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Hierarchical Metadata and Nesting 

ABSTRACT 
Embeddings serve as condensed vector representations for 
real-world entities, finding applications in Natural Language 
Processing (NLP), Computer Vision, and Data Management 
across diverse downstream tasks. Here, we introduce novel 
specialized embeddings optimized, and explicitly tailored to 
encode the intricacies of complex 2-D context in tables, 
featuring horizontal, vertical hierarchical metadata, and 
nesting. To accomplish that we define the Bi-dimensional 
tabular coordinates, separate horizontal, vertical metadata and 
data contexts by introducing a new visibility matrix, encode 
units and nesting through the embeddings specifically 
optimized for mimicking intricacies of such complex 
structured data.  Through evaluation on 5 large-scale 
structured datasets and 3 popular downstream tasks, we 
observed that our solution outperforms the state-of-the-art 
models with the significant MAP delta of up to 0.28. GPT-4 
LLM+RAG slightly outperforms us with MRR delta of up to 
0.1, while we outperform it with the MAP delta of up to 0.42.  

1 INTRODUCTION 
Embeddings are dense numerical representations of real-world 
objects, expressed as vectors. In NLP and Information 
Retrieval (IR), embedding vectors commonly correspond to 
terms in text, and the corresponding vector space is expected 
to quantify the semantic similarity between them. While not 
the first, LLMs such as GPT-4 [1], Llama2 [2], FLAN-T5 [3] 
and others also heavily depend on embeddings. These trained 
models, sometimes also referred to as Generative AI or GenAI, 
store millions of such vectors, which are used to generate the 
response to the user’s question. More recently, GenAI models 
were also trained for images – e.g., DALL – E2 and videos [4]. 
Other methods adapt NLP embeddings to obtain embeddings 

for relational tables [5]. Even though some of these 
approaches such as transformers [10, 12, 16] attend to every 
token in all sections of a table, including metadata and data, 
hence implicitly encode its 2D context, they are not explicitly 
optimized for complex structured data. To mitigate this 
limitation, there were a series of efforts [6, 16, 17, 19, 23] to 
construct more accurate embeddings capturing the intricacies 
of relational data. These include adding specialized embedding 
layers or an attention mechanism and pre-training the models 
on tasks such as table cells or segments recovery [5, 13, 19, 
23], thereby making them aware of the tabular structure. The 
majority of these efforts are devoted only to relational and 
spreadsheet tables (0.9% and 22% of all tables in the Common 
Web Crawl [7]) [8]. They overlook the other widely used type 
of tables that we refer to as “non-relational”. Unlike relational, 
they can exhibit not only single-header horizontal, but also 
multi-level hierarchical vertical, horizontal metadata, as well 
as nested tables [9]. This creates a gap in understanding these 
widely used tables in practice. Hence, it is important to take 
steps to bridge it by enabling machine table understanding for 
such tables. Several recent attempts [10, 11, 29, 30, 31] try to 
identify hierarchies and classify cells in such tables. However, 
these approaches are supervised, and labeling large amounts 
of such structured data is labor intensive, especially for large-
scale datasets. Other recent approaches [5, 16, 19, 39, 40, 47, 65, 
68], despite being unsupervised, are optimized for relational or 
primitive non-relational tables (e.g., matrix tables having just 
singular non-hierarchical metadata without the rest of their 
more complex features).  
      In 1st Normal Form [26] a relational table has a set of 
labeled homogeneous columns, which is not the case for the 
majority of tables in the real world, especially in medical, 
financial, and government tables. For example, Figure 1 
illustrates such table detailing treatment efficacy from 
colorectal cancer. The lowest right cell has both horizontal 
(Efficacy End Point → Other Efficacy) and vertical (Patient 
Cohort → Failing under Fluoropyrimidine and Irinotecan) 
hierarchical metadata. Some cells have separate nested tables, 
all having values in different units, sometimes numerical 
ranges or gaussians [80]. 
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Figure 1: Bi-dimensional Coordinates for a non-1st Normal Form Table with Hierarchical Metadata and Nesting.    

      Inspired by these major differences compared to more 
primitive tables, we introduce TabBiN — a novel self-
supervised, transformer-based architecture to train fine-
grained structurally-aware embeddings, optimized for tables 
with Bi-dimensional hierarchical metadata and Nesting. 
During pre-training the data cells from such tables are 
encoded using our novel Bi-dimensional hierarchical 
coordinates calculated based on their hierarchical and spatial 
in-table location. Different from the uni-tree structure [27, 13], 
TabBiN supports both explicit and implicit coordinate 
encodings, including those for nested tables with their own 
separate metadata, such as in Figure 1. To enable vertical, 
horizontal metadata, and data to efficiently aggregate their 
local neighboring 2D contexts, we propose a metadata-aware 
attention mechanism that is different from the regular 
transformer practices of bottom-up attention [32], and 
constituent attention [28] in NLP domain. We also adopt the 
Masked Language Model (MLM) pre-training objective from 
BERT [10] and Cell-level Cloze (CLC) to learn the 
representations of tokens and cells across a large volume of 
tables. We make the following contributions in this paper:  

• For non-relational tables, not in 1st Normal Form, 
exhibiting hierarchical vertical, horizontal metadata, and 
nesting [9], we propose tabular Bi-dimensional 
hierarchical coordinates (see Figure 1). Using these 
coordinates, we devise a self-supervised, transformer-
based, metadata-aware attention mechanism and pre-
training method, key in creating our novel structurally-
aware composite embeddings, optimized for such non-
relational tables. During pre-training or fine-tuning 
TabBiN learns these embedding vectors representing 
cells, tuples, columns, horizontal, vertical metadata, or the 

entire table from large-scale corpora in self-supervised 
manner.  

• To better incorporate semantics and intricacies of such 
complex structured data we introduce new abstractions, 
optimized for and explicitly encoding nested tables, entity 
types, units and ranges (for numerical data) used in the 
embedding layer of our architecture (see Figure 2).  

• We fine-tune our embeddings on 5 large-scale structured 
datasets, evaluate and demonstrate that TabBiN 
outperforms or matches the state-of-the-art (SOTA) in 
most cases on 3 popular downstream tasks at scale. 
GPT4+RAG slightly outperforms us with MRR delta of 
0.1, while we outperform it with MAP delta up to 0.42. 

      Our downstream tasks are column clustering, table 
clustering, and entity clustering/matching. The clusters are 
inherently useful, for example, to find tables similar to a given 
table (based on the cosine similarity calculated using our 
embeddings) and can be used to aid table search [21, 69, 70, 71, 
87-89], data fusion [41, 87-90], taxonomy generation, and 
other tasks [77]. 
      The remainder of the paper is structured as follows. 
Section 2 describes comprehensive definition of the problem, 
the datasets, Bi-dimensional coordinates. Section 3 details the 
TabBiN model, the structure of its composite embedding layer, 
and the pre-training methodology. Section 4 describes our 
experimental evaluation on 5 large-scale structured datasets 
having a variety of both relational and non-relational tables on 
3 popular downstream tasks. We review related work in 
Section 5 and conclude in Section 6. 
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2 PRELIMINARIES 

2.1 Definitions 
The following definitions have been taken verbatim from our 
group’s publication [9]. 
Relational tables [26], have the following properties: values are 
atomic, each column has values of the same type, each column 
has unique name (i.e., attribute name). The set of all attribute 
names is called table schema or metadata.  
Def1: Metadata is a set of attributes of a table. Metadata can be 
stored in a row - e.g., rows №1-2 in Figure 1, or in a column - e.g., 
columns №1-2 in Figure 1. 
Def2: Cell is a data value (i.e., can be a number, string, etc.) 
found at the intersection of a row and a column in a table. A 
relational table has C*R cells total, where C is the number of 
columns and R is the number of rows. 
Def3: A table with hierarchical metadata is a table that, similar to a 
relational table, has metadata (i.e., attributes), but unlike a 
relational table it may be found not only in a row, but also in a 
column. It may also take several rows or columns. Such rows with 
metadata are called horizontal metadata (HMD). On the other 
hand, such columns with metadata are called vertical metadata 
(VMD) [9]. 
We refer to tables not in 1st Normal Form (NF) [26], with Bi-
dimensional hierarchical metadata and Nested tables inside 
cells as non-relational or BiN tables (see Table 1). Please refer 
to [9] for more formal definitions. Such tables often contain 
summary/aggregate data but are not limited to it [80].  
      A table in our work  is represented as T = [C, H, V, D], 
where C is the table caption, which is a short text description 
summarizing what the table is about, H = [c1, c2, c3, … ,cm] are 
m columns in HMD, V = [r1, r2, r3, … ,rn] are n rows in VMD, 
D = {dij | 1 ≤ i ≤ n,  1 ≤ j ≤ m}  represent data cells, and dij is the 

data cell in the ith row and jth column that has several tokens 
(texts or numbers). Given a table T, our embedding layer aims 
to learn in an unsupervised manner a structure-aware 
contextualized vector representation for each token in table 
cells to capture intricacies of 2D context within T. Specifically, 
we introduced new additional components in the embedding 
layer, encoding cell coordinates, nested tables, entity types, 
units, and ranges for better understanding of non-relational 
tabular data. These components are absent in existing 
transformer architectures for tabular data. 
      We now define the three table-related downstream tasks 
that we address in this paper. 
Column Clustering (CC). The problem of pairwise 
column/attribute matching is well-known in schema matching 
[8, 44, 45], because these correspondences play a key role in 
identifying how to fuse two tables (i.e., which columns can be 
merged). This task involves the identification of similar cj ∈ H 
between two tables. 
Table Clustering (TC). TC is a task of grouping tables by 
topic (e.g., all Songs tables). This is a key task supporting table 
search, data fusion, where information from multiple tables on 
the same topic, originating from various sources, has to be 
integrated to provide a unified, comprehensive view [8, 44, 
45]. 
Entity Clustering/Matching (ECM). Entity matching [38, 
48] plays a crucial role in data fusion tasks by facilitating the 
identification and linkage of entities across disparate datasets. 

It establishes connections between entities from different 
sources, enabling a more comprehensive and accurate view of 
the data. 

Table 1: Sample non-1NF Table with Nesting. 

 

2.2 Datasets 
To ensure we have a wide variety of tables we use 5 large-
scale structured datasets. These datasets include both 
relational and non-relational tables. 

• Webtables [7]: we took a sample of 20,000 tables in 
English including both relational and complex non-
relational tables. On average, the tables have 14.45 rows 
and 5.2 columns. The most frequent topics covered in 
these tables include magazines, cities, universities, soccer 
clubs, regions, baseball players, and music genres. The 
cell values contain strings and numbers with and without 
units and ranges. 

• CovidKG is a subset of CORD-19 [33], a public COVID-19 
research dataset. We took a sample of 20,000 tables, 
related to COVID-19 and its vaccination, such as 
Moderna, Covaxin, Alpha variant, and Gamma variant. 
The table columns exhibit both VMD and HMD. The cell 
values contain strings, numbers with and without units, 
ranges, Gaussians, and nested tables.  

• CancerKG dataset has 44,523 tables, extracted from all 
recent medical publications (up to 12/2023) on colorectal 
cancer, obtained via PubMed.com. The tables have 
227,279 columns total, exhibiting both hierarchical VMD 
and HMD. The cell values contain strings, numbers with 
and without units, ranges, Gaussians, and nested tables. 

• The 2010 Statistical Abstract of the United States (SAUS) 
comprises 1,320 tables [13, 37], which can be downloaded 
from the U.S. Census Bureau. The tables have 52.5 rows 
and 17.7 columns on average. It covers a variety of topics, 
including finance, business, crime, agriculture, and health 
care.  

• The CIUS dataset [13, 37] is from the Crime In the US 
(CIUS) database and consists of 489 tables. The tables 
have 68.4 rows and 12.7 columns on average. 

      The non-relational tables that we defined in this paper are 
prevalent in our two datasets, CancerKG and CovidKG, 
constituting over 40% of each dataset. Additionally, 
approximately 10% of these complex tables exhibit nested 
structures in both datasets [80]. On average, the complex 
tables in our datasets consist of approximately 12 rows and 10 
columns. 

2.3 Bi-dimensional Coordinates 
Figure 1 illustrates the Bi-dimensional coordinates that we 
introduce for non-relational tables, not in 1st Normal Form 
with hierarchical vertical and horizontal metadata, with 
nesting, defined in [9]. Our coordinates correspond to the cell
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Figure 2: Transformer-based Deep-learning Architecture 
with 6 Embeddings Layers for non-1st Normal Form 
Table with Hierarchical Vertical, Horizontal Metadata, 
and Nesting. 

location and the path through the metadata hierarchy to the 
cell. There are two coordinate-trees – horizontal and vertical 
(on the left and top of Figure 1). Both coordinate values 
correspond to the paths from the root nodes of the trees to the 
cell. For example, the coordinates of the table, nested in the 
upper right cell in Figure 1 (Efficacy End Point → Other 
Efficacy; Patient Cohort → Previously Untreated) are 
(<2,7>;<1,3>). In turn, the coordinates of the second horizontal 
metadata label (HR) in the nested table are (<3,5>;<4,3>). 
Notice that our bi-dimensional coordinates also apply to 
relational tables, whereby they reduce to the regular Cartesian 
coordinates. Tables in our corpora as well as in large-scale 
structured datasets in general usually come with unlabeled or 
noisy metadata. We designed and trained our own binary 
metadata classifiers based on Deep-learning bi-GRU and CNN 
architectures specifically for highly accurate labeling of multi-
layer metadata - both horizontal and vertical [9]. One can also 
use other existing techniques for labeling metadata [31, 34]. 

3 TabBiN MODEL 
Here we shed some light and provide more details on our 
Transformer-based self-supervised architecture with 
metadata-aware structural attention [10, 12] that we created 
for non-1st normal form tables with nesting and hierarchical 
metadata. Each encoder block in the Transformer is composed 

of a multi-head-self-attention layer and fully connected layer 
[12]. The configuration of our N-layer Transformer encoder 
model is aligned with BERTBASE[10]. However, we changed 
the standard BERT multi-head attention form Q, K, V ∈ ℝH×H 
[12], with our metadata-aware mask attention as follows: 

         TabBiN Attention(Q, K, V) = Attention(Q, K, V) . M        (1) 

where, H = 768 is the hidden size of  BERTBASE and M ∈ ℝn×n 
is the visibility matrix (n in M is the input sequence length), 
which we describe below in Section 3.2.  
      The architecture diagram is illustrated in Figure 21. Tabbie 
[23] uses two separate transformer models [10] to encode a 
table row-wise and column-wise separately, then aggregates the 
representations obtained from both encoders. We segment a 
table into three distinct parts: data, HMD, and VMD. We then 
concatenate the embeddings from each segment into a 
composite embedding vector to capture a comprehensive 
representation of the entire table. This segmentation ensures 
that the context from these semantically different table 
segments is treated separately by the model and that unique 
structural and semantic characteristics of each segment are 
preserved. E.g., hierarchical metadata is expected to have 
hierarchical relationships between the neighbors, 
encoded/learned in their contextual pattern; neighbors in the 
data segment might systematically belong to the same domain 
[26] or represent different properties of the same object [26]. 
These distinct patterns should be learned independently to 
maximize accuracy and minimize the training set sizes [89, 
92]. We and other researchers studied separating metadata and 
data in context of different relational data classification tasks 
and observed that it generally improves performance [89-95]. 
All the above-mentioned rationale served as a basis for table 
segmentation and separate training. 

3.1 Embedding Layer 
We introduced 6 new embeddings into the embedding layer of 
our new transformer-based architecture explicitly encoding 
the bi-dimensional coordinates, semantic information about 
the entity type (for strings), units (for numerical data), and 
nested tables. We partition the tables into three segments — 
data, HMD, and VMD and process them separately to separate 
contexts for each of these types of data that carry different 
semantics. We iterate over the table cells row by row to train 
our data row model. We iterate over the table cells column by 
column to train our data column model. We tokenize cells 
using [10], embed tokens jointly and create 6 new embeddings 
corresponding to: token semantics Etok, numerical properties 
Enum, in-cell position Ecpos

, in-table position  Etpos
, cell features  

Efmt , and inferred type Etype. 
Token. To learn token semantics, we use the vocabulary V 
defined in [14]. The numbers are tokenized using the special 
token [VAL] (as indicated in “Token” column of Figure 3). The 
trainable embedding weight for each token is defined by 
Wtok ∈  ℝH ×V. The trainable embedding for a token is defined 
as: 

                                      Etok = Wtok . xtok                    (2)

 
1 Figure 2 should be read bottom to top. 
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Figure 3: The Encoded Representation of Table 1 in the 
Embedding Layer. 

where xtok is the index of the token in V. 
Number. The numbers are encoded in our embedding vectors 
using four discrete features, magnitude xmag ∈ [0, M] , 
precision  xpre ∈ [0, P], the first digit xfirst ∈ [0, F] and the last 
digit xlast ∈ [0, L] as in [13]. These features are then one-hot 
encoded. For example, number 20.3 in Figure 3 is encoded as 
(xmag, xpre, xfirst, xlast) → (2, 2, 2, 3). The weights Wmag, Wpre, 

Wfst , and Wlst ∈ ℝM/P/F/L×
H

4   are concatenated. M, P, F, L = 10 . 
The final trainable embedding for the numerical properties is: 

                 Enum =  Enummag
⊕ Enumpre

⊕ Enumfst
⊕ Enumlst

               (3)                                                                    

where, Enummag
 = Wmag . xmag,  Enumpre

= Wpre . xpre, 

Enumfst
 = Wfst . xfst  and  Enumlst

 = Wlst . xlst , and ⊕  denotes 

vector concatenation operator. 
In-position. The in-cell position refers to the index of a token 
within a cell (Figure 3 “In Pos” column). To represent each 
position, we introduce a trainable embedding Ecpos

 [13] 

denoted as: 

                                 Ecpos
 = Wcpos

 . xcpos
                                     (4)  

where Wcpos
 ∈ ℝH ×I represents the learnable weight, xcpos

 is the 

one-hot encoded position, I = 64 is the pre-defined maximum 
allowable number of tokens within a cell. We trim tokens in 
each cell where the length exceeds this limit. 
Out-position. “Out pos” column in Figure 3 is comprised of 
two components. The first one corresponds to the Bi-
dimensional coordinates of the cell, and the second one 
corresponds to the cell coordinate in the nested table. The 
nested position embedding incorporates the new spatial 
coordinate (x, y) for tokens in the nested cell starting with 
index 1. In the context of a relational table without nesting, 
our bi-dimensional coordinates reduce to the standard 
Cartesian coordinates. For cells without nesting the default 
coordinate (0,0) is used. We randomly initialize the weights for 
these positional embeddings and train them jointly with the 
attention layers as in [10, 13]. Finally, we concatenate the Bi-
dimensional coordinate embedding and nesting coordinate 
embeddings to get the final composite positional embedding. 

                              Etpos
 = Etvpos

⊕ Ethpos
⊕ Etnpos

                            (5) 

where, Etvpos
= Wvr

 . xvr
⊕ Wvc

 . xvc
 is the composite embedding 

for the vertical metadata coordinate position, Ethpos
= Whr

 . xhr
⊕

Whc
 . xhc

 is the composite embedding for the horizontal 
metadata coordinate position, Etnpos

= Wnr
 . xnr

⊕ Wnc
 . xnc

 is the 

composite embedding for the nested coordinate position, xvr
, 

xvc
, xhr

, xhc
, xnr

, xnc
  are the one-hot encoded positions 

indicating the row and column indexes for each vertical, 
horizontal, and nested coordinate, Wvr

, Wvc
, Whr

, Whc
, Wnr

, 

Wnc
 ∈ ℝG×

H

6  are the embedding weights for the vertical 
metadata row, vertical metadata column,  horizontal metadata 
row, horizontal metadata column, nested row and column 
positions. G is the maximum number of tuples in a table. We 
have found G = 256 to be sufficient for our datasets. 
Units and Nesting. To account for the presence of units 
together with numbers and nesting cells we encode them in 
our last (6th embedding vector) in Figure 3 as one-hot 8-
dimensional encoded binary feature vector (“Unit, Nesting” 
column). The order of one-hot encoding for units and nesting 
is [stats, length, weight, capacity, time, temperature, pressure, 
nested], ‘stats’ indicates statistical measure such as percentage, 
mean, gaussian etc. The first seven bits in the vector represent 
the unit. We populate them only for numerical values. The last 
bit indicates the presence of a nested table in the cell. The 
embedding for the nested cells coordinate is incorporated in 
the “Out Pos” component of the embedding layer discussed 
above. We get the cell features embedding, representing units 
and nesting, by transforming the feature vector x ∈ BF into the 
vector space of dimensionality H with weight Wfmt ∈ ℝF ×H 

and bias b ∈ ℝH . Wfmt  and b are learned during the pre-
training phase. 

   Efmt = Wfmt . x + b                               (6) 

In our case F = 8 is the number of our cell features. 
Type Inference. We use [22] for type inference and tagging 
chemicals, diseases, medication types, drugs, etc. On top of 
this we also defined a custom list of named-entities, types, and 
noun-phrases for our datasets, such as vaccines, treatments, 
therapies, prescriptions that are beyond capabilities (too 
domain-specific) of the SOTA NLP packages, when applied to 
CovidKG and CancerKG datasets. For generic entities such as 
name, places, measurement we used the en_core_web_sm 
pipeline package for English [35]. In addition, we tag numeric, 
range, and text types using standard regex in Python. The 
embedding for type inference is of size (14, 768). 768 is the 
dimensionality of the hidden layer of our model and 14 is the 
number of different supported types in our experiment. All 
tokens in a cell get the same type. For example, in Figure 3, 
tokens corresponding to the cell “colon cancer” are typed as 
disease. The type inference mapping has a finite set of size T = 
14. Each token is assigned with a trainable embedding in 
Wtype ∈ ℝH ×T. 

                                 Etype = Wtype . xtype                                  (7) 

The final embedding vector of a token is the summation of all 
the components 

                    E = Etok + Enum + Ecpos
+ Etpos

+ Etype+ Efmt             (8) 
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Table 2: A sample Relational Table. 

Name Age Job 
Sam 24 Engineer 
John 25 Scientist 
Nick 23 Lawyer 

3.2 Visibility Matrix 
We introduce a custom visibility matrix to make the attention 
mechanism attend only to the neighboring structural context 
of the same kind (i.e., carrying the same semantics), thus 
avoiding redundant information. The standard self-attention 
mechanism allows every token in a table to attend to every 
other token, regardless of where the tokens are – in the cell, in 
the same tuple, column or one in the data cell another in the 
metadata. Spatial information is valuable as it is representative 
of separate segments of a table carrying different semantics 
(HMD, VMD, D). Hence it is important to precisely capture 
and encode it, which we accomplish through our visibility 
matrix. The standard transformer attention mechanism is also 
capable of capturing it, but our visibility matrix makes it more 
explicit [5, 13, 23, 47]. Consider an example Table 2: ‘Sam’ and 
‘Engineer’ are related because they are in the same row, 
whereas ‘Sam’ should not be related to ‘Lawyer’. Similarly, 
‘Scientist’ is related to ‘Job’, but should not be related to the 
attribute ‘Age’. To accurately model this important structural 
information in tables, we must have a mechanism to explicitly 
inform the model about which token/cells are structurally 
related. This is achieved by introducing an attention mask or 
as we call it - visibility matrix.  An experiment in our ablation 
study in Section 4.6, where we remove the visibility matrix 
(thus resort to the standard attention mechanism), 
demonstrates that it results in a substantial loss in accuracy, 
hence justifies its value. 
      Our visibility matrix is a binary matrix used as an 
attention mask in the transformer layer during calculation of a 
multi-head self-attention. Table cells in the same row or 
column are visible to each other, i.e., if element i is a token in 
a table and if element j is a token in same row or column, Mij = 
1. Mij =1 if and only if element i is visible to element j, 
otherwise Mij = 0. An element here can be a token in the 
header or data cell. We apply the same visibility matrix 
separately to data, vertical, and horizontal metadata, hence 
treating these semantically different context types separately, 
unlike other SOTA solutions [6, 13, 16, 17, 19, 23, 71]. 

3.3 Pre-training Methodology 
We took the vocabulary and pre-trained token embeddings 
and encoder weights from BioBERT [14] to initialize TabBiN 
for pre-training on our 5 datasets. We trained each version of 
our model for 50,000 steps, batch size 12, learning rate 2e-5. 
We trained 4 models – 2 for data – tuples, columns; 2 for 
metadata – horizontal, vertical metadata. While reading a row 
or a column and generating the training sets, we are keeping 
track of the respective Bi-dimensional coordinates for each cell 
so that we can include the positional information in our 
embeddings (see Figure 2). We add [CLS] at the start of each 
row/column and [SEP] between the cells. We use table 
sequences with no more than 256 tokens that we found to be 
sufficient for our datasets (i.e., increases beyond 256 prolong 

the fine-tuning process, without increasing accuracy on our 
downstream tasks). We use the Masked Language modeling 
and Cell-level cloze as our training objectives [10, 13, 14].  We 
separate the model pre-training for data and metadata, so their 
context is treated separately. For example, in TabBiN data 
column model we pre-trained the model to learn the columnar 
data context, excluding metadata. We used AWS p3.2xlarge 
instances. Pre-training of each model took approximately five 
hours.  

3.4 Composite Embeddings (CE) 
For using BioBERT embeddings for numerical values we came 
up with the idea to have composite structure concatenating (⊕) 
embeddings for the attribute, its value and the unit. Figure 4(a) 
illustrates this process for a column “OS” (i.e., Overall 
Survival) from a nested table in Table 1, attribute “OS” has 
numerical value “20.3 months”. This structure preserves the 
actual meaning of the numerical value together with the unit. 
The composite embedding for Range values has similar 
structure, where we concatenate the embeddings for the 
attribute, unit, range start, range end. In Figure 4(b) we show 
this structure with an example attribute Age having the 
numerical range “20-30” and the unit “year”. 

 

Figure 4: Composite Embedding (CE) Structure for (a) 
Numerical Attributes and (b) Ranges. 

4 EXPERIMENTAL EVALUATION 
We evaluated our TabBiN embeddings on 3 popular 
downstream tasks – Column Clustering (CC), Table Clustering 
(TC) by topic, Entity Clustering (EC). We performed our 
evaluation on 5 large-scale datasets described above in section 
2.2 – Webtables [6], CovidKG [33], CancerKG, CIUS [13, 37] 
and SAUS [13, 37]. To compare against the SOTA transformer-
based model supporting structured data we fine-tuned TUTA 
[13]. We also fine-tuned one of the top transformer-based 
models for biomedical data – BioBERT [14], classic Word2Vec 
[46] embeddings model, and DITTO [81] entity matching 
model on our data sets.  
TUTA. We download the pre-trained TUTA explicit model 
and fine-tune it on our datasets using identical hyper-
parameters to those of TabBiN. We tokenize, embed, and 
encode each table as described in [13]. Training took ~4.5 
hours on AWS p3.2xlarge instance.  
BioBERT. We fine-tune the original BioBERT for 50K steps, 
batch size 12, learning rate 2e-5, on a Linux server with 80 
Intel Xeon cores, 256 GB RAM for ~41 days. The training set is 
comprised of table tuples. We also fine-tuned a second 
BioBERT model including table captions as the embedding 
vector component (see Figure 5(a), Table 11). 
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Figure 5: Composite Embedding (CE) for (a) Table 
Clustering and (b) Column Clustering. 

Table 3: The Average Training time vs. MAP/MRR for 
CC and TC tasks on CancerKG (tables with string data) 
for different dimensionality of Word2Vec embeddings. 

Dimensionality 
Training 

Time(hours) 
CC TC 

100 2.5 0.50/0.60 0.55/0.45 
200 4 0.45/0.60 0.65/0.46 
300 6 0.60/0.65 0.70/0.50 
400 7 0.59/0.65 0.70/0.50 
1024 7.5 0.60/0.65 0.70/0.50 

 
Word2vec. We train Word2vec model with embedding 
dimensionality 300, the context window of size 3 before and 
after the target word, minimum count of 1 for word inclusion. 
We did experiments with several embedding dimensions as 
shown in Table 3 and found no notable performance 
difference when using the embeddings trained with the 
dimension more than 300. However, the slowdown in training 
time was significant so we chose 300 as optimal 
dimensionality. We trained Word2Vec on table tuples on AWS 
p3.2xlarge instance. 
DITTO. The downstream task that Ditto is built for is entity 
classification, where entity is a tuple. Ditto performs binary 
classification to decide on a match or mismatch, whereas we 
compute cosine similarity between each entity and sort in 
descending order to get a cluster of matched entities.  In order 
to compare to Ditto, we added a linear layer followed by 
softmax layer on top of our TabBiN transformer layers, and an 
ensemble, so TabBiN can also perform binary classification. 
We have included the additional experiments comparing to 
Ditto both on ours and Ditto's datasets in Table 9. We use 
AP@20 to evaluate the quality of our formed entity clusters. 
We train DITTO using RoBERTa [82] pre-trained model and 
default hyperparameters mentioned in [81]. We created five 
different labeled training datasets consisting of positive and 
negative pairs of matching and non-matching entities from 
entity types corresponding to each dataset defined in Table 7. 
For CancerKG and CovidKG we have 5k positive and 5k 
negatively labeled pairs. For Webtables we have 1.5k positive 
and 1.5k negatively labeled pairs and for each CIUS and SAUS 
we have 400 positive and 400 negatively labeled pairs. The 
average training time for DITTO is ~3.2 hours. 
      As our evaluation measures, we use Mean Average 
Precision [83] (MAP@20) and Mean Reciprocal Rank [84] 

(MRR@20) calculated on the sorted list of clustered columns, 
tables, or entities (by cosine similarity in the descending order). 
We compute AP@20 and average it over a sample of different 
columns, tables and entities from each dataset and report it in 
Tables 3-9 with the best results indicated in boldface. For 
comparison against DITTO entity matching, results are 
measured using F1 score. 

4.1 Column Clustering (CC) 
For CC we create a composite embedding by concatenating 
the embedding Ecj

 for an attribute cj  in HMD from  

our TabBiN-HMD model (i.e., trained only on HMD) and the 
average ( μ )  embedding Ed  over data cell tokens for 
corresponding cj column from our TabBiN-column model (i.e., 
trained only on columns) as shown in Figure 5(b). We match 
two columns by calculating the cosine similarity between their 
TabBiN embedding vectors. We use LSH-based blocking [45] 
to avoid quadratic complexity for the entire dataset. To cluster 
columns, for each column, we create a list of similar columns, 
sorted by the cosine similarity in descending order, the top 20 
entries form a cluster. We separate the columns that we have 
(i.e., 227,279 in CancerKG) into columns having strictly 
numerical or string values. Table 4 illustrates the experimental 
results comparing TabBiN to the SOTA models. 

Table 4: MAP/MRR for CC – Textual and Numerical. 

 Datasets TabBiN TUTA BioBERT Word2vec 

A
ll 

ta
bl

es
 CancerKG 0.90 / 1.00 0.70 /0.95 0.80 / 0.92 0.60 / 0.65 

CovidKG 0.90 / 1.00 0.80 /1.00 0.80 / 0.95 0.60 / 0.70 
Webtables 0.95 / 0.90 0.90 /0.80 0.85 / 0.86 0.40 / 0.60 
CIUS 0.90 / 0.95 0.90 /0.92 0.80 / 0.90 0.65 / 0.50 
SAUS 0.80 / 0.95 0.65 /0.95 0.70 / 0.90 0.42 / 0.50 

Sm
al

l t
ab

le
s CancerKG 0.95 / 0.95 0.77 /0.95 0.81 / 0.95 0.54 / 0.70 

CovidKG 0.80 / 0.98 0.66 /0.95 0.78 / 0.88 0.56 / 0.65 
Webtables 0.60 / 1.00 0.50 /1.00 0.60 / 1.00 0.40 / 0.80 
CIUS 0.98 / 0.98 0.90 /0.98 0.81 / 0.90 0.60 / 0.52 
SAUS 0.90 / 0.98 0.85 /0.95 0.81 / 0.92 0.67 / 0.50 

La
rg

e 
ta

bl
es

 CancerKG 0.90 / 1.00 0.72 /0.98 0.85 / 0.90 0.60 / 0.65 
CovidKG 0.85 / 1.00 0.64 /1.00 0.68 / 0.90 0.53 / 0.65 
Webtables 0.98 / 0.90 0.96 /0.90 0.85 / 0.90 0.53 / 0.70 
CIUS 0.96 / 1.00 0.90 /0.95 0.77 / 0.90 0.67 / 0.50 
SAUS 0.81 / 0.98 0.78 /0.95 0.78 / 0.92 0.40 / 0.50 

N
um

er
ic

al
 CancerKG 0.80 / 0.95 0.60 /0.92 0.72 / 0.92 0.25 / 0.50 

CovidKG 0.60 / 0.90 0.50 /0.85 0.60 / 0.90 0.20 / 0.40 
Webtables 0.78 / 1.00 0.50 /0.90 0.50 / 0.95 0.20 / 0.45 
CIUS 0.80 / 0.90 0.74 /0.90 0.80 / 0.85 0.40 / 0.40 
SAUS 0.78 / 0.90 0.72 /0.90 0.70 / 0.85 0.15 / 0.48 

Ra
ng

es
 CancerKG 0.97 / 1.00 0.94 /1.00 0.80 / 1.00 0.70 / 0.80 

SAUS 0.98 / 1.00 0.98 /1.00 0.77 / 1.00 0.64 / 0.80 

 

4.2 Table Clustering (TC) 
Similarly for TC we create the composite embedding by 
concatenating the average embedding Ed for data cells from 
the TabBiN-row model, the average embedding Ec for HMD 
from our TabBiN-HMD model, the average embedding Er for 
VMD from our TabBiN-VMD model and the average 
embedding ETC for the table caption taken from the BioBERT 
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model fine-tuned on our datasets as illustrated in Figure 5(a).  
We use cosine similarity as a distance measure between our 
TabBiN embedding vectors corresponding to the tables to 
form cohesive clusters. To form clusters, we first calculate a 
centroid embedding vector for a given topic table. Then, we 
compute distance from other tables to this centroid vector, 
sorted in descending order to form the cluster with top 20 
entries. We did it for centroids corresponding to different 
topics and report the MAP/MRR@20.  

Table 5: MAP/MRR for TC – Tables with HMD vs. 
HMD/VMD, mostly Numerical Content, with Nesting. 

 Datasets TabBiN TUTA BioBERT Word2vec 

H
M

D
 

CancerKG 0.87 / 1.00 0.78 / 1.00 0.67 / 1.00 0.53 / 0.90 
CovidKG 0.78 / 0.95 0.64 / 0.90 0.60 / 0.90 0.40 / 0.85 
Webtables 0.87 / 1.00 0.81 / 0.98 0.80 / 0.95 0.40 / 0.88 
CIUS 0.50 / 0.90 0.40 / 0.90 0.40 / 0.90 0.10 / 0.40 
SAUS 0.50 / 0.90 0.40 / 0.90 0.40 / 0.90 0.10 / 0.40 

H
M

D
+V

M
D

 CancerKG 0.80 / 0.92 0.70 / 0.85 0.68 / 0.80 0.10 / 0.40 

CovidKG 0.85 / 0.95 0.80 / 0.95 0.70 / 0.80 0.15 / 0.45 
Webtables 0.90 / 1.00 0.84 / 0.98 0.80 / 0.85 0.20 / 0.45 
CIUS 0.54 / 0.95 0.53 / 0.90 0.40 / 0.75 0.10 / 0.35 
SAUS 0.54 / 0.95 0.54 / 0.85 0.40 / 0.78 0.10 / 0.35 

> 
80

%
 N

um
 CancerKG 0.81 / 0.90 0.70 / 0.85 0.60 / 0.80 0.10 / 0.38 

CovidKG 0.53 / 0.90 0.30 / 0.80 0.50 / 0.82 0.18 / 0.35 
Webtables 0.67 / 0.95 0.58 / 0.85 0.58 / 0.80 0.10 / 0.30 
CIUS 0.40 / 0.90 0.30 / 0.82 0.30 / 0.80 0.10 / 0.36 
SAUS 0.41 / 0.90 0.30 / 0.82 0.32 / 0.80 0.10 / 0.36 

N
es

ti
ng

 CancerKG 0.85 / 1.00 0.68 / 0.80 0.60 / 0.75 0.20 / 0.42 

CovidKG 0.70 / 0.95 0.60 / 0.80 0.54 / 0.70 0.18 / 0.38 

 

4.3 Entity Clustering (EC) 
We took sets of columns with labels specific to our datasets 
(i.e., drugs, vaccines, symptoms, diseases, crime, states, cities, 
etc.) and extracted their corresponding data values. This 
approach resulted in very large and high-quality catalogs of 
entities, both domain-specific (i.e., CancerKG, CovidKG) as 
well as more generic (i.e., Webtables). Evaluation of these 
catalogs is reported in Table 7. For each dataset the average 
precision (AP) was calculated by taking a sample of size 40 and 
having two annotators label them.  
      Next, we selected entities of each of 18 entity types that we 
work with in each dataset (e.g., drugs) and calculated the 
cosine similarity between each entity and the remaining 
entities in the dataset, sorted in descending order, calculated 
AP@20 for each cluster (formed by taking top 20 entities) 
corresponding to an entity type and averaged it. We used 
TabBiN-column model for this EC task. The average F1 
measure of 5 runs is reported in Table 9.  

4.4  TabBiN Performance Highlights 
Column Clustering (CC, Table 4): TabBiN outperforms both 
TUTA and BioBERT SOTA models on numerical CC task on 
Webtables with a significant MAP delta of 0.28. Also, TabBiN 
outperforms BioBERT on large tables by a significant MAP 
delta of 0.17 on CovidKG. For small tables TabBiN again 
outperforms BioBERT with a large MAP delta 0.14 on 

CancerKG. The highest CC MAP of TabBiN is 0.98 and it is 
achieved on large tables from Webtables, small tables from 
CIUS, and ranges from SAUS. 
Table Clustering (TC, Table 5, Table 6): TabBiN outperforms 
TUTA on nested table clustering with a significant MAP delta 
of 0.17 on CancerKG. On tables with HMD from CovidKG 
TabBiN outperforms TUTA with a large MAP margin of 0.14. 
TabBiN outperforms TUTA by a large MAP delta of 0.14 on 
Webtables with string data. TabBiN achieves the highest TC 
MAP of 0.95 on Webtables with mixed data. On relational 
tables from CancerKG, TUTA outperforms us in-significantly, 
with MAP delta of 0.2. 

Table 6: MAP/MRR for TC – Tables with Relational vs. 
Non-relational. Heterogeneous Data Types. 

 Datasets TabBiN TUTA BioBERT Word2vec 

Re
la

ti
on

al
 CancerKG 0.92 / 1.00 0.94 / 1.00 0.80 / 0.80 0.70 / 0.65 

CovidKG 0.80 / 0.90 0.72 / 0.85 0.75 / 0.65 0.40 / 0.60 
Webtables 0.84 / 1.00 0.77 / 1.00 0.70 / 0.80 0.20 / 0.50 
CIUS 0.42 / 0.90 0.40 / 0.90 0.35 / 0.90 0.15 / 0.80 
SAUS 0.50 / 0.92 0.45 / 0.90 0.40 / 0.80 0.10 / 0.65 

N
on

-R
el

at
io

na
l CancerKG 0.77 / 0.88 0.71 / 0.80 0.40 / 0.70 0.10 / 0.30 

CovidKG 0.74 / 0.90 0.70 / 0.90 0.40 / 0.70 0.10 / 0.30 

Webtables 0.90 / 0.90 0.85 / 0.85 0.70 / 0.85 0.10 / 0.35 

CIUS 0.40 / 0.90 0.40 / 0.90 0.32 / 0.80 0.10 / 0.60 

SAUS 0.46 / 0.90 0.40 / 0.90 0.30 / 0.80 0.10 / 0.60 

St
ri

ng
 CancerKG 0.92 / 0.98 0.92 / 1.00 0.80 / 0.85 0.70 / 0.50 

CovidKG 0.90 / 1.00 0.84 / 1.00 0.79 / 0.80 0.50 / 0.50 
Webtables 0.84 / 0.95 0.70 / 0.90 0.68 / 0.70 0.40 / 0.48 

Te
xt

/N
um

 (5
0%

) CancerKG 0.86 / 1.00 0.81 / 0.95 0.64 / 0.90 0.46 / 0.40 

CovidKG 0.85 / 0.90 0.80 / 0.90 0.70 / 0.72 0.15 / 0.30 

Webtables 0.95 / 1.00 0.92 / 1.00 0.90 / 1.00 0.20 / 0.40 

Table 7: Entity Catalogs. 

Datasets Entity Types Count AP 
CancerKG drug, therapy. segment, 

tumor, reagent 
12,553 0.72 

CovidKG characteristics, vaccines, 
symptoms, diseases, 

infections 
12,573 0.85 

Webtables country, company, genre, 
title, size 

3,316 0.796 

CIUS crime, city 474 0.9 
SAUS city, industrial 507 0.9 

Table 8: MAP/MRR for EC. 

Datasets TabBiN TUTA BioBERT Word2vec 
CancerKG 0.96 / 1.00 0.90 / 1.00 0.90 / 0.90 0.80 / 0.60 
CovidKG 0.94 / 1.00 0.90 / 1.00 0.88 / 0.90 0.72 / 0.50 
Webtables 0.80 / 0.98 0.79 / 0.98 0.73 / 0.85 0.65 / 0.56 
CIUS 0.96 / 1.00 0.96 / 1.00 0.90 / 0.95 0.70 / 0.55 
SAUS 0.96 / 1.00 0.90 / 1.00 0.88 / 0.90 0.70 / 0.60 

99



Table 9: F1 scores (%) for Entity Classification on ER-Magellan EM datasets [85] and our datasets. 

Methods Structured Amazon-Google Textual Abt-Buy Dirty Walmart-Amazon CancerKG CovidKG Webtables CIUS SAUS 
TabBiN 77.50 88.12 86.06 90.7 90.46 83.50 90.48 88.84 
DITTO 75.58 89.33 85.69 90.2 89.29 84.74 88.78 89.21 

Table 10: MAP/MRR for CC Performance by TabBiN without and with Composite Embeddings. 

 String Values (any #tuples) Numeric Values String (#tuples < 10) String (#tuples > 10) Ranges 

 CancerKG CovidKG CancerKG CovidKG CancerKG CovidKG CancerKG CovidKG CancerKG 
TabBiN-column 0.88 / 0.98 0.88 / 0.98 0.60 / 0.90 0.42 / 0.90 0.90 / 0.95 0.74 / 0.95 0.90 / 1.00 0.77 / 0.90 0.90 / 1.00 
TabBiN-colcomp 0.90 / 1.00 0.90 / 1.00 0.80 / 0.95 0.60 / 0.90 0.95 / 0.95 0.80 / 0.98 0.90 / 1.00 0.85 / 1.00 0.97 / 1.00 

Table 11: MAP/MRR for TC Performance by TabBiN with and without Composite Embedding – Tables with 
Heterogeneous Data, Nesting, HMD versus HMD and VMD, Relational. 

 String Values Text/Num(50%) > 80% Num  Nesting HMD HMD+VMD Relational 
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TabBiN-
row 

0.82/ 
0.90 

0.80/ 
0.90 

0.80/ 
0.90 

0.77/ 
0.85 

0.70/ 
0.80 

0.40/ 
0.90 

0.72/ 
0.95 

0.65/ 
0.90 

0.84/ 
0.95 

0.7/ 
0.90 

0.77/ 
0.90 

0.72/ 
0.90 

0.90/ 
1.00 

0.72/ 
0.90 

TabBiN-
tblcomp1 

0.88/ 
0.90 

0.85/ 
0.92 

0.80/ 
0.95 

0.80/ 
0.90 

0.74/ 
0.80 

0.40/ 
0.90 

0.8/ 
1.00 

0.68/ 
0.90 

0.84/ 
0.95 

0.72/ 
0.95 

0.77/ 
0.90 

0.76/ 
0.90 

0.90/ 
1.00 

0.74/ 
0.90 

TabBiN-
tblcomp2 

0.92/ 
0.98 

0.90/ 
1.00 

0.86/ 
1.00 

0.85/ 
0.90 

0.81/ 
0.90 

0.53/ 
0.90 

0.85/ 
1.00 

0.70/ 
0.95 

0.87/ 
1.00 

0.78/ 
0.95 

0.80/ 
0.92 

0.85/ 
0.95 

0.92/ 
1.00 

0.80/ 
0.90 

 
Entity Clustering (EC, Table 8):  In Table 8, we can see that 
TabBiN attains the highest MAP across all datasets for EC. 
TabBiN outperforms TUTA by a small MAP margin of 0.06 for 
both CancerKG and SAUS respectively. On entity matching (to 
compare to DITTO, Table 9), TabBiN outperforms Ditto with a 
small F1 score margin of 1.92%. on structured Amazon-Google 
dataset. Ditto outperforms TabBiN on Abt-Buy dataset by a 
small margin of 1.21%. Similarly, on our datasets Ditto 
insignificantly outperforms TabBiN by 1.24% and 0.37% deltas 
in F1 measure. 

4.5 Composite Embeddings Analysis 
We employed separate composite embedding vectors for CC 
and TC tasks, as illustrated in Figure 5 earlier. We use the 
following abbreviations for composite embeddings in Tables 
10 and 11: TabBiN-colcomp for composite embeddings formed 
by concatenating the embeddings from TabBiN-column model 
and TabBiN-HMD model; TabBiN-tblcomp1 for  composite 
embeddings formed by concatenating the embeddings from 
TabBiN-row model, TabBiN-HMD model and TabBiN-VMD 
model; TabBiN-tblcomp2 for composite embeddings formed by 
concatenating the embeddings from TabBiN-row model, 
TabBiN-HMD model, TabBiN-VMD model and fine-tuned 
BioBERT on table captions. 
Column Clustering. From Table 10, we can conclude that on 
both numerical and textual tabular data TabBiN composite 
embeddings perform the best. This is observed on all 
evaluation datasets. Specifically, for numeric ranges, 
composite embeddings demonstrate superior performance, as 
evident on CancerKG. Moreover, on large tables with textual  

 
data, composite embeddings excel in performance as observed 
on two large-scale datasets. 
Table Clustering. From Table 11 we can conclude that on 
tables with nesting, tables only with HMD, tables with both 
HMD and VMD (non-relational tables) and relational tables 
our composite embeddings perform the best.  

4.6 Ablation Studies 
We conduct four ablation studies ( TabBiN1-4  below) to 
demonstrate the efficiency of our visibility matrix, type 
inference, units and nesting, and bi-dimensional coordinates.  
For each ablation study, we train the models removing the 
corresponding target embedding component and then perform 
TC and CC evaluation tasks on our datasets. Table 12, 13 
illustrate the results. 
TabBiN1. Removing our visibility matrix makes TabBiN resort 
to the standard transformer attention mechanism. We observe 
that this leads to a substantial MAP/MRR drop on all datasets. 
We observe a drop in MAP for 0.34 on TC on Webtables with 
string data; for 0.30 on relational Webtables. The drop is more 
than 0.2 on most of the remaining datasets. For CC the MAP 
drop is by 0.25 for columns with string data (CancerKG, 
Webtables) and for 0.23 for numerical columns (CancerKG).  
TabBiN2. Without type inference CC MAP on columns with 
string data in CancerKG, Webtables, and SAUS drops by 0.1. 
For TC in relational (Webtables), non-relational (CancerKG), 
and Webtables with string data MAP drops by 0.15.  
TabBiN3. Removing Units and Nesting embedding components 
decreases MAP on nested tables (CancerKG) by 0.25. There is 
0.22 decrease in MAP on numerical Webtables. For numerical 
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columns on CC the drop in MAP is 0.21 (CancerKG). We can 
see a notable decrease in MAP for both CC and TC tasks in 
other datasets too. 
TabBiN4. Removing our bi-dimensional coordinates erases the 
explicit encoding of the positions of all data and metadata cells 
in two dimensions in the main table as well as in the nested 
in-cell tables (e.g., in Figure 1). Our nesting definition includes 
tables nested inside a cell having their own attributes (e.g., in 
Figure 1), which is different from the classical notion of 
nesting/unnesting. The removal leads to a significant drop in 
MAP on CC for both numerical and string columns in 
CancerKG by 0.12 and 0.11 respectively. Similarly on TC, MAP 
for nested tables (CancerKG) drops by 0.15, MAP for 
numerical tables (>80% Num) in CovidKG drops by 0.13 and 
MAP for relational tables (CancerKG) drops by 0.12. We 
conclude that removing either of the visibility matrix, type 
inference, units and nesting, or bi-dimensional coordinates 
significantly hurts TabBiN performance as evidenced by four 
ablation studies.  

Table 12: MAP/MRR for Ablation Study on CC. 

 Datasets TabBiN TabBiN1 TabBiN2 TabBiN3 TabBiN4 

St
ri

ng
 

CancerKG 0.90/1.00 0.65/0.80 0.80/1.00 0.70/0.87 0.79/0.90 
CovidKG 0.90/1.00 0.74/0.82 0.85/1.00 0.74/0.85 0.82/0.90 
Webtables 0.95/0.90 0.70/0.85 0.85/0.90 0.80/0.90 0.85/0.88 
CIUS 0.90/0.95 0.66/0.80 0.86/0.90 0.80/0.90 0.80/0.85 
SAUS 0.80/0.95 0.58/0.90 0.70/0.90 0.65/0.80 0.70/0.80 

N
um

er
ic

al
 CancerKG 0.80/0.95 0.65/0.80 0.84/0.95 0.59/0.78 0.68/0.86 

CovidKG 0.60/0.90 0.48/0.80 0.60/0.90 0.50/0.82 0.50/0.80 
Webtables 0.78/1.00 0.60/0.85 0.76/1.00 0.65/0.90 0.70/0.88 
CIUS 0.80/0.90 0.65/0.78 0.80/0.90 0.60/0.82 0.70/0.85 
SAUS 0.78/0.90 0.65/0.88 0.78/0.90 0.62/0.80 0.67/0.85 

Table 13: MAP/MRR for Ablation Study on TC. 

 Datasets TabBiN TabBiN1 TabBiN2 TabBiN3 TabBiN4 

Re
la

ti
on

al
 CancerKG 0.92/1.00 0.65/0.90 0.85/1.00 0.76/0.95 0.80/0.80 

CovidKG 0.80/0.90 0.58/0.80 0.70/0.85 0.60/0.88 0.72/0.82 
Webtables 0.84/1.00 0.54/0.95 0.69/0.95 0.70/1.00 0.75/1.00 
CIUS 0.42/0.90 0.35/0.90 0.40/0.90 0.30/0.87 0.35/0.88 
SAUS 0.50/0.92 0.35/0.90 0.50/0.90 0.34/0.90 0.42/0.85 

N
on

-R
el

at
io

na
l CancerKG 0.77/0.88 0.48/0.80 0.62/0.85 0.56/0.80 0.68/0.80 

CovidKG 0.74/0.90 0.60/0.83 0.66/0.88 0.60/0.88 0.65/0.85 

Webtables 0.90/0.90 0.70/0.86 0.80/0.90 0.70/0.85 0.80/0.88 

CIUS 0.40/0.90 0.35/0.82 0.40/0.90 0.30/0.80 0.36/0.83 

SAUS 0.46/0.90 0.40/0.87 0.45/0.90 0.30/0.85 0.40/0.85 

> 
80

%
 N

um
 CancerKG 0.81/0.90 0.60/0.85 0.78/0.90 0.63/0.80 0.70/0.86 

CovidKG 0.53/0.90 0.32/0.90 0.52/0.86 0.35/0.84 0.40/0.85 
Webtables 0.67/0.95 0.44/0.90 0.65/0.90 0.45/0.90 0.60/0.92 
CIUS 0.40/0.90 0.35/0.70 0.40/0.90 0.35/0.88 0.38/0.90 
SAUS 0.41/0.90 0.35/0.75 0.40/0.90 0.31/0.90 0.38/0.88 

St
ri

ng
 CancerKG 0.92/0.98 0.66/0.90 0.88/0.80 0.82/0.92 0.86/0.90 

CovidKG 0.90/1.00 0.70/0.90 0.80/0.85 0.90/0.95 0.88/0.95 

Webtables 0.84/0.95 0.50/0.80 0.69/0.92 0.70/0.95 0.76/0.95 

N
es

ti
ng

 

CancerKG 0.85/1.00 0.58/0.84 0.78/1.00 0.60/0.90 0.70/0.88 

CovidKG 0.70/0.95 0.50/0.85 0.70/0.95 0.50/0.90 0.60/0.86 

 

Table 14: MAP/MRR for CC and TC with LLM – Textual 
and Numerical Content. 
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TC
 0.18/ 

0.30 
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0.25 

0.40/ 
1.00 

0.40/ 
0.90 

0.60/ 
1.00 

0.92/ 
0.98 
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 0.12/ 
0.20 

0.10/ 
0.20 

0.30/ 
0.90 

0.25/ 
0.90 

0.35/ 
1.00 

0.60/ 
0.90 

TC
 0.17/ 

0.20 
0.20/ 
0.20 

0.30/ 
0.90 

0.30/ 
0.90 

0.38/ 
1.00 

0.53/ 
0.90 

 

4.7 Large Language Models (LLMs) and 
Retrieval Augmented Generation (RAG) 

Motivated by the ongoing popularity of LLMs, we compared 
our embeddings on two large-scale datasets (CancerKG and 
CovidKG) against several major LLMs on two downstream 
tasks — column and table clustering. We fine-tuned Llama2 [2] 
and GPT2 [36] due to their availability in open-source 
repositories, hence affordability for fine-tuning. We used 
llama-2-7b-chat model, which is a part of a collection of pre-
trained and fine-tuned generative text models with 7 billion 
parameters. We did not fine-tune GPT3.5 [54] and 4 GPT 4 [1] 
due to very high cost of doing that at scale of our datasets. For 
these two models we could only afford to use samples of our 
datasets for evaluation. For RAG+GPT3.5 and 4, however, we 
first used RAG with an example (i.e., a table or a column) on 
the entire datasets, so it reduced its size, so it could be ingested 
into the GPT model via its API for a reasonable cost for further 
downstream task execution. Finally, we submit prompts to 
LLMs, requesting to perform our downstream tasks. Following 
each prompt, we collected and evaluated the models’ 
responses by calculating AP@20 and averaging it. For both 
tasks we observed lower MAP/MRR for Llama 2 and GPT2 on 
both datasets (Table 14). We repeated similar experiments 
with Retrieval-augmented generation (RAG) to improve the 
quality of LLMs responses. We have chosen Sycamore [86], a 
well-known RAG system. We put substantial effort to 
integrate recent LLMs, such as Llama2, GPT3.5 and GPT4 into 
Sycamore [86] for our experiments. We can see from the 
results that RAG improves performance. The improvement is 
significant in case of Llamma2 with RAG (for textual CC on 
CancerKG MAP increase by 0.30), but falls short of TabBiN. 
Similarly, we observe increase in MAP values, especially with 
GPT-4, but again TabBiN outperforms both GPT3.5 and GPT4 
on our CC and TC downstream task. However, RAG+GPT4 
achieves perfect MRR score (the second metric), 
outperforming us by a delta of 0.1 (the last two columns in 
Table 14). This is because MRR only considers a single 
highest-ranked result [84], and RAG+GPT4 turns out to be 
great at providing the first item correctly, while TabBiN 
sometimes makes mistakes in the first position. TabBiN 
performs better however when ranking of all relevant items 
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are considered, as captured by the first metric, MAP [83] 
(Table 14). 
      From our experiments we conclude that RAG can be used 
both to improve LLM’s performance on our downstream tasks 
as well as significantly reduce the size of the datasets 
processed by the LLM, which substantially reduces the cost of 
using commercial LLMs, especially for large-scale datasets. 
Alternative methods of more advanced prompting algorithms 
[54, 91] for complex tables could potentially enhance LLMs 
performance. This is one of the current directions of our 
further research. 

5 RELATED WORK 
The authors in [6] construct entity-centric embeddings for 
relational data. The embedding training sentence generation 
algorithm in [6] uses a graph, constructed per each entity 
found in tables (i.e., Paul in Figure 1). It does not take into 
account the intricacies of structure of the 2D neighboring 
context (i.e., vertical neighboring cells in the same column or 
horizontal in the same tuple) as well as does not distinguish 
data from metadata. [6] supports only relational tables, so it 
does not explicitly encode hierarchical metadata and does not 
distinguish between vertical metadata and data in non-
relational tables. Similarly, it does not recognize nested tables 
or data values in different units, and treats numerical ranges 
as just 2 numbers, unlike us.   
      The authors train TABERT model [16] on Wikitables and 
show it outperforming BERT [10] on two benchmarks - 
SPIDER text-to-SQL [24] and WikiTableQuestions, "where a 
system has to infer latent DB queries from its execution 
results" [25]. Similarly, there are more questions answering 
models for tables [19, 39, 49, 78] built using a standard 
transformer architecture [10, 79] that use HybridQA [50], 
SQA, WikiSQL and WikiTQ [39] to evaluate standard 
questions answering tasks (QA) on data from semi- structured 
HTML and relational tables.  
      TabPrompt [40] adapts graph contrastive learning using 
Graph Neural Network (GNN) to encode tabular data and 
prompt-based learning to alleviate scarcity of labelled tabular 
training sets. Its performance is evaluated on two downstream 
tasks - cell and table type classification, similar to [13].  
However, it does not support more complex non-relational 
tables, such as in this paper. 
      MotherNet [41] adapts the TabPFN [42] transformer 
architecture and focuses on supervised classification for small 
numeric tabular datasets from the OpenML-CC18 Benchmark 
[43]. It supports only relational tables and was not evaluated 
on any large-scale datasets with more complex tables as well 
as downstream tasks related to table structure understanding. 
Finally, it is supervised, which is a significant difference, since 
it requires labeled training data unlike us. However, there are 
studies focusing on generating labels for binary or multiclass 
classification of tabular datasets [55, 56, 57, 58, 59, 60, 61, 62, 
63]. 
      HYTEL [47] employs hypergraph-structure-aware 
transformer to encode tables and uses it for a series of 
downstream tasks, including column type annotation, column 
property annotation, table type detection and table similarity 
prediction (TSP). Authors utilized ~1400 tables from PubMed 

Central (PMC) dataset [64] to evaluate TSP. StruBERT [65] 
also conducted table matching on the same dataset. However, 
unlike us, both methods fall short in providing exhaustive 
experimental evaluation on tables with multi-level hierarchical 
metadata and nesting. We also conducted all our evaluations 
on five large-scale datasets all from different domains.  
      TURL [5] is a (relational) structure-aware transformer, 
trained and evaluated on several tasks for table understanding, 
such as relation extraction, row population, cell filling, schema 
augmentation, entity linking, and column type annotation. It 
also supports only relational tables, so it does not have a 
“special treatment” for hierarchical horizontal metadata as 
well as it treats vertical metadata as data. Similarly, it does not 
recognize nested tables or different units, and treats ranges as 
just 2 numbers. 
      Auto-Tables [68] learns a pipeline of data transformation 
operators using deep learning to transform non-relational 
tables into relational for query processing using SQL-based 
tools. Foofah [72], PATSQL [73], QBO [74], and Scythe [75] 
consider a subset of table-restructuring operators, which fall 
short in the Auto-Tables. In Auto-Tables, the authors work 
with non-relational tables, defined much more narrow than in 
this paper (Figure 1) and as we see them “in the wild”. The 
non-relational tables in [68] lack hierarchy in metadata, nested 
tables, data values in different units for the same attribute, as 
well as numerical ranges. The transformation operators that 
the authors propose in [68] (stack, wide-to-long, transpose, 
pivot), therefore, are well-suited only for their simplified 
notion of non-relational tables. 
      [69] introduces an attribute-unionability framework that 
assesses table similarity by assessing their attribute 
relatedness. Aurum [70] leverages enterprise knowledge graph 
(EKG) to capture and query relationships among datasets in 
Data Lakes. It focuses on indexing and keyword-search to find 
related datasets in corporate data lakes based on simple 
matching of the terms from the users’ query to the tables. Our 
semantic matching works based on the cosine similarity of 
composite embedding vectors for non-relational tables that 
incorporate all components of such tables separately – 
hierarchical metadata and data, nested tables, inferred types, 
units of data values, ranges, etc. Such complex vectors are 
composed in order to preserve semantic differences of each 
component. This, in turn, affects quality of matching with and 
without such vectors.  
      Tabllm [51] fine-tuned T0 [52] and GPT-3 [53] models for 
tabular classification. These LLMs demonstrated competitive 
performance, comparable to baselines, such as gradient-
boosted trees, on OpenML tabular datasets [43]. [54] 
introduces a benchmark that evaluates LLMs (GPT-3.5[54] and 
GPT-4[1]) on seven tabular downstream tasks, such as column 
retrieval and cell lookup, utilizing various LLM prompt 
designs and table input formatting. TapTap [76] uses GPT-2 
[36] to encode single rows independently using a “text 
template serialization” strategy, resulting in singular row 
embeddings. They can be used in several downstream tasks, 
such as table data augmentation, imputation, and handling 
imbalanced classification. All these studies [51, 54, 66, 67] 
focus on relational tables, unlike ours. However, the authors 
formulate interesting insights on capabilities [51, 66] and 
limitations [54, 67] of current LLMs in table understanding. In 
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[54], p.2. the authors state “LLMs have basic structural 
understanding capabilities but are far from perfect, even on 
trivial tasks, e.g., table size detection (detect the number of 
columns and rows in a table)”. By carefully choosing the LLM 
input (e.g., table input format, content order, role prompting, 
and partition marks) and different prompt designs, the authors 
achieved promising improvements in structural understanding 
capabilities of LLMs. In [67], the authors investigated 
inconsistencies in GPT3 performance in self-supervised 
structural table understanding tasks (e.g., table transposition, 
column reordering) depending on the data format (i.e., HTML, 
JSON, CSV, DFLoader, etc.) and noise-operations (e.g., 
merging cells, shuffling column names). They demonstrate 
new possibilities of using LLMs for structured data 
understanding via effective prompt design. 
      NumSearchLLM [77] also leverages LLMs (GPT-3.5 and 
Llama2 [2]) as well as enterprise Knowledge Graphs to 
perform table search over purely numeric tables. [91] proposes 
Chain-of-Table method for table understanding tasks, such as 
table-based question answering and fact verification. It 
dynamically updates the table content in the reasoning 
process by employing LLMs to iteratively generate SQL-like 
table operations such as adding columns, selecting rows, 
grouping, and more. The resulting table is then fed back to the 
LLMs to generate the final answer. In contrast, our method 
focuses on learning the fine-grained embedding 
representation, optimized for non-relational tables having 
hierarchical HMD, VMD, and nesting and using them to 
perform high accuracy table, column, and entity 
clustering/matching. 
      [71] extends data discovery process in Data Lakes across 
two modalities of structured and unstructured data using a 
model capturing similarities between text documents d and 
tabular columns c. To train such a model, the authors curate a 
labeled training set indicating the relation between d and c. 
Their application spans from document-to-table relatedness to 
table-to-table relatedness. We evaluate our embeddings on 
downstream tasks including column-to-column and table-to-
table similarity. Our embeddings have fine-grained structure 
taking into account the finest intricacies of non-relational 
tables as discussed in the previous paragraph. Our approach is 
also unsupervised, hence does not need labelling. 
      Tabbie [23] and TUTA [13] train embeddings and evaluate 
them on several different downstream tasks — row population, 
column population, column type prediction, cell and table type 
classification. Unlike Tabbie, TUTA and other SOTA solutions 
for relational tables, TabBiN supports complex non-relational 
tables with nesting, distinguishes data and metadata context, 
recognizes both vertical and horizontal hierarchical metadata, 
performs type inference on both metadata and data, uniquely 
embeds not only numerical values but also ranges, recognizes 
units and encodes them as separate embeddings vectors. 

6 CONCLUSION 
We introduced TabBiN – a structure- and metadata-aware 
transformer for tables not in 1st Normal Form with 
hierarchical vertical and horizontal metadata, having nested 
tables, data values in different units, and numerical ranges. We 
refer to them as non-relational or BiN tables. Relational tables 

constitute only 0.9% of all tables in the common Web crawl [7] 
and 22% of spreadsheet tables, while the rest are non-
relational. To the best of our knowledge, TabBiN is the first 
transformer-based unsupervised architecture optimized for 
intricacies of structural context in these tables, respecting 
units in numerical values, and treating ranges and gaussians 
according to their semantics, not blindly as a sequence of 
numbers as in many SOTA solutions. TabBiN also performs 
semantic type inference on the table content as well as its 
metadata and encodes inferred types as an additional 
component in the embedding layer. This fine-grained 
understanding and “special treatment” of non-relational tables 
with hierarchical metadata and nesting, allows TabBiN to 
outperform SOTA on three popular downstream tasks on five 
large-scale structured datasets with the significant MAP delta 
of up to 0.28. GPT-4 LLM+RAG slightly outperforms us with 
MRR delta of 0.1, but we significantly outperformed it with the 
MAP delta of up to 0.42. 
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