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Abstract

Once-for-All (OFA) training enables a single super-net
to generate multiple sub-nets tailored to diverse deploy-
ment scenarios, supporting flexible trade-offs among accu-
racy, robustness, and model-size without retraining. How-
ever, as the number of supported sub-nets increases, ex-
cessive parameter sharing in the backbone limits repre-
sentational capacity, leading to degraded calibration and
reduced overall performance. To address this, we pro-
pose SOLAR (Switchable Qutput Layer for Accuracy and
Robustness in Once-for-All Training), a simple yet effective
technique that assigns each sub-net a separate classifica-
tion head. By decoupling the logit learning process across
sub-nets, the Switchable Output Layer (SOL) reduces rep-
resentational interference and improves optimization, with-
out altering the shared backbone. We evaluate SOLAR on
five datasets (SVHN, CIFAR-10, STL-10, CIFAR-100, and
TinylmageNet) using four super-net backbones (ResNet-34,
WideResNet-16-8, WideResNet-40-2, and MobileNetV2) for
two OFA training frameworks (OATS and SNNs). Exper-
iments show that SOLAR outperforms the baseline meth-
ods: compared to OATS, it improves accuracy of sub-
nets up to 1.26%, 4.71%, 1.67%, and 1.76%, and robust-
ness up to 9.01%, 7.71%, 2.72%, and 1.26% on SVHN,
CIFAR-10, STL-10, and CIFAR-100, respectively. Com-
pared to SNNs, it improves TinylmageNet accuracy by up to
2.93%, 2.34%, and 1.35% using ResNet-34, WideResNet-
16-8, and MobileNetV2 backbones (with 8 sub-nets), re-
spectively. The code of SOLAR is publicly available at:
https://github.com/NAIL-UH/SOLAR and its website can be
accessed at https://saktx.github.io/solar. github.io/.

1. Introduction

Deploying deep neural networks across a wide range
of devices—from high-performance servers to resource-
constrained edge platforms—requires customized models
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that balance accuracy, robustness [6, 14, 30, 47], and
model-size (or efficiency). Once-for-All (OFA) training
[3, 8, 24, 25, 44, 45] addresses this by optimizing a single
versatile super-network containing many sub-networks that
are tailored to different deployment constraints. The sub-
nets can then be selected post-training to meet trade-offs
among accuracy, adversarial robustness [7, 28, 48], model-
size, or computational cost, without retraining from scratch
[3, 24, 38, 44, 45]. While OFA training [38, 44, 45] of-
fers flexibility and efficiency, scaling to a large number of
sub-nets introduces a fundamental challenge: excessive pa-
rameter sharing. When all sub-nets share a single output
layer, representational interference occurs, preventing each
sub-net from optimizing independently. This coupling of
parameters degrades accuracy, calibration, and robustness,
particularly for sub-nets with differing capacities.

In this paper, we identify the shared output layer as
a bottleneck in OFA frameworks and propose SOLAR
(Switchable Output Layer for Accuracy and Robustness in
Once-for-All Training), a simple yet effective approach that
introduces separate classification heads for the sub-nets.
SOLAR decouples the logit learning process in the com-
mon output layer, mitigating logit interference during train-
ing and improving the sub-net specific optimization while
maintaining the training efficiency.

Key Contributions: Our main contributions are sum-
marized below:

* We identify the shared output layer as a bottleneck in OFA
training, that leads to representational interference and
performance degradation across the sub-nets. To address
this, we propose SOLAR (Switchable Output Layer for
Accuracy and Robustness), a simple and effective method
that assigns each sub-net a separate classification head
while preserving the shared backbone.

* We incorporate SOLAR into two OFA frameworks:
Slimmable Neural Networks (SNNs) [45], which vary
network width dynamically during standard training, and
Once-for-All Adversarial Training and Slimming (OATS)
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Figure 1. [llustration of a vanilla SNN [45] vs. SNN with Switchable Output Layer (SNN-SOL) in a super-net backbone with three
sub-nets of different widths: (a) vanilla SNN with a shared output layer; (b—d) SNN-SOL with 100%, 75%, and 50% widths, respectively.
Width refers to the number of channels per layer. SOL assigns a separate classification head to each sub-net, enabling decoupled logit
learning, with the number of heads equal to the number of sub-nets in the backbone.

[38], which combines adversarial training with the dy-
namic width shrinking and uses conditional loss function.

* We perform extensive experiments across five bench-
mark datasets (SVHN [29], CIFAR-10 [22], STL-10 [9]),
CIFAR-100 [22], and TinyImageNet [26], using four
different super-net backbones (WideResNet-16-8 [46],
ResNet-34 [16], WideResNet-40-2 [46], MobileNetV2
[34]), demonstrating that SOLAR generalizes well and
improves both standard accuracy and adversarial robust-
ness across the sub-nets and frameworks.

e Our smallest sub-net from OATS-SOL, trained on
the SVHN dataset using WideResNet-16-8 backbone,
achieves the best accuracy of 94.01% and robustness of
53.08 %, surpassing the standard OATS [38] baseline by
0.57% and 1.57%, respectively, while maintaining the
compact model size of 387 KB.

2. Related Work

Once-for-All (OFA) Training: OFA framework [3]
trains a single over-parameterized super-net from which
many sub-nets can be derived by sampling architectures
with different depths, widths, kernel sizes, or input resolu-
tions. These sub-nets inherit weights from the super-net, en-
abling efficient deployment without retraining from scratch.
A progressive shrinking strategy [3, 8, 31] is used to jointly
optimize all sub-nets. Although OFA enables massive scal-
ability and supports over 10'° sub-nets, training a super-
net that performs well across all sub-nets is hard, because
smaller sub-nets suffer from degraded performance due to
conflicting gradients and “shared parameters”. When
many sub-nets share parameters, gradients from different
sub-nets cause interference, making it harder to optimize
the shared layers for all sub-net configurations [38, 45].

Slimmable Neural Networks (SNNs): SNNs [45]
follow the OFA principle by training a single super-net
operating only at four widths (0.25%, 0.5%, 0.75x%, 1.0x).
SNNs provide a twofold trade-off between accuracy and
model size (or efficiency). They address key OFA chal-
lenges—particularly performance degradation caused by
conflicting feature statistics when all sub-nets share a sin-
gle Batch Normalization (BN) layer [20]—by introducing
Switchable Batch Normalization (SBN) [45], which as-
signs a separate BN layer to each sub-net. This design
reduces training instability and gradient interference, im-
proving performance across widths [12]. However, SNNs
still rely on a shared output layer for all sub-nets, which
becomes a bottleneck as the sub-net diversity grows. This
limits the capacity to fully adapt output representations to
varying sub-net complexities. Our proposed Switchable
Output Layer (SOL) solves this problem by providing sub-
net-specific classification heads, effectively overcoming the
common output layer bottleneck and further enhancing sub-
net performance without sacrificing training cost.

Once-for-All Adversarial Training and Slimming
(OATS): OATS [38] extends the Once-for-All Adversar-
ial Training (OAT) framework [38] by integrating model
compactness across widths like the SNNs [45]. It trains a
single super-net supporting three widths (0.5x, 0.75x%, 1.0x)
via channel-wise slimming, enabling deployment across de-
vices with varying resources. During training, OATS con-
ditions on both adversarial loss weight A and width frac-
tion, allowing the super-net to enable a balance between
accuracy, robustness, and efficiency without requiring re-
training from scratch. To handle distribution mismatches
between clean and adversarial samples [12], OATS intro-
duces Switchable Dual Batch Normalization (SDBN) [38]
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Figure 2. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone packed with 8 sub-nets.
OATS-SOL provides superior performance than OATS for all the sub-nets in terms of accuracy and PGD-7 robustness.

with separate BN layers for each data type, and sub-net
width, ensuring stable, high-performance training. Con-
ditional learning techniques such as FiILM layers [33, 38]
or scaled noise injection [24, 25] enable adaptive behavior
based on input conditions. OATS [38] employs FiLM lay-
ers for this purpose. Our proposed Switchable Output Layer
(SOL) improves the performance of both SNNs and OATS
frameworks across diverse datasets and architectures, offer-
ing superior accuracy, robustness, and efficiency trade-offs.

3. Preliminaries

Consider a multi-class classification setting with N train-
ing samples and C' classes. For each sample i, let y; €
{1,...,C} denote the ground-truth label, and let p; =
(pi1, - - -, pic) denote the predicted class probabilities, com-
puted via the softmax function from the model logits z;.:

exp(Zzic)

c
Zj:l exp(2ij)
Given a dataset D = {(x;,v;)}Y,, where x; € R? and
yi € {1,...,C}, aneural network f : R? — R with
parameters 6 maps inputs to logits. The model is typically

trained using empirical risk minimization (ERM) with the
cross-entropy loss:

Lce = L(f(x;0),y:) = —log piy, 2

Adversarial Training (AT): AT has been widely
adopted to improve model robustness by explicitly optimiz-
ing for performance under worst-case input perturbations

Pic = M

[1,7, 14,19, 28, 35, 43, 50]. A common approach is to use
a hybrid loss Liyhyiq that combines standard classification
loss Lo and adversarial loss Lapv [4, 37, 41, 48]:

min Ex,y)~p [(1 = A)LcE + ALADV] (3)

Litybrid

where the adversarial loss is defined as:
“4)

Lapv = 5&1335;) L(f(x+6;0),y)

€

and B.(x) = {6 € R? | |6l < €} is the Loo-ball around
x, constraining the magnitude of adversarial perturbations.
A widely used method for solving the inner maximization
problem in adversarial training is Projected Gradient De-
scent (PGD) [4, 19, 28]. Given an input x and label y, PGD

generates an adversarial example x’ as:
x' =1Ip, x) (x +7 - sign (V< L(f(x;0),9))) ()

where ~ is the step size and IIg_(x)(-) denotes projection
onto the L.,-ball around x. This procedure can be iterated
multiple times to find stronger adversarial examples.

Switchable Dual Batch Normalization (SDBN):
Dual Batch Normalization (DBN) [11, 20, 42] addresses the
distribution mismatch between clean and adversarial data
during adversarial training. DBN maintains two sets of BN
parameters: one for clean (BN.;,) and one for adversar-
ial data (BNg4,,) [11, 12]. This normalization strategy pre-
vents feature distortion and improves performance and ro-
bustness [2, 12, 39]. SDBN extends this idea to super-nets



containing multiple sub-nets and maintains DBN layer for
each switch (or sub-net) in the backbone [38]. Each sub-
net in the width adaptive backbones [38, 45], exhibits dis-
tinct feature statistics [38, 45]. SNNs use SBN to preserve
performance across all widths, that maintains separate BN
parameters (vamﬁawﬂawaik), leading to the following
parameter set.

e = {W{Vakaﬂamuakaaik}kf{:l} (6)

Where W represents the shared weights of Convolutional
and Linear layers, ¥, , 8«, are the scale and shift parame-
ters, fa,, agk are the running mean and variance for each
sub-net with width fraction a;,. The SBN parameters are not
shared among the sub-nets. Beyond normalization, OATS
[38] uses model-conditional learning to enable on-the-fly
accuracy—robustness trade-offs by conditioning the model
on structural or stochastic inputs (e.g. via FILM layers on
a hyperparameter like \) [18, 21, 38, 40]. Despite these so-
lutions, a bottleneck remains in the end: the shared output
layer where all sub-nets share a single classification head,
causing logit interference that limits learning capacity and
calibration. To address this, we introduce the Switchable
Output Layer (SOL), which assigns a separate classifica-
tion head to each sub-net in the backbone. Like SBN sep-
arates out the feature normalization for different sub-nets
[45], the SOL isolates their logit learning processes, en-
abling overall better optimization for each sub-net.

4. Methodology

4.1. Bottleneck in OFA Training: Standard Output
Layer (Shared Parameters)

OFA training aims to train a single over-parametrized super-
net from which multiple sub-nets can be derived for di-
verse deployment requirements without retraining. Let
N (z;©) denote the super-net with input z and the param-
eter set ©, as defined in (6). To enable flexible sub-net
instantiation, a predefined set of width multipliers W =
{a1,9,...,a} where 0< o <ay<---<ap<1
is used to scale the number of active channels in each layer
of N [38, 45]. The k" sub-net, corresponding to width
multiplier ay, is denoted as S,, () = N (z;0,,) where
O, C O represents the subset of parameters utilized by the
sub-net. The full-width super-net corresponds to ag = 1,
using the complete parameter set ©. The goal of OFA train-
ing is to learn optimal parameters O that minimize a prede-
fined objective as in (7).

1
min - ; LN (2:;0),9:) %)

During training, a width multiplier o, € W is sampled
to activate the corresponding sub-net S, , which produces
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Figure 3. Visualizing the running means and variances of SBN
layers for clean data in OATS-based ResNet-34 (with 4 sub-nets)
during training. Top plot shows scattered statistics in the middle
SBN, while bottom plot reveals tighter and distinct distributions
in the last SBN. The shared output layer in OATS causes repre-
sentational interference. SOL alleviates this by assigning separate
classification heads to the sub-nets, thereby improving calibration
and performance without increasing their parameter count.

intermediate features f,, = S,, (). All sub-nets share
a common classification head C, used to compute logits:
Zay, = C(far)-

Since sub-nets of different widths produce different fea-
ture distributions [38, 45], SNNs [45] used SBN layers and
OATS [38] used SDBN layers to maintain separate normal-
ization parameters for each sub-net. Although these layers
decouple intermediate features, all sub-nets still converge
at the shared output layer, which is commonly adopted
in traditional OFA methods [3, 8, 25, 38, 44, 45]. This
shared head creates a bottleneck by forcing incompatible
features into a single representation space, leading to de-
graded performance. The design space becomes more com-
plex [24, 38, 44, 45], when the number of sub-nets in-



creases. We analyzed the statistics of the middle and fi-
nal BN, layers of ResNet-34 super-net in Figure 3. The
figure reveals significant variance across sub-nets: the nar-
rowest sub-net (blue) exhibits compact, low-variance fea-
tures, whereas the widest (red) shows high-variance, dis-
persed distribution. This indicates that, although SBN and
SDBN preserve internal feature separation, the shared out-
put head remains a bottleneck at the end of the pipeline.

4.2. Overcoming Bottleneck with Switchable Out-
put Layer (Separate Parameters)

As established in previous section, the shared output layer
in OFA frameworks introduces a critical bottleneck by
forcing diverse sub-net features into a single classifica-
tion space, leading to interference and degraded perfor-
mance. The Switchable Output Layer (SOL) enhances
OFA frameworks [3, 8, 25, 38, 44, 45] by addressing perfor-
mance degradation caused by the shared output layer across
sub-nets. SOL introduces a lightweight modification by as-
signing a separate classification head to each sub-net in the
super-net backbone, thereby preserving the sub-net specific
representations through to the output and eliminating cross
sub-net conflict during training (see Figure 1).

Instead of sharing a classification head C for all sub-nets,
SOL introduces a unique head C,, for each sub-net S, .
During training, a width multiplier o, € WV activates the
corresponding sub-net to produce intermediate features:

Zoy, = Cay, (fak) €]

Only the active head C,, receives updates during back-
propagation, while others remain inactive. This dynamic
switching ensures that each sub-net learns independently,
avoiding interference from incompatible gradients at the
output layer (see Figure |1 and Figure 4). The full OATS-
SOL pipeline is detailed in Algorithm 1. SOL is agnos-
tic to the choice of loss function and supports a range of
training objectives, including standard cross-entropy Lo g
[23, 27] or distillation L 1 p [15, 17, 36], and robust objec-
tives like TRADES [48], MMA [10], and adversarial distil-
lation [13, 15, 32]. For hybrid training (as in OATS), the
total loss across eight sub-nets is defined as:

>

ac{1/8,2/8, ...,8/8}

[a-nel +rc] ©

5. Experiments & Results

5.1. Super-Net Architectures and Setup

We evaluate SOLAR on four super-net backbones:
WideResNet-16-8 [46], ResNet-34 [16], WideResNet-40-2
[46], and MobileNetV2 [34], using five benchmark datasets:
SVHN [29], CIFAR-10 [22], STL-10 [9], CIFAR-100 [22],
and TinyImageNet [26]. Experiments have been conducted

Algorithm 1 Once-for-All Adversarial Training and Slim-
ming with Switchable Output Layer (OATS-SOL)

Require: Training set D, set S with A values, Super-Net
N, max iterations T', width multipliers list W

Ensure: Network parameters ©

1: fort =1to T do

2: Sample batch (z,y) from D and A from S

3 Clear gradients: optimizer.zero_grad()

4 for each o in WV do

5 Activate sub-net S,,, with head C,, in N/
6: Generate adversarial example Z,qy
7
8
9

Perform forward pass
Compute loss = L(z,y, \)
: Accumulate gradients: loss.backward)()
10: end for
11 Update parameters: optimizer.step()
12: end for

on a workstation with Intel Core 19-14900KF CPU, 36 MB
L3 cache, and NVIDIA RTX 4090.

5.2. Hyperparameter Settings

We trained OATS-SOL on SVHN, CIFAR-10, STL-10, and
CIFAR-100 for 40, 120, 120, and 120 epochs and SNN-
SOL on CIFAR-10, CIFAR-100, and TinyImageNet for
120, 120, and 140 epochs, respectively. Batch sizes were
set to 64 for STL-10 and TinyImageNet, and 128 for all the
other datasets. We used SGD with momentum 0.9, cosine
annealing scheduler, and learning rates: {0.1, 0.05, 0.01}.
Reported results correspond to the best performance across
multiple runs with different random seeds, selected based
on optimal validation accuracy.

Adversarial Training and Evaluation:  We use same
settings as OATS [38] using 7-step PGD attack (L., norm),
e = 8/255, and step-size = 2/255. Models are evalu-
ated on the basis of Accuracy and Robustness. Following
OATS [38], we uniformly sample \ element-wise from the
set S = {0.0,0.1,0.2,0.3,0.4, 1.0} during training and val-
idation. For inference, A can be any value in [0,1], as per
requirements for the accuracy-robustness trade-off.

5.3. Baseline Methods: OATS and SNNs

We evaluated SOLAR on two baselines: Once-for-All
Adversarial Training and Slimming (OATS) [38] and
Slimmable Neural Networks (SNNs) [45]. After employing
Switchable Output Layer (SOL), we denote them as OATS-
SOL and SNN-SOL. For fair comparison, we evaluate the
baseline and SOLAR methods using same hyperparameters.

Comparison with OATS: For comparing OATS
and OATS-SOL, we used WideResNet-16-8, ResNet-34,
WideResNet-40-2, and ResNet-34 as backbones on the
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Figure 5. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (with 8 sub-nets). OATS-SOL
provides superior performance than OATS for all the sub-nets in terms of accuracy and PGD-7 based robustness.
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Figure 6. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 as backbone with 4 sub-nets.

meet the tighter memory and storage constraints of devices,
sub-nets with smaller widths are preferred. The compar-
ison of OATS [38] and OATS-SOL on SVHN dataset us-
ing WideResNet-16-8 backbone (packed with 8 sub-nets)
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Table 1. Accuracy of SNN [45] and SNN-SOL based Sub-Nets on CIFAR-10 for backbones packed with 16 Sub-Nets.

Sub-Net ResNet-34 WideResNet-16-8 MobileNetV2
Width SNN [ SNN-SOL | Gain%T | SNN | SNN-SOL | Gain%t | SNN [ SNN-SOL [ Gain% 7
Small Sub-Nets
1716 83.28 83.55 0.27 82.72 82.94 022 82.16 8417 2.01
2/16 87.71 88.01 0.30 86.96 88.37 141 86.24 88.91 2.67
3/16 89.88 90.07 0.19 88.98 91.41 2.43 88.13 90.50 2.37
4/16 90.96 91.27 0.31 92.35 92.46 0.11 89.18 90.59 141
5/16 91.86 91.88 0.02 92.51 93.12 0.61 89.56 91.96 2.40
6/16 92.32 92.64 0.32 93.00 93.63 0.63 90.26 92.61 2.35
Medium Sub-Nets
7/16 92.48 92.98 0.50 93.14 93.81 0.67 90.82 92.70 1.88
8/16 92.54 93.35 0.81 93.78 93.95 0.17 90.68 92.88 2.20
9/16 92.78 93.48 0.70 93.93 94.23 0.30 91.37 92.87 1.50
10716 92.84 93.80 0.96 93.97 94.20 0.23 91.80 93.18 1.38
11/16 92.88 93.86 0.98 93.91 94.28 0.37 91.51 93.38 1.87
Large Sub-Nets
12/16 93.07 93.84 0.77 94.12 94.46 0.34 91.91 9321 1.30
13/16 93.13 93.89 0.76 94.07 94.55 0.48 91.93 93.29 1.36
14/16 93.27 93.98 0.71 94.11 94.62 0.51 92.12 93.64 1.52
15/16 93.32 93.94 0.62 94.10 94.57 0.47 92.03 93.65 1.62
16/16 93.38 94.04 0.66 94.09 94.67 0.58 92.15 93.45 1.30

Table 2. Accuracy of SNN [45] and SNN-SOL on CIFAR-100 for backbones with 8 sub-nets.

Sub-Net ResNet-34 WideResNet-16-8 MobileNetV2
Width SNN SNN-SOL | Gain % 1 SNN SNN-SOL | Gain % 1 SNN SNN-SOL | Gain % 1
178 66.23 66.18 0.05 64.54 6433 20.21 64.45 64.37 0.08
2/8 71.64 72.07 0.43 71.64 71.96 0.32 68.94 68.91 -0.03
3/8 73.91 74.82 0.91 74.48 74.28 -0.20 71.16 71.59 0.43
4/8 75.33 76.26 0.93 75.86 75.97 0.11 72.15 72.38 0.23
5/8 76.26 77.28 1.02 76.71 76.93 0.22 73.04 73.54 0.50
6/8 76.79 78.10 1.31 76.91 77.27 0.36 73.26 73.78 0.52
718 76.74 78.08 1.34 7737 77.83 0.46 7351 73.92 0.41
8/8 76.78 78.43 1.65 77.97 78.22 0.25 73.23 74.19 0.96

Table 3. Accuracy of SNN [45] and SNN-SOL on TinyImageNet for backbones with 8 sub-nets.

Sub-Net ResNet-34 WideResNet-16-8 MobileNetV2
Width SNN SNN-SOL | Gain % 1 SNN SNN-SOL | Gain % 1 SNN SNN-SOL | Gain % 1
178 51.22 5233 1.1 4581 46.54 0.73 43.64 4957 0.93
2/8 57.79 59.65 1.86 56.30 56.22 -0.08 54.85 55.76 0.91
3/8 60.12 61.73 1.61 60.02 60.26 0.24 57.62 58.97 1.35
4/8 61.62 63.41 1.79 61.93 62.86 0.93 58.67 59.37 0.70
5/8 62.02 64.37 2.35 62.24 63.74 1.50 59.75 60.04 0.29
6/8 62.83 65.65 2.82 63.34 64.73 1.39 59.67 60.31 0.64
718 63.50 66.08 2.58 63.12 65.46 2.34 59.66 60.81 115
8/8 63.46 66.39 2.93 63.61 65.34 1.73 59.91 61.17 1.26

is shown in Figure 2. OATS-SOL is represented by blue
color and provides superior performance than OATS for
all the sub-nets in terms of accuracy and robustness. The
performance gain is generally higher in smaller sub-nets as
compared to larger ones. Similarly, Figure 5, Figure 6, and

Figure 7 show the comparison of OATS and OATS-SOL on
CIFAR-10 (ResNet-34 backbone with 8 sub-nets), STL-10
(WideResNet-40-2 backbone with 4 sub-nets), and CIFAR-
100 (ResNet-34 backbone with 4 sub-nets), respectively.
OATS-SOL provides better accuracy and robustness for all



Table 4. Parameter counts of SNN [45] vs. SNN-SOL backbones packed with 8, 32, and 64 sub-nets for CIFAR-10 dataset.

Super-Net 8 Sub-Nets 32 Sub-Nets 64 Sub-Nets
SNN SNN-SOL Increase SNN SNN-SOL Increase SNN SNN-SOL Increase
WRN-40-2 2.26M 2.28M 0.97% 2.33M 2.41M 3.61% 2.41M 2.58M 6.88%
MobileNetV2 2.35M 2.40M 1.91% 2.75M 2.96M 7.23% 3.28M 3.68M 12.32%
WRN-16-8 10.99M 11.00M 0.16% 11.07M 11.15M 0.72% 11.19M 11.35M 1.45%
ResNet-34 21.34M 21.36M 0.08% 21.55M 21.63M 0.37% 21.82M 21.98M 0.74%

the sub-nets across the datasets. We present a numerical
comparison between OATS and OATS-SOL for CIFAR-10
dataset in the Appendix with additional insightful results.

Comparison with SNNs: We compare SNN [45]
and SNN-SOL using ResNet-34, WideResNet-16-8, and
MobileNetV2 backbones on CIFAR-10, CIFAR-100, and
TinyImageNet. Table 1 reports results on CIFAR-10 with
16 sub-nets, where SNN-SOL achieves maximum gains
of 0.32%, 2.43%, and 2.67% for small sub-nets, 0.98 %,
0.67%, and 2.20% for medium sub-nets, and 0.77 %,
0.58%, and 1.62 % for large sub-nets across the three back-
bones. On CIFAR-100 (Table 2), SNN-SOL improves accu-
racies by up to 1.65%, 0.46 %, and 0.96 %, using the back-
bones with 8 sub-nets. On TinylmageNet (Table 3), im-
provements reach 2.93%, 2.34%, and 1.35% for ResNet-
34, WideResNet-16-8, and MobileNetV2, all packed with
8 sub-nets, respectively. The experimental results demon-
strate that when the super-net backbones are packed with
higher number of sub-nets, the Switchable Output Layer
(SOL) provides notable performance gains for the sub-nets.

5.4. Impact of SOL on Parameter Count and FLOPs

The training and inference overhead using SOL is negligi-
ble: only the active head is used for each sub-net, contain-
ing the same number of parameters as in the baseline. The
shared output layer performs ‘slimming” whereas SOL
performs “switching”. SOL increases parameter storage
due to use of multiple heads in the super-net but does not
increase the parameters for any sub-net. The performance
gains come from the ‘“unshared’ nature of parameters. Ta-
ble 4 shows the parameter increase due to SOL in the super-
nets. FLOPs during forward pass for a SOL based sub-net
with width fraction ay is the sum of the FLOPs of feature
encoder S, and the FLOPs of its head C,, , as in (10).

]:(Sak)""]:(cak) :]:(Sak)"’]:(c) (10)

Since, the number of parameters is same in the output
layer after slimming or switching, FLOPs of the SOL sub-
nets are identical to the corresponding baseline sub-nets.

5.5. Post-Search Fine-Tuning of Sub-Nets

We perform post-search fine-tuning on randomly selected
sub-nets from the SNN and SNN-SOL backbones. As
shown in Table 5, SOL sub-nets consistently achieve higher

performance even after fine-tuning. This indicates that the
unshared output heads in SOL enable sub-nets to learn
stronger representations from the beginning. Fine-tuning
refines these representations but does not fundamentally al-
ter them, so well-optimized sub-nets continue to outper-
form. In contrast, sub-nets from the backbones with shared
output layer cannot close this gap, as their representational
limitations persist despite fine-tuning. Overall, SOL facili-
tates better optimization across all sub-nets by guiding them
toward more generalizable minima, ensuring their domi-
nance is preserved even after fine-tuning.

Table 5. Performance of different sub-nets after fine-tuning.

Dataset Sub-Net SNN | SNN-SOL | Gain % 7t
CIFAR-10 MobileNetV2; /16 | 87.17 89.59 242
WRN-16-85 /16 87.62 89.20 1.58
CIFAR-100 MobileNetV2g /g 73.41 74.38 0.97
ResNet-348/8 77.29 78.86 1.57
TinyImageNet WRN-16-85 /8 62.66 63.84 1.18
ResNet-345 /5 62.34 64.53 2.19

6. Conclusion and Future Perspectives

We introduce Switchable Output Layer (SOL) to enhance
the performance and robustness of Once-for-All (OFA)
training frameworks. SOL assigns independent classifica-
tion heads to the sub-nets in a super-net backbone, which
decouple their logit learning processes, mitigating the com-
petition at the “shared output layer”—a bottleneck limiting
the sub-net accuracy, robustness, and optimization. Exten-
sive experiments using two baseline methods: Once-for-All
Adversarial Training and Slimming (OATS) and Slimmable
Neural Networks (SNNs), across multiple datasets and di-
verse super-net architectures, demonstrate that incorpora-
tion of SOL consistently improves performance of sub-nets
without introducing additional training overhead or com-
plexity. SOL generalizes well, which highlights its poten-
tial as an effective enhancement for the OFA frameworks,
encouraging flexible, scalable, and reliable deployment of
specialized models across a wider range of devices and con-
straints. For future, we aim to extend SOL to more OFA
frameworks (e.g. [5], [44], [49]) and conduct large-scale
evaluations on the ImageNet-1K dataset. We also intend to
study the impact of layer normalization on reducing repre-
sentational interference across the sub-nets.
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APPENDIX
Comparison of OATS and OATS-SOL on CIFAR-10 Dataset (8 Sub-Nets)

This section provides the numerical results of comparison between OATS [38] and OATS-SOL for ResNet-34 backbone,
packed with 8 sub-nets, on CIFAR-10 dataset (as per Figure 5). Table 6 presents a quantitative comparison of accuracy
and robustness between the sub-nets of OATS [38] and OATS-SOL for 25%, 50%, 75%, and 100% widths. For the sub-
nets with these widths, the maximum improvement of 4.71%, 3.26%, 1.92%, 1.66% in accuracy is observed for A = 0.0,
respectively. Additionally, OATS-SOL provides robustness gains of up to 4.84, 7.32%, 7.71%, and 6.80% across these sub-
nets, respectively, for multiple values of \. It is evident that OATS-SOL consistently outperforms OATS. The performance
gap is generally more pronounced for smaller sub-nets and gradually narrows as the sub-net size increases.

Table 6. Accuracy and Robustness of OATS [38] vs. OATS-SOL on CIFAR-10 using ResNet-34 backbone with 8 sub-nets.

N Accuracy Accuracy Robustness Robustness

OATS [38] OATS-SOL Gain (%) OATS [38] OATS-SOL Gain (%) T
Sub-Net 2/8 ; Width = 25 %
0.0 83.12 §7.83 471 0.55 091 0.36
0.1 80.71 S1.43 0.72 25,51 3035 484
02 79.77 80.47 0.70 29.74 34.18 144
03 79.05 79.82 0.77 31.80 36.08 428
0.4 78.19 79.17 0.98 33.44 3754 4.10
10 73.90 7523 133 37.81 4150 3.69
Sub-Net 4/8 ; Width = 50 %
0.0 87.04 91.20 3.26 0.89 2.96 2.07
0.1 85.90 8505 0.05 33.10 7042 732
02 85.10 85.34 0.24 36.68 271 6.03
03 84.48 84.90 0.42 38.72 13.64 492
04 83.79 84.48 0.69 40.00 1457 457
10 80.12 81.65 153 4458 7748 2.90
Sub-Net 6/8 ; Width =75 %
0.0 §9.96 91.88 1.92 131 77 3.39
0.1 87.65 §7.46 0.9 3623 13.94 771
02 86.82 86.94 0.12 39.65 75.68 6.03
03 86.24 86.50 0.26 7138 76.65 527
04 85.60 86.13 0.53 42.89 720 431
1.0 82.66 8420 154 76.85 79.04 2.19
Sub-Net 8/8 ; Width = 100 %
0.0 90.24 91.90 1.66 0.87 514 427
0.1 88.13 8776 037 37.18 1398 6.80
02 8738 $7.08 20.30 30.44 7591 547
03 86.71 86.63 0.08 227 76.99 172
04 86.14 86.20 0.06 13.63 744 381
1.0 §3.27 8434 1.07 1748 1947 1.99

Comparison of OATS and OATS-SOL w.r.t A on SVHN Dataset

This section provides the plots for comparison of OATS [38] and OATS-SOL from WideResNet-16-8 backbone (packed with
8 sub-nets). The results are shown in Figure 8 and Figure 9 from a different perspective, focusing accuracy and robustness
w.r.t A values for SVHN dataset.

Comparison of OATS and OATS-SOL w.r.t A on CIFAR-10 Dataset

This section provides the plots for comparison of OATS [38] and OATS-SOL from ResNet-34 backbone (packed with 8
sub-nets). The results are shown from a different perspective in Figure 10 and Figure 11, focusing accuracy and robustness
w.r.t A values for CIFAR-10 dataset.

Comparison of OATS and OATS-SOL w.r.t A on STL-10 Dataset

This section provides the plots for comparison of OATS and OATS-SOL from WideResNet-40-2 backbone (packed with 4
sub-nets). In Figure 12 and Figure 13, the results are shown for STL-10 dataset from a different perspective for accuracy and
robustness w.r.t A values.
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Figure 8. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone (packed with 8 sub-nets) from
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Figure 9. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone (packed with 8 sub-nets) from
the perspective of PGD-7 robustness w.r.t A.

Extraction of Sub-Networks

After training, the sub-nets of various sizes and performance levels can be extracted by copying the corresponding parameters
from the backbone into newly instantiated, size-matched architectures. For OATS-based sub-nets, the accuracy—robustness
trade-off can be adjusted at inference time by varying the value of A. However, meeting strict deployment constraints often
necessitates smaller sub-nets, which typically involves sacrificing both accuracy and robustness for model-size. In contrast,
for SNN-based sub-nets, the trade-off is only between model-size and accuracy: smaller sub-nets offer reduced memory and
storage footprints but at the cost of lower performance.
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Figure 10. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (packed with 8 sub-nets) from the
perspective of accuracy w.r.t \.
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Figure 11. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (packed with 8 sub-nets) from the
perspective of PGD-7 robustness w.r.t A.

Limitations

SOL increases the overall memory footprint due to the added output heads, which may be impractical for extremely large
sub-net ensembles. Conversely, for super-nets with only a few sub-nets (e.g. two or three), its benefits are limited. More-
over, integrating SOL into pretrained OFA models requires architectural changes, which may hinder the direct reuse of the
pretrained output layer weights.
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Figure 12. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 backbone (packed with 4 sub-nets)

from the perspective of accuracy w.r.t \.
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Figure 13. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 backbone (packed with 4 sub-nets)

from the perspective of PGD-7 robustness w.r.t \.
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