O

proceedings

Tabular Embeddings for Tables with Bi-Dimensional
Hierarchical Metadata and Nesting

Gyanendra Shrestha
Department of Computer Science
Florida State University
Tallahassee, USA

Chutian Jiang
Department of Computer Science
Florida State University
Tallahassee, USA

Sai Akula
Department of Computer Science
Florida State Univeristy
Tallahassee, USA

Vivek Yannam Anna Pyayt Michael Gubanov
Department of Computer Science Department of Chemical and Biomedical Department of Computer Science
Florida State University Engineering Florida State University

Tallahassee, USA

University of South Florida

Tallahassee, USA

Tampa, USA

ABSTRACT

Embeddings serve as condensed vector representations for
real-world entities, finding applications in Natural Language
Processing (NLP), Computer Vision, and Data Management
across diverse downstream tasks. Here, we introduce novel
specialized embeddings optimized, and explicitly tailored to
encode the intricacies of complex 2-D context in tables,
featuring horizontal, vertical hierarchical metadata, and
nesting. To accomplish that we define the Bi-dimensional
tabular coordinates, separate horizontal, vertical metadata and
data contexts by introducing a new visibility matrix, encode
units and nesting through the embeddings specifically
optimized for mimicking intricacies of such complex
structured data. Through evaluation on 5 large-scale
structured datasets and 3 popular downstream tasks, we
observed that our solution outperforms the state-of-the-art
models with the significant MAP delta of up to 0.28. GPT-4
LLM+RAG slightly outperforms us with MRR delta of up to
0.1, while we outperform it with the MAP delta of up to 0.42.

1 INTRODUCTION

Embeddings are dense numerical representations of real-world
objects, expressed as vectors. In NLP and Information
Retrieval (IR), embedding vectors commonly correspond to
terms in text, and the corresponding vector space is expected
to quantify the semantic similarity between them. While not
the first, LLMs such as GPT-4 [1], Llama2 [2], FLAN-T5 [3]
and others also heavily depend on embeddings. These trained
models, sometimes also referred to as Generative Al or GenAl,
store millions of such vectors, which are used to generate the
response to the user’s question. More recently, GenAl models
were also trained for images — e.g., DALL — E2 and videos [4].
Other methods adapt NLP embeddings to obtain embeddings

©2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-98318-097-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

92

for relational tables [5]. Even though some of these
approaches such as transformers [10, 12, 16] attend to every
token in all sections of a table, including metadata and data,
hence implicitly encode its 2D context, they are not explicitly
optimized for complex structured data. To mitigate this
limitation, there were a series of efforts [6, 16, 17, 19, 23] to
construct more accurate embeddings capturing the intricacies
of relational data. These include adding specialized embedding
layers or an attention mechanism and pre-training the models
on tasks such as table cells or segments recovery [5, 13, 19,
23], thereby making them aware of the tabular structure. The
majority of these efforts are devoted only to relational and
spreadsheet tables (0.9% and 22% of all tables in the Common
Web Crawl [7]) [8]. They overlook the other widely used type
of tables that we refer to as “non-relational”. Unlike relational,
they can exhibit not only single-header horizontal, but also
multi-level hierarchical vertical, horizontal metadata, as well
as nested tables [9]. This creates a gap in understanding these
widely used tables in practice. Hence, it is important to take
steps to bridge it by enabling machine table understanding for
such tables. Several recent attempts [10, 11, 29, 30, 31] try to
identify hierarchies and classify cells in such tables. However,
these approaches are supervised, and labeling large amounts
of such structured data is labor intensive, especially for large-
scale datasets. Other recent approaches [5, 16, 19, 39, 40, 47, 65,
68], despite being unsupervised, are optimized for relational or
primitive non-relational tables (e.g., matrix tables having just
singular non-hierarchical metadata without the rest of their
more complex features).

In 15t Normal Form [26] a relational table has a set of
labeled homogeneous columns, which is not the case for the
majority of tables in the real world, especially in medical,
financial, and government tables. For example, Figure 1
illustrates such table detailing treatment efficacy from
colorectal cancer. The lowest right cell has both horizontal
(Efficacy End Point = Other Efficacy) and vertical (Patient
Cohort —> Failing under Fluoropyrimidine and Irinotecan)
hierarchical metadata. Some cells have separate nested tables,
all having values in different units, sometimes numerical
ranges or gaussians [80].

10.48786/edbt.2025.08

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.08

Hot

H;iz -leg

Hu
Ha © Ha Hz Ha Hzxs Has | Hz
; i H31 Hs2 H33 | Has Hss Has
Study ! Treatment Arms ; " Efficacy End Point | i
Study Design ! ! i Primary fﬁic&qr | Other Efficdcy
AVF20 Randomized i i ! ! ‘ : ‘
T e 170 phasem- | THL [L [R - S M o St PFS]
L e e 1| S R S it -20.3 - |- 15.6 mohths | 16.6 - | -6.2 months
. i i i bev | | months ' i months i
,,,,,,,, Previously | |\ oo daeiz oo TR oo R || [F] TFLLo |-
untreated : uma | . bevaciz ! ' bevaciz | !
R ; b i umab ! : umab i {
R e L -l A B HR [p | [0 HRiJ’
; N R e e s B Y 7 S T T [et o 601 -
: V3 Patient i ') i : : : d 4 6?01
V1o Vi Cohort ‘ ‘
H ECOG | Second-line | ; j ! ! ! : :
i B 3200~ - | randomized -~ {FO [FO [bev [[+ 05 |11~ i J -t
SV73 - Faiting -~ - -1 - -|-Phase Ml - | IF - | LF - 4ciz ~ 129] 108 mpath — 23 -] T months |- -
) s i i OX | OX | uma months | | i months | ! i
i & under i ! 4 |4+ b FOLFO | FOLFOX4 FOLFO | FOLFOX4
:-'VZZ@----V83” ,,,,,,, L flueropyri | o | L N R R 175 N
i midine ; ! aciz | | bevacizu | ; bevaciz
and i ! ‘ ;J'“a ! mab ' un:lab :
3 VO3 o irimrotecan — - - {Rp R R
VI SN S S A [e I —— BT X T T A 061 [0001
*V32

Figure 1: Bi-dimensional Coordinates for a non-1st Normal Form Table with Hierarchical Metadata and Nesting.

Inspired by these major differences compared to more
primitive tables, we introduce TabBiN — a novel self-
supervised, transformer-based architecture to train fine-
grained structurally-aware embeddings, optimized for tables
with Bi-dimensional hierarchical metadata and Nesting.
During pre-training the data cells from such tables are
encoded wusing our novel Bi-dimensional hierarchical
coordinates calculated based on their hierarchical and spatial
in-table location. Different from the uni-tree structure [27, 13],
TabBiN supports both explicit and implicit coordinate
encodings, including those for nested tables with their own
separate metadata, such as in Figure 1. To enable vertical,
horizontal metadata, and data to efficiently aggregate their
local neighboring 2D contexts, we propose a metadata-aware
attention mechanism that is different from the regular
transformer practices of bottom-up attention [32], and
constituent attention [28] in NLP domain. We also adopt the
Masked Language Model (MLM) pre-training objective from
BERT [10] and Cell-level Cloze (CLC) to learn the
representations of tokens and cells across a large volume of
tables. We make the following contributions in this paper:

e For non-relational tables, not in 1st Normal Form,
exhibiting hierarchical vertical, horizontal metadata, and
nesting [9], we propose tabular Bi-dimensional
hierarchical coordinates (see Figure 1). Using these
coordinates, we devise a self-supervised, transformer-
based, metadata-aware attention mechanism and pre-
training method, key in creating our novel structurally-
aware composite embeddings, optimized for such non-
relational tables. During pre-training or fine-tuning
TabBiN learns these embedding vectors representing
cells, tuples, columns, horizontal, vertical metadata, or the

93

entire table from large-scale corpora in self-supervised
manner.

e To better incorporate semantics and intricacies of such
complex structured data we introduce new abstractions,
optimized for and explicitly encoding nested tables, entity
types, units and ranges (for numerical data) used in the
embedding layer of our architecture (see Figure 2).

e We fine-tune our embeddings on 5 large-scale structured
datasets, evaluate and demonstrate that TabBiN
outperforms or matches the state-of-the-art (SOTA) in
most cases on 3 popular downstream tasks at scale.
GPT4+RAG slightly outperforms us with MRR delta of
0.1, while we outperform it with MAP delta up to 0.42.

Our downstream tasks are column clustering, table
clustering, and entity clustering/matching. The clusters are
inherently useful, for example, to find tables similar to a given
table (based on the cosine similarity calculated using our
embeddings) and can be used to aid table search [21, 69, 70, 71,
87-89], data fusion [41, 87-90], taxonomy generation, and
other tasks [77].

The remainder of the paper is structured as follows.
Section 2 describes comprehensive definition of the problem,
the datasets, Bi-dimensional coordinates. Section 3 details the
TabBiN model, the structure of its composite embedding layer,
and the pre-training methodology. Section 4 describes our
experimental evaluation on 5 large-scale structured datasets
having a variety of both relational and non-relational tables on
3 popular downstream tasks. We review related work in
Section 5 and conclude in Section 6.

2 PRELIMINARIES

2.1 Definitions

The following definitions have been taken verbatim from our
group’s publication [9].

Relational tables [26], have the following properties: values are
atomic, each column has values of the same type, each column
has unique name (i.e., attribute name). The set of all attribute
names is called table schema or metadata.

Defi: Metadata is a set of attributes of a table. Metadata can be
stored in a row - e.g., rows Nel-2 in Figure 1, or in a column - e.g.,
columns Ne1-2 in Figure 1.

Defz Cell is a data value (i.e., can be a number, string, etc.)
found at the intersection of a row and a column in a table. A
relational table has C*R cells total, where C is the number of
columns and R is the number of rows.

Def3: A table with hierarchical metadata is a table that, similar to a
relational table, has metadata (i.e., attributes), but unlike a
relational table it may be found not only in a row, but also in a
column. It may also take several rows or columns. Such rows with
metadata are called horizontal metadata (HMD). On the other
hand, such columns with metadata are called vertical metadata
(VMD) [9].

We refer to tables not in 15t Normal Form (NF) [26], with Bi-
dimensional hierarchical metadata and Nested tables inside

cells as non-relational or BiN tables (see Table 1). Please refer
to [9] for more formal definitions. Such tables often contain
summary/aggregate data but are not limited to it [80].

is represented as T= [C, H, V, D],
where C is the table caption, which is a short text description

A table in our work

summarizing what the table is about, H= [c;, ¢y, ¢5 ¢, are
m columns in HMD, V= [ry, 15, 15 1,] are n rows in VMD,
D={dj|1=<i=n, 1=j=<m} represent data cells, and d;; is the
data cell in the i row and j* column that has several tokens
(texts or numbers). Given a table T, our embedding layer aims
to learn in an unsupervised manner a structure-aware
contextualized vector representation for each token in table
cells to capture intricacies of 2D context within T. Specifically,
we introduced new additional components in the embedding
layer, encoding cell coordinates, nested tables, entity types,
units, and ranges for better understanding of non-relational
tabular data. These components are absent in existing
transformer architectures for tabular data.

We now define the three table-related downstream tasks
that we address in this paper.
Column Clustering (CC). The problem of pairwise
column/attribute matching is well-known in schema matching
[8, 44, 45], because these correspondences play a key role in
identifying how to fuse two tables (i.e., which columns can be
merged). This task involves the identification of similar ¢; € H
between two tables.
Table Clustering (TC). TC is a task of grouping tables by
topic (e.g., all Songs tables). This is a key task supporting table
search, data fusion, where information from multiple tables on
the same topic, originating from various sources, has to be
integrated to provide a unified, comprehensive view [8, 44,
45].
Entity Clustering/Matching (ECM). Entity matching [38,
48] plays a crucial role in data fusion tasks by facilitating the
identification and linkage of entities across disparate datasets.

94

It establishes connections between entities from different
sources, enabling a more comprehensive and accurate view of
the data.

Table 1: Sample non-1NF Table with Nesting.

Tumor Location State Primary Efficacy
Cancer Colon Florida oS
20.3 months 15 months
bevacizumab | IFL

2.2 Datasets

To ensure we have a wide variety of tables we use 5 large-
These datasets include both
relational and non-relational tables.

scale structured datasets.

e Webtables [7]: we took a sample of 20,000 tables in
English including both relational and complex non-
relational tables. On average, the tables have 14.45 rows
and 5.2 columns. The most frequent topics covered in
these tables include magazines, cities, universities, soccer
clubs, regions, baseball players, and music genres. The
cell values contain strings and numbers with and without
units and ranges.

e CovidKG is a subset of CORD-19 [33], a public COVID-19
research dataset. We took a sample of 20,000 tables,
related to COVID-19 and such as
Moderna, Covaxin, Alpha variant, and Gamma variant.
The table columns exhibit both VMD and HMD. The cell
values contain strings, numbers with and without units,
ranges, Gaussians, and nested tables.

. CancerKG dataset has 44,523 tables, extracted from all
recent medical publications (up to 12/2023) on colorectal
cancer, obtained via PubMed.com. The tables have
227,279 columns total, exhibiting both hierarchical VMD
and HMD. The cell values contain strings, numbers with
and without units, ranges, Gaussians, and nested tables.

e The 2010 Statistical Abstract of the United States (SAUS)
comprises 1,320 tables [13, 37], which can be downloaded
from the U.S. Census Bureau. The tables have 52.5 rows
and 17.7 columns on average. It covers a variety of topics,

its vaccination,

including finance, business, crime, agriculture, and health
care.

e The CIUS dataset [13, 37] is from the Crime In the US
(CIUS) database and consists of 489 tables. The tables
have 68.4 rows and 12.7 columns on average.

The non-relational tables that we defined in this paper are
prevalent in our two datasets, CancerKG and CovidKG,
constituting 40% of each dataset. Additionally,
approximately 10% of these complex tables exhibit nested
structures in both datasets [80]. On average, the complex
tables in our datasets consist of approximately 12 rows and 10

over

columns.

2.3 Bi-dimensional Coordinates

Figure 1 illustrates the Bi-dimensional coordinates that we
introduce for non-relational tables, not in 15t Normal Form
with hierarchical vertical and horizontal metadata, with
nesting, defined in [9]. Our coordinates correspond to the cell

Downstream Table Column Entity
Tasks Clustering Clustering Clustering
Pre-training Masked Language Celltlevel Cloze
Model
Feed Forward Visibility Matrix
N x Transformer
Masked Multi-Head <
Attention
T T In Out U
o N a
Embedding k u Y P P i
Layers ¢ m 2 o o L
n s s
Linearize sequences of tokens from the input table

rr-—rm——m—m—m I """ -/ == 1
|
| HMD | VMD || Daa |
| e d o |
Seperate Data, HMD, and VMD context

Figure 2: Transformer-based Deep-learning Architecture
with 6 Embeddings Layers for non-1st Normal Form
Table with Hierarchical Vertical, Horizontal Metadata,
and Nesting,.

location and the path through the metadata hierarchy to the
cell. There are two coordinate-trees — horizontal and vertical
(on the left and top of Figure 1). Both coordinate values
correspond to the paths from the root nodes of the trees to the
cell. For example, the coordinates of the table, nested in the
upper right cell in Figure 1 (Efficacy End Point = Other
Efficacy; Patient Cohort -> Previously Untreated) are
(<2,7>;<1,3>). In turn, the coordinates of the second horizontal
metadata label (HR) in the nested table are (<3,5>;<4,3>).
Notice that our bi-dimensional coordinates also apply to
relational tables, whereby they reduce to the regular Cartesian
coordinates. Tables in our corpora as well as in large-scale
structured datasets in general usually come with unlabeled or
noisy metadata. We designed and trained our own binary
metadata classifiers based on Deep-learning bi-GRU and CNN
architectures specifically for highly accurate labeling of multi-
layer metadata - both horizontal and vertical [9]. One can also
use other existing techniques for labeling metadata [31, 34].

3 TabBiN MODEL

Here we shed some light and provide more details on our
Transformer-based self-supervised architecture with
metadata-aware structural attention [10, 12] that we created
for non-15t normal form tables with nesting and hierarchical
metadata. Each encoder block in the Transformer is composed

95

of a multi-head-self-attention layer and fully connected layer
[12]. The configuration of our N-layer Transformer encoder
model is aligned with BERTg45£[10]. However, we changed
the standard BERT multi-head attention form Q, K, V€ RE<H
[12], with our metadata-aware mask attention as follows:

TabBiN Attention(Q, K, V) = Attention(Q, K, V) . M (1)

where, H = 768 is the hidden size of BERTp,gp and M € R™"
is the visibility matrix (n in M is the input sequence length),
which we describe below in Section 3.2.

The architecture diagram is illustrated in Figure 2. Tabbie
[23] uses two separate transformer models [10] to encode a
table row-wise and column-wise separately, then aggregates the
representations obtained from both encoders. We segment a
table into three distinct parts: data, HMD, and VMD. We then
concatenate the embeddings from each segment into a
composite embedding vector to capture a comprehensive
representation of the entire table. This segmentation ensures
that the context from these semantically different table
segments is treated separately by the model and that unique
structural and semantic characteristics of each segment are
preserved. E.g., hierarchical metadata is expected to have
hierarchical relationships between the neighbors,
encoded/learned in their contextual pattern; neighbors in the
data segment might systematically belong to the same domain
[26] or represent different properties of the same object [26].
These distinct patterns should be learned independently to
maximize accuracy and minimize the training set sizes [89,
92]. We and other researchers studied separating metadata and
data in context of different relational data classification tasks
and observed that it generally improves performance [89-95].
All the above-mentioned rationale served as a basis for table
segmentation and separate training.

3.1 Embedding Layer

We introduced 6 new embeddings into the embedding layer of
our new transformer-based architecture explicitly encoding
the bi-dimensional coordinates, semantic information about
the entity type (for strings), units (for numerical data), and
nested tables. We partition the tables into three segments —
data, HMD, and VMD and process them separately to separate
contexts for each of these types of data that carry different
semantics. We iterate over the table cells row by row to train
our data row model. We iterate over the table cells column by
column to train our data column model. We tokenize cells
using [10], embed tokens jointly and create 6 new embeddings
corresponding to: token semantics E,y, numerical properties
E,.m, in-cell position Ecpos’ in-table position Et,ms’ cell features

Efyy, and inferred type Eyyp..

Token. To learn token semantics, we use the vocabulary V
defined in [14]. The numbers are tokenized using the special
token [VAL] (as indicated in “Token” column of Figure 3). The
trainable embedding weight for each token is defined by
Wiok € RV, The trainable embedding for a token is defined
as:

@

Etok = Whok - Xk

! Figure 2 should be read bottom to top.

Out Pos
InPos (VMD/HMD,
nesting)

[0,0,0,0,0,0,0,0]
[0,0.0.0.0.0.0,0]
[0,0.0.0.0.0.0,0]
[0.0.0.0.0.0.0.0]
[0.0.0.0.0.0.0.0]

Token Num Type

s 0
Col : 1

#Hon

(1.0/(0.1)(0.0)
(1,1/(1,1)/(0,0)
(1.1)/(1.1)/(0.0)
(1.1)/(1.1)/(0.0)
(L1(1,1)(0.,0)

Colon disease

cancer

\ : :

Ve
lorida - .0.0.0.0.0.0
Florida : Jocation ? (LLAL2)(0,0) [0.0.0.00.0.0.0]

[SEF] (LIV(12)(00) [0.0.0.00.0.0.0]
.

Florida

%’S . 0 (L. [0.0000.00.1]

0s [VAL] [2223] 1 @,0/2,142,1) [0000,1,00.1]

203 15 l‘e\'?“;]z"ly":nb - 2 {u 0,00,1,0, u,]}
months | months acizm __ medicaiton 3 0.0,0,0.0.0,0.1
[VAL] [2.0,1,5] a [0,0,0,0,1,0.0.1]

bevaciz] IFL months - 5 [0.0.0,0,1,0,0,1]
mab IFL 6 2 [0,0,0,0,0.0.0.1]
[SEP] 7 (1L,1)/(1,3)40,0) [0.0,0,0,0.0.0.1]

o

Figure 3: The Encoded Representation of Table 1 in the
Embedding Layer.

where x,, is the index of the token in V.

Number. The numbers are encoded in our embedding vectors
using four discrete features, magnitude Xmag € [0, M] ,
precision X, € [0, P], the first digit x4, € [0, F] and the last
digit xj,s; € [0, L] as in [13]. These features are then one-hot
encoded. For example, number 20.3 in Figure 3 is encoded as
(Xmag> Xpres Xfirst> Xtast) 2 (2, 2, 2, 3). The weights W0, Wre,

H
Wey, and Wiy € RYPFLT are concatenated. M, P, F, L=10.

The final trainable embedding for the numerical properties is:

(3)

Epum = l:"num,,mgea Enumpree’ EnumfstGB Enumm

where, By, = Wmag - Xmag> Enump,e: Wpre - Xpres

Epumg, = Wist - Xit » and @ denotes

nag
E,mmfﬂ = Wy - X and
vector concatenation operator.

In-position. The in-cell position refers to the index of a token
within a cell (Figure 3 “In Pos” column). To represent each
position, we introduce a trainable embedding E [13]

denoted as:
(4)

where W, € RF *I represents the learnable weight, Xe,,, is the

Cpos chos : xcpos

one-hot encoded position, I = 64 is the pre-defined maximum
allowable number of tokens within a cell. We trim tokens in
each cell where the length exceeds this limit.

Out-position. “Out pos” column in Figure 3 is comprised of
two components. The first one corresponds to the Bi-
dimensional coordinates of the cell, and the second one
corresponds to the cell coordinate in the nested table. The
nested position embedding incorporates the new spatial
coordinate (x, y) for tokens in the nested cell starting with
index 1. In the context of a relational table without nesting,
our bi-dimensional coordinates reduce to the standard
Cartesian coordinates. For cells without nesting the default
coordinate (0,0) is used. We randomly initialize the weights for
these positional embeddings and train them jointly with the
attention layers as in [10, 13]. Finally, we concatenate the Bi-
dimensional coordinate embedding and nesting coordinate
embeddings to get the final composite positional embedding.

96

©)

where, Etvpos: W,, .x, e W, .x, is the composite embedding

Etpos = Etvpos @ Ethpos @ Etnpos

for the vertical metadata coordinate position, Ethposz Wh, - xp,
Wh, . xp, is the composite embedding for the horizontal
metadata coordinate position, Etnpos: Wy, - X, © Wy . x,_is the
composite embedding for the nested coordinate position, x,,,
the
indicating the row and column indexes for each vertical,

horizontal, and nested coordinate, W, W, Wy, Wy, W,

n,

Xy, Xps Xp Xp» Xp, ~ are one-hot encoded positions

H

W, € RS are the embedding weights for the vertical
metadata row, vertical metadata column, horizontal metadata
row, horizontal metadata column, nested row and column
positions. G is the maximum number of tuples in a table. We
have found G = 256 to be sufficient for our datasets.

Units and Nesting. To account for the presence of units
together with numbers and nesting cells we encode them in
our last (6" embedding vector) in Figure 3 as one-hot 8-
dimensional encoded binary feature vector (“Unit, Nesting”
column). The order of one-hot encoding for units and nesting
is [stats, length, weight, capacity, time, temperature, pressure,
nested), ‘stats’ indicates statistical measure such as percentage,
mean, gaussian etc. The first seven bits in the vector represent
the unit. We populate them only for numerical values. The last
bit indicates the presence of a nested table in the cell. The
embedding for the nested cells coordinate is incorporated in
the “Out Pos” component of the embedding layer discussed
above. We get the cell features embedding, representing units
and nesting, by transforming the feature vector x € B into the
vector space of dimensionality H with weight me,E]RF H

and bias b€ R, Wi and b are learned during the pre-
training phase.

Efnt = Whme . x+ b (6)

In our case F = 8 is the number of our cell features.

Type Inference. We use [22] for type inference and tagging
chemicals, diseases, medication types, drugs, etc. On top of
this we also defined a custom list of named-entities, types, and
noun-phrases for our datasets, such as vaccines, treatments,
therapies, prescriptions that are beyond capabilities (too
domain-specific) of the SOTA NLP packages, when applied to
CovidKG and CancerKG datasets. For generic entities such as
name, places, measurement we used the en_core_web_sm
pipeline package for English [35]. In addition, we tag numeric,
range, and text types using standard regex in Python. The
embedding for type inference is of size (14, 768). 768 is the
dimensionality of the hidden layer of our model and 14 is the
number of different supported types in our experiment. All
tokens in a cell get the same type. For example, in Figure 3,
tokens corresponding to the cell “colon cancer” are typed as
disease. The type inference mapping has a finite set of size T =
14. Each token is assigned with a trainable embedding in
Wiype € RT.

(7)

The final embedding vector of a token is the summation of all
the components

Erype = Wiype - Xtype

®

E=Eir+ Epum + Ecpas+ Etpos+ Etype+ Efmt

Table 2: A sample Relational Table.

Name Age Job
Sam 24 Engineer
John 25 Scientist
Nick 23 Lawyer

3.2 Visibility Matrix

We introduce a custom visibility matrix to make the attention
mechanism attend only to the neighboring structural context
of the same kind (i.e., carrying the same semantics), thus
avoiding redundant information. The standard self-attention
mechanism allows every token in a table to attend to every
other token, regardless of where the tokens are — in the cell, in
the same tuple, column or one in the data cell another in the
metadata. Spatial information is valuable as it is representative
of separate segments of a table carrying different semantics
(HMD, VMD, D). Hence it is important to precisely capture
and encode it, which we accomplish through our visibility
matrix. The standard transformer attention mechanism is also
capable of capturing it, but our visibility matrix makes it more
explicit [5, 13, 23, 47]. Consider an example Table 2: ‘Sam’ and
‘Engineer’ are related because they are in the same row,
whereas ‘Sam’ should not be related to ‘Lawyer’. Similarly,
‘Scientist’ is related to ‘Job’, but should not be related to the
attribute ‘Age’. To accurately model this important structural
information in tables, we must have a mechanism to explicitly
inform the model about which token/cells are structurally
related. This is achieved by introducing an attention mask or
as we call it - visibility matrix. An experiment in our ablation
study in Section 4.6, where we remove the visibility matrix
(thus the standard attention mechanism),
demonstrates that it results in a substantial loss in accuracy,

resort to
hence justifies its value.

Our visibility matrix is a binary matrix used as an
attention mask in the transformer layer during calculation of a
multi-head self-attention. Table cells in the same row or
column are visible to each other, i.e., if element i is a token in
a table and if element j is a token in same row or column, M;; =
1. M;; =1 if and only if element i is visible to element j,
otherwise M;; = 0. An element here can be a token in the
header or data cell. We apply the same visibility matrix
separately to data, vertical, and horizontal metadata, hence
treating these semantically different context types separately,
unlike other SOTA solutions [6, 13, 16, 17, 19, 23, 71].

3.3 Pre-training Methodology

We took the vocabulary and pre-trained token embeddings
and encoder weights from BioBERT [14] to initialize TabBiN
for pre-training on our 5 datasets. We trained each version of
our model for 50,000 steps, batch size 12, learning rate 2e-5.
We trained 4 models — 2 for data - tuples, columns; 2 for
metadata — horizontal, vertical metadata. While reading a row
or a column and generating the training sets, we are keeping
track of the respective Bi-dimensional coordinates for each cell
so that we can include the positional information in our
embeddings (see Figure 2). We add [CLS] at the start of each
row/column and [SEP] between the cells. We use table
sequences with no more than 256 tokens that we found to be
sufficient for our datasets (i.e., increases beyond 256 prolong

97

the fine-tuning process, without increasing accuracy on our
downstream tasks). We use the Masked Language modeling
and Cell-level cloze as our training objectives [10, 13, 14]. We
separate the model pre-training for data and metadata, so their
context is treated separately. For example, in TabBiN data
column model we pre-trained the model to learn the columnar
data context, excluding metadata. We used AWS p3.2xlarge
instances. Pre-training of each model took approximately five
hours.

3.4 Composite Embeddings (CE)

For using BioBERT embeddings for numerical values we came
up with the idea to have composite structure concatenating (e)
embeddings for the attribute, its value and the unit. Figure 4(a)
illustrates this process for a column “OS” (i.e., Overall
Survival) from a nested table in Table 1, attribute “OS” has
numerical value “20.3 months”. This structure preserves the
actual meaning of the numerical value together with the unit.
The composite embedding for Range values has similar
structure, where we concatenate the embeddings for the
attribute, unit, range start, range end. In Figure 4(b) we show
this structure with an example attribute Age having the
numerical range “20-30” and the unit “year”.

-

tokenize embed
embed Attribute .
Attribute 2 Age
0s — —@ : i v @ %
= ® :E Unit I~ . &
Numerical % @ e years E‘g @ 2
20.3 A é Range Start = O é
N = @ E 20 -1 m E
Unit M . =1 ® 3
months = RangeEnd | 1
30
(a) - o

(b)

Figure 4: Composite Embedding (CE) Structure for (a)
Numerical Attributes and (b) Ranges.

4 EXPERIMENTAL EVALUATION

We evaluated our TabBiN embeddings on 3 popular
downstream tasks — Column Clustering (CC), Table Clustering
(TC) by topic, Entity Clustering (EC). We performed our
evaluation on 5 large-scale datasets described above in section
2.2 - Webtables [6], CovidKG [33], CancerKG, CIUS [13, 37]
and SAUS [13, 37]. To compare against the SOTA transformer-
based model supporting structured data we fine-tuned TUTA
[13]. We also fine-tuned one of the top transformer-based
models for biomedical data — BioBERT [14], classic Word2Vec
[46] embeddings model, and DITTO [81] entity matching
model on our data sets.

TUTA. We download the pre-trained TUTA explicit model
and fine-tune it on our datasets using identical hyper-
parameters to those of TabBiN. We tokenize, embed, and
encode each table as described in [13]. Training took ~4.5
hours on AWS p3.2xlarge instance.

BioBERT. We fine-tune the original BioBERT for 50K steps,
batch size 12, learning rate 2e-5, on a Linux server with 80
Intel Xeon cores, 256 GB RAM for ~41 days. The training set is
comprised of table tuples. We also fine-tuned a second
BioBERT model including table captions as the embedding
vector component (see Figure 5(a), Table 11).

4] Composite "\
tokenize TabBiN embed Embed
o =
— HMD -@— E, -
Cm Composite
@ TabBiN Embed
n — embed
. — VMD —@- E,
T o HMD E,
dy @
- — Row —@— E, —
dpm d — Column _@_ Ey
@ ns
C — BioBERT _®_ Fre)
- /

(@)

Figure 5: Composite Embedding (CE) for (a) Table
Clustering and (b) Column Clustering.

Table 3: The Average Training time vs. MAP/MRR for
CC and TC tasks on CancerKG (tables with string data)
for different dimensionality of Word2Vec embeddings.

X X X Trainin
Dimensionality Time(hougrs) cC TC
100 2.5 0.50/0.60 0.55/0.45
200 0.45/0.60 0.65/0.46
300 6 0.60/0.65 0.70/0.50
400 7 0.59/0.65 0.70/0.50
1024 7.5 0.60/0.65 0.70/0.50

Word2vec. We train Word2vec model with embedding
dimensionality 300, the context window of size 3 before and
after the target word, minimum count of 1 for word inclusion.
We did experiments with several embedding dimensions as
shown in Table 3 and found no notable performance
difference when using the embeddings trained with the
dimension more than 300. However, the slowdown in training
time was significant so we chose 300 as optimal
dimensionality. We trained Word2Vec on table tuples on AWS
p3.2xlarge instance.
DITTO. The downstream task that Ditto is built for is entity
classification, where entity is a tuple. Ditto performs binary
classification to decide on a match or mismatch, whereas we
compute cosine similarity between each entity and sort in
descending order to get a cluster of matched entities. In order
to compare to Ditto, we added a linear layer followed by
softmax layer on top of our TabBiN transformer layers, and an
ensemble, so TabBiN can also perform binary classification.
We have included the additional experiments comparing to
Ditto both on ours and Ditto's datasets in Table 9. We use
AP@20 to evaluate the quality of our formed entity clusters.
We train DITTO using RoBERTa [82] pre-trained model and
default hyperparameters mentioned in [81]. We created five
different labeled training datasets consisting of positive and
negative pairs of matching and non-matching entities from
entity types corresponding to each dataset defined in Table 7.
For CancerKG and CovidKG we have 5k positive and 5k
negatively labeled pairs. For Webtables we have 1.5k positive
and 1.5k negatively labeled pairs and for each CIUS and SAUS
we have 400 positive and 400 negatively labeled pairs. The
average training time for DITTO is ~3.2 hours.

As our evaluation measures, we use Mean Average
Precision [83] (MAP@20) and Mean Reciprocal Rank [84]

98

(MRR@20) calculated on the sorted list of clustered columns,
tables, or entities (by cosine similarity in the descending order).
We compute AP@20 and average it over a sample of different
columns, tables and entities from each dataset and report it in
Tables 3-9 with the best results indicated in boldface. For
comparison against DITTO entity matching, results are
measured using F1 score.

4.1 Column Clustering (CC)

For CC we create a composite embedding by concatenating

the embedding E, for an attribute ¢; in HMD from

our TabBiN-HMD model (i.e., trained only on HMD) and the
average (p) embedding E; over data cell tokens for
corresponding ¢; column from our TabBiN-column model (i.e.,
trained only on columns) as shown in Figure 5(b). We match
two columns by calculating the cosine similarity between their
TabBiN embedding vectors. We use LSH-based blocking [45]
to avoid quadratic complexity for the entire dataset. To cluster
columns, for each column, we create a list of similar columns,
sorted by the cosine similarity in descending order, the top 20
entries form a cluster. We separate the columns that we have
(i.e., 227,279 in CancerKG) into columns having strictly
numerical or string values. Table 4 illustrates the experimental
results comparing TabBiN to the SOTA models.

Table 4: MAP/MRR for CC - Textual and Numerical.

Datasets TabBiN TUTA BioBERT | Word2vec
CancerKG [0.90/ 1.00 | 0.70/0.95 [0.80/0.92 [0.60/0.65
§ CovidKG [0.90/ 1.00 |0.80/1.00 |0.80/0.95 |0.60/0.70
S [Webtables [0.95/0.90 |0.90/0.80 |0.85/0.86 |0.40/0.60
% ICIUS 0.90/0.95 |0.90/0.92 |0.80/0.90 [0.65/0.50
SAUS 0.80/0.95 |0.65/0.95 |0.70/0.90 [0.42/0.50
., |[CancerKG [0.95/0.95 |0.77 /0.95 |0.81/0.95 [0.54/0.70
i: CovidKG [0.80/0.98 | 0.66/0.95 |0.78/0.88 |0.56/0.65
; Webtables [0.60/ 1.00 |0.50 /1.00 [0.60 / 1.00 |0.40 / 0.80
g ICIUS 0.98/0.98 [0.90/0.98 [0.81/0.90 |0.60/0.52
@ SAUS 0.90/0.98 |0.85/0.95 |0.81/0.92 |0.67/0.50
., [CancerKG [0.90 /1.00 |0.72/0.98 [0.85/0.90 |0.60/0.65
% CovidKG [0.85/1.00 |0.64/1.00 |0.68/0.90 |0.53/0.65
s |Webtables [0.98/0.90 |0.96/0.90 [0.85/0.90 |0.53/0.70
b;eo ICIUS 0.96 / 1.00 | 0.90/0.95 |0.77/0.90 [0.67 /0.50
= SAUS 0.81/0.98 |0.78/0.95 |[0.78/0.92 |0.40/0.50
CancerKG [0.80/0.95 |0.60/0.92 [0.72/0.92 [0.25/0.50
S CovidKG [0.60/0.90 |0.50/0.85 [0.60/0.90 [0.20/0.40
§ [Webtables 10.78 /1.00 | 0.50/0.90 |[0.50/0.95 [0.20/0.45
5 ICIUS 0.80/0.90 [0.74/0.90 |0.80/0.85 |0.40/0.40
SAUS 0.78/0.90 |0.72/0.90 |0.70/0.85 [0.15/0.48
§0 CancerKG (0.97 / 1.00 |0.94/1.00 |0.80/ 1.00 |0.70/0.80
=
:E SAUS 0.98/1.00 [0.98/1.00 |0.77/1.00 |0.64/0.80
4.2 Table Clustering (TC)

Similarly for TC we create the composite embedding by
concatenating the average embedding E, for data cells from
the TabBiN-row model, the average embedding E, for HMD
from our TabBiN-HMD model, the average embedding E, for
VMD from our TabBiN-VMD model and the average
embedding E7c for the table caption taken from the BioBERT

model fine-tuned on our datasets as illustrated in Figure 5(a).
We use cosine similarity as a distance measure between our
TabBiN embedding vectors corresponding to the tables to
form cohesive clusters. To form clusters, we first calculate a
centroid embedding vector for a given topic table. Then, we
compute distance from other tables to this centroid vector,
sorted in descending order to form the cluster with top 20
entries. We did it for centroids corresponding to different
topics and report the MAP/MRR@20.

Table 5: MAP/MRR for TC - Tables with HMD vs.
HMD/VMD, mostly Numerical Content, with Nesting.

TabBiN
0.87 / 1.00
0.78 / 0.95
0.87 / 1.00
0.50 / 0.90
0.50 / 0.90
0.80 / 0.92
0.85/ 0.95
0.90 / 1.00
0.54 / 0.95
0.54 / 0.95
0.81/0.90
0.53 / 0.90
0.67 / 0.95
0.40 / 0.90
0.41/0.90

TUTA
0.78 / 1.00
0.64/0.90
0.81/0.98
0.40 / 0.90
0.40 / 0.90
0.70/0.85
0.80 / 0.95
0.84/0.98
0.53/0.90
0.54 / 0.85
0.70 / 0.85
0.30/0.80
0.58 /0.85
0.30/0.82
0.30/0.82

BioBERT
0.67 / 1.00
0.60 /0.90
0.80/0.95
0.40 / 0.90
0.40 / 0.90
0.68 /0.80
0.70 /0.80
0.80 / 0.85
0.40 /0.75
0.40/0.78
0.60 / 0.80
0.50/0.82
0.58 /0.80
0.30/0.80
0.32/0.80

Word2vec
0.53 / 0.90
0.40 / 0.85
0.40 / 0.88
0.10/ 0.40
0.10/ 0.40
0.10/ 0.40
0.15/0.45
0.20 / 0.45
0.10/ 0.35
0.10/ 0.35
0.10/0.38
0.18/0.35
0.10/0.30
0.10/ 0.36
0.10/ 0.36

Datasets
CancerKG
CovidKG
Webtables
CIUS
SAUS
CancerKG
CovidKG
Webtables
CIUS
SAUS
CancerKG
CovidKG
Webtables
CIUS
SAUS

HMD

HMD+VMD

> 80% Num

CancerKG [0.85/1.00 |0.68/0.80 [0.60/0.75 {0.20/0.42

Nesting

CovidKG 0.70/0.95 |0.60/0.80 [0.54/0.70 {0.18/0.38

4.3 Entity Clustering (EC)

We took sets of columns with labels specific to our datasets
(ie., drugs, vaccines, symptoms, diseases, crime, states, cities,
etc.) and extracted their corresponding data values. This
approach resulted in very large and high-quality catalogs of
entities, both domain-specific (i.e., CancerKG, CovidKG) as
well as more generic (i.e., Webtables). Evaluation of these
catalogs is reported in Table 7. For each dataset the average
precision (AP) was calculated by taking a sample of size 40 and
having two annotators label them.

Next, we selected entities of each of 18 entity types that we
work with in each dataset (e.g., drugs) and calculated the
cosine similarity between each entity and the remaining
entities in the dataset, sorted in descending order, calculated
AP@20 for each cluster (formed by taking top 20 entities)
corresponding to an entity type and averaged it. We used
TabBiN-column model for this EC task. The average F1
measure of 5 runs is reported in Table 9.

4.4 TabBiN Performance Highlights

Column Clustering (CC, Table 4): TabBiN outperforms both
TUTA and BioBERT SOTA models on numerical CC task on
Webtables with a significant MAP delta of 0.28. Also, TabBiN
outperforms BioBERT on large tables by a significant MAP
delta of 0.17 on CovidKG. For small tables TabBiN again
outperforms BioBERT with a large MAP delta 0.14 on

99

CancerKG. The highest CC MAP of TabBiN is 0.98 and it is
achieved on large tables from Webtables, small tables from
CIUS, and ranges from SAUS.

Table Clustering (TC, Table 5, Table 6): TabBiN outperforms
TUTA on nested table clustering with a significant MAP delta
of 0.17 on CancerKG. On tables with HMD from CovidKG
TabBiN outperforms TUTA with a large MAP margin of 0.14.
TabBiN outperforms TUTA by a large MAP delta of 0.14 on
Webtables with string data. TabBiN achieves the highest TC
MAP of 0.95 on Webtables with mixed data. On relational
tables from CancerKG, TUTA outperforms us in-significantly,
with MAP delta of 0.2.

Table 6: MAP/MRR for TC - Tables with Relational vs.
Non-relational. Heterogeneous Data Types.

TabBiN
0.92/ 1.00
0.80 / 0.90
0.84 / 1.00
0.42 / 0.90
0.50 / 0.92

0.77 / 0.88

TUTA
0.94 / 1.00
0.72/0.85
0.77 / 1.00
0.40 / 0.90
0.45/0.90

0.71/0.80
0.70 / 0.90
0.85/0.85
0.40 / 0.90
0.40 / 0.90
0.92 / 1.00

0.84 / 1.00
0.70 / 0.90

Word2vec
0.70 / 0.65
0.40 / 0.60
0.20 / 0.50
0.15/0.80
0.10 / 0.65

0.10 / 0.30
0.10 / 0.30
0.10 /0.35
0.10 / 0.60

0.10 / 0.60

0.70 / 0.50
0.50 / 0.50
0.40 / 0.48

BioBERT
0.80/0.80
0.75/0.65
0.70 /0.80
0.35/0.90
0.40 / 0.80

0.40 /0.70
0.40 /0.70
0.70 / 0.85
0.32/0.80
0.30/0.80

0.80/0.85
0.79/0.80
0.68 /0.70

Datasets
CancerKG
CovidKG
Webtables
CIUS
SAUS

CancerKG

Relational

CovidKG
Webtables
CIUS
SAUS

CancerKG
CovidKG
(Webtables

0.74 / 0.90

0.90 / 0.90
0.40 / 0.90
0.46 / 0.90

0.92/0.98
0.90 / 1.00
0.84 /0.95

Non-Relational

String

CancerKG [0.86/1.00 [0.81/0.95 (0.64/0.90 0.46/0.40

CovidKG [0.85/0.90 [0.80/0.90 (0.70/0.72 [0.15/0.30

Text/Num (50%)

Webtables 0.95/1.00 [0.92/1.00 [0.90 / 1.00 {0.20 / 0.40

Table 7: Entity Catalogs.

Datasets Count AP

CancerKG

Entity Types
drug, therapy. segment,
tumor, reagent

12,553 0.72

CovidKG characteristics, vaccines,
symptoms, diseases,

infections

12,573 0.85

Webtables country, company, genre,
title, size
crime, city

city, industrial

3,316 0.796

CIUS
SAUS

474
507

0.9
0.9

Table 8: MAP/MRR for EC.

TabBiN

0.96 / 1.00
0.94/ 1.00
0.80/0.98
0.96 / 1.00
0.96 / 1.00

TUTA

0.90 / 1.00
0.90 / 1.00
0.79 / 0.98
0.96 / 1.00
0.90 / 1.00

BioBERT

0.90/0.90
0.88/0.90
0.73/0.85
0.90/0.95
0.88/0.90

Word2vec
0.80 / 0.60
0.72 / 0.50
0.65/ 0.56
0.70 / 0.55
0.70 / 0.60

Datasets
CancerKG
CovidKG
Webtables
CIUS
SAUS

Table 9: F1 scores (%) for Entity Classification on ER-Magellan EM datasets [85] and our datasets.

Methods | Structured Amazon-Google | Textual Abt-Buy | Dirty Walmart-Amazon | CancerKG | CovidKG | Webtables | CIUS | SAUS
TabBiN 77.50 88.12 86.06 90.7 90.46 83.50 90.48 | 88.84
DITTO 75.58 89.33 85.69 90.2 89.29 84.74 88.78 | 89.21
Table 10: MAP/MRR for CC Performance by TabBiN without and with Composite Embeddings.
String Values (any #tuples) Numeric Values String (#tuples < 10) String (#tuples > 10) Ranges
CancerKG CovidKG CancerKG CovidKG CancerKG CovidKG CancerKG CovidKG CancerKG
TabBiN-column | 0.88/0.98 | 0.88/0.98 | 0.60/0.90 | 0.42/0.90 | 0.90/0.95 | 0.74/0.95 | 0.90/1.00 | 0.77/0.90 | 0.90/1.00
TabBiN-colcomp | 0.90/1.00 | 0.90/1.00 | 0.80/0.95 | 0.60/0.90 | 0.95/0.95 | 0.80/0.98 | 0.90/1.00 | 0.85/1.00 | 0.97/ 1.00

Table 11: MAP/MRR for TC Performance by TabBiN with and without Composite Embedding — Tables with
Heterogeneous Data, Nesting, HMD versus HMD and VMD, Relational.

String Values Text/Num(50%) > 80% Num Nesting HMD HMD+VMD Relational

O O O O © O o

> Q N Q N Q N Q > Q 1> Q ™ Q

s s S s S s S s s s S s S S

S 3 S 3 S 3 S S S S 3 S

Q QO Q Q Q QO QO Q Q Q Q O o Q
TabBiN- 0.82/ 0.80/ 0.80/ 0.77/ 0.70/ | 0.40/ 0.72/ 0.65/ 0.84/ 0.7/ 0.77/ 0.72/ 0.90/ 0.72/
row 0.90 0.90 0.90 0.85 0.80 0.90 0.95 0.90 0.95 0.90 0.90 0.90 1.00 0.90
TabBiN- 0.88/ 0.85/ 0.80/ 0.80/ 0.74/ | 0.40/ 0.8/ 0.68/ 0.84/ | 0.72/ 0.77/ 0.76/ 0.90/ 0.74/
tblcomp1 0.90 0.92 0.95 0.90 0.80 0.90 1.00 0.90 0.95 0.95 0.90 0.90 1.00 0.90
TabBiN- 0.92/ | 0.90/ 0.86/ 0.85/ 0.81/ | 0.53/ | 0.85/ | 0.70/ | 0.87/ | 0.78/ 0.80/ 0.85/ 0.92/ | 0.80/
tblcomp2 0.98 1.00 1.00 0.90 0.90 0.90 1.00 0.95 1.00 0.95 0.92 0.95 1.00 0.90

Entity Clustering (EC, Table 8): In Table 8, we can see that
TabBiN attains the highest MAP across all datasets for EC.
TabBiN outperforms TUTA by a small MAP margin of 0.06 for
both CancerKG and SAUS respectively. On entity matching (to
compare to DITTO, Table 9), TabBiN outperforms Ditto with a
small F1 score margin of 1.92%. on structured Amazon-Google
dataset. Ditto outperforms TabBiN on Abt-Buy dataset by a
small margin of 1.21%. Similarly, on our datasets Ditto
insignificantly outperforms TabBiN by 1.24% and 0.37% deltas
in F1 measure.

4.5 Composite Embeddings Analysis

We employed separate composite embedding vectors for CC
and TC tasks, as illustrated in Figure 5 earlier. We use the
following abbreviations for composite embeddings in Tables
10 and 11: TabBiN-colcomp for composite embeddings formed
by concatenating the embeddings from TabBiN-column model
and TabBiN-HMD model; TabBiN-tblcompl for composite
embeddings formed by concatenating the embeddings from
TabBiN-row model, TabBiN-HMD model and TabBiN-VMD
model; TabBiN-tblcomp2 for composite embeddings formed by
concatenating the embeddings from TabBiN-row model,
TabBiN-HMD model, TabBiN-VMD model and fine-tuned
BioBERT on table captions.

Column Clustering. From Table 10, we can conclude that on
both numerical and textual tabular data TabBiN composite
embeddings perform the best. This is observed on all
evaluation datasets. Specifically, for numeric ranges,
composite embeddings demonstrate superior performance, as
evident on CancerKG. Moreover, on large tables with textual

data, composite embeddings excel in performance as observed
on two large-scale datasets.

Table Clustering. From Table 11 we can conclude that on
tables with nesting, tables only with HMD, tables with both
HMD and VMD (non-relational tables) and relational tables
our composite embeddings perform the best.

4.6 Ablation Studies

We conduct four ablation studies (TabBiN;, below) to
demonstrate the efficiency of our visibility matrix, type
inference, units and nesting, and bi-dimensional coordinates.
For each ablation study, we train the models removing the
corresponding target embedding component and then perform
TC and CC evaluation tasks on our datasets. Table 12, 13
illustrate the results.

TabBiN,. Removing our visibility matrix makes TabBiN resort
to the standard transformer attention mechanism. We observe
that this leads to a substantial MAP/MRR drop on all datasets.
We observe a drop in MAP for 0.34 on TC on Webtables with
string data; for 0.30 on relational Webtables. The drop is more
than 0.2 on most of the remaining datasets. For CC the MAP
drop is by 0.25 for columns with string data (CancerKG,
Webtables) and for 0.23 for numerical columns (CancerKG).
TabBiN,. Without type inference CC MAP on columns with
string data in CancerKG, Webtables, and SAUS drops by 0.1.
For TC in relational (Webtables), non-relational (CancerKG),
and Webtables with string data MAP drops by 0.15.

TabBiN;. Removing Units and Nesting embedding components
decreases MAP on nested tables (CancerKG) by 0.25. There is
0.22 decrease in MAP on numerical Webtables. For numerical

100

columns on CC the drop in MAP is 0.21 (CancerKG). We can
see a notable decrease in MAP for both CC and TC tasks in
other datasets too.

TabBiN,. Removing our bi-dimensional coordinates erases the
explicit encoding of the positions of all data and metadata cells
in two dimensions in the main table as well as in the nested
in-cell tables (e.g., in Figure 1). Our nesting definition includes
tables nested inside a cell having their own attributes (e.g., in
Figure 1), which is different from the classical notion of
nesting/unnesting. The removal leads to a significant drop in
MAP on CC for both numerical and string columns in
CancerKG by 0.12 and 0.11 respectively. Similarly on TC, MAP
for nested tables (CancerKG) drops by 0.15, MAP for
numerical tables (>80% Num) in CovidKG drops by 0.13 and
MAP for relational tables (CancerKG) drops by 0.12. We
conclude that removing either of the visibility matrix, type
inference, units and nesting, or bi-dimensional coordinates
significantly hurts TabBiN performance as evidenced by four
ablation studies.

Table 12: MAP/MRR for Ablation Study on CC.

TabBiN
10.90/1.00
10.90/1.00
10.95/0.90
10.90/0.95
10.80/0.95
10.80/0.95
10.60/0.90
10.78/1.00
10.80/0.90
10.78/0.90

Datasets
CancerKG
CovidKG
Webtables
CIUS
SAUS
CancerKG
CovidKG
Webtables
CIUS
SAUS

TabBiN,;
0.65/0.80
0.74/0.82
0.70/0.85
0.66/0.80
0.58/0.90
0.65/0.80
0.48/0.80
0.60/0.85
0.65/0.78
0.65/0.88

TabBiN,
0.80/1.00
0.85/1.00
0.85/0.90
0.86/0.90
0.70/0.90
0.84/0.95
0.60/0.90
0.76/1.00
0.80/0.90
0.78/0.90

TabBiN;
0.70/0.87
0.74/0.85
0.80/0.90
0.80/0.90
0.65/0.80
0.59/0.78
0.50/0.82
0.65/0.90
0.60/0.82
0.62/0.80

TabBiN,
0.79/0.90
0.82/0.90
0.85/0.88
0.80/0.85
0.70/0.80
0.68/0.86
0.50/0.80
0.70/0.88
0.70/0.85
0.67/0.85

String

Numerical

Table 13: MAP/MRR for Ablation Study on TC.

TabBiN
10.92/1.00
10.80/0.90
10.84/1.00
10.42/0.90
10.50/0.92

0.77/0.88
10.74/0.90

Datasets
[CancerKG
ICovidKG
IWebtables
ICIUS
ISAUS

(CancerKG
ICovidKG
[Webtables
ICIUS
ISAUS
[CancerKG
ICovidKG
[Webtables
ICIUS
ISAUS
[CancerKG
ICovidKG

[Webtables

TabBiN;
0.65/0.90
0.58/0.80
0.54/0.95
0.35/0.90
0.35/0.90

0.48/0.80
0.60/0.83
0.70/0.86
0.35/0.82
0.40/0.87
0.60/0.85
0.32/0.90
0.44/0.90
0.35/0.70
0.35/0.75
0.66/0.90
0.70/0.90

0.50/0.80

TabBiN2
0.85/1.00
0.70/0.85
0.69/0.95
0.40/0.90
0.50/0.90

0.62/0.85
0.66/0.88
0.80/0.90
0.40/0.90
0.45/0.90
0.78/0.90
0.52/0.86
0.65/0.90
0.40/0.90
0.40/0.90
0.88/0.80
0.80/0.85

0.69/0.92

TabBiN;
0.76/0.95
0.60/0.88
0.70/1.00
0.30/0.87
0.34/0.90

0.56/0.80
0.60/0.88
0.70/0.85
0.30/0.80
0.30/0.85
0.63/0.80
0.35/0.84
0.45/0.90
0.35/0.88
0.31/0.90
0.82/0.92
0.90/0.95

0.70/0.95

TabBiN,
0.80/0.80
0.72/0.82
0.75/1.00
0.35/0.88
0.42/0.85

0.68/0.80
0.65/0.85
0.80/0.88
0.36/0.83
0.40/0.85
0.70/0.86
0.40/0.85
0.60/0.92
0.38/0.90
0.38/0.88
0.86/0.90
0.88/0.95

0.76/0.95

Relational

10.90/0.90
10.40/0.90

10.46/0.90

10.81/0.90
10.53/0.90
10.67/0.95
10.40/0.90
10.41/0.90
10.92/0.98

10.90/1.00
10.84/0.95

Non-Relational

> 80% Num

String

ICancerKG [0.85/1.00 (0.58/0.84 (0.78/1.00 [0.60/0.90 [0.70/0.88

Nesting

ICovidKG 10.70/0.95 (0.50/0.85 (0.70/0.95 [0.50/0.90 [0.60/0.86

101

Table 14: MAP/MRR for CC and TC with LLM - Textual
and Numerical Content.

2 N N
g | m| cE| ¢ B &
= 5]
g| & 3 S| 23| 23| 2% | &
S| @ 010/ | 015/ | 040/ | 040/ | 048/ | 090/
2| ©| 025 | 020 | 100 | 100 | 100 | 100
—_ v
AOO
“ § o | 0.18/ 0.20/ 0.40/ 0.40/ 0.60/ 0.92/
= 5| o030 | 025 | 100 | 0% | 100 | 098
—_ ~ | 0.12/ 0.10/ 0.30/ 0.25/ 0.35/ 0.60/
22 ©f 02 | 020 | 09 0.90 100 | 0.90
A~
3
38| o 017 0200 | 030/ | 030/ | 038 | 053
S = 020 0.20 0.90 0.90 1.00 0.90
4.7 Large Language Models (LLMs) and

Retrieval Augmented Generation (RAG)

Motivated by the ongoing popularity of LLMs, we compared
our embeddings on two large-scale datasets (CancerKG and
CovidKG) against several major LLMs on two downstream
tasks — column and table clustering. We fine-tuned Llama2 [2]
and GPT2 [36] due to their availability in open-source
repositories, hence affordability for fine-tuning. We used
llama-2-7b-chat model, which is a part of a collection of pre-
trained and fine-tuned generative text models with 7 billion
parameters. We did not fine-tune GPT3.5 [54] and 4 GPT 4 [1]
due to very high cost of doing that at scale of our datasets. For
these two models we could only afford to use samples of our
datasets for evaluation. For RAG+GPT3.5 and 4, however, we
first used RAG with an example (i.e., a table or a column) on
the entire datasets, so it reduced its size, so it could be ingested
into the GPT model via its API for a reasonable cost for further
downstream task execution. Finally, we submit prompts to
LLMs, requesting to perform our downstream tasks. Following
each prompt, we collected and evaluated the models’
responses by calculating AP@20 and averaging it. For both
tasks we observed lower MAP/MRR for Llama 2 and GPT2 on
both datasets (Table 14). We repeated similar experiments
with Retrieval-augmented generation (RAG) to improve the
quality of LLMs responses. We have chosen Sycamore [86], a
well-known RAG system. We put substantial effort to
integrate recent LLMs, such as Llama2, GPT3.5 and GPT4 into
Sycamore [86] for our experiments. We can see from the
results that RAG improves performance. The improvement is
significant in case of Llamma2 with RAG (for textual CC on
CancerKG MAP increase by 0.30), but falls short of TabBiN.
Similarly, we observe increase in MAP values, especially with
GPT-4, but again TabBiN outperforms both GPT3.5 and GPT4
on our CC and TC downstream task. However, RAG+GPT4
perfect MRR (the second metric),
outperforming us by a delta of 0.1 (the last two columns in
Table 14). This is because MRR only considers a single
highest-ranked result [84], and RAG+GPT4 turns out to be
great at providing the first item correctly, while TabBiN
sometimes makes mistakes in the first position. TabBiN
performs better however when ranking of all relevant items

achieves score

are considered, as captured by the first metric, MAP [83]
(Table 14).

From our experiments we conclude that RAG can be used
both to improve LLM’s performance on our downstream tasks
as well as significantly reduce the size of the datasets
processed by the LLM, which substantially reduces the cost of
using commercial LLMs, especially for large-scale datasets.
Alternative methods of more advanced prompting algorithms
[54, 91] for complex tables could potentially enhance LLMs
performance. This is one of the current directions of our
further research.

5 RELATED WORK

The authors in [6] construct entity-centric embeddings for
relational data. The embedding training sentence generation
algorithm in [6] uses a graph, constructed per each entity
found in tables (i.e., Paul in Figure 1). It does not take into
account the intricacies of structure of the 2D neighboring
context (i.e., vertical neighboring cells in the same column or
horizontal in the same tuple) as well as does not distinguish
data from metadata. [6] supports only relational tables, so it
does not explicitly encode hierarchical metadata and does not
distinguish between vertical metadata and data in non-
relational tables. Similarly, it does not recognize nested tables
or data values in different units, and treats numerical ranges
as just 2 numbers, unlike us.

The authors train TABERT model [16] on Wikitables and
show it outperforming BERT [10] on two benchmarks -
SPIDER text-to-SQL [24] and WikiTableQuestions, "where a
system has to infer latent DB queries from its execution
results" [25]. Similarly, there are more questions answering
models for tables [19, 39, 49, 78] built using a standard
transformer architecture [10, 79] that use HybridQA [50],
SQA, WikiSQL and WikiTQ [39] to evaluate standard
questions answering tasks (QA) on data from semi- structured
HTML and relational tables.

TabPrompt [40] adapts graph contrastive learning using
Graph Neural Network (GNN) to encode tabular data and
prompt-based learning to alleviate scarcity of labelled tabular
training sets. Its performance is evaluated on two downstream
tasks - cell and table type classification, similar to [13].
However, it does not support more complex non-relational
tables, such as in this paper.

MotherNet [41] adapts the TabPFN [42] transformer
architecture and focuses on supervised classification for small
numeric tabular datasets from the OpenML-CC18 Benchmark
[43]. It supports only relational tables and was not evaluated
on any large-scale datasets with more complex tables as well
as downstream tasks related to table structure understanding.
Finally, it is supervised, which is a significant difference, since
it requires labeled training data unlike us. However, there are
studies focusing on generating labels for binary or multiclass
classification of tabular datasets [55, 56, 57, 58, 59, 60, 61, 62,
63].

HYTEL [47] employs hypergraph-structure-aware
transformer to encode tables and uses it for a series of
downstream tasks, including column type annotation, column
property annotation, table type detection and table similarity
prediction (TSP). Authors utilized ~1400 tables from PubMed

102

Central (PMC) dataset [64] to evaluate TSP. StruBERT [65]
also conducted table matching on the same dataset. However,
unlike us, both methods fall short in providing exhaustive
experimental evaluation on tables with multi-level hierarchical
metadata and nesting. We also conducted all our evaluations
on five large-scale datasets all from different domains.

TURL [5] is a (relational) structure-aware transformer,
trained and evaluated on several tasks for table understanding,
such as relation extraction, row population, cell filling, schema
augmentation, entity linking, and column type annotation. It
also supports only relational tables, so it does not have a
“special treatment” for hierarchical horizontal metadata as
well as it treats vertical metadata as data. Similarly, it does not
recognize nested tables or different units, and treats ranges as
just 2 numbers.

Auto-Tables [68] learns a pipeline of data transformation
operators using deep learning to transform non-relational
tables into relational for query processing using SQL-based
tools. Foofah [72], PATSQL [73], QBO [74], and Scythe [75]
consider a subset of table-restructuring operators, which fall
short in the Auto-Tables. In Auto-Tables, the authors work
with non-relational tables, defined much more narrow than in
this paper (Figure 1) and as we see them “in the wild”. The
non-relational tables in [68] lack hierarchy in metadata, nested
tables, data values in different units for the same attribute, as
well as numerical ranges. The transformation operators that
the authors propose in [68] (stack, wide-to-long, transpose,
pivot), therefore, are well-suited only for their simplified
notion of non-relational tables.

[69] introduces an attribute-unionability framework that
assesses table similarity by assessing their attribute
relatedness. Aurum [70] leverages enterprise knowledge graph
(EKG) to capture and query relationships among datasets in
Data Lakes. It focuses on indexing and keyword-search to find
related datasets in corporate data lakes based on simple
matching of the terms from the users’ query to the tables. Our
semantic matching works based on the cosine similarity of
composite embedding vectors for non-relational tables that
incorporate all components of such tables separately -
hierarchical metadata and data, nested tables, inferred types,
units of data values, ranges, etc. Such complex vectors are
composed in order to preserve semantic differences of each
component. This, in turn, affects quality of matching with and
without such vectors.

Tabllm [51] fine-tuned T0 [52] and GPT-3 [53] models for
tabular classification. These LLMs demonstrated competitive
performance, comparable to baselines, such as gradient-
boosted trees, on OpenML tabular datasets [43]. [54]
introduces a benchmark that evaluates LLMs (GPT-3.5[54] and
GPT-4[1]) on seven tabular downstream tasks, such as column
retrieval and cell lookup, utilizing various LLM prompt
designs and table input formatting. TapTap [76] uses GPT-2
[36] to encode single rows independently using a “text
template serialization” strategy, resulting in singular row
embeddings. They can be used in several downstream tasks,
such as table data augmentation, imputation, and handling
imbalanced classification. All these studies [51, 54, 66, 67]
focus on relational tables, unlike ours. However, the authors
formulate interesting insights on capabilities [51, 66] and
limitations [54, 67] of current LLMs in table understanding. In

[54], p.2. the authors state “LLMs have basic structural
understanding capabilities but are far from perfect, even on
trivial tasks, e.g., table size detection (detect the number of
columns and rows in a table)”. By carefully choosing the LLM
input (e.g., table input format, content order, role prompting,
and partition marks) and different prompt designs, the authors
achieved promising improvements in structural understanding
capabilities of LLMs. In [67], the authors investigated
inconsistencies in GPT3 performance in self-supervised
structural table understanding tasks (e.g., table transposition,
column reordering) depending on the data format (i.e., HTML,
JSON, CSV, DFLoader, etc) and noise-operations (e.g.,
merging cells, shuffling column names). They demonstrate
new possibilities of wusing LLMs for structured data
understanding via effective prompt design.

NumSearchLLM [77] also leverages LLMs (GPT-3.5 and
Llama2 [2]) as well as enterprise Knowledge Graphs to
perform table search over purely numeric tables. [91] proposes
Chain-of-Table method for table understanding tasks, such as
table-based question answering and fact verification. It
dynamically updates the table content in the reasoning
process by employing LLMs to iteratively generate SQL-like
table operations such as adding columns, selecting rows,
grouping, and more. The resulting table is then fed back to the
LLMs to generate the final answer. In contrast, our method
learning the fine-grained embedding
representation, optimized for non-relational tables having
hierarchical HMD, VMD, and nesting and using them to
perform high accuracy table, column, and entity
clustering/matching.

[71] extends data discovery process in Data Lakes across
two modalities of structured and unstructured data using a
model capturing similarities between text documents d and
tabular columns c. To train such a model, the authors curate a
labeled training set indicating the relation between d and c.
Their application spans from document-to-table relatedness to
table-to-table relatedness. We evaluate our embeddings on
downstream tasks including column-to-column and table-to-
table similarity. Our embeddings have fine-grained structure
taking into account the finest intricacies of non-relational
tables as discussed in the previous paragraph. Our approach is
also unsupervised, hence does not need labelling.

Tabbie [23] and TUTA [13] train embeddings and evaluate
them on several different downstream tasks — row population,
column population, column type prediction, cell and table type
classification. Unlike Tabbie, TUTA and other SOTA solutions
for relational tables, TabBiN supports complex non-relational
tables with nesting, distinguishes data and metadata context,
recognizes both vertical and horizontal hierarchical metadata,
performs type inference on both metadata and data, uniquely
embeds not only numerical values but also ranges, recognizes
units and encodes them as separate embeddings vectors.

focuses on

6 CONCLUSION

We introduced TabBiN - a structure- and metadata-aware
transformer for tables not in 1st Normal Form with
hierarchical vertical and horizontal metadata, having nested
tables, data values in different units, and numerical ranges. We

refer to them as non-relational or BiN tables. Relational tables

103

constitute only 0.9% of all tables in the common Web crawl [7]
and 22% of spreadsheet tables, while the rest are non-
relational. To the best of our knowledge, TabBiN is the first
transformer-based unsupervised architecture optimized for
intricacies of structural context in these tables, respecting
units in numerical values, and treating ranges and gaussians
according to their semantics, not blindly as a sequence of
numbers as in many SOTA solutions. TabBiN also performs
semantic type inference on the table content as well as its
metadata and encodes inferred types as an additional
component in the embedding layer. This fine-grained
understanding and “special treatment” of non-relational tables
with hierarchical metadata and nesting, allows TabBiN to
outperform SOTA on three popular downstream tasks on five
large-scale structured datasets with the significant MAP delta
of up to 0.28. GPT-4 LLM+RAG slightly outperforms us with
MRR delta of 0.1, but we significantly outperformed it with the
MAP delta of up to 0.42.

ACKNOWLEDGMENTS

We would like to thank Amazon and NSF (Award # 2345794)
for supporting fundamental parts of research on this project,
Casey DeSantis Cancer Innovation Fund, Florida Department
of Health (DOH) for their support of both Computer
Science/Al research as well as its application to Cancer. We
thank anonymous reviewers for their valuable feedback.

REFERENCES
(1]

Liu, Yiheng, et al. “Summary of chatgpt-related research and perspective
towards the future of large language models.” In Meta-Radiology 2023.
Touvron, Hugo, et al. "Llama 2: Open foundation and fine-tuned chat
models." arXiv preprint arXiv:2307.09288 (2023).

Chung, Hyung Won, et al. "Scaling instruction-finetuned language

models." arXiv preprint arXiv:2210.11416 (2022).

J. Joseph, "Assessing the potential of laboratory instructional tool through

Synthesia Al: a case study on student learning outcome. " In IJJELHE 2023.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. Turl: Table

understanding through representation learning. arXiv preprint:2006.14806,

2020.

Cappuzzo, Riccardo, Paolo Papotti, and Saravanan Thirumuruganathan.

"Creating embeddings of heterogeneous relational datasets for data

integration tasks." In ACM SIGMOD 2020.

Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A

large public corpus of web tables containing time and context metadata. In

WWW 2016.

Zhe Chen and Michael Cafarella. Integrating spreadsheet data via accurate

and low-effort extraction. In ACM SIGKDD 2014.

Kandibedala Bhimesh, et al. "Scalable Hierarchical Metadata Classification

in Heterogeneous Large-scale Datasets." In DOLAP 2023.

[10] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers
for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[11] Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang.
Semantic structure extraction for spreadsheet tables with a multi-task
learning architecture. In Workshop on Document Intelligence at NeurIPS
2019.

[12] Vaswani, Ashish, et al. "Attention is all you need." In NeurlIPS 2017.

[13] Wang, Zhiruo, et al. "Tuta: Tree-based transformers for generally
structured table pre-training." In ACM SIGKDD 2021.

[14] Lee, Jinhyuk, et al. "BioBERT: a pre-trained biomedical language
representation model for biomedical text mining." In BMC Bioinformatics
2020.

[15] Alsentzer, Emily, et al. "Publicly available clinical BERT embeddings." arXiv
preprint arXiv:1904.03323 (2019).

[16] Yin, Pengcheng, et al. "TaBERT: Pretraining for joint understanding of
textual and tabular data." arXiv preprint arXiv:2005.08314 (2020).

[17] Arik, Sercan O., and Tomas Pfister. "Tabnet: Attentive interpretable tabular
learning." In AAAI 2021.

[18] Nargesian, F., Pu, K.Q., Zhu, E., Ghadiri Bashardoost, B. and Miller, R]J.,
2020, June. Organizing data lakes for navigation. In ACM SIGMOD 2020.

[19] Herzig, Jonathan, et al. "TaPas: Weakly supervised table parsing via pre-

training." arXiv preprint arXiv:2004.02349 (2020).

[20]
[21]
[22]
(23]

[24]

[25]
[26]
[27]

(28]

[29]
(30]
(31]
(32]
(33]
(34]
(35]
(36]
(37]
(38]

(39]

Huang, Jiacheng, et al. "Deep Active Alignment of Knowledge Graph
Entities and Schemata." In PACMMOD 2023.

Cong, Tianji, Fatemeh Nargesian, and H. V. Jagadish. "Pylon: Semantic
Table Union Search in Data Lakes." arXiv preprint arXiv:2301.04901 (2023).
Neumann, Mark, et al. "ScispaCy: fast and robust models for biomedical
natural language processing." arXiv preprint arXiv:1902.07669 (2019).

lida, Hiroshi, et al. "Tabbie: Pretrained representations of tabular
data." arXiv preprint arXiv:2105.02584 (2021).

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, L, Yao,
Q., Roman, S. and Zhang, Z., 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-sql
task. arXiv preprint arXiv:1809.08887.

Pasupat, P. and Liang, P., 2015. Compositional semantic parsing on semi-
structured tables. arXiv preprint arXiv:1508.00305.

Codd, Edgar F. "Further normalization of the data base relational
model." Data base systems 6 (1972): 33-64.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-
based transformers. In NeurlIPS 2019.

Yau-Shian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree transformer:
Integrating tree structures into self-attention. arXiv preprint:1909.06639,
2019.

Majid Ghasemi-Gol and Pedro Szekely. Tabvec: Table vectors for
classification of web tables. arXiv preprint:1802.06290 (2018).

Guillaume Lample and Alexis Conneau. Cross-lingual language model
pretraining. arXiv preprint:1901.07291, 2019.

Viacheslav Paramonov, Alexey Shigarov, and Varvara Vetrova. Table
header correction algorithm based on heuristics for improving spreadsheet
data extraction. In ICIST 2020.

Xuan-Phi Nguyen, Shafiq Joty, Steven CH Hoi, and Richard Socher.
Treestructured attention with hierarchical ~accumulation. arXiv
preprint:2002.08046, 2020.

L. L. Wang and K. L. and. The covid-19 open research dataset. ArXiv, 2020.
Seung-Jin Lim and Yiu-Kai Ng. An automated approach for retrieving
hierarchical data from html tables. In ACM CKIM 1999.

Fantechi, Alessandro, et al. "A spaCy-based tool for extracting variability
from NL requirements." In SPLC 2021.

Radford, Alec, et al. "Language models are unsupervised multitask
learners." OpenAl blog 1.8 (2019): 9.

Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. Tabular cell
classification using pre-trained cell embeddings. In IEEE ICDM 2019.
Konda, Pradap, Venkatramanan. Megellan: Toward building entity matching
management systems. The University of Wisconsin-Madison, 2018.

Yang, Jingeng, et al. “TableFormer: Robust transformer modelling for table-
text encoding.” arXiv preprint arXiv:2203.00274 (2022).

[40] Jin, Rihui, et al. "TabPrompt: Graph-based Pre-training and Prompting for

Few-shot Table Unlderstanding.” In EMNLP 2023.

[41] Miiller, Andreas, Carlo Curino, and Raghu Ramakrishnan. "MotherNet: A

[42]

[43]

(44]

Foundational Hypernetwork for Tabular Classification." arXiv preprint
arXiv:2312.08598 (2023).

Hollmann, N., Muller, S., Eggensperger, K., and Hutter, F. © TabPFN: A
transformer that solves small tabular classification problems in a second. In
NeurIPS 2022.

Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang, R.
Mantovani, J. van Rijn, and J. Vanschoren. OpenML benchmarking suites.
In NeurlIPS 2021.

B.Alexe, M.A. Hernandez, H. Ho, J.-W.Huang, Y. Katsis, and L. Popa.
Simplifying information integration: Object-based flow-of-mappings
framework for integration. In BIRTE 2009.

[45] A.L. Gentile, P. Ristoki, S. Eckel, D. Ritze, and H. Paulheim, Entity matcing

46]
(47]
(48]
(49]
[50]
(51]

[52]

on wetables: a table embedding approach for blocking. In EDBT 2017.
Mikolov, Tomas, et al. "Distributed representations of words and phrases
and their compositionality.” In NeurlIPS 2013.

Chen, Pei, et al. "HYTREL: Hypergraph-enhanced tabular data
representation learning." arXiv preprint arXiv:2307.08623 (2023).

Li, Yuliang, et al. "Deep entity matching with pre-trained language
models." arXiv preprint arXiv:2004.00584 (2020).

Eisenschlos, Julian Martin, et al. "MATE: multi-view attention for table
transformer efficiency.” arXiv preprint arXiv:2109.04312 (2021).

Chen, Wenhu, et al. "Hybridqa: A dataset of multi-hop question answering
over tabular and textual data." arXiv preprint arXiv:2004.07347 (2020).
Hegselmann, Stefan, et al. "Tabllm: Few-shot classification of tabular data
with large language models.” In AISTATS 2023.

Bach, Stephen H., et al. "Promptsource: An integrated development
environment and repository for natural language prompts." arXiv preprint
arXiv:2202.01279 (2022).

[53] Ouyang, Long, et al. "Training language models to follow instructions with

(54]

[55]

[56]

human feedback.” In NeurlIPS 2022.

Sui, Yuan, et al. "Evaluating and Enhancing Structural Understanding
Capabilities of Large Language Models on Tables via Input Designs." arXiv
preprint arXiv:2305.13062 (2023).

Huang, Xin, et al. "Tabtransformer: Tabular data modeling using contextual
embeddings." arXiv preprint arXiv:2012.06678 (2020).

Somepalli, Gowthami, et al. "Saint: Improved neural networks for tabular
data via row attention and contrastive pre-training." arXiv preprint
arXiv:2106.01342 (2021).

104

[57] Wang, Zifeng, and Jimeng Sun. "Transtab: Learning transferable tabular
transformers across tables." In NeurlIPS 2022.

[58] Ye, Chao, et al. "CT-BERT: learning better tabular representations through

cross-table pre-training.” arXiv preprint arXiv:2307.04308 (2023).

Liu, Guang, Jie Yang, and Ledell Wu. "PTab: Using the Pre-trained

Language Model for Modeling Tabular Data." arXiv preprint

arXiv:2209.08060 (2022).

[60] Zhu, Bingzhao, et al. "XTab: Cross-table Pretraining for Tabular
Transformers." arXiv preprint arXiv:2305.06090 (2023).

[61] Ahamed, Md Atik, and Qiang Cheng. "MambaTab: A Simple Yet Effective
Approach for Handling Tabular Data." arXiv preprint
arXiv:2401.08867 (2024).

[62] Yang, Yazheng, et al. "UniTabE: Pretraining a Unified Tabular Encoder for
Heterogeneous Tabular Data." arXiv preprint arXiv:2307.09249 (2023).

[63] Wydmanski, Witold, Oleksii Bulenok, and Marek Smieja. "HyperTab:
Hypernetwork Approach for Deep Learning on Small Tabular
Datasets.” arXiv preprint arXiv:2304.03543 (2023).

[64] Habibi, Maryam, Johannes Starlinger, and Ulf Leser. "Tabsim: A siamese

neural network for accurate estimation of table similarity." IEEE BigData

2020.

Trabelsi, Mohamed, et al. "Strubert: Structure-aware bert for table search

and matching." In ACM Web Conference 2022.

Zha, Liangyu, et al. "Tablegpt: Towards unifying tables, nature language

and commands into one gpt." arXiv preprint arXiv:2307.08674 (2023).

[67] Singha, Ananya, et al. "Tabular Representation, Noisy Operators, and
Impacts on Table Structure Understanding Tasks in LLMs." arXiv preprint
arXiv:2310.10358 (2023).

[68] Li, Peng, et al. "Auto-tables: Synthesizing multi-step transformations to

relationalize ~ tables without using examples." arXiv preprint

arXiv:2307.14565 (2023).

] Bogatu, Alex, et al. "Dataset discovery in data lakes." IEEE ICDE 2020.

[70] Fernandez, Raul Castro, et al. "Aurum: A data discovery system." IEEE
ICDE 2018.

[71] Eltabakh, Mohamed Y., et al. "Cross Modal Data Discovery over Structured
and Unstructured Data Lakes." arXiv preprint arXiv:2306.00932 (2023).

[72] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish.
2017. Foofah: Transforming data by example. In ACM SIGMOD 2017.

[73] Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. 2020.
PATSQL: efficient synthesis of SQL queries from example tables with quick
inference of projected columns. arXiv preprint arXiv:2010.05807 (2020).

[74] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2009.
Query by output. In ACM SIGMOD 2009.

[75] Wang, Chenglong, Alvin Cheung, and Rastislav Bodik. "Synthesizing
highly expressive SQL queries from input-output examples."In ACM
SIGPLAN 2017.

[76] Zhang, Tianping, et al. "Generative Table Pre-training Empowers Models
for Tabular Prediction." arXiv preprint arXiv:2305.09696 (2023).

[77] Subramaniam, Pranav, et al. "Related Table Search for Numeric data using
Large Language Models and Enterprise Knowledge Graphs." In ACM CIKM
2023.

[78] Liu, Qian, et al. "TAPEX: Table pre-training via learning a neural SQL

executor." arXiv preprint arXiv:2107.07653 (2021).

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehension." arXiv

preprint arXiv:1910.13461 (2019).

Verdaguer, Helena, Josep Tabernero, and Teresa Macarulla. "Ramucirumab

in metastatic colorectal cancer: evidence to date and place in

therapy." Therapeutic advances in medical oncology 2016.

[81] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan. Deep entity matching with
pre-trained language models. In PVLDB 2021.

[82] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 (2019).

[83] Liu, L., & Ozsu, M. T. (2009). Mean Average Precision. In L. Liu & M. T.

Ozsu (Eds.), Encyclopedia of Database Systems (pp. 1703). Springer US.

doi:10.1007/978-0-387-39940-9_3032

Craswell, N. (2009). Mean Reciprocal Rank. In L. Liu & M. T. Ozsu (Eds.),

Encyclopedia of Database Systems (pp. 1703). Springer US. doi:10.1007/978-

0-387-39940-9_488.

[85] Hanna Képcke, Andreas Thor, and Erhard Rahm. Evaluation of entity
resolution approaches on real-world match problems. In PVLDB 2010.

[86] Aryn-Ai. “Aryn-Ai/Sycamore: Sycamore is an LLM-Powered Search and
Analytics Platform for Unstructured Data.” GitHub, github.com/aryn-
ai/sycamore.

[87] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:
exploring the power of tables on the web. In VLDB, 2008.

[88] M. J. Cafarella, A. Halevy, Y. Zhang, D. Wang, and E. Wu. Uncovering the
relational web. In WebDB, 2008.

[89] S. Soderman, A. Kola, M. Podkorytov, M. Geyer, and M. Gubanov. Hybrid.ai:
A learning serach engine for large-scale structured data. In WWW, 2018.

[90] S. Melnik, E. Rahm, P. Bernstein. Rondo: A Programming Platform for

Generic Model Management. In SIGMOD 2003.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos,

Vincent Perot, Zifeng Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang,

[59

[65

(66

=
X

(80

(84

[91

Chen-Yu Lee, and Tomas Pister. Chain-of-Table: Evolving Tables in the
Reasoning Chain for Table Understanding. In ICLR 2024.

[92] M. Chauhan, A. Pyayt, M. Gubanov, “Learning Topical Structured Interfaces
from Medical Research Literature” in The Web Conference 2023.

[93] B. Kandibedala, A. Pyayt, N. Piraino, C. Caballero, M. Gubanov,
“COVIDKG.ORG - a Web-scale COVID-19 Interactive, Trustworthy
Knowledge Graph, Constructed and Interrogated for Bias using Deep-
Learning” in EDBT 2023.

[94] S. Pavia, M. Shams, R. Khan, A. Pyayt, M. Gubanov “Learning Tabular
Embeddings at Web Scale” in BigData 2021.

[95] Bhagavatula, C.S., Noraset, T., & Downey, D. (2015). Tabel: Entity linking in
web tables. In The Semantic Web - ISWC 2015, Springer International
Publishing, Cham, pp. 425-441.

105

