, A74M, L75Y, 

V78L, A82L, F87A, 

P142S, T175I, L181I, 

A184V, M212V, 

S226T, L233V, 

H236Q, E252V, 

I263V, T268G, 

A290V, A328T, 

L353V, I366V, 

A399S, C400A, I401L, 

L437F, E442K, 

N573D, S640P, 

N706T, Y707M, 

E708K, G709E, 

I710Δ 

Arnold246 

22 
P411-INC-

5185 

P450BM3 

(P14779) 

cyclopropanation of 

alkenes 

(Figure 64) 

N70S, A74G, V78L, 

A82L, F87A, P142S, 

T175I, M177L, 

A184V, S226R, 

H236Q, E252G, 

I263W, T268G, 

A290V, T327P, 

A328V, L353V, 

I366V, C400S, T436L, 

L437V, E442K, ∆FAD 

Arnold314 

23 aMOx 
P450LA1 

(A0P0F6) 

anti-Markovnikov 

oxidation of alkenes 

T121A, N201K, 

N209S, Y385H, 
Arnold  
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(Figure 25) E418G, A103L, 

M118L, R120H, 

V123I, I326V, 

V327M, H385V, 

M391L 

and 

Hammer178 

24 KS 
P450LA1 

(A0P0F6) 

anti-Markovnikov 

oxidation of alkenes 

(Figure 27) 

T121V, V123I, 

N201K, H206A, 

N209S, I326V, 

Y385H, E418G, 

T210V, E282D, 

R120Q, K393L, 

V208Q, A117Q, 

L111Y, V204H, 

L424W, M274F 

Hammer181 

25 
CYP119 

MHATase 

CYP119 

(Q55080) 

metal-hydride H atom 

transfer  

(Figure 10) 

D77R, T214V, L205V, 

T213G, Q22H, A209T, 

I208S 

Ward130 

26 CYP119-137 
CYP119 

(Q55080) 

C(sp3)–H insertion 

(Figure 67) 

F153A, A209G, 

T213G, V254A, 

C317S 

Fasan320 

27 CYP119-168 
CYP119 

(Q55080) 

C(sp3)–H insertion 

(Figure 67) 

F153G, T213A, 

V254W, C317S 
Fasan320 

28 CYP119-235 
CYP119 

(Q55080) 

C(sp3)–H insertion 

(Figure 67) 

F153G, L205W, 

T213A, V254A, 

C317S 

Fasan320 

29 
Rma cyt 

cRLRDGDE 

Rma cyt c 

(B3FQS5) 

intermolecular radical 

C–C cross coupling 

(Figure 30) 

V75R, M76L, M99R, 

M100D, T101G, 

M103E 

Yang188 

30 
Rma cyt 

cRIKCGPF 

Rma cyt c 

(B3FQS5) 

intermolecular radical 

C–C coupling 

(Figure 30) 

V75R, M76I, M99K, 

M100C, T101G, 

D102P, M103F 

Yang188 
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31 
Rma cyt c 

“TQL” 

Rma cyt c 

(B3FQS5) 

aminohydroxylation of 

styrenyl olefins 

(Figure 41) 

Y44T, M76Q, T98L, 

M99V, M100S, 

T101P, M103G 

Arnold243 

32 ApPgb L-G11 
ApePgb 

(Q9YFF4) 

intermolecular benzylic 

C(sp3)–H amination 

(Figure 46) 

W59A, Y60G, F145G, 

F156L, I97T, F157L, 

I327T, T97V, H136N, 

K36E, C45A, K159E, 

F73W, R90G, G60S 

Arnold249 

33 ApPgb D-G2 
ApePgb 

(Q9YFF4) 

intermolecular benzyl 

C(sp3)–H amination 

(Figure 46) 

W59A, Y60G, F145G, 

F156L, I97T, F157L, 

I327T, T97V, H136N, 

K36E, C45A, K159E, 

F93A, W62G, L86G 

Arnold249 

34 
ApePgb 

GLAVRSQLL 

ApePgb 

(Q9YFF4) 

cyclopropanation of 

alkenes with a-CF3 diazo 

substrate 

(Figure 60) 

C35G, W59L, Y60A, 

G61V, V63R, C102S, 

F145Q, I149L, F175L 

Arnold306 

35 ApePgb LQ 
ApePgb 

(Q9YFF4) 

cyclopropanation of 

alkenes with a-CF3 diazo 

substrate 

(Figure 62) 

W59L, Y60Q Arnold309 

36 ApePgb GW 
ApePgb 

(Q9YFF4) 

cyclopropanation of 

alkenes with a-CF3 diazo 

substrate 

(Figure 62) 

Y60G, F73W Arnold309 

37 MaPgb LQ 
MaPgb 

(Q8TLY9) 

cyclopropanation with a-

CF3 diazo substrate 

(Figure 62) 

W59L, Y60Q 

Arnold  

and 

Huang309 

38 MaPgb GW 
MaPgb 

(Q8TLY9) 

cyclopropanation with a-

CF3 diazo substrate 

(Figure 62) 

Y60G, F73W 

Arnold  

and 

Huang309 
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39 
ParPgb-HYA-

5213 

ParPgb 

(A4WIC7) 

intermolecular benzyl 

C(sp3)–H amination and 

aminohydroxylation of 

styrenes 

(Figure 47) 

Y57D, W59L, V60Q, 

V85I, I149F, V175A, 

Q177R 

Arnold252 

40 Mb H93S 
Mb 

(P68082) 

atom transfer radical 

cyclization 

(Figure 4) 

H93S Bruns85 

41 
Mb H64V 

V68A (Mb*) 

Mb 

(P68082) 

intramolecular benzylic 

C(sp3)–H amidation 

(Figure 50) 

H64V, V68A Fasan260 

42 MbVAF 
Mb 

(P68082) 

intramolecular benzylic 

C(sp3)–H amidation 

(Figure 52) 

H64V, V68A, Y146F Fasan263 

43 MbVE 
Mb 

(P68082) 

intramolecular benzylic 

C(sp3)–H amidation 

(Figure 52) 

F43V, I107E Fasan263 

44 MbBTIC-C2 
Mb 

(P68082) 

intramolecular 

cyclopropanation of 

benzothiophenes 

(Figure 63) 

H64F, V68G, I107A, 

F43I, F46L 
Fasan313 

45 MbBTIC-C3 
Mb 

(P68082) 

intramolecular 

cyclopropanation of 

benzothiophenes 

(Figure 63) 

H64V, V68A, L29F, 

I107L 
Fasan313 

46 HATR-5 
ApePgb 

(Q9YFF4) 

biocatalytic asymmetric 

hydrogenation of olefins 

(Figure 12) 

C45G W59L Y60V 

V63R F145Q I149L 

Q145E L69N V89G 

L59M 

Athavale133  

47 CarH* 
CarH 

(Q746J7) 

C(sp2)–H alkylation of 

styrenes/intramolecular 

radical cyclization 

(Figure 8 and 16) 

Apo H132G + N-

terminal His6-MBP tag 

with hydroxocobalami 
Lewis115,116 
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48 CueO 
CueO 

(P36649) 

oxidative cross coupling 

(Figure 36) 

- 
Zhong222 

49 ApnU 
ApnU 

(S8B5U1) 

C(sp3)–H chlorination, 

bromination, iodination, 

azidation and 

thiocyanation 

(Figure 19) 

- 

Tang163 

50 LAseS 
Tm1287 

(Q9X113) 

enantiodivergent radical 

alkylation 

(Figure 28) 

E68A R23Y M22F 

Huang182 

51 LAseR 
Tm1459 

(Q9X1H0) 

enantiodivergent radical 

alkylation 

(Figure 28) 

H52G F104V 

Huang182 

 

The past five years have witnessed exciting progress in developing nonheme enzymes-

catalyzed stereoselective radical reactions that were previously unknown in nature (Table 2). 

Compared with heme enzymes, nonheme enzymes offer more diverse coordination chemistry, 

multiple open coordination sites, and greater flexibility in metal ion substitution. Given the short 

history of engineering nonheme enzymes for synthetically valuable transformations, substantial 

advances are likely in the coming decade. Interestingly, in recently developed radical rebound 

reactions forming C–F, C–N3, C–NCS, C–NCO, and C–SCN bonds, highly active nonheme Fe 

enzymes including ACCO, HPPE, HPPD, HMS, QueD and MPC are not aKG dependent in their 

native function. This suggests that certain structural features of these enzymes could be exploited 

for the discovery of new nonheme biocatalysts for unnatural transformations.  

Table 2. Summary of nonheme Fe enzyme variants used in asymmetric radical reactions. 
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ent

ry 

engineered 

enzyme 

(Figure 

number) 

wt enzyme  

(Uniprot 

ID) 

native function 

(metal center) 

coordina

ted 

residues 

Developed 

reaction 

(metal center)  

research 

group 

(ref.) 

1 
ACCOCHF 
(Figure 34) 

ACCO 

(Q08506) 

1-

Aminocyclopropane

-1-carboxylic acid 

oxidase (Fe) 

H177, 

D179, 

H234 

C(sp3)–H 

fluorination 

(Fe)  

Yang210 

2 
ACCONim 
(Figure 56) 

ACCO 

(Q08506) 

1-

aminocyclopropane-

1-carboxylic acid 

oxidase (Fe) 

H177, 

D179, 

H234 

1,3-nitrogen 

migration 

(Fe) 

Yang273 

3 
IPNSNim 
(Figure 56) 

IPNS 

(P05326) 

isopenicillin N 

synthase (Fe) 

H214, 

D216, 

H270 

1,3-nitrogen 

migration 

(Fe) 

Yang280 

4 
IPNS-GHV 

(Figure 57) 

IPNS 

(P05326) 

isopenicillin N 

synthase (Fe) 

H214, 

D216, 

H270 

1,3-nitrogen 

migration 

(Fe) 

Xiao284 

5 
AtLDOX_LS 

(Figure 57) 

LDOX 

(Q963232) 

leucoanthocyanidin 

dioxygenase (Fe) 

H232, 

D234, 

H288 

1,3-nitrogen 

migration 

(Fe) 

Zhao285 

6 

PpMPC 

azidase 

(Figure 22) 

PpMPC 

(P06622) 

Metapyrocatechase 

(Fe) 

H153, 

H214, 

E265 

decarboxylative 

radical azidation 

(Fe) 

Yang168 

7 

PpMPC 

thiocyanase 

(Figure 22) 

PpMPC 

(P06622) 

Metapyrocatechase  

(Fe) 

H153, 

H214, 

E265 

decarboxylative 

radical 

thiocyanation, 

and isocyanation 

(Fe) 

Yang168 

8 
AoHMS-CF3 
(Figure 5) 

AoHMS 

(O52791) 

hydroxymandelate 

synthase 

(Fe) 

H161, 

H241, 

E320 

trifluoromethylazi

dation of alkenes 

(Fe) 

Huang92 
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9 
AoHMSAmAz 
(Figure 59) 

AoHMS 

(O52791) 

hydroxymandelate 

synthase 

(Fe) 

H161, 

H241, 

E320 

aminoazidation of 

alkenes 

(Fe) 

Huang291 

10 
AoHMS-AOT 

(Figure 6) 

AoHMS 

(O52791) 

hydroxymandelate 

synthase 

(Fe) 

H161, 

H241, 

E320 

aminoazidation of 

alkenes 

(Fe) 

Huang109 

11 
BsQueD-CF3 
(Figure 5) 

BsQueD 

(P42106) 

quercetin 2,3-

dioxygenase 

(Fe) 

H62, 

H64, 

E69, 

H103 

trifluoromethylazi

dation of alkenes 

(Fe) 

Jia98 

12 
BsQueDAF 
(Figure 59) 

BsQueD 

(P42106) 

quercetin 2,3-

dioxygenase 

(Fe) 

H62, 

H64, 

E69, 

H103 

aminative 

difubctionalizatio

n of alkenes 

(Fe) 

Jia292 

13 
SavHPPD-PC 

(Figure 22) 

SavHPPD 

(Q53586) 

4-

hydroxyphenylpyru

vate dioxygenase 

(Fe) 

H187, 

H270, 

E349 

decarboxylative 

azidation and 

thiocyanation 

(Fe) 

Huang169 

14 
SavHPPD Az 

(Figure 33) 

SavHPPD 

(Q53586) 

4-

hydroxyphenylpyru

vate dioxygenase 

(Fe) 

H187, 

H270, 

E349 

C(sp3)–H 

azidation 

(Fe) 

Huang207 

15 
SvHppE-Fluor 

(Figure 34) 

SvHPPE 

(Q56185) 

(S)-2-

hydroxypropylphos

phonate epoxidase 

(Fe) 

H137, 

E141, 

H179 

 

C(sp3)–H 

fluorination 

(Fe) 

Huang211 

16 

CvPAH-

aminase 

(Figure 24) 

CvPAH 

(P30967) 

phenylalanine 

hydroxylase 

(Fe) 

H138, 

H143, 

E184 

decarboxylative 

radical amination 

(Cu) 

Huang174 

17 
PsEFEVHMM 

(Figure 53) 

PsEFE 

(P32021) 

ethylene-forming 

enzyme (Fe) 

H189, 

D191, 

H268 

aziridination/ 

intramolecular 

benzylic C(sp3)–

H amidation 

Arnold265 
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(Fe) 

18 
TDO 

(Figure 31) 

TDO 

(A5W4F1) 

toluene dioxygenase 

(Fe) 

H222, 

H228, 

D376 

oxidation of 

benzyl azide to 

benzonitrile 

(Fe) 

Carrera192 

19 
NDO 

 

NDO 

(P0A110) 

naphthalene 

dioxygenase (Fe) 

H208, 

H213, 

D362 

intramolecular 

benzylic C(sp3)–

H amidation 

(Fe) 

Fasan270 

20 
SadX 4-IC 

(Figure 20) 

SadA 

(Q0B2N4) 

prolyl 4-

hydroxylase (Fe) 

H155 

D157 

H246 

C–H azidation 

(Fe) 
Lewis167 

 

8. Conclusions 

Over the past five years, metalloenzyme-catalyzed free radical transformations that are rare 

or absent in native enzymology have expanded rapidly. These unnatural reactions engage an array 

of reactive radical species, including carbon-, nitrogen-, and oxygen-centered radicals, as well as 

transition-metal nitrenoids and carbenoids with radical character. By leveraging the redox 

properties of first-row transition metals, radical initiation strategies have been broadened. In 

particular, single-electron transfer (SET) oxidation or reduction of radical precursors has proven 

effective for generating radicals directly within metalloenzyme active sites, enabling diverse 

stereoselective transformations. Highly reactive radical species can also be formed through 

photoredox catalytic cycles, either inside or proximal to the enzyme active site, and subsequently 

diffuse into the pocket to couple with other reaction partners. The integration of exogenous 

photocatalysts with metalloenzymes allows for the controlled generation of radical intermediates 

independent of the intrinsic redox potential of the metallocofactor, opening new avenues for 
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designing unnatural biocatalytic radical transformations. Critically, the malleable chiral pockets of 

enzymes now enable high levels of enantioselectivity to be achieved in free radical–mediated 

transformations, which was long considered a challenge in asymmetric catalysis. Furthermore, 

emerging technologies, including high-throughput screening,321,322 machine learning–guided 

directed evolution,323–326 and AI-assisted de novo protein design,327–331 promise to accelerate the 

development of protein catalysts. Together with mechanism-guided reaction design, these 

advances are poised to expand the scope of metalloenzyme-catalyzed radical reactions in the years 

ahead. 
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