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Abstract

Once-for-All (OFA) training enables a single super-net

to generate multiple sub-nets tailored to diverse deploy-

ment scenarios, supporting flexible trade-offs among accu-

racy, robustness, and model-size without retraining. How-

ever, as the number of supported sub-nets increases, ex-

cessive parameter sharing in the backbone limits repre-

sentational capacity, leading to degraded calibration and

reduced overall performance. To address this, we pro-

pose SOLAR (Switchable Output Layer for Accuracy and

Robustness in Once-for-All Training), a simple yet effective

technique that assigns each sub-net a separate classifica-

tion head. By decoupling the logit learning process across

sub-nets, the Switchable Output Layer (SOL) reduces rep-

resentational interference and improves optimization, with-

out altering the shared backbone. We evaluate SOLAR on

five datasets (SVHN, CIFAR-10, STL-10, CIFAR-100, and

TinyImageNet) using four super-net backbones (ResNet-34,

WideResNet-16-8, WideResNet-40-2, and MobileNetV2) for

two OFA training frameworks (OATS and SNNs). Exper-

iments show that SOLAR outperforms the baseline meth-

ods: compared to OATS, it improves accuracy of sub-

nets up to 1.26%, 4.71%, 1.67%, and 1.76%, and robust-

ness up to 9.01%, 7.71%, 2.72%, and 1.26% on SVHN,

CIFAR-10, STL-10, and CIFAR-100, respectively. Com-

pared to SNNs, it improves TinyImageNet accuracy by up to

2.93%, 2.34%, and 1.35% using ResNet-34, WideResNet-

16-8, and MobileNetV2 backbones (with 8 sub-nets), re-

spectively. The code of SOLAR is publicly available at:

https://github.com/NAIL-UH/SOLAR and its website can be

accessed at https://saktx.github.io/solar.github.io/.

1. Introduction

Deploying deep neural networks across a wide range

of devices—from high-performance servers to resource-

constrained edge platforms—requires customized models

that balance accuracy, robustness [6, 14, 30, 47], and

model-size (or efficiency). Once-for-All (OFA) training

[3, 8, 24, 25, 44, 45] addresses this by optimizing a single

versatile super-network containing many sub-networks that

are tailored to different deployment constraints. The sub-

nets can then be selected post-training to meet trade-offs

among accuracy, adversarial robustness [7, 28, 48], model-

size, or computational cost, without retraining from scratch

[3, 24, 38, 44, 45]. While OFA training [38, 44, 45] of-

fers flexibility and efficiency, scaling to a large number of

sub-nets introduces a fundamental challenge: excessive pa-

rameter sharing. When all sub-nets share a single output

layer, representational interference occurs, preventing each

sub-net from optimizing independently. This coupling of

parameters degrades accuracy, calibration, and robustness,

particularly for sub-nets with differing capacities.

In this paper, we identify the shared output layer as

a bottleneck in OFA frameworks and propose SOLAR

(Switchable Output Layer for Accuracy and Robustness in

Once-for-All Training), a simple yet effective approach that

introduces separate classification heads for the sub-nets.

SOLAR decouples the logit learning process in the com-

mon output layer, mitigating logit interference during train-

ing and improving the sub-net specific optimization while

maintaining the training efficiency.

Key Contributions: Our main contributions are sum-

marized below:

• We identify the shared output layer as a bottleneck in OFA

training, that leads to representational interference and

performance degradation across the sub-nets. To address

this, we propose SOLAR (Switchable Output Layer for

Accuracy and Robustness), a simple and effective method

that assigns each sub-net a separate classification head

while preserving the shared backbone.

• We incorporate SOLAR into two OFA frameworks:

Slimmable Neural Networks (SNNs) [45], which vary

network width dynamically during standard training, and

Once-for-All Adversarial Training and Slimming (OATS)



Figure 1. Illustration of a vanilla SNN [45] vs. SNN with Switchable Output Layer (SNN-SOL) in a super-net backbone with three

sub-nets of different widths: (a) vanilla SNN with a shared output layer; (b–d) SNN-SOL with 100%, 75%, and 50% widths, respectively.

Width refers to the number of channels per layer. SOL assigns a separate classification head to each sub-net, enabling decoupled logit

learning, with the number of heads equal to the number of sub-nets in the backbone.

[38], which combines adversarial training with the dy-

namic width shrinking and uses conditional loss function.

• We perform extensive experiments across five bench-

mark datasets (SVHN [29], CIFAR-10 [22], STL-10 [9]),

CIFAR-100 [22], and TinyImageNet [26], using four

different super-net backbones (WideResNet-16-8 [46],

ResNet-34 [16], WideResNet-40-2 [46], MobileNetV2

[34]), demonstrating that SOLAR generalizes well and

improves both standard accuracy and adversarial robust-

ness across the sub-nets and frameworks.

• Our smallest sub-net from OATS-SOL, trained on

the SVHN dataset using WideResNet-16-8 backbone,

achieves the best accuracy of 94.01% and robustness of

53.08%, surpassing the standard OATS [38] baseline by

0.57% and 1.57%, respectively, while maintaining the

compact model size of 387 KB.

2. Related Work

Once-for-All (OFA) Training: OFA framework [3]

trains a single over-parameterized super-net from which

many sub-nets can be derived by sampling architectures

with different depths, widths, kernel sizes, or input resolu-

tions. These sub-nets inherit weights from the super-net, en-

abling efficient deployment without retraining from scratch.

A progressive shrinking strategy [3, 8, 31] is used to jointly

optimize all sub-nets. Although OFA enables massive scal-

ability and supports over 1019 sub-nets, training a super-

net that performs well across all sub-nets is hard, because

smaller sub-nets suffer from degraded performance due to

conflicting gradients and “shared parameters”. When

many sub-nets share parameters, gradients from different

sub-nets cause interference, making it harder to optimize

the shared layers for all sub-net configurations [38, 45].

Slimmable Neural Networks (SNNs): SNNs [45]

follow the OFA principle by training a single super-net

operating only at four widths (0.25×, 0.5×, 0.75×, 1.0×).

SNNs provide a twofold trade-off between accuracy and

model size (or efficiency). They address key OFA chal-

lenges—particularly performance degradation caused by

conflicting feature statistics when all sub-nets share a sin-

gle Batch Normalization (BN) layer [20]—by introducing

Switchable Batch Normalization (SBN) [45], which as-

signs a separate BN layer to each sub-net. This design

reduces training instability and gradient interference, im-

proving performance across widths [12]. However, SNNs

still rely on a shared output layer for all sub-nets, which

becomes a bottleneck as the sub-net diversity grows. This

limits the capacity to fully adapt output representations to

varying sub-net complexities. Our proposed Switchable

Output Layer (SOL) solves this problem by providing sub-

net-specific classification heads, effectively overcoming the

common output layer bottleneck and further enhancing sub-

net performance without sacrificing training cost.

Once-for-All Adversarial Training and Slimming

(OATS): OATS [38] extends the Once-for-All Adversar-

ial Training (OAT) framework [38] by integrating model

compactness across widths like the SNNs [45]. It trains a

single super-net supporting three widths (0.5×, 0.75×, 1.0×)

via channel-wise slimming, enabling deployment across de-

vices with varying resources. During training, OATS con-

ditions on both adversarial loss weight λ and width frac-

tion, allowing the super-net to enable a balance between

accuracy, robustness, and efficiency without requiring re-

training from scratch. To handle distribution mismatches

between clean and adversarial samples [12], OATS intro-

duces Switchable Dual Batch Normalization (SDBN) [38]



Figure 2. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone packed with 8 sub-nets.

OATS-SOL provides superior performance than OATS for all the sub-nets in terms of accuracy and PGD-7 robustness.

with separate BN layers for each data type, and sub-net

width, ensuring stable, high-performance training. Con-

ditional learning techniques such as FiLM layers [33, 38]

or scaled noise injection [24, 25] enable adaptive behavior

based on input conditions. OATS [38] employs FiLM lay-

ers for this purpose. Our proposed Switchable Output Layer

(SOL) improves the performance of both SNNs and OATS

frameworks across diverse datasets and architectures, offer-

ing superior accuracy, robustness, and efficiency trade-offs.

3. Preliminaries

Consider a multi-class classification setting with  N train-

ing samples and  C classes. For each sample  i , let  y_i \in \{1, \dots , C\} 
      denote the ground-truth label, and let  \mathbf {p}_i = (p_{i1}, \dots , p_{iC}) 
      denote the predicted class probabilities, com-

puted via the softmax function from the model logits  z_{ic} :

  p_{ic} = \frac {\exp (z_{ic})}{\sum _{j=1}^{C} \exp (z_{ij})} \label {eq:eq_1} 





(1)

Given a dataset  \mathcal {D} = \{(\mathbf {x}_i, y_i)\}_{i=1}^N  

, where  \mathbf {x}_i \in \mathbb {R}^d  

 and

 y_i \in \{1, \dots , C\}        , a neural network  f : \mathbb {R}^d \to \mathbb {R}^C 
 

 with

parameters  \theta maps inputs to logits. The model is typically

trained using empirical risk minimization (ERM) with the

cross-entropy loss:

  \mathcal {L}_{\mathrm {CE}} =\mathcal {L}(f(\mathbf {x}_i; \theta ), y_i) = -\log p_{i y_i} \label {eq:eq_2}        
(2)

Adversarial Training (AT): AT has been widely

adopted to improve model robustness by explicitly optimiz-

ing for performance under worst-case input perturbations

[1, 7, 14, 19, 28, 35, 43, 50]. A common approach is to use

a hybrid loss  \mathcal {L}_{\mathrm {Hybrid}}  that combines standard classification

loss  \mathcal {L}_{\mathrm {CE}}  and adversarial loss  \mathcal {L}_{\mathrm {ADV}}  [4, 37, 41, 48]:

  \min _{\theta } \mathbb {E}_{(\mathbf {x}, y) \sim \mathcal {D}} \underbrace {\left [ (1 - \lambda ) \mathcal {L}_{\mathrm {CE}} + \lambda \mathcal {L}_{\mathrm {ADV}} \right ]}_{\mathcal {L}_{\mathrm {Hybrid}}} \label {eq:eq_3} 


   
 



(3)

where the adversarial loss is defined as:

  \mathcal {L}_{\mathrm {ADV}} = \max _{\delta \in \mathcal {B}_\epsilon (\mathbf {x})} \mathcal {L}(f(\mathbf {x} + \delta ; \theta ), y) \label {eq:eq_4}  


    (4)

and  \mathcal {B}_\epsilon (\mathbf {x}) = \{ \delta \in \mathbb {R}^d \mid \|\delta \|_\infty \leq \epsilon \}    
     is the  L_\infty -ball around

 \mathbf {x} , constraining the magnitude of adversarial perturbations.

A widely used method for solving the inner maximization

problem in adversarial training is Projected Gradient De-

scent (PGD) [4, 19, 28]. Given an input  \mathbf {x} and label  y , PGD

generates an adversarial example  \mathbf {x}' 
 as:

  \mathbf {x}' = \Pi _{\mathcal {B}_\epsilon (\mathbf {x})} \left ( \mathbf {x} + \gamma \cdot \text {sign} \left ( \nabla _{\mathbf {x}} \mathcal {L}(f(\mathbf {x}; \theta ), y) \right ) \right ) \label {eq:eq_5} 
          (5)

where  \gamma is the step size and  \Pi _{\mathcal {B}_\epsilon (\mathbf {x})}(\cdot )  denotes projection

onto the  L_\infty -ball around  \mathbf {x} . This procedure can be iterated

multiple times to find stronger adversarial examples.

Switchable Dual Batch Normalization (SDBN):

Dual Batch Normalization (DBN) [11, 20, 42] addresses the

distribution mismatch between clean and adversarial data

during adversarial training. DBN maintains two sets of BN

parameters: one for clean ( \mathrm {BN}_{cln} ) and one for adversar-

ial data ( \mathrm {BN}_{adv} ) [11, 12]. This normalization strategy pre-

vents feature distortion and improves performance and ro-

bustness [2, 12, 39]. SDBN extends this idea to super-nets



containing multiple sub-nets and maintains DBN layer for

each switch (or sub-net) in the backbone [38]. Each sub-

net in the width adaptive backbones [38, 45], exhibits dis-

tinct feature statistics [38, 45]. SNNs use SBN to preserve

performance across all widths, that maintains separate BN

parameters (\gamma _{\alpha _k}, \beta _{\alpha _k}, \mu _{\alpha _k}, \sigma ^2_{\alpha _k})






, leading to the following

parameter set.

  \Theta = \left \{ W, \{ \gamma _{\alpha _k}, \beta _{\alpha _k}, \mu _{\alpha _k}, \sigma ^2_{\alpha _k} \}_{k=1}^K \right \} \label {eq:eq_6} 












(6)

Where  W represents the shared weights of Convolutional

and Linear layers,  \gamma _{\alpha _k}, \beta _{\alpha _k} 


are the scale and shift parame-

ters,  \mu _{\alpha _k}, \sigma ^2_{\alpha _k} 



are the running mean and variance for each

sub-net with width fraction αk. The SBN parameters are not

shared among the sub-nets. Beyond normalization, OATS

[38] uses model-conditional learning to enable on-the-fly

accuracy–robustness trade-offs by conditioning the model

on structural or stochastic inputs (e.g. via FiLM layers on

a hyperparameter like  \lambda ) [18, 21, 38, 40]. Despite these so-

lutions, a bottleneck remains in the end: the shared output

layer where all sub-nets share a single classification head,

causing logit interference that limits learning capacity and

calibration. To address this, we introduce the Switchable

Output Layer (SOL), which assigns a separate classifica-

tion head to each sub-net in the backbone. Like SBN sep-

arates out the feature normalization for different sub-nets

[45], the SOL isolates their logit learning processes, en-

abling overall better optimization for each sub-net.

4. Methodology

4.1. Bottleneck in OFA Training: Standard Output
Layer (Shared Parameters)

OFA training aims to train a single over-parametrized super-

net from which multiple sub-nets can be derived for di-

verse deployment requirements without retraining. Let

N (x; Θ) denote the super-net with input  x and the param-

eter set  \Theta , as defined in (6). To enable flexible sub-net

instantiation, a predefined set of width multipliers W =
{α1, α2, . . . , αk} where 0 < α1 < α2 < · · · < αk ≤ 1
is used to scale the number of active channels in each layer

of N [38, 45]. The k^{th} sub-net, corresponding to width

multiplier  \alpha _k , is denoted as Sαk
(x) = N (x; Θαk

) where

 \Theta _{\alpha _k} \subseteq \Theta 
  represents the subset of parameters utilized by the

sub-net. The full-width super-net corresponds to  \alpha _K = 1  ,

using the complete parameter set Θ. The goal of OFA train-

ing is to learn optimal parameters  \Theta that minimize a prede-

fined objective as in (7).

  \min _{\Theta } \frac {1}{N} \sum _{i=1}^{N} \mathcal {L}(\mathcal {N}(x_i;\Theta ),y_i) \label {eq:eq_7} 










    (7)

During training, a width multiplier  \alpha _k \in \mathcal {W}    is sampled

to activate the corresponding sub-net  \mathcal {S}_{\alpha _k} 
, which produces

Figure 3. Visualizing the running means and variances of SBN

layers for clean data in OATS-based ResNet-34 (with 4 sub-nets)

during training. Top plot shows scattered statistics in the middle

SBN, while bottom plot reveals tighter and distinct distributions

in the last SBN. The shared output layer in OATS causes repre-

sentational interference. SOL alleviates this by assigning separate

classification heads to the sub-nets, thereby improving calibration

and performance without increasing their parameter count.

intermediate features f_{\alpha _k} = \mathcal {S}_{\alpha _k}(x) 


. All sub-nets share

a common classification head  \text {C} , used to compute logits:

z_{\alpha _k} = \text {C}(f_{\alpha _k}) 


.

Since sub-nets of different widths produce different fea-

ture distributions [38, 45], SNNs [45] used SBN layers and

OATS [38] used SDBN layers to maintain separate normal-

ization parameters for each sub-net. Although these layers

decouple intermediate features, all sub-nets still converge

at the shared output layer, which is commonly adopted

in traditional OFA methods [3, 8, 25, 38, 44, 45]. This

shared head creates a bottleneck by forcing incompatible

features into a single representation space, leading to de-

graded performance. The design space becomes more com-

plex [24, 38, 44, 45], when the number of sub-nets in-



creases. We analyzed the statistics of the middle and fi-

nal  \mathrm {BN}_{\text {cln}}  layers of ResNet-34 super-net in Figure 3. The

figure reveals significant variance across sub-nets: the nar-

rowest sub-net (blue) exhibits compact, low-variance fea-

tures, whereas the widest (red) shows high-variance, dis-

persed distribution. This indicates that, although SBN and

SDBN preserve internal feature separation, the shared out-

put head remains a bottleneck at the end of the pipeline.

4.2. Overcoming Bottleneck with Switchable Out-
put Layer (Separate Parameters)

As established in previous section, the shared output layer

in OFA frameworks introduces a critical bottleneck by

forcing diverse sub-net features into a single classifica-

tion space, leading to interference and degraded perfor-

mance. The Switchable Output Layer (SOL) enhances

OFA frameworks [3, 8, 25, 38, 44, 45] by addressing perfor-

mance degradation caused by the shared output layer across

sub-nets. SOL introduces a lightweight modification by as-

signing a separate classification head to each sub-net in the

super-net backbone, thereby preserving the sub-net specific

representations through to the output and eliminating cross

sub-net conflict during training (see Figure 1).

Instead of sharing a classification head  \text {C} for all sub-nets,

SOL introduces a unique head  \text {C}_{\alpha _k} 
for each sub-net  \mathcal {S}_{\alpha _k} 

.

During training, a width multiplier  \alpha _k \in \mathcal {W}    activates the

corresponding sub-net to produce intermediate features:

  z_{\alpha _k} = \text {C}_{\alpha _k}(f_{\alpha _k}) \label {eq:eq_8} 



 (8)

Only the active head  \text {C}_{\alpha _k} 
receives updates during back-

propagation, while others remain inactive. This dynamic

switching ensures that each sub-net learns independently,

avoiding interference from incompatible gradients at the

output layer (see Figure 1 and Figure 4). The full OATS-

SOL pipeline is detailed in Algorithm 1. SOL is agnos-

tic to the choice of loss function and supports a range of

training objectives, including standard cross-entropy \protect \mathcal  {L}_{CE}

[23, 27] or distillation \protect \mathcal  {L}_{KLD} [15, 17, 36], and robust objec-

tives like TRADES [48], MMA [10], and adversarial distil-

lation [13, 15, 32]. For hybrid training (as in OATS), the

total loss across eight sub-nets is defined as:

  \mathcal {L} = \sum _{\alpha \in \{1/8,\, 2/8,\, ...,\, 8/8\}} \left [ (1 - \lambda ) \, \mathcal {L}_{\text {CE}}^{(\alpha )} + \lambda \, \mathcal {L}_{\text {ADV}}^{(\alpha )} \right ] \label {eq:eq_9} \vspace {10pt} 


  





 






(9)

5. Experiments & Results

5.1. Super-Net Architectures and Setup

We evaluate SOLAR on four super-net backbones:

WideResNet-16-8 [46], ResNet-34 [16], WideResNet-40-2

[46], and MobileNetV2 [34], using five benchmark datasets:

SVHN [29], CIFAR-10 [22], STL-10 [9], CIFAR-100 [22],

and TinyImageNet [26]. Experiments have been conducted

Algorithm 1 Once-for-All Adversarial Training and Slim-

ming with Switchable Output Layer (OATS-SOL)

Require: Training set D, set S with λ values, Super-Net

N , max iterations T , width multipliers list W
Ensure: Network parameters Θ

1: for t = 1 to T do

2: Sample batch (x, y) from D and λ from S

3: Clear gradients: optimizer.zero grad()
4: for each \alpha in W do

5: Activate sub-net Sαk
with head Cαk

in N
6: Generate adversarial example xadv

7: Perform forward pass

8: Compute loss = L(x, y, λ)
9: Accumulate gradients: loss.backward()

10: end for

11: Update parameters: optimizer.step()
12: end for

on a workstation with Intel Core i9-14900KF CPU, 36 MB

L3 cache, and NVIDIA RTX 4090.

5.2. Hyperparameter Settings

We trained OATS-SOL on SVHN, CIFAR-10, STL-10, and

CIFAR-100 for 40, 120, 120, and 120 epochs and SNN-

SOL on CIFAR-10, CIFAR-100, and TinyImageNet for

120, 120, and 140 epochs, respectively. Batch sizes were

set to 64 for STL-10 and TinyImageNet, and 128 for all the

other datasets. We used SGD with momentum 0.9, cosine

annealing scheduler, and learning rates: {0.1, 0.05, 0.01}.

Reported results correspond to the best performance across

multiple runs with different random seeds, selected based

on optimal validation accuracy.

Adversarial Training and Evaluation: We use same

settings as OATS [38] using 7-step PGD attack (L∞ norm),

ϵ = 8/255, and step-size = 2/255. Models are evalu-

ated on the basis of Accuracy and Robustness. Following

OATS [38], we uniformly sample λ element-wise from the

set S = {0.0, 0.1, 0.2, 0.3, 0.4, 1.0} during training and val-

idation. For inference, λ can be any value in [0,1], as per

requirements for the accuracy-robustness trade-off.

5.3. Baseline Methods: OATS and SNNs

We evaluated SOLAR on two baselines: Once-for-All

Adversarial Training and Slimming (OATS) [38] and

Slimmable Neural Networks (SNNs) [45]. After employing

Switchable Output Layer (SOL), we denote them as OATS-

SOL and SNN-SOL. For fair comparison, we evaluate the

baseline and SOLAR methods using same hyperparameters.

Comparison with OATS: For comparing OATS

and OATS-SOL, we used WideResNet-16-8, ResNet-34,

WideResNet-40-2, and ResNet-34 as backbones on the



Figure 4. Illustration of OATS framework [38] with Switchable Dual Batch Norm (SDBN) layers and Switchable Output Layer (SOL).

Value of α indicates the width fraction for the corresponding sub-net in the backbone that is activated during training or inference.

Convolutional layers have shared parameters whereas SDBN and SOL have separate parameters for each sub-net.

Figure 5. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (with 8 sub-nets). OATS-SOL

provides superior performance than OATS for all the sub-nets in terms of accuracy and PGD-7 based robustness.

Figure 6. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 as backbone with 4 sub-nets.

SVHN, CIFAR-10, STL-10, and CIFAR-100 datasets, re-

spectively. The accuracy and robustness of OATS and

OATS-SOL sub-nets can be tuned by changing the val-

ues of λ ∈ [0.0, 1.0] for free during run-time [38]. To

meet the tighter memory and storage constraints of devices,

sub-nets with smaller widths are preferred. The compar-

ison of OATS [38] and OATS-SOL on SVHN dataset us-

ing WideResNet-16-8 backbone (packed with 8 sub-nets)



Figure 7. Comparison of OATS [38] and OATS-SOL on CIFAR-100 dataset using ResNet-34 as backbone with 4 sub-nets.

Table 1. Accuracy of SNN [45] and SNN-SOL based Sub-Nets on CIFAR-10 for backbones packed with 16 Sub-Nets.

Sub-Net

Width

ResNet-34 WideResNet-16-8 MobileNetV2

SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑

Small Sub-Nets
1/16 83.28 83.55 0.27 82.72 82.94 0.22 82.16 84.17 2.01

2/16 87.71 88.01 0.30 86.96 88.37 1.41 86.24 88.91 2.67

3/16 89.88 90.07 0.19 88.98 91.41 2.43 88.13 90.50 2.37

4/16 90.96 91.27 0.31 92.35 92.46 0.11 89.18 90.59 1.41

5/16 91.86 91.88 0.02 92.51 93.12 0.61 89.56 91.96 2.40

6/16 92.32 92.64 0.32 93.00 93.63 0.63 90.26 92.61 2.35

Medium Sub-Nets
7/16 92.48 92.98 0.50 93.14 93.81 0.67 90.82 92.70 1.88

8/16 92.54 93.35 0.81 93.78 93.95 0.17 90.68 92.88 2.20

9/16 92.78 93.48 0.70 93.93 94.23 0.30 91.37 92.87 1.50

10/16 92.84 93.80 0.96 93.97 94.20 0.23 91.80 93.18 1.38

11/16 92.88 93.86 0.98 93.91 94.28 0.37 91.51 93.38 1.87

Large Sub-Nets
12/16 93.07 93.84 0.77 94.12 94.46 0.34 91.91 93.21 1.30

13/16 93.13 93.89 0.76 94.07 94.55 0.48 91.93 93.29 1.36

14/16 93.27 93.98 0.71 94.11 94.62 0.51 92.12 93.64 1.52

15/16 93.32 93.94 0.62 94.10 94.57 0.47 92.03 93.65 1.62

16/16 93.38 94.04 0.66 94.09 94.67 0.58 92.15 93.45 1.30

Table 2. Accuracy of SNN [45] and SNN-SOL on CIFAR-100 for backbones with 8 sub-nets.

Sub-Net

Width

ResNet-34 WideResNet-16-8 MobileNetV2

SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑
1/8 66.23 66.18 -0.05 64.54 64.33 -0.21 64.45 64.37 -0.08

2/8 71.64 72.07 0.43 71.64 71.96 0.32 68.94 68.91 -0.03

3/8 73.91 74.82 0.91 74.48 74.28 -0.20 71.16 71.59 0.43

4/8 75.33 76.26 0.93 75.86 75.97 0.11 72.15 72.38 0.23

5/8 76.26 77.28 1.02 76.71 76.93 0.22 73.04 73.54 0.50

6/8 76.79 78.10 1.31 76.91 77.27 0.36 73.26 73.78 0.52

7/8 76.74 78.08 1.34 77.37 77.83 0.46 73.51 73.92 0.41

8/8 76.78 78.43 1.65 77.97 78.22 0.25 73.23 74.19 0.96

Table 3. Accuracy of SNN [45] and SNN-SOL on TinyImageNet for backbones with 8 sub-nets.

Sub-Net

Width

ResNet-34 WideResNet-16-8 MobileNetV2

SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑ SNN SNN-SOL Gain % ↑
1/8 51.22 52.33 1.11 45.81 46.54 0.73 48.64 49.57 0.93

2/8 57.79 59.65 1.86 56.30 56.22 -0.08 54.85 55.76 0.91

3/8 60.12 61.73 1.61 60.02 60.26 0.24 57.62 58.97 1.35

4/8 61.62 63.41 1.79 61.93 62.86 0.93 58.67 59.37 0.70

5/8 62.02 64.37 2.35 62.24 63.74 1.50 59.75 60.04 0.29

6/8 62.83 65.65 2.82 63.34 64.73 1.39 59.67 60.31 0.64

7/8 63.50 66.08 2.58 63.12 65.46 2.34 59.66 60.81 1.15

8/8 63.46 66.39 2.93 63.61 65.34 1.73 59.91 61.17 1.26

is shown in Figure 2. OATS-SOL is represented by blue

color and provides superior performance than OATS for

all the sub-nets in terms of accuracy and robustness. The

performance gain is generally higher in smaller sub-nets as

compared to larger ones. Similarly, Figure 5, Figure 6, and

Figure 7 show the comparison of OATS and OATS-SOL on

CIFAR-10 (ResNet-34 backbone with 8 sub-nets), STL-10

(WideResNet-40-2 backbone with 4 sub-nets), and CIFAR-

100 (ResNet-34 backbone with 4 sub-nets), respectively.

OATS-SOL provides better accuracy and robustness for all



Table 4. Parameter counts of SNN [45] vs. SNN-SOL backbones packed with 8, 32, and 64 sub-nets for CIFAR-10 dataset.

Super-Net
8 Sub-Nets 32 Sub-Nets 64 Sub-Nets

SNN SNN-SOL Increase SNN SNN-SOL Increase SNN SNN-SOL Increase

WRN-40-2 2.26M 2.28M 0.97% 2.33M 2.41M 3.61% 2.41M 2.58M 6.88%

MobileNetV2 2.35M 2.40M 1.91% 2.75M 2.96M 7.23% 3.28M 3.68M 12.32%

WRN-16-8 10.99M 11.00M 0.16% 11.07M 11.15M 0.72% 11.19M 11.35M 1.45%

ResNet-34 21.34M 21.36M 0.08% 21.55M 21.63M 0.37% 21.82M 21.98M 0.74%

the sub-nets across the datasets. We present a numerical

comparison between OATS and OATS-SOL for CIFAR-10

dataset in the Appendix with additional insightful results.

Comparison with SNNs: We compare SNN [45]

and SNN-SOL using ResNet-34, WideResNet-16-8, and

MobileNetV2 backbones on CIFAR-10, CIFAR-100, and

TinyImageNet. Table 1 reports results on CIFAR-10 with

16 sub-nets, where SNN-SOL achieves maximum gains

of 0.32%, 2.43%, and 2.67% for small sub-nets, 0.98%,

0.67%, and 2.20% for medium sub-nets, and 0.77%,

0.58%, and 1.62% for large sub-nets across the three back-

bones. On CIFAR-100 (Table 2), SNN-SOL improves accu-

racies by up to 1.65%, 0.46%, and 0.96%, using the back-

bones with 8 sub-nets. On TinyImageNet (Table 3), im-

provements reach 2.93%, 2.34%, and 1.35% for ResNet-

34, WideResNet-16-8, and MobileNetV2, all packed with

8 sub-nets, respectively. The experimental results demon-

strate that when the super-net backbones are packed with

higher number of sub-nets, the Switchable Output Layer

(SOL) provides notable performance gains for the sub-nets.

5.4. Impact of SOL on Parameter Count and FLOPs

The training and inference overhead using SOL is negligi-

ble: only the active head is used for each sub-net, contain-

ing the same number of parameters as in the baseline. The

shared output layer performs “slimming” whereas SOL

performs “switching”. SOL increases parameter storage

due to use of multiple heads in the super-net but does not

increase the parameters for any sub-net. The performance

gains come from the “unshared” nature of parameters. Ta-

ble 4 shows the parameter increase due to SOL in the super-

nets. FLOPs during forward pass for a SOL based sub-net

with width fraction αk is the sum of the FLOPs of feature

encoder Sαk
and the FLOPs of its head Cαk

, as in (10).

  \mathcal {F}\!\left (\mathcal {S}_{\alpha _k}\right ) + \mathcal {F}\!\left (\mathcal {C}_{\alpha _k}\right ) = \mathcal {F}\!\left (\mathcal {S}_{\alpha _k}\right ) + \mathcal {F}\!\left (\mathcal {C}\right ) \label {eq:eq_10} 
 

 
   (10)

Since, the number of parameters is same in the output

layer after slimming or switching, FLOPs of the SOL sub-

nets are identical to the corresponding baseline sub-nets.

5.5. Post-Search Fine-Tuning of Sub-Nets

We perform post-search fine-tuning on randomly selected

sub-nets from the SNN and SNN-SOL backbones. As

shown in Table 5, SOL sub-nets consistently achieve higher

performance even after fine-tuning. This indicates that the

unshared output heads in SOL enable sub-nets to learn

stronger representations from the beginning. Fine-tuning

refines these representations but does not fundamentally al-

ter them, so well-optimized sub-nets continue to outper-

form. In contrast, sub-nets from the backbones with shared

output layer cannot close this gap, as their representational

limitations persist despite fine-tuning. Overall, SOL facili-

tates better optimization across all sub-nets by guiding them

toward more generalizable minima, ensuring their domi-

nance is preserved even after fine-tuning.

Table 5. Performance of different sub-nets after fine-tuning.

Dataset Sub-Net SNN SNN-SOL Gain % ↑

CIFAR-10
MobileNetV22/16 87.17 89.59 2.42

WRN-16-82/16 87.62 89.20 1.58

CIFAR-100
MobileNetV28/8 73.41 74.38 0.97

ResNet-348/8 77.29 78.86 1.57

TinyImageNet
WRN-16-85/8 62.66 63.84 1.18

ResNet-345/8 62.34 64.53 2.19

6. Conclusion and Future Perspectives

We introduce Switchable Output Layer (SOL) to enhance

the performance and robustness of Once-for-All (OFA)

training frameworks. SOL assigns independent classifica-

tion heads to the sub-nets in a super-net backbone, which

decouple their logit learning processes, mitigating the com-

petition at the “shared output layer”—a bottleneck limiting

the sub-net accuracy, robustness, and optimization. Exten-

sive experiments using two baseline methods: Once-for-All

Adversarial Training and Slimming (OATS) and Slimmable

Neural Networks (SNNs), across multiple datasets and di-

verse super-net architectures, demonstrate that incorpora-

tion of SOL consistently improves performance of sub-nets

without introducing additional training overhead or com-

plexity. SOL generalizes well, which highlights its poten-

tial as an effective enhancement for the OFA frameworks,

encouraging flexible, scalable, and reliable deployment of

specialized models across a wider range of devices and con-

straints. For future, we aim to extend SOL to more OFA

frameworks (e.g. [5], [44], [49]) and conduct large-scale

evaluations on the ImageNet-1K dataset. We also intend to

study the impact of layer normalization on reducing repre-

sentational interference across the sub-nets.
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APPENDIX

Comparison of OATS and OATS-SOL on CIFAR-10 Dataset (8 Sub-Nets)

This section provides the numerical results of comparison between OATS [38] and OATS-SOL for ResNet-34 backbone,

packed with 8 sub-nets, on CIFAR-10 dataset (as per Figure 5). Table 6 presents a quantitative comparison of accuracy

and robustness between the sub-nets of OATS [38] and OATS-SOL for 25%, 50%, 75%, and 100% widths. For the sub-

nets with these widths, the maximum improvement of 4.71%, 3.26%, 1.92%, 1.66% in accuracy is observed for λ = 0.0,

respectively. Additionally, OATS-SOL provides robustness gains of up to 4.84, 7.32%, 7.71%, and 6.80% across these sub-

nets, respectively, for multiple values of λ. It is evident that OATS-SOL consistently outperforms OATS. The performance

gap is generally more pronounced for smaller sub-nets and gradually narrows as the sub-net size increases.

Table 6. Accuracy and Robustness of OATS [38] vs. OATS-SOL on CIFAR-10 using ResNet-34 backbone with 8 sub-nets.

λ
Accuracy

OATS [38]

Accuracy

OATS-SOL
Gain (%) ↑

Robustness

OATS [38]

Robustness

OATS-SOL
Gain (%) ↑

Sub-Net 2/8 ; Width = 25 %
0.0 83.12 87.83 4.71 0.55 0.91 0.36

0.1 80.71 81.43 0.72 25.51 30.35 4.84

0.2 79.77 80.47 0.70 29.74 34.18 4.44

0.3 79.05 79.82 0.77 31.80 36.08 4.28

0.4 78.19 79.17 0.98 33.44 37.54 4.10

1.0 73.90 75.23 1.33 37.81 41.50 3.69

Sub-Net 4/8 ; Width = 50 %
0.0 87.94 91.20 3.26 0.89 2.96 2.07

0.1 85.90 85.95 0.05 33.10 40.42 7.32

0.2 85.10 85.34 0.24 36.68 42.71 6.03

0.3 84.48 84.90 0.42 38.72 43.64 4.92

0.4 83.79 84.48 0.69 40.00 44.57 4.57

1.0 80.12 81.65 1.53 44.58 47.48 2.90

Sub-Net 6/8 ; Width = 75 %
0.0 89.96 91.88 1.92 1.31 4.7 3.39

0.1 87.65 87.46 -0.19 36.23 43.94 7.71

0.2 86.82 86.94 0.12 39.65 45.68 6.03

0.3 86.24 86.50 0.26 41.38 46.65 5.27

0.4 85.60 86.13 0.53 42.89 47.20 4.31

1.0 82.66 84.20 1.54 46.85 49.04 2.19

Sub-Net 8/8 ; Width = 100 %
0.0 90.24 91.90 1.66 0.87 5.14 4.27

0.1 88.13 87.76 -0.37 37.18 43.98 6.80

0.2 87.38 87.08 -0.30 40.44 45.91 5.47

0.3 86.71 86.63 -0.08 42.27 46.99 4.72

0.4 86.14 86.20 0.06 43.63 47.44 3.81

1.0 83.27 84.34 1.07 47.48 49.47 1.99

Comparison of OATS and OATS-SOL w.r.t λ on SVHN Dataset

This section provides the plots for comparison of OATS [38] and OATS-SOL from WideResNet-16-8 backbone (packed with

8 sub-nets). The results are shown in Figure 8 and Figure 9 from a different perspective, focusing accuracy and robustness

w.r.t λ values for SVHN dataset.

Comparison of OATS and OATS-SOL w.r.t λ on CIFAR-10 Dataset

This section provides the plots for comparison of OATS [38] and OATS-SOL from ResNet-34 backbone (packed with 8

sub-nets). The results are shown from a different perspective in Figure 10 and Figure 11, focusing accuracy and robustness

w.r.t λ values for CIFAR-10 dataset.

Comparison of OATS and OATS-SOL w.r.t λ on STL-10 Dataset

This section provides the plots for comparison of OATS and OATS-SOL from WideResNet-40-2 backbone (packed with 4

sub-nets). In Figure 12 and Figure 13, the results are shown for STL-10 dataset from a different perspective for accuracy and

robustness w.r.t λ values.



Figure 8. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone (packed with 8 sub-nets) from

the perspective of accuracy w.r.t λ.

Figure 9. Comparison of OATS [38] and OATS-SOL on SVHN dataset using WideResNet-16-8 backbone (packed with 8 sub-nets) from

the perspective of PGD-7 robustness w.r.t λ.

Extraction of Sub-Networks

After training, the sub-nets of various sizes and performance levels can be extracted by copying the corresponding parameters

from the backbone into newly instantiated, size-matched architectures. For OATS-based sub-nets, the accuracy–robustness

trade-off can be adjusted at inference time by varying the value of λ. However, meeting strict deployment constraints often

necessitates smaller sub-nets, which typically involves sacrificing both accuracy and robustness for model-size. In contrast,

for SNN-based sub-nets, the trade-off is only between model-size and accuracy: smaller sub-nets offer reduced memory and

storage footprints but at the cost of lower performance.



Figure 10. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (packed with 8 sub-nets) from the

perspective of accuracy w.r.t λ.

Figure 11. Comparison of OATS [38] and OATS-SOL on CIFAR-10 dataset using ResNet-34 backbone (packed with 8 sub-nets) from the

perspective of PGD-7 robustness w.r.t λ.

Limitations

SOL increases the overall memory footprint due to the added output heads, which may be impractical for extremely large

sub-net ensembles. Conversely, for super-nets with only a few sub-nets (e.g. two or three), its benefits are limited. More-

over, integrating SOL into pretrained OFA models requires architectural changes, which may hinder the direct reuse of the

pretrained output layer weights.



Figure 12. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 backbone (packed with 4 sub-nets)

from the perspective of accuracy w.r.t λ.

Figure 13. Comparison of OATS [38] and OATS-SOL on STL-10 dataset using WideResNet-40-2 backbone (packed with 4 sub-nets)

from the perspective of PGD-7 robustness w.r.t λ.
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