
Learning After Model Deployment
Derda Kaymak a, Gyuhak Kim b, Tomoya Kaichi c, Tatsuya Konishi c and Bing Liu a,*

aUniversity of Illinois Chicago, USA
bAccenture, USA

cKDDI Research, Japan

Abstract. In classic supervised learning, once a model is deployed
in an application, it is fixed. No updates will be made to it during the
application. This is inappropriate for many dynamic and open en-
vironments, where unexpected samples from unseen classes may ap-
pear. In such an environment, the model should be able to detect these
novel samples from unseen classes and learn them after they are la-
beled. We call this paradigm Autonomous Learning after Model De-
ployment (ALMD). The learning here is continuous and involves no
human engineers. Labeling in this scenario is performed by human
co-workers or other knowledgeable agents, which is similar to what
humans do when they encounter an unfamiliar object and ask an-
other person for its name. In ALMD, the detection of novel samples
is dynamic and differs from traditional out-of-distribution (OOD) de-
tection in that the set of in-distribution (ID) classes expands as new
classes are learned during application, whereas ID classes is fixed
in traditional OOD detection. Learning is also different from clas-
sic supervised learning because in ALMD, we learn the encountered
new classes immediately and incrementally. It is difficult to retrain
the model from scratch using all the past data from the ID classes
and the novel samples from newly discovered classes, as this would
be resource- and time-consuming. Apart from these two challenges,
ALMD faces the data scarcity issue because instances of new classes
often appear sporadically in real-life applications. To address these
issues, we propose a novel method, PLDA, which performs dynamic
OOD detection and incremental learning of new classes on the fly.
Empirical evaluations will demonstrate the effectiveness of PLDA.

1 Introduction
A traditional machine learning application starts by training a model.
Once the model accuracy is satisfactory, it is deployed to the appli-
cation. During the application process, the model is fixed, i.e., no
change to the model can be made. It assumes that the classes seen in
the application must have been seen in training. This is commonly
known as the closed-world assumption [10, 26, 5], meaning no sam-
ples from unseen classes can appear in applications. In contrast, the
real world is an open environment, full of unknowns and novelties,
also known as out-of-distribution (OOD) objects. To function effec-
tively in this open world, an AI agent must continuously learn on the
fly after deployment, rather than relying on periodic offline retrain-
ing initiated by human engineers. This means the deployed model
should not be frozen, and more knowledge can be learned during
application. We call this paradigm the Autonomous Learning after
Model Deployment (ALMD). ALMD needs three key capabilities:

∗ Corresponding Author. Email: liub@uic.edu.

(1) detecting OOD samples continually based on the current set of
classes (called in-distribution (ID) classes) that have been learned,

(2) obtaining the class labels of the detected OOD samples, and
(3) learning the OOD samples on the fly incrementally or continu-

ally. This is the class-incremental learning (CIL) setting of continual
learning (CL) as the system learns more and more classes.

This paper focuses on (1) and (3). For (2), we do as humans do.
When we humans encounter unknown objects, we usually ask others
for their names (i.e., class labels). We assume the AI agent can ask
human co-workers or other agents to provide labels for the detected
OOD samples.1 Furthermore, in ALMD, the data comes in a stream,
and OOD detection and learning of the detected OOD samples are
done online. ALMD is thus a continual and autonomous learning
paradigm. Autonomous means that the AI agent takes full control
of its learning process and learns from its own experiences [36]: (1)
It discovers its tasks (OOD classes) to learn, (2) acquires class labels
for the detected OOD samples through its interaction with human co-
workers or other agents, and (3) learns the new classes incrementally.
The whole process involves no human engineers.

ALMD Problem Setting. Since ALMD learns continually after
model deployment, the initially deployed model M is assumed to be
well-trained with a set of initial classes C of labeled data. After M
is deployed in its application, it detects and learns more and more
new classes. At the steady state, the set of all classes that the system
has encountered is CA = C ∪ CL ∪ CE , where CL is the set of
new classes that have appeared after deployment and are well learned
after seeing a good number of training samples, and CE is a set of
emerging new classes that have been seen but are not well learned
yet, i.e., not enough labeled training data have been seen to well-
learn the classes. We denote C+ = C∪CL as the set of well-learned
classes (ID classes) so far and CN = CL ∪ CE as the set of all new
classes seen after deploying M . With incremental learning of new
classes, M becomes M+, covering all classes in CA. Each iteration
of ALMD performs two main functions.

(1). OOD Detection and Classification. M+ detects whether each
incoming test sample x is OOD. If not, it is classified as one of the
classes in C+. OOD classes include those emerging classes in CE as
they still need some more data to be well-learned, but OOD detection
can leverage the already-seen samples of these classes. This is differ-
ent from existing OOD detection or continual OOD detection [51]
(which detects OOD cases in continual learning).

(2). Incremental Learning. The system learns each detected OOD
sample x after obtaining its class label by asking a human or a knowl-

1 It is possible to use a vision-language model to help assign class labels. But
it cannot guarantee correctness. We leave this to our future work.

ar
X

iv
:2

51
0.

17
16

0v
1

 [c
s.L

G
]

20
 O

ct
 2

02
5

https://arxiv.org/abs/2510.17160v1

edgeable agent. If x is assigned a class in C, do nothing. If x is as-
signed a class label in CN , the current model M+ is updated.

ALMD is thus related to three main areas of research, (1) OOD
detection [60], (2) class incremental learning (CIL) 2 in continual
learning [56, 9], particularly online continual learning or online
CIL as online CIL also learns from the streaming data [3, 29, 39], and
(3) open world learning [5, 11, 26]. These topics have been studied
separately. However, OOD detection in ALMD has to be done con-
tinually (i.e., continual OOD (C-OOD) detection), unlike the tradi-
tional static OOD detection with a set of fixed in-distribution (ID)
classes. The number of ID classes in C-OOD detection increases
as the AI agent learns new classes of objects. ALMD is also very
different from CIL or online CIL because CIL or online CIL does
not do OOD detection. It also faces the major challenge of catas-
trophic forgetting (CF). CF refers to the phenomenon that the learner
needs to modify the parameters learned for previous tasks in learning
the new task, which may cause performance degradation for previ-
ous tasks. ALMD is also different from open world learning (OWL)
[5, 11]. OWL still works in the pre-deployment stage, not in the post-
deployment stage as we do. They are basically offline CIL that can
also do OOD detection. The ID classes in OWL are only the set of
classes learned in pre-deployment, which is fixed. In our case, the set
of ID classes increases as more classes become well-learned classes
post-deployment. [26] proposed a theoretical framework that is suit-
able for ALMD, but it does not present any algorithm. Its empirical
work is only on CIL with no mechanisms for continual OOD detec-
tion. We will discuss more about the topic in Section 2.

This paper proposes a novel approach called PLDA (Post-
deployment Learning based on Linear Discriminant Analysis) to
learn in the ALMD setting, i.e., performing the above two main
functions. The method is based on linear discriminant analysis
(LDA) [46], which obtains its features from a pre-trained model
(PTM). LDA assumes that given the class, the data follows a normal
distribution with a mean and a covariance matrix. It further assumes
that the class covariances are identical, i.e., all classes share one co-
variance matrix but have different means. LDA uses the means and
covariance for classification. However, LDA is not suitable for OOD
detection because LDA is based on the likelihood ratio, which is only
suitable for closed-world classification, as OOD detection needs a
measure of absolute distance from a sample to a distribution. In this
work, we use Mahalanobis distance (MD) and a related method for
OOD detection with a novel idea.

After obtaining the label of a detected OOD sample, PLDA learns
it immediately. Each new class still uses the same shared covariance
matrix learned initially in M , but the mean of the class is updated.
The pipeline of PLDA is given in Figure 1. It may sound highly
limiting that LDA uses only the features from a PTM and assumes
the same covariance matrix for all classes. However, as shown in
Table 1 in Sec. 4.3, PLDA achieves a level of accuracy very close to
the joint training upper bound accuracy using the pre-trained model
ViT-B/14-DINOv2 [45], which has never been achieved before.

This paper thus makes the following contributions.

1. It proposes a realistic ALMD setting, which is important as AI
agents working in the real open world need to continually learn new
knowledge on the fly autonomously from its own experience after
deployment to make it more and more knowledgeable.

2 Class-incremental learning (CIL) is a setting of continual learning that aims
to learn a sequence of tasks incrementally, where each task consists of one
or more classes to be learned. The classes in the tasks are disjoint. At test
time, no task-related information, e.g., task-identifier, is given.

2. It proposes a novel approach based on incremental updating of
the model with a shared covariance and different means for differ-
ent classes, which has no CF because PLDA does not do parame-
ter updating after deployment and gives remarkably accurate results
without many training samples from each new class. This is partic-
ularly important because it is hard to obtain many labeled samples
after model deployment and it has not been done before.

3. In continual OOD (C-OOD) detection, we not only use the ID
classes but also already detected OOD samples to help detect more
OOD data more accurately. To our knowledge, this has not been done
before either.

Experiments have been conducted to demonstrate the effectiveness
of the proposed PLDA. The code of PLDA is available at [21].

2 Related work
OOD Detection. OOD detection has been studied under many names,
e.g., novelty or outlier detection, anomaly detection, OOD detection,
and open set recognition [10, 13, 5, 40], In recent years, deep learn-
ing approaches have produced state-of-the-art results [60]. One pop-
ular category of methods uses logits to compute OOD scores [18].
Some other works also use additional mechanisms [54, 37]. Many
also improve the architecture and features [20, 54]. Yet, some oth-
ers use ensembles [31]. Some approaches also expose the system to
some OOD data during training [19, 47]. Some work also clusters
the detected OOD samples into classes [15], which we don’t do as
we learn each OOD sample right after it is detected.

Our OOD detection method is most closely related to distance-
based methods [33, 50]. However, our work does both OOD detec-
tion and continual learning. Unlike existing OOD detection meth-
ods, the number of ID classes in our case is not fixed but continues
to increase. We also use newly identified OOD data (i.e., seen OOD
classes that are not well-learned yet) to detect more OOD data.

Continual learning. The existing work mainly focuses on over-
coming CF [22, 57]. Existing methods belong to several categories.
Regularization-based methods deal with CF in learning a new task by
using a regularizer to penalize changes to parameters that are impor-
tant to previous tasks [28, 1]. Replay-based methods store some data
from previous tasks. When learning a new task, the saved data and the
new task data are used jointly to train the new task while also adjust-
ing the previous task parameters so that their performance will not
deteriorate significantly [2, 8]. Pseudo-replay-based methods build
a data generator to generate previous task data to replace the replay
data [59, 23]. Parameter-isolation-based methods use masks to pro-
tect the learned models for previous tasks so that they will not be
updated in learning a new task, which avoids CF [41, 53, 58]. Or-
thogonal projection-based methods learn each task in an orthogonal
space to the previous task spaces to reduce CF [61, 35]. Recently, the
parameter-isolation approach and OOD detection are combined for
class-incremental learning (CIL) [25]. However, this approach is not
for open-world continual learning, but for traditional CIL.

Most of the above methods were proposed for offline continual
learning (CL). Our work is more related to online Cl, which learns
from a data stream [39]. There are many existing online CL meth-
ods [2, 48, 38, 4, 29, 43]. However, none of these methods does OOD
detection, which makes it inapplicable to ALMD.

Our work is closely related to the work in [16, 44]. [16] uses incre-
mental linear discriminant analysis (ILDA) [46] for online continual
learning, but it does not detect OOD instances or work in ALMD
after model deployment. Further, our work does not use ILDA. [16]
already showed that even with a fixed covariance matrix, a certain

Training

Before Deployment After Deployment

OOD Detection

If x is OOD

Else Classification

Get Class Label c
for x Update Class c

C
Initial Classes

ID Classes

Input
Image x

CE

Emerging Classes

CL

Well-learned New Classes

If c is new
add it to CE

If c is in CE and c passes the CL threshold
th remove it from CE and add it to CL

Figure 1. Pipeline of the proposed PLDA method. ID (in-distribution) classes, which are used in OOD detection, include both C and CL.

amount of base classes is sufficient to create a continual learning
model that is robust to increases in the number of classes and distri-
bution changes. It is discussed in more detail in Section 4.3. [44] is
based on a kerneled LDA for offline CL.

Open world learning. [5] can incrementally learn new classes,
similar to CIL. It still works in the pre-deployment stage. In post-
deployment or testing, the system can do classification (known
classes) and OOD detection (unknown classes). We learn in the post-
deployment stage, i.e., using OOD detection to identify OOD sam-
ples from unseen classes during model application and then learn
the unseen classes into the model on the fly based on each detected
OOD sample. [11] works in a similar setting as the method in [5].
[27] performed a theoretical study of open world continual learning,
but it offers no method for OOD detection. [14] proposed SHELS for
OOD detection and CL. Learning is still only in the pre-deployment
stage. It does not integrate OOD detection and CL like ours. Their
two functions can only be evaluated separately, and their CL is not
on streaming data but on traditional offline CL. [51] proposed In-
cDFM that detects OOD using a pre-trained model. However, it does
not continually learn. [52] investigated class-incremental novel class
discovery (class-iNCD), focusing on discovering new classes. [17]
addressed OOD detection in an unsupervised setting. In summary,
none of these methods integrates OOD detection and continual learn-
ing, allowing the system to learn on the fly after model deployment.

3 Proposed approach: PLDA
We now present the proposed approach PLDA for solving ALMD.
We start with the key challenges of ALMD and the main idea of
the proposed techniques and their novelties. Recall that ALMD has
two main steps: (1) continual OOD (C-OOD) detection, and (2) class
incremental learning (CIL). As discussed earlier, we assume that the
class label for each detected OOD sample can be obtained by asking
a human or another agent while working with them.

Both steps are highly challenging. For (1), C-OOD detection is
dynamic. A traditional OOD detection model is built based on a set of
fixed ID classes. The key novelty of our C-OOD detection is that we
also use the identified OOD samples to detect more OOD samples.
For (2), the key challenge is that the AI agent should not ask human
users for labels of the detected OOD samples too many times, which
means we must have a strong learning capability without using many
labeled samples. For both (1) and (2), there is also the challenge of
catastrophic forgetting (CF). PLDA deals with all these challenges
with the help of linear discriminant analysis (LDA).

3.1 Linear discriminant analysis (LDA)

LDA is a statistical classification method that assumes each class is a
normal distribution with parameters of covariance and mean for each
class, i.e., (Σi, µi) [12]. Most LDA methods also make the simplify-
ing homoscedasticity assumption that the class covariances are iden-
tical, i.e., Σi = Σj = Σ for i ̸= j. Thus, the differences between
different classes are in only their means, µi’s. This assumption is par-
ticularly useful for continual learning as the system does not have to
save one covariance matrix for each class, which can consume a huge
amount of memory as more classes are learned. LDA also makes it
possible without using any replay data.

3.2 PLDA Method

The proposed method PLDA uses a pre-trained model (which is
frozen throughout), a continual OOD detection method, and the lin-
ear discriminant analysis (LDA) method to solve the ALMD prob-
lem. The pre-trained model will be described in the experiment sec-
tion. The proposed system PLDA consists of the following steps.

1. Building the Initial Model M . PLDA uses the pre-trained
model f to provide the features for input samples, which are used
by LDA to build a classifier M using the initial classes C. As men-
tioned earlier, LDA’s classifier building is based on a mean µi for
each class i ∈ C and a single shared covariance matrix Σ across all
classes. Thus, it produces the shared Σ and a separate mean µi for
each class i ∈ C. The resulting model M is deployed in its applica-
tion (Figure 1).

2. Post-deployment Continual Learning. After deployment, it
continues to learn, which will update M after new classes are in-
crementally learned and M becomes M+. In the continual learning
process, Σ remains unchanged or frozen and it is also used by the
newly detected classes, which, as discussed in Section 1, is by no
means limiting. Each iteration has two sub-steps.

2.1. Continual OOD Detection and Classification. PLDA uses
M+ to detect whether each sample x in the online stream is an OOD
sample. If not, it is classified to its class (see Figure 1). Note that M+

is M initially. PLDA employs the covariance matrix Σ and the µi’s
for all classes encountered or seen so far to perform the tasks.

At a steady state, the set of all classes that the system has encoun-
tered is CA = C ∪ CL ∪ CE , where C is the initial set of classes
learned in M , CL is a set of well learned new classes after seeing a
good number of instances, and CE is a set of emerging classes that
have been seen but are not yet well learned. Note that, in the ALMD

setting, the classes are updated multiple times, with one sample at a
time, throughout the AI agent’s lifetime, as it encounters a sample
from an OOD class. Well learned means that the mean of the class
does not change much after more samples are added. A class be-
comes well-learned if its mean is updated at least th times, where th
is the selected convergence threshold. We denote C+ = C ∪ CL as
the set of well-learned classes so far and CN = CL ∪ CE as the set
of all new classes seen after the deployment of M . With incremental
learning, M becomes M+, covering all classes in CA.

What is important here is that OOD detection not only uses the
classes in C+ but also leverages the covariance Σ and the current
un-converged means of the classes in CE to detect OOD samples
belonging to CE and other new classes. To our knowledge, no ex-
isting method does that. This is advantageous because a new sample
may be similar to a class in CE , which makes OOD detection more
effective. In Sec. 3.3, we discuss the OOD detection methods used in
our PLDA. If a test sample x is near a class in CE , it is also consid-
ered an OOD sample.

2.2 Continual Learning - class-incremental learning (CIL).
Here the continual learning setting is CIL, which incrementally
learns more and more new classes. Specifically, PLDA learns each
detected novel instance x after obtaining its class label by asking a
human user or another knowledgeable agent. If x is assigned a class
label in C, do nothing (i.e., no learning). If x is assigned a class label
ci in CN , the current model M+ is updated by updating the mean µi

of the class ci (covariance matrix Σ is not changed) as

µi ←
niµi + z

ni + 1
, (1)

where z is the feature f(x) obtained from the pre-training model f
and ni is the number samples seen so far in class i.

This approach has two desirable properties.
(1) PLDA has no catastrophic forgetting (CF) during ALMD as

we use a frozen pre-trained model (or feature extractor),3 a fixed and
shared covariance Σ, and a running mean for each class, which is
independent of those of other classes. Thus, there is no interference
across classes.

(2) Again, due to the sharing of covariance matrix Σ by all old and
new classes, we achieve strong learning results with a small num-
ber of examples because, for each detected new class, PLDA only
updates its mean based on the identified samples of the class.

3.3 OOD Detection Methods

Since PLDA produces a shared covariance Σ and one mean µi for
each class i, we can naturally use Σ and µi related OOD detec-
tion methods, i.e., Mahalanobis distance (MD) and relative Maha-
lanobis distance (RMD). Each of these methods produces a confi-
dence score using all classes k ∈ CA for the given feature vector
z = f(x), where x is the input. If the confidence score is below a
threshold level, or it belongs to any class in CE , that input is marked
as OOD. Note that apart from these methods, there are numerous
existing OOD detection methods (see Sec. 2). However, since our
approach does not train a neural network, most existing methods are
not suitable for use in PLDA. This is due to a few reasons. First, the
number of our ID classes is not constant but keeps increasing, which
means that the OOD detection model needs to be updated, causing

3 By no means that using a pre-trained model without feature learning is a
weakness. As we will see in the experiment section, the constantly advanc-
ing pre-trained models produce rich features for CL. The baselines that
learn features produce poorer results even with replay data.

CF. Second, since we cannot train all classes together in CL, those
OOD detection methods that need to use logits are not applicable.
Third, methods based on sample distances, e.g., KNN, are also inap-
plicable as we cannot save the past data in CL.

3.3.1 Mahalanobis distance (MD)

Mahalanobis distance [42] measures the distance between a data
point (a feature vector in our case) and a normal distribution using the
class mean vector µ and the covariance Σ, which is suitable for OOD
detection [33]. Note that, each class mean µi and covariance Σ for
the data used in building the initial model M are estimated as: µi =
1
Ni

∑
k:yk=i zk and Σ = 1

N

∑
i∈C

∑
k:yk=i(zk − µi)(zk − µi)

T ,
where N denotes the number of samples, Ni denotes the number of
samples of class i, and zk is the feature of input sample xk obtained
from the pre-trained model, i.e., zk = f(xk). Σ is the same for new
classes, while µi for the new classes are incrementally computed us-
ing Eq. 1.

For z = f(x) of a test sample x, we compute MD as,

MDi(z;µi,Σ) =
√

(z − µi)TΣ−1(z − µi) (2)

where Σ−1 is the inverse of covariance matrix. The confidence score
c is described as,

c(z) = max
i∈C+

{1/MDi(z;µi,Σ)} (3)

3.3.2 Relative Mahalanobis distance (RMD)

As noted in [50], MD has some limitations regarding the detection
of OOD data and they proposed RMD by applying a simple addition
to MD. It computes an additional mean µC = 1

N

∑N
k=1 zk and co-

variance ΣC = 1
N

∑N
k=1(zk −µC)(zk −µC)

T , which, in our case,
are only calculated based on the initial data with C classes used in
building model M . RMD is computed as,

RMDi(z;µi,Σ, µC ,ΣC) =

MDi(z;µi,Σ)−MDA(z;µC ,ΣC),
(4)

where MDA(z;µC ,ΣC) =
√

(z − µC)TΣ
−1
C (z − µC). The

confidence score is [50]

c(z) = max
i∈C+

{−RMDi(z;µi,Σ, µC ,ΣC)} (5)

4 Experimental evaluation
We now evaluate the proposed method PLDA. We will see that
PLDA can produce accuracy very close to those from joint fine-
tuning, which learns all classes together as a single task in many
epochs to reach the best classification accuracy. It is considered the
upper bound of continual learning.

4.1 Datasets, compared methods, pre-trained model,
and implementation

Datasets. We use three benchmark image classification datasets in
our experiments.

(1) CIFAR-10 [30]: It contains 60,000 images, 50,000 training im-
ages and 10,000 testing images, distributed evenly across 10 classes.

(2) CIFAR-100 [30]: It contains 50,000 training images (500 per
class) and 10,000 testing images (100 per class) of 100 classes.

(3) TinyImageNet [32]: It contains 200 classes, each with 500
training images. The validation set includes 50 images per class.
Since the test data labels are unavailable, we use the validation set
for testing.

– ID Class Set and OOD Class Set: For each experiment dataset,
we divide the classes in the dataset into an equal number of ID (in-
distribution) classes and OOD (out-of-distribution) classes. The ID
class set is used to build the initial model M for deployment, while
the OOD class set is used in incremental learning after model de-
ployment.

– ID+OOD APP Set: We further divide the training set of each
class in the ID class set into ID Train set and ID APP set. We do the
same for the OOD class set. ID+OOD APP set includes the data from
both the ID and OOD APP sets. The ID+OOD APP set simulates the
application (APP) data from a real-life data stream that needs to be
classified.

For CIFAR-100 and TinyImageNet, each class has 500 samples in
the original training set. After the split, the ID Train set has 450 sam-
ples and the ID+OOD APP set has 50 samples per class. CIFAR-10
has 5000 samples per class in its original training set, but to simulate
the situation where the system does not ask the human user too many
questions, we selected 4500 samples per class for the ID Train set
and 50 samples per class for the ID+OOD APP set. We use a small
number of samples in the ID+OOD APP set for each class to sim-
ulate the situation where in the application or after deployment, we
don’t see so many OOD samples. The rest of the OOD class data is
not used in our experiment.

– Pre- and Post-Deployment: In pre-deployment, we perform
joint training using LDA and a pre-trained model to build the model
M using only the ID Train set. ID+OOD APP set is used only post-
deployment.

Compared Methods. Although there are several related papers [5,
14, 51, 52], as discussed in Sec 2, no existing system can perform
ALMD after model deployment as proposed in this paper.

Since our setting is closely related to online CL, we compare our
method with 7 online CL baselines:

–LwF [34]: A regularization-based method that uses knowledge
distillation to preserve the performance on previous tasks to deal with
CF without storing old data.

–iCaRL [49]: A replay-based method that maintains a small ex-
emplar memory and uses a nearest-mean-of-exemplars classifier.

–AGEM [7]: It mitigates forgetting by projecting gradients to
avoid interference with stored memory samples.

–ER [8]: A replay-based method that replays a small buffer of past
examples with random sampling alongside new data during training.

–MIR [2]: A replay-based method that prioritizes memory sam-
ples most vulnerable to forgetting for retrieval.

–GDumb [48]: A replay-based method that stores a balanced
memory and retrains from scratch for evaluation.

–GACL [62]: A recent method that uses an analytic solution to
avoid forgetting by achieving a weight-invariant property.

To ensure a fair comparison, we replaced their backbone model
with ViT-B/14-DINOv2, and added adapters to prevent CF [25]. Note
that these methods do not do OOD detection.

For each baseline, ID Train set is used to learn ID classes to build
the initial model M as the first task, and OOD APP set is used to
learn the OOD classes incrementally. However, since these baselines
don’t detect OOD samples, we assume that the baseline methods can
do perfect OOD detection (thus ID APP set is not used). Even in this
ideal case, these baseline methods perform poorer than PLDA.

Two upper-bound methods are also created, which are not con-

tinual learning methods.
– Joint LDA: This method applies LDA to learn a classifier using

the data from all classes jointly, i.e., ID Train set and OOD APP set.
ID APP set is not used as there is no post-deployment learning or
OOD detection in this setting. This method gives the upper bound
results of LDA.

– Joint Fine-tune: This method fine-tunes the pre-trained model
using ID Train set and OOD APP set. We used the AdamW optimizer
with a learning rate of 0.0001, CosineAnnealingLR scheduler, batch
size of 128, and trained the model for 30 epochs, which is sufficient
for convergence.

Ablations: We also create variations of the proposed method
PLDA for ablation experiments.

– PLDA [X]: This creates three variations of PLDA, using differ-
ent OOD detection methods (X), i.e., MD or RMD for OOD detec-
tion (see Section 3.3).

– PLDA [X](-CE): This also creates two variations of
PLDA without leveraging the un-converged means of the classes in
CE to help detect OOD samples. These will show that using CE in
OOD detection is helpful.

Pre-trained Models. For feature extraction, our primary pre-
trained model is ViT-B/14-DINOv2 [45], which is a self-supervised
model with no class information leak. As another model we used,
DeiT-S/16-Kim [24], based on DeiT-S/16 [55], was pre-trained using
the labeled ImageNet-1k data. To prevent class information leaks be-
tween the pre-training and continual learning phases, 389 classes in
ImageNet-1k similar to classes in CIFAR-10, CIFAR-100, and Tiny-
ImageNet, were excluded and pre-training was performed with the
remaining 611 classes to produce DeiT-S/16-Kim. We also use an-
other self-supervised model, ViT-B/16-DINO [6].

Implementation and Resource Usage. We used the LDA imple-
mentation in [16] and the ViT-B/14-DINOv2 [45] pre-trained model.
We run on a machine with an AMD EPYC 7502 32-Core Processor
and NVIDIA RTX A6000 GPU. Each experiment requires approxi-
mately 6 GB of GPU memory and takes an average of 10 minutes.

OOD Detection and CL Thresholds. In each setup, confidence
scores for OOD detection are computed using two alternative meth-
ods, RMD and MD, and an image input is considered OOD if its
confidence score is less than a certain threshold. These thresholds are
set to 0.012 and 4.9 for RMD and MD, respectively. They are chosen
empirically to ensure that the precision and recall for the OOD data
are similar for each method. The threshold for CL is empirically set
to 30, which we will study later.

4.2 Two experiment setups and evaluations

Setup 1) Random ID+OOD APP Data Arrival. This is our main
setup as it reflects real-life application scenarios. In this setup, after
model deployment, the samples in the ID+OOD APP set arrive ran-
domly in a data stream. The current model M+ classifies each to its
class or detects it as OOD. For each detected OOD sample (which
may be correct or wrong), the proposed system PLDA asks the hu-
man user for its class label, and then PLDA incremental/continual
learning is performed by updating its class mean. Clearly, in our ex-
periment, no human user is involved. The system just uses the class
label of the sample in the original data.

Setup 2) Class-Incremental OOD APP Data Arrival. This setup
is for scenarios where an AI agent keeps going to new environments.
This scenario may be rare. We use it to show the robustness of our
approach. Each environment has a set of new OOD classes as a new
task. This is similar to class incremental learning (CIL). In our case,

Table 1. Performance comparison of PLDA with baselines and ablation of PLDA using two different OOD detection methods (MD and RMD) on CIFAR-10,
CIFAR-100, and TinyImageNet datasets in the Random ID+OOD APP Data Arrival setup (Setup 1). F-score gives the OOD detection performance. Note that
baselines do not have F-score values as we assume their OOD detection is perfect (ideal case). Buffer size is the replay buffer size. CL threshold is set to 30 for
PLDA, higher values result in even higher accuracies and F-scores for the proposed method, with a cost of more number of asks.

CIFAR-10 CIFAR-100 TinyImageNet Average
Methods Buffer Size F-score Accuracy F-score Accuracy F-score Accuracy F-score Accuracy
Joint LDA 97.03±0.00 85.73±0.00 81.89±0.00 88.22
Joint Fine-tune 93.22±0.16 89.74±0.13 85.90±0.10 89.62
LwF 0 63.68±4.57 56.77±0.13 57.41±0.69 59.29
AGEM 5000 90.98±1.07 72.48±0.43 75.50±0.62 79.65
GACL 0 84.95±0.20 79.44±0.08 78.01±0.13 80.80
GDumb 1000 94.59±0.81 81.34±3.04 73.56±0.03 83.16
ER 5000 94.70±0.52 80.44±0.67 79.94±0.59 85.03
iCaRL 5000 95.48±0.73 81.06±0.09 79.23±0.59 85.26
MIR 5000 95.59±0.39 81.19±0.29 80.64±0.69 85.81
PLDA [MD]-CE 0 75.20±0.81 96.61±0.19 73.88±0.15 83.96±0.06 76.86±0.07 81.68±0.11 75.31 87.42
PLDA [RMD]-CE 0 75.50±0.18 96.53±0.10 74.48±0.14 84.21±0.09 78.17±0.22 81.49±0.08 76.05 87.41
PLDA [MD] 0 75.45±0.70 96.48±0.27 79.55±0.49 85.12±0.03 78.31±0.14 81.77±0.05 77.77 87.79
PLDA [RMD] 0 75.69±0.24 96.74±0.24 79.69±0.02 85.28±0.05 80.63±0.24 81.70±0.28 78.67 87.91

Table 2. Performance comparison of PLDA using different pre-trained models. All experiments use RMD as the OOD score method. Joint is the accuracy
produced by joint fine-tuning the corresponding pre-trained model, considered the upper bound accuracy. Note that on CIFAR-10, due to highly imbalanced
data, its Joint fine-tuning accuracy is low, but its Joint LDA accuracy is high (see Table 1).

CIFAR-10 CIFAR-100 TinyImageNet Average
Pre-trained Models F-score Accuracy Joint F-score Accuracy Joint F-score Accuracy Joint F-score Accuracy Joint
DeiT-S/16-Kim 67.98±2.32 81.88±0.69 80.59±1.28 65.89±0.49 62.55±0.18 72.35±0.43 65.41±0.10 55.72±0.18 61.92±0.33 66.42 66.71 71.62
ViT-B/16-DINO 68.64±1.37 89.01±0.88 88.13±0.52 70.23±0.92 71.99±0.33 81.72±0.04 72.86±0.26 72.39±0.19 81.21±0.03 70.57 77.80 83.69
ViT-B/14-DINOv2 75.69±0.24 96.74±0.24 93.22±0.16 79.69±0.02 85.28±0.05 89.74±0.13 80.63±0.24 81.70±0.28 85.90±0.10 78.67 87.91 89.62

we divide the classes in the OOD class set evenly into 5 tasks (5
environments). Each task contains one-fifth of random samples from
the ID APP set and all samples in the OOD APP set of the classes in
the task. The OOD samples from one task finish before the data from
the next task arrives. Acquiring labels of OOD samples and updating
the class means for continual learning are the same as above.

4.3 Results: Comparison with baselines and ablations

Setup 1: Random ID+OOD APP Data Arrival:
Table 1 shows the OOD detection F-score, and accuracy of the

combined ID and OOD classes after all data in the ID+OOD APP set
are seen. PLDA variants (which use CE) give significantly higher F-
scores than their corresponding variants without using CE . The final
accuracy is also better. Note that the accuracy improvement is not
large as the test results are obtained after the system sees all data, at
which time the means of the OOD classes have mostly converged.
We also observe that the baselines, which also do feature learning,
are markedly poorer even in their ideal situation, i.e., OOD detection
is perfect with no errors. The most recent online CL method GACL
does poorly. Note that Joint fine-tuning is poor for CIFAR-10 due
to highly imbalanced class distribution. 0 in the Buffer Size column
means that the system does not store any replay data.

– Results of Different Pre-Trained Models. Table 2 shows that
with the bigger model (DINOv2), the accuracy gets closer to the
Joint fine-tuning upper bound. The OOD detection F-score also im-
proves significantly. Our method performed even better than offline
Joint fine-tuning for CIFAR-10, where the class imbalance is very
high (4500 samples in each ID class in pre-deployment, but only 50
samples per class in each OOD class in post-deployment).

With bigger and more powerful pre-trained models appearing con-
stantly, the results will improve further. There will be no need to learn
new features or fine-tune the pre-trained model, which causes CF.

– Efficiency. Since PLDA uses the statistical methods LDA in
learning and MD for OOD detection, which only needs to incre-
mentally update the mean for each class and the shared covariance

matrix, it is much more efficient than training in deep learning. In the
post-deployment stage, PLDA performs only OOD detection and up-
dating of the mean of each new class (no parameter training), which
takes almost no time (less than 15 milliseconds), because the features
are already learned in the pre-trained model. This makes PLDA es-
pecially suitable for ALMD in real time. Figure 3 shows the training
and inference run time comparison between baselines and PLDA.

– CL Threshold. The threshold th for CL is set to 30 in the main
experiments. We tested values between 10 and 50, and the results
are shown in Figure 2. As the threshold (the number of mean up-
dates or asks per class) increases, the total and the OOD class ac-
curacy improves, but the ID class accuracy slightly drops (because
more classes are considered in the classification). We chose 30 for all
datasets as the threshold in our experiments because when the thresh-
old reaches 30, the total accuracy stabilizes. It also achieves a good
balance between accuracy and the number of asks (or mean updates).
For example, by selecting 30 instead of 50 as the CL threshold, we
can reduce the number of asks by about 26.28%, losing only 0.36%
in the total accuracy on average over the three datasets. The total
accuracy covers both the ID classes and the OOD classes.

– Shared Covariance Matrix. As another ablation experiment,
we explored the performance of using a separate covariance matrix
for each OOD class, without sharing the covariance across classes.
When tested on the CIFAR-100 dataset, we saw a drop in accuracy,
from 85.28% to 82.90%. We hypothesize that this decrease in perfor-
mance is due to the lack of sufficient samples for out-of-distribution
(OOD) classes, making it challenging to construct accurate and ro-
bust covariance matrices for those classes. Our fixed shared covari-
ance approach, on the other hand, works better because it combines
information from a large number of training samples of multiple
classes in the pre-deployment training, helping create a more reliable
covariance estimate. This finding is supported by [16], which shows
a robust performance with a fixed covariance computed from the Im-
ageNet data. This further emphasizes the advantages of using fixed
shared covariance, especially when dealing with class imbalance or
limited data in the real world.

10 15 20 25 30 35 40 45 50
CL Threshold (# of Mean Updates per Class)

86

88

90

92

94

96

98

Ac
cu

ra
cy

 (%
)

CIFAR-10

ID Accuracy
OOD Accuracy
Total Accuracy

10 15 20 25 30 35 40 45 50
CL Threshold (# of Mean Updates per Class)

74

76

78

80

82

84

86

88

Ac
cu

ra
cy

 (%
)

CIFAR-100

ID Accuracy
OOD Accuracy
Total Accuracy

10 15 20 25 30 35 40 45 50
CL Threshold (# of Mean Updates per Class)

74

76

78

80

82

84

86

Ac
cu

ra
cy

 (%
)

TinyImageNet

ID Accuracy
OOD Accuracy
Total Accuracy

Figure 2. Accuracies of PLDA for different CL threshold values for different datasets. While there is no CF, the ID accuracy drops as expected as more
classes are learned, which makes the classification harder. The decrease in the ID accuracy is minimal relative to the significant gains in the OOD accuracy,
demonstrating the model’s resilience.

Table 3. Performance comparison of PLDA with baselines and ablation of PLDA using two different OOD detection methods (MD and RMD) on CIFAR-
10, CIFAR-100, and TinyImageNet datasets in the Class-Incremental OOD APP Data Arrival setup (Setup 2). F-score gives the OOD detection performance.
Baselines do not have F-score values as we assume their OOD detection is perfect. Buffer size is the replay buffer size.

CIFAR-10 CIFAR-100 TinyImageNet Average
Method Buffer Size F-score Accuracy F-score Accuracy F-score Accuracy F-score Accuracy
LwF 0 18.86±5.88 26.69±2.67 29.45±1.77 25.00
AGEM 5000 80.41±1.69 68.32±0.62 73.83±0.54 74.18
ER 5000 83.36±2.47 69.53±1.75 73.73±0.55 75.54
MIR 5000 87.91±2.96 71.16±0.62 74.56±1.27 77.88
GACL 0 84.82±0.13 79.27±0.11 77.96±0.15 80.68
iCaRL 5000 91.74±1.28 78.38±0.17 74.70±0.27 81.61
GDumb 1000 92.47±2.34 81.45±2.23 71.76±0.41 81.89
PLDA [MD]-CE 0 74.76±0.47 96.40±0.14 72.79±0.10 83.72±0.11 75.88±0.07 81.47±0.22 74.47 87.20
PLDA [RMD]-CE 0 76.31±0.92 96.71±0.12 73.77±0.17 84.33±0.18 76.70±0.09 80.91±0.08 75.59 87.32
PLDA [MD] 0 75.32±0.24 96.53±0.05 78.12±0.41 84.97±0.12 77.64±0.09 81.53±0.10 77.02 87.68
PLDA [RMD] 0 76.40±0.72 96.64±0.26 77.83±0.31 84.75±0.29 79.09±0.35 80.92±0.07 77.77 87.43

PLD
A

LW
F

AG
EM

iCaR
L

GDum
b ER

GAC
L

MIR
0

1000

2000

3000

4000

Ru
nt

im
e

(s
ec

on
ds

)

Random ID+OOD APP Data Arrival Setup
Class-Incremental OOD APP Data Arrival Setup

Figure 3. Run time comparison. PLDA achieves the best performance and
the fastest run time among all methods across both setups.

Setup 2: Class-Incremental OOD APP Data Arrival: Table 3
shows the final classification accuracy and OOD detection F-score.
PLDA shows a very similar performance to Setup 1, which shows the
robustness of PLDA . The baselines are poorer because the tasks are
incrementally arriving which causes more CF. In Setup 1, data from
different classes arrive randomly, which is like arriving together with
only one epoch of training.

5 Conclusion
This paper proposed the setting of Learning After model Deployment
(ALMD). It enables the AI agent to learn based on its own experience
in an autonomous manner. Although similar ideas like open world
learning have been around for some time and some preliminary work
has also been done, none of them have truly implemented learning
after model deployment so that the AI agent can learn to classify
more and more classes on the fly while working. We believe that

ALMD is getting more and more important as more and more AI
agents are deployed in real-life applications. It is highly desirable that
these agents can learn continually after deployment by themselves to
become more and more knowledgeable over time. This paper also
proposed a method (called PLDA) based on LDA and a pre-trained
model with several novel techniques to improve OOD detection in
the ALMD process and to learn new classes easily by only updating
class means, which has no catastrophic forgetting (CF) introduced in
traditional continual learning due to network parameter updating in
learning new classes or tasks. Experiment results have demonstrated
the effectiveness of the proposed method PLDA.

One limitation of our work is that our OOD detection method may
be effective, but it may not be state-of-the-art (SOTA). As explained
in Sec. 3.3, it is difficult to use a current SOTA OOD detection
method because they are unsuitable for continual OOD detection as
they can cause serious catastrophic forgetting (CF) in our continual
OOD detection setting. More work is needed to design more effective
OOD detection methods for the continual learning context.

Ethics Statement
Our experiments used public domain benchmark datasets for image
classification, which have been widely used in continual learning
evaluations. They do not contain any unethical or offensive images.
Our proposed system constructs a statistical model to categorize im-
ages into distinct classes. It does not generate any unethical content.

Acknowledgements
The work of Derda Kaymak and Bing Liu was supported in part by
three NSF grants (IIS-2229876, IIS-1910424, and CNS-2225427),
and an NVIDIA’s Academia Grant, which provides cloud compute
via its Saturn Cloud.

References
[1] H. Ahn, S. Cha, D. Lee, and T. Moon. Uncertainty-based continual

learning with adaptive regularization. In NeurIPS, 2019.
[2] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin,

and T. Tuytelaars. Online continual learning with maximally interfered
retrieval. arXiv preprint arXiv:1908.04742, 2019.

[3] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample
selection for online continual learning. NeurIPS, 32, 2019.

[4] J. Bang, H. Koh, S. Park, H. Song, J.-W. Ha, and J. Choi. Online contin-
ual learning on a contaminated data stream with blurry task boundaries.
In CVPR, pages 9275–9284, 2022.

[5] A. Bendale and T. Boult. Towards open world recognition. In CVPR,
pages 1893–1902, 2015.

[6] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin. Emerging properties in self-supervised vision transformers.
In ICCV, 2021.

[7] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR, 2019.

[8] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania,
P. H. Torr, and M. Ranzato. Continual learning with tiny episodic mem-
ories. ICML, 2019.

[9] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars. A continual learning survey: Defying
forgetting in classification tasks. IEEE TPAMI, 44(7):3366–3385, 2021.

[10] G. Fei and B. Liu. Breaking the closed world assumption in text classi-
fication. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 506–514, 2016.

[11] G. Fei, S. Wang, and B. Liu. Learning cumulatively to become more
knowledgeable. In KDD-2026, pages 1565–1574, 2016.

[12] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2):179–188, 1936.

[13] N. Ghassemi and E. Fazl-Ersi. A comprehensive review of trends, appli-
cations and challenges in out-of-distribution detection. arXiv preprint
arXiv:2209.12935, 2022.

[14] M. Gummadi, D. Kent, J. A. Mendez, and E. Eaton. Shels: Exclusive
feature sets for novelty detection and continual learning without class
boundaries. In CoLLaS, pages 1065–1085. PMLR, 2022.

[15] K. Han, S.-A. Rebuffi, S. Ehrhardt, A. Vedaldi, and A. Zisserman.
Autonovel: Automatically discovering and learning novel visual cate-
gories. IEEE TPAMI, 44(10):6767–6781, 2021.

[16] T. L. Hayes and C. Kanan. Lifelong machine learning with deep stream-
ing linear discriminant analysis. In CVPR workshops, 2020.

[17] J. He and F. Zhu. Out-of-distribution detection in unsupervised contin-
ual learning. In CVPR, pages 3850–3855, 2022.

[18] D. Hendrycks and K. Gimpel. A baseline for detecting misclassified
and out-of-distribution examples in neural networks. In ICLR, 2017.

[19] D. Hendrycks, M. Mazeika, and T. Dietterich. Deep anomaly detection
with outlier exposure. arXiv preprint arXiv:1812.04606, 2018.

[20] R. Huang and Y. Li. Mos: Towards scaling out-of-distribution detection
for large semantic space. In CVPR, pages 8710–8719, 2021.

[21] D. Kaymak, G. Kim, T. Kaichi, T. Konishi, and B. Liu. PLDA. https:
//github.com/drdkymk/PLDA, 2025. URL https://github.com/drdkymk/
PLDA. GitHub repository.

[22] Z. Ke and B. Liu. Continual learning of natural language processing
tasks: A survey. arXiv preprint arXiv:2211.12701, 2022.

[23] R. Kemker and C. Kanan. FearNet: Brain-Inspired Model for Incremen-
tal Learning. In ICLR, 2018.

[24] G. Kim, B. Liu, and Z. Ke. A multi-head model for continual learning
via out-of-distribution replay. In CoLLaS, pages 548–563, 2022.

[25] G. Kim, C. Xiao, T. Konishi, Z. Ke, and B. Liu. A theoretical study on
solving continual learning. NeurIPS, 35:5065–5079, 2022.

[26] G. Kim, C. Xiao, T. Konishi, Z. Ke, and B. Liu. Open-world continual
learning: Unifying novelty detection and continual learning. Artificial
Intelligence, 338:104237, 2025.

[27] J. Kim, J. Koo, and S. Hwang. A unified benchmark for the un-
known detection capability of deep neural networks. arXiv preprint
arXiv:2112.00337, 2021.

[28] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proceed-
ings of the national academy of sciences, 114(13):3521–3526, 2017.

[29] H. Koh, D. Kim, J.-W. Ha, and J. Choi. Online continual learning on
class incremental blurry task configuration with anytime inference. In
ICLR, 2022.

[30] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[31] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. NeurIPS, 2017.

[32] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS
231N, 7(7):3, 2015.

[33] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. NeurIPS,
2018.

[34] Z. Li and D. Hoiem. Learning Without Forgetting. In ECCV, 2016.
[35] S. Lin, L. Yang, D. Fan, and J. Zhang. Beyond not-forgetting: Continual

learning with backward knowledge transfer. NeurIPS, 2022.
[36] B. Liu, S. Mazumder, E. Robertson, and S. Grigsby. Ai autonomy: Self-

initiated open-world continual learning and adaptation. AI Magazine,
2023.

[37] X. Liu, Y. Lochman, and C. Zach. Gen: Pushing the limits of softmax-
based out-of-distribution detection. In CVPR, 2023.

[38] Z. Mai, R. Li, H. Kim, and S. Sanner. Supervised contrastive replay:
Revisiting the nearest class mean classifier in online class-incremental
continual learning. In CVPR Workshops, pages 3589–3599, 2021.

[39] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner. Online
continual learning in image classification: An empirical survey. Neuro-
computing, 469:28–51, 2022.

[40] A. Malinin, B. Mlodozeniec, and M. Gales. Ensemble distribution dis-
tillation. In ICLR, 2019.

[41] A. Mallya and S. Lazebnik. PackNet: Adding Multiple Tasks to a Single
Network by Iterative Pruning. arXiv preprint arXiv:1711.05769, 2017.

[42] G. J. McLachlan. Mahalanobis distance. Resonance, 4(6):20–26, 1999.
[43] F. Mi, L. Kong, T. Lin, K. Yu, and B. Faltings. Generalized class incre-

mental learning. In CVPR workshops, pages 240–241, 2020.
[44] S. Momeni, S. Mazumder, and B. Liu. Continual learning using a

kernel-based method over foundation models. In AAAI-2025, vol-
ume 39, pages 19528–19536, 2025.

[45] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, et al. Dinov2:
Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[46] S. Pang, S. Ozawa, and N. Kasabov. Incremental linear discriminant
analysis for classification of data streams. IEEE transactions on sys-
tems, man, and cybernetics, 35:905–14, 11 2005.

[47] A.-A. Papadopoulos, M. R. Rajati, N. Shaikh, and J. Wang. Outlier ex-
posure with confidence control for out-of-distribution detection. Neu-
rocomputing, 441:138–150, 2021.

[48] A. Prabhu, P. H. Torr, and P. K. Dokania. Gdumb: A simple approach
that questions our progress in continual learning. In EECV, 2020.

[49] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incre-
mental classifier and representation learning. In CVPR, 2017.

[50] J. Ren, S. Fort, J. Liu, A. G. Roy, S. Padhy, and B. Lakshminarayanan.
A simple fix to mahalanobis distance for improving near-ood detection.
arXiv preprint arXiv:2106.09022, 2021.

[51] A. Rios, N. Ahuja, I. Ndiour, U. Genc, L. Itti, and O. Tickoo. incdfm:
Incremental deep feature modeling for continual novelty detection. In
ECCV 2022, 2022.

[52] S. Roy, M. Liu, Z. Zhong, N. Sebe, and E. Ricci. Class-incremental
novel class discovery. In ECCV, pages 317–333, 2022.

[53] J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catas-
trophic forgetting with hard attention to the task. In ICML, 2018.

[54] Y. Sun and Y. Li. Dice: Leveraging sparsification for out-of-distribution
detection. In ECCV, 2022.

[55] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jé-
gou. Training data-efficient image transformers & distillation through
attention. In ICML, pages 10347–10357. PMLR, 2021.

[56] G. M. Van de Ven and A. S. Tolias. Three scenarios for continual learn-
ing. arXiv preprint arXiv:1904.07734, 2019.

[57] L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of
continual learning: Theory, method and application, 2023.

[58] M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari,
J. Yosinski, and A. Farhadi. Supermasks in superposition. NeurIPS,
2020.

[59] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu, et al. Memory
replay gans: Learning to generate new categories without forgetting. In
NIPS, pages 5962–5972, 2018.

[60] J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized out-of-distribution
detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

[61] G. Zeng, Y. Chen, B. Cui, and S. Yu. Continuous learning of context-
dependent processing in neural networks. Nature Machine Intelligence,
2019.

[62] H. Zhuang, Y. Chen, D. Fang, R. He, K. Tong, H. Wei, Z. Zeng, and
C. Chen. GACL: Exemplar-free generalized analytic continual learning.
In NeurIPS, 2024.

https://github.com/drdkymk/PLDA
https://github.com/drdkymk/PLDA
https://github.com/drdkymk/PLDA
https://github.com/drdkymk/PLDA

	Introduction
	Related work
	Proposed approach: PLDA
	Linear discriminant analysis (LDA)
	PLDA Method
	OOD Detection Methods
	Mahalanobis distance (MD)
	Relative Mahalanobis distance (RMD)

	Experimental evaluation
	Datasets, compared methods, pre-trained model, and implementation
	Two experiment setups and evaluations
	Results: Comparison with baselines and ablations

	Conclusion

